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An Attempt to Generalize Onsager's Principle, 
and its Significance s Rheological Problems*) 

B y  HANS ZIEGLER, Zfirich,  S c h w e i z  2) 

1. Introduction 

Recent developments in rheology emphasize the thermodynamic aspect of 
the problems treated. In thermoelasticity, for instance, the field of classical 
elasticity is extended to include influences of temperature differences and heat 
flow [1] a). While the phenomena considered here are reversible (by definition), 
other trends of research are concerned with irreversible processes. A. P. GREEN 
[2] and W. PRAGER ([3], p. 83) have pointed out that in the solution of problems 
of plastic flow it is indispensable to assure a positive sign of the rate of dissi- 
pation work throughout the body. M. A. BlOT [4] stressed the importance of 
irreversible thermodynamics for viscoelasticity. He used the relations of 
L. ONSAGER [5, 6] to establish a perfect analogy between problems of elastic 
deformation and viscous flow. This proof of the so-called viscoelastic analogy 
has the advantage of being independent of any conditions of symmetry or 
isotropy; it is restricted, however, to linear rheological laws, since ONSAGER'S 
relations are meaningful only in tile linear case. 

In a recent paper [7] 4) the author suggested (without proof) a generalization 
of ONSAGER'S theory for nonlinear phenomenological laws. Such a generali- 
zation is of particular interest in connection with rheology, since it allows to 
establish the viscoelastic analogy in full generality, and at the same time to 
lay a foundation for the theory of plastic potential of R. v. MISES [8] which, 
in the generalized form due to W. PRAGER ([3], p. 18), is one of the central 
pillars of the theory of plasticity. 

This paper is an attempt to prove the suggested generalization of ONSA- 
GER'S relations, This can be done in full generality for arbitrary irreversible 
processes (sections 4 and 5). Since, however, the need for this generalization 

1) The results presented in this paper were obtained in the course of research sponsored by the 
Office of Ordnance Research, Department of the Army, under Contract No. DA-19-0i0-3487. 

The author is indebted to Professors W. PRAGER and R. S. RIVLIN for their helpful advice. 
3) ETH, 1956/57 Brown University, Providence, R. I., USA. 
a) Numbers in brackets refer to References, page 76i. 
4) This paper was written in ignorance of BIOT'S work. 
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arose in connection with rheology, the exposition of the problem (sections 2 
and 3) and  the evaluation of the results (section 6) will be restricted to this 
particular field. 

2. The Rheologic Problem 

In certain rheologic bodies (Maxwell body, Prandtl-Reuss body) each of 
the deformations xk (k = 1, 2 . . . .  ) is the sum 

e i ( 2 . 1 )  Xf~ = XI~ + X k 

of an elastic and an inelastic component, where the distinction between the 
two types of deformation is based on a definition to be given presently. If 0 
is the temperature of the body, the  quantities 4 ,  xik, and 0 may be considered 
as the independent thermodynamic state-variables. In order to assure that the 
state of the body at any time is entirely determined by these quantities, it is 
necessary to confine the following considerations to sufficiently small bodies or 
to sufficiently slow changes of state. 

The work of tile external forces Xi in an arbitrary change of state is given by 

dW G (Ux; + dx~) ~). (2.2) 

If dQ denotes the induced heat, the /irst /undamental theorem of thermody- 
namics takes the form 

dW + dQ = dU, (2.3) 

i 0) is a single-valued state-function, called the internal energy where U(x~, x k, 
of the body. 

From (2.2) and (2.3) follows 

( ) (OU )dx~+ OU dO. (2.4) dQ = aN - d W  = ~ - X k dx'k + G~-  -- x k  

According to the second ]undamental theorem of thermodynamics 

d0 < 0 dS, (2.5) 

where S(x~, x~, O) is another single-valued state-function, called the entropy of 
the body. For reversible changes of state (2.5) is an equality; for irreversible 
processes it is an inequality. 

i by the definition that the elastic We now distinguish between x~ and x~ 
deformations be reversible changes of state, while the inelastic deformations 
are irreversible. From (2.4) and from relation (2.5), interpreted as an equation 

5) Throughout  this paper the summation convention is adopted for subscripts. 
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for elastic processes dx~ = O, we obtain 

o u _ X~ dx~ + -gO- dO 

I t  follows that  

ZAMP 

OS 1 ( OU ) OS 1 OU (2.7) 
= 3 -  , o o  = o o  " 

For the partial  derivatives bS/bx~ no similar relations hold. 
I t  is useful to introduce a third single-valued state function 

F(x;, 4 ,  O) = U -- 0 S ,  (2.8) 

called the / ree  energy of the body. According to (2.7) and (2.8) 

OF OF 
X ~ -  0J~ '  - S -  00 " (2.9) 

Thus the dependent state-variables X~, - S can be obtained as partial deriva- 
tives of 'the free energy with respect to the corresponding independent variables 
x~, 0. The function F therefore is sometimes called the thermoelastic potential 
of the body. According t o  (2.9) the thermoelastic behaviour (the elastic 
constants, the thermic deformation coefficients and the specific heats) is fully 
determined by the function F and generally depends on the inelastic defor- 
mations x~. 

From now on we confine ourselves to bodies the thermoelastic behaviour of 
which is independent of the inelastic deformations. On account of (2.9) the 
free energy of such a body is a sum of the form F(x;, O) +/(x~). According to 
the last equation (2.9) the entropy has the form S(x~, 0), and due to (2.8) the 
internal energy is given by U(x~, O)+/(x~). Reviewing relations (2.1) 
through (2.9) we note that  the function /(x~) only appears in (2.4). As a 
consequence of this the inelastic-thermic behaviour (e. g., the specific heats of 
the inelastic body and its response to given external forces) generally depends 
on the inelastic deformations. We exclude this dependence as well, setting 
[(x~) = 0, so that  g = g(x~, O) and S = S(x~, 0). 

In the discussion of the elastic behaviour it is customary to use the fact that  
the heat production is small. If  the changes of state are isothermal, the tempera- 
ture is no more a state-variable. The free energy, dependent on the elastic 
deformations x~ alone, becomes the elastic potential qg(x~), and the forces are 
given, according to (2.9), by 

0O 
x ,  = 0 (2.10) 

The changes of state, however, can also be considered as adiabatic. Setting 
dxik = 0 and dQ = 0 in (2,2) and (2.3), we obtain in this case dU = X~ dx~. 

= 0 dS .  (2.6) 
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The internal energy again is independent of the temperature, and the forces 
follow once more from (2.10), where ~(x~) now is the internal energy. 

Relation (2.10) represents the general rheologic law for isothermally or 
adiabatically elastic bodies. This law can be linearized for small deformations 
by assuming that  fi0 is a (positive definite) quadratic form 

1 ~(x~) = ~ aik x~ x~ (2.11) 

of the elastic deformations. The generality of (2.11) is not restricted by the 
further assumption that  the matrix be symmetric, i. e., that  

aki = a i k .  (2.12) 

The law (2.10) now takes the form 

X i = aik x ; ,  (2.13) 
and due to (2.12) we have 

OX~ OX i 
ox$ - 0.,~" (2.14) 

If also inelastic deformations are present, (2.5) is to be interpreted as an 
inequality. According to (2.4) through (2.6) 

d o = 0 dS  - X k dx~ < 0 d S .  (2.15) 

Thus the so-called diss ipat ion work d W  a = X k  dx~ is subject to the inequality 

d W  a = X k dx~ > O, (2.16) 

and the increase of entropy is given by 

1 
dS  = ~ (dQ + dW~) .  (2.17) 

From (2.16) and (2.17) follows as expected that every adiabatic inelastic de- 
formation increases the entropy. 

According to CARNOT and CLAUSIUS the entropy increment d S  may be 
considered as the sum 

dS = dS  ~ + dS i = + dS i (2.18) 

of the entropy supply dS~ = dQ/O from outside and the entropy production 
inside the body which, according to (2.16) through (2.18), is given by 

dS  ~ _ OW a _ 1 X k  dxik > o (2.19) 
0 0 

While 
~ > 0 (2.20) L a = X~ x~ 
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represents the rate o/dissipation work, the rate o~ entropy production is 

d, L~ ~ & ; i f > 0  (2.21) = ~ - = - g  

Tile foregoing considerations gre based alone on the fundamental theorems 
of thermodynamics. As far as the thermoelastic behaviour is concerned, the 
results are complete, as soon as the free energy is known. Concerning the 
inelastic behaviour, however, little is known apart from the fact that the 
dissipation work is always positive. 

3. Onsager's Relations 

In certain cases ONSACER'S theory [5, 6] supplies the additional information 
needed concerning the inelastic behaviour of the body under consideration. 
O•SAGER'S theory applies to any kind of irreversible process. It  is based essen- 
tially on the assumption of microscopic reversibility and can be stated as 
follows: 

Let 
L a = X~ ~ (3.1) 

be the rate of dissipation work of an irreversible process. Provided the 'velo- 
cities' xk and the corresponding' forces' X i are connected by the linear relations 

X i = a i k  Xk, (3.2) 

then the matrix (aik) is symmetric, i. e., 

a k i  ~ a i k  �9 (3.3) 

The linear relations (3.2) are called the phenomenological law of the process, 
and (3.3) are ONSAGER'S reciprocal relations. 

In a rheologic process the ~ are the inelastic rates of deformation. Since 
the elastic behaviour has been disposed of, the superscript i can be suppressed 
from here on. The X/ are the external forces; (3.2) is the rheologic law of a 
linear inelastic body, and (3.3) represents the same symmetry as (2.12) in the 
case of a linear elastic body. The coincidence of (2.12) and (3.3) establishes 
the visco-elastic analogy for linear bodies (i. e., between a linear Newton body 
and a linear Hooke body or between the inelastic and elastic responses to 
external forces of a linear Maxwell body). 

The symmetry expressed by (3.3) also holds for the inversion of the phenome- 
nological law, 

~ = b~iXi with bki--  Ask , (3.4) 
cl 
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where a = ] ai~[ and Ai~ is the cofactor of ai~ in this determinant. For from 
the symmetry of (a~) follows Ak~ = A ~  and hence 

b i ~ =  bki .  (3 .5)  

Due to (3.2) ONSAGER'S relations (3.3) can also be written in the form 

a x e _  OXi (3.6) 
O~ i O.~ " 

It  follows that  the forces are the partial derivatives 

0r 
X i - -  O~ i (3.7) 

of a function 
1 

~(:~k) = ~- a,k :~ kk. (3.8) 

This means that the force vector X i  is 'vortex-free '  in the space xk and hence 
is the gradient of a potential r 

Similarly (3.4) and (3.5) yield 

and thus 

with 

O,,h 0 ~  (3.9) 
OX~ ~- OX i 

OT 
xk = OX i (3.10) 

1 
~J(Xi) = ~ b~i X~: X i . (3.11) 

The connection between the functions qh(~k) and T ( X i )  is, according to (3.11), 
(3.2), (3.4), (3.3) and (3.8), 

i I Aik 
T(X~) = y b~i m,s ai~ s :~ = E "  a 

(3.12) 

where ;~k and Xi are values connected by the phenomenological law (3.2). This 
means that  the velocity vector ~ is 'vortex-free '  in the space Xi and hence is 
the gradient of a potential T ( X i ) .  

The phenomenological law (3.2) supplies a reversibly single-valued transfor- 
mation of the space/~  (the space of deformation rate) onto the space X i  (the 
force space). The inversion of this transformation is given by  (3.4). From 
r = const follows, according to (3.12), T = const and vice versa: the potential 
surfaces in one space are the images of those in the other space. According to 

ZAMP IXb/48 
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(3.2) and (3.4) the rate of dissipation work is 

L a = a i k x i x k = 2 f i 0  or L d = b k i X ~ X ~ - - 2 ~ .  (3.13) 

Due to (2.20), i. e., to the second fundamental theorem of thermodynamics, 
these expressions are positive for any nonvanishing vector ~ or X, respectively. 
Hence the matrices (aik) and (bki) are positive definite, and the surfaces 

= const and ~ = const are ellipsoids. 
Figure 1 illustrates the results in two dimensions, the quadratic forms 

(3.13) being transformed on normal coordinates. 

,~- const ~-  conat 

Figure 1 

ONSAGE1CS law (3.7), (3.S) and its inversion (3.10). 

4. A Genera l i za t ion  

In order to prove his relations (3.3), ONSAGI~I~ considered the statistical 
aspect of the fluctuations occuring in irreversible processes, making use of the 
following assumptions [6]: In the first place, the microscopic fluctuations about 
a state of equilibrium are assumed to be reversible. In the second place, it is 
supposed that  the regression of fluctuations obeys the same laws as a macro- 
scopic process. 

For nonlinear phenomenological laws O5ISAGER'S relations are meaningless. 
In the form given by (3.6) or (3.7), however, the results can be generalized, if 
two assumptions are accepted that correspond in a certain sense to ONSAGER'S 
postulates. 

From the viewpoint of statistical mechanics, a thermodynamic system with 
the state variables x~, 0 is a mechanical system with a great number of degrees 
of freedom most of which are latent from the phenomenological point of view. 
Beside the external coordinates xk there are a large number of internal coor- 
dinates q~ (,~ = 1, 2 . . . .  ). If T is the kinetic energy of the system and if the @. 
are its generalized forces, the motion for given values of the external coordi- 
nates xk may be obtained by LAGRANGE'S differential equations 

d OT OT 
dt Oq~ Oqa ----- Q~" (4.1) 
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I t  is customary to assume [9] that  the system is conservative and nongyro- 
scopic [10]. Clearly this assumption is equivalent to ONSAGER'S first postulate 
(microscopic reversibility). The generalized forces then are the negative partial  
derivatives 

0 
Q;" = Oqz V(q;, xk) (4.2) 

of a potential  energy dependent on the internal and external coordinates. 
Let us now assume that  the external velocities xk are prescribed constants. 

Then the partial  derivatives bV/~q~, are known functions of the qa and of t. Inte-  
gration of (4.1) supplies the qz as functions of the time and of the initial con- 
ditions. In other words : the motion of the system is entirely determined by  the 

initial conditions and the velocit ies/k.  Hence, also the rate of increase ~- of 
the total  energy 

U =  T +  V (4.3) 

only depends on the initial conditions and on the xk. 
From the phenomenological point of view the rate of energy increase can 

be considered as a mean value U over a sufficiently long time interval. I t  only 
depends on the xk, and this remains true in the case where the xk are functions 
of the time, provided they vary  so slowly that  they can be considered constant 
over the time intervals needed for the averaging process just mentioned. The 
phenomenologieal rate of energy increase in an adiabatic process of this type 
thus is represented by a dissipation/unction 

ff = D(.4,:) . (4.4) 

This function, defined without reference to the external forces, can be repre- 
sented in velocity space by means of surfaces D = const (see Figure 2, illus- 
t ra t ing this s tatement  for two dimensions). 

Let us now consider the case where instead of the ;ok the external forces Xi 
are prescribed constants. The velocities ;~ then fluctuate about certain mean 
values x~"*, and the connection between these mean values ~ and the X~ 
obviously represents the phenomenological law of the process. If we assume 
that  the fluctuations 

6~k = ;~a -  ;~" (4.5) 

are slow compared with the molecular velocities (this assumption corre- 
sponding to the second of ONSAGER'S postulates), the energy increase (4.4) at 
any instant depends on the actual velocities xk. According to the first fundamental 
law the rate of work of the Xi in an adiabatic process must  be equal to the rate 
of increase of the internal energy. We have therefore 

X~ xk = U =  D(~k), (4.6) 
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and due to the second fundamental theorem this quanti ty is positive for any 
nonvanishing state of motion ~ .  

Let us now - still under the assumption that the X, are kept constant - pick 
"m and ~/k -- x~ + 3x~ for which D ( ~ )  D(~) ,  their out two states of motion x k = 

representative points (Figure 2) thus lying on the same surface D = const. 

Xz 

From (4.6) follows 

o r  

O-const 
l= 
xl 

Figure  2 

Vector  X i and surface  D = const .  

X~ Oxl~ = O; 

(4.7) 

(4.8) 

hence, the vector X~ must be normal to the surface D = const in the domain 
of the values ~e compatible with X~. 

Phenomenologically, the fluctuations d/e under a given vector X i are 
imperceptible. From this point of view a force X~ defines a velocity xk, and 
the superscript m can now be dropped. If (4.6) is applied to this phenome- 
nological velocity ~?~, we have 

L ~ = Xk ~ = D(~)  positive definite. (4.9) 

Condition (4.8) is equivalent to the statement that  X i  is parallel to the gradient 
of D at ~2 k. According to (4.9) the scalar product Xk xk is positive in the whole 
space ~ with the exception of the origin. The surfaces D = const therefore are 
concave with respect to the origin. 

Analytically the fact that  X i is perpendicular to the surface D = const at ~ 
is expressed by 

OD (4.10) Xi = I(G) 0 ~ '  

where/(xk) is an arbitrary function. Due to (4.9), however, the functions/(xk) 
and D(~)  are connected by the condition 

OD 
D =/O~-k ~ "  (4.11) 
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It  follows that  the phenomenological law has the form 

( O D . ) - I O D  
X i  = ~ 7  xk D --'O& (4.12) 

Relation (4.12) [or (4.10) together with one of the relations (4.9), (4.11)J is 
the generalization of ONSAGER'S theory we were looking for. It  represents the 
most general phenomenological law for a purely irreversible process subject to 
the two assumptions made in the derivation. 

If we require that the Xi be linear functions 

X i  = alk Xk (4.13) 

of the xl,. D(xk), according to (4.9), is a quadratic form 

D = aik xi xk, (4.14) 

positive definite, but not necessarily symmetric. Due to (4.10), however, 

X i  =/(:~k) (aik + aki) ~ck. (4.15) 

Since (4.13) and (4.15) must be identical for any values of i and k, we obtain 
/ =  1/2 and 

aki = aik , (4.16) 
i. e., ONSAGER'S relations (3.3). 

5. An Important Special Case 

From a physical point of view we are particularly (if not exclusively) 
interested in phenomenological laws of a special kind, namely in laws where 
the directions of the vectors xk and Xi  determine each other independently of 
their magnitudes. In other words: the vectors Xi for all points xk on a radius 
from the origin in the space ;2~ have the same direction. It  follows at once that 
in this case the surfaces D = const are similar and similarly situated with 
respect to the origin, 

Let us assume that an arbitrary function G(~) has similar surfaces G = const, 
similarly situated with respect to the origin. If we start from different points xk 
on an arbitrary surface G = const and carry out small steps 

dG = :G de (5.1) 

in the directions and proportional to, the vectors xk, then, according to (5.1), 

OG OG 
dG = -~.~- d ~  = :rk de. (5.2) 
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Due to the similarity assumed these steps end on another surface G = const. 
Hence the right-hand side of (5.2) is the same for all starting points, i. e., 

OG . 
0,~ x~ = g(G). ( 5 . 3 )  

Applying (5.3) to the dissipation function D and making use of (4.11), we 
obtain 

D 
7 = g(O). (5.4) 

I t  follows that  / is a function of D, i. e., 

I (~)  = 9 ( D ) .  ( 5 . 5 )  

Let a function ~ be defined by 

= ; 9 ( D )  dD (5.6) 
J 

and let the additional constant contained in (5.6) be fixed by setting 

r  = 0) = 0. (5.7) 
Then 

d e  
9 - -  d O '  (5.8) 

and the rheologic law (4.10) becomes, due to (5.5) and (5.8), 

OD d ~  OD (5.9) 

o r  

0r 
X ~ -  0~ (5.10) 

as in (3.7). Hence, the force vector X i  again is the gradient of a potential r 
in velocity space, and since such a gradient is 'vortex-free' ,  the generalized 
Onsager relations (3.6) 

OX~ OX~ 
- -  (5.11) 

0:/i 0 ~  
hold. 

If (5.10) or (5.11) are interpreted as rheologic relations, either of these equa- 
tions [by comparison with (2.10) or (2.14)] establishes the viscoelastic analogy 
for non-linear Newton and Maxwell bodies with rheologic laws satisfying the 
condition stated at the beginning of this section. 

The potential ~b(xk), however, is not an arbitrary function. According to 
(5.6) the surfaces r = const coincide with the surfaces D = const. Hence, they 
are similar and similarly situated with respect to the origin. I t  follows that 
a relation of the type (5.3) also holds for r  the potential function thus must 
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satisfy the condition 
o~k ~ = h(#).  (5.12) 

I t  is easy to see that  this condition is satisfied by  any homogeneous function [11] 
of the xk, particularly by  any entire rational function of arbi trary degree n. 
There are, however, more general solutions of (5.12). 

By means of LEGENDRE'S transformation [12]s), these results can be 
extended. Let us assume for convenience that  the phenomenological law (5.10) 
is single-valued. Due to (5.7) and to the fact that  D = 0 at the origin o of the 
space s the function ~(xk) vanishes at o. Relation (5.10) supplies a single- 
valued transformation of a domain g in the space xk (the domain of definition 
of the function #) onto a domain G in the space X~. Let us assume further that  
the inversion of the phenomenological law, 

~ = ~ ( X , ) ,  (5.13) 

is also single-valued, supplying a single-valued transformation of G onto g. 
Figure 3 illustrates these transformations in two dimensions. According to 

,xz Z2 

~ 0 'r \ Xl 
Figure 3 

Generalization (5.10), (5.17) of ONSAGER'S law. 

section 2 there are no irreversible changes of state without dissipation. Hence 
the origin 0 in the space X~ is the image of o; consequently g contains o and G 
contains O. 

Let c be an arbi trary curve in g, connecting o with a point p with coordinates 
xk. Let further the point P with coordinates Xk be the image of p in G. Then 
the image C of c in G connects the points 0 and P, and we have 

fXid:~i+/:~,dXi= / d ( X i  ;2i) : Xk:~ k. (5.14) 
C 

6) The analogous transformation for nonlinear Hooke bodies leads to the so-called comple- 
mentary energy [la]. 
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Making use of (5.10) and of the fact that  # vanishes at  o, we may  write instead 

f ~ dX~ = X~ ~ - r (5.15) 
C 

If  on the right-hand side xk is expressed in terms of X~ by  means of (5.13), 
the integral on the left-hand side appears as a function 

f ;~ dX~ = T(Xk) (5.16) 
C 

of the coordinates Xk of P,  and from (5.16) follows 

OT 
~ k -  ox  k �9 (5.17) 

Thus, also the inversion (5.13) of the rheologic law can be represented by 
means of a potential ~P(Xi) which, due to (5.16) and (5.15), vanishes at O. This 
potential may  be called complementary to #(xk). 

Due to (5.10) and (5.17), the dissipation function (4.6) may be written in 
either one of the two forms 

Ocb O T 
D = ~ x k ,  D = ? 2 7 . X , .  (5.18) 

Thus, D in both spaces is the scalar product of the gradient of the potential 
and the radius vector. Since D is positive definite, both potentials increase 
monotonically on every radius from the origin. The potentials qs(~k) and ~(X~) 
hence are single-valued functions of their arguments (obviously also in cases 
where the phenomenological law or/and its inversion are not single-valued). 

Due to (5.16) and (5.15) 

r + W(Xk) = Xk ~ = D .  (5.19) 

According to (5.6) the surfaces D -- const in the space ~ are also the surfaces 
~b = const. I f / k  varies on such a surface, k~(X~), according to (5.19), is constant 
as well. I t  follows that  the surfaces ~ = const are the images of the surfaces 

= const and vice versa, and that  both types of surfaces also are the surfaces 
D = const in the corresponding space. 

Since # ( ~ )  increases monotonically on each radius from o, a given radius 
intersects a given surface ~b = const in no more than one point p. Hence, 
there exists on the corresponding surface ~ = const only one point P the 
normal of which has a given direction. I t  follows that  the surfaces k~ = const 
are convex. In an analogous way the convexity of the surfaces # = const may 
be proved. 
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6. An Application to Plasticity 

Let the ~ be the plastic rates of deformation of a perfectly plastic body 
under the action of the stresses Xi,  and let the yield locus H be regular and 
determined by  the equation 

z(X,) = 1,  (6.1) 

where the function Z is chosen in such a manner that % < 1 inside H. I t  is 
physically evident that  this surface is closed and containing the origin O. 
Moreover, it is generally accepted that the yield locus is convex. According to 
the theory of plastic potential of R. v. MISES [8], as generalized by W. PRAGER 
([3], p. 18), the velocity vec tor /~  for a given stress vector Xi at the yield limit 
is given by 

:~7c = ~ Oz (6.2) 
OX~ ' 

where A is an arbitrary non-negative factor of proportionality. 
In this theory two items are extremely probably, but have not been proved 

so far in a direct and convincing manner. The first one is the convexity of the 
yield locusT); in the second place there are the relations (6.2)s). In both cases 
a direct proof is possible on the basis of our theory if we make the plausible 
assumption that  a Prandtl-Reuss body may be considered as the limiting case 
of a non-linear Newton body with a rheologic law of the type considered in 
section 5. 

In the case of a perfectly plastic body the vector x~ is zero when the end 
point of Xi lies in the interior of the yield locus H. Thus the transformation 
supplied by  the rheologic law is such that the whole interior of H in the space X~ 
corresponds to the origin o in the space xk. On the other hand, plastic flow 
occurs under vectors X~ with end points on H. Hence, the whole space -xTc with 
the exception of the origin o is transformed onto the yield locus H in the 
space Xi. Thus the domain g of section 5 is the entire space .~; the domain G 
contains the yield locus H and its interior. Neither the rheologic law nor its 
inversion are single-valued. If 

R = (X~ X,)1/-, (6.3) 

is the magnitude of an arbitrary radius vector in the space Xi ,  the direction of 
this vector is determined by the ratios 

X i  
a i - -  R (a in ,  = 1). (6.4) 

7) In  appl ica t ions  the yield locus is a lways  convex, and  from considerat ions  of uniqueuess i t  
seems h igh ly  probable  t h a t  this  is a lways  the case. A direct  and eonvhacing proof, however,  has  not  
beeI1 g iven  so far. 

a) R . v .  MISES gave  no proof for his relat ions.  W. PRAGER [14] showed t h a t  (6.2) is a suff ic ient  
condi t ion for a cer ta in  uniqueness  theorem. A proof g iven b y  D. C. DRUCKER [15] is based on an 
assumpt ion  which itself is hypothe t iea l .  
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The yield locus (6.1) m a y  be described also by  an equation of the form 

R = h(a, ) .  (6.5) 
If  we set 

R - 
k~(X,) = [ ~ ] ,  (6.6) 

k~ is a function in the space X~ which equals 1 on the surface H and increases 
on any radius with the n-th power of the distance from O. If  R/h(ai) is constant, 
5 v is constant;  the surface k~= const therefore are similar and similarly 
situated with respect to O. 

A comparison with section 5 shows that  the function kV given by  (6.6) 
defines a nonlinear Newton body with the rheologic law 

Olp 
~ k =  OX k . (6.7) 

If  we assume that  n > 1, the gradient of ~ is zero at 0 and increases towards H;  
hence, the body defined by  (6.7) has a viscosity decreasing with increasing 
stress. If  n is increased, the region K where the magnitude of the gradient of 
exceeds an arbi trary small quant i ty  s spreads out more and more towards the 
surface H. At the same time, the magnitude of the gradient increases more 
and more on H. By increasing n sufficiently, the region K can be made as 
small as desired, and at the same time the magnitude of the gradient can be 
made arbitrarily large at any point P of H. On a radius connecting 0 and P, 
therefore, the gradient assumes all values of an interval tending to 0 - . .  oo 
with increasing n in a vicinity of P tending to zero, and its direction, perpen- 
dicular to the surfaces k~ = const, is that  of the normal to H at P. Hence, in 
the limit, (6.7) assumes the form (6.2) with 2 ~ 0. Thus, the relation of 
R. v. MISES is justified under the assumption that  the Prandtl-Reuss body is 
a limiting case of a nonlinear Newton body with a rheologic law of the type 
treated in section 5. Moreover, this assumption requires that  H be a convex 
surface. According to section 5 the surfaces 5 v = const must  be convex, and it 
is clear that  they cannot supply in any limit process a non-convex yield limit. 
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Zusammenfassung 

~vVenn ein irreversibler Prozess durch die <~Geschwindigkeitew~ xk und die 
,Kr~fte~ X~ (uud somit durch die Dissipationsleistung X k xk) charakterisiert ist 
uud wenn das ph~nomenologische Gesetz X i = [~(:~k) dieses Prozesses linear, das 
heisst yon der Form X i = a~k xTc ist, dann etabliert  die Onsagersche Theorie die 
Symmetrie ak~= ai~ der Matrix (aik). Das ph~nomenologische Gesetz kann 
daher ill der Form 

0~ 
fl:'i = ~ (1) 

geschrieben werden. 
Diese Arbeit stellt einen Versuch dar, ONSAGERS Theorie fiir nichtlineare 

ph~inomenologische Gesetze zu verallgemeinern. Es steltt sich heraus, dass ein 
solches Gesetz yon der Form 

X i = ~ 2 k D 02 i (2) 

sein muss und dass sich (2) im spezietlen, aber praktisch wichtigen Falle, dass 
die Vektoren ~ ~ und X i ihre Richtungen gegenseitig unabh~ngig yon den Betr~gen 
best immen, auf (1) reduziert. 

Ein  wichtiges Anwendungsgebiet  ist die nichtlineare Rheologie. Wenn etwa 
ein ideal-plastischer K6rper als Grenzfall eines nichtl inearen Newton-KSrpers 
aufgefasst wird, dann  folgt die Konvexit~t  der Fliessfl~iche und  v. MIsEs' 
Theorie des plastischeu Potentials aus dem rheologischen Gesetz (1). 
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