Transformations of Minimal Surfaces.

(By LUTHER PFAHLER EISENHART.)

In a Memoir published by CALAPSO in the *Annali* (*), the author has developed at length the theory and transformations of a class of surfaces, discovered by GUICHARD $(**)$ and characterized by the property:

Given a surface N of the class; « there exists a surface N' having the same spherical representation of its lines of curvature as the surface N , and such that if r_1 , r_2 are the principal radii of curvature of N, and r'_1 , r'_2 the corresponding radii of N' , one has

$$
r_1 r_2' + r_2 r_1' = \text{const.},\tag{I}
$$

the constant being different from zero ».

CALAPSO has shown that, if a surface be referred to its lines of curvature, the necessary and sufficient condition that it be a surface N is that either of the following conditions be satisfied:

$$
\left(\sqrt{G}\,\frac{D}{\sqrt{E}} - \sqrt{E}\,\frac{D''}{\sqrt{G}}\right)^2 = G - E,\tag{II}
$$

$$
\left(\sqrt{G}\,\frac{D}{\sqrt{E}} - \sqrt{E}\,\frac{D''}{\sqrt{G}}\right)^{\!2} = G + E,\tag{III}
$$

where the functions E, G, D, D'' are the fundamental quantities of the surface. According as a surface satisfies the first or second of these conditions, it is called by CALAPS0 a *surface of* GUICHARD *of the first kind* or *of the second kind.*

In the present Note we show that one of the surfaces parallel to a min-

^(~) Alcune superficie di GUICHARD e *le relative trasformazioni* [Annali, ser. III, vol. XI, p. $201-251, (1905)$].

^{(**}) Sur les Surfaces isothermiques [Comptes Rendus, vol. 130, p. 159].

imal surface satisfies (II) and that the surface N' associated with it after the manner of the above theorem is a sphere. After deducing these results in \S 1, we apply in the subsequent \S the results of GUICHARD and CALAPSO to this group of surfaces of GUICHARD. We shall refer to these particular surfaces as *surfaces P.*

GUICHARD has shown that from a surface of the first kind one can deduce an infinity of isothermic surfaces referred to their lines of curvature each of which is the locus of a point A situated on an isotropic tangent to the surface N. In § 2 it is found that these transforms of a surface P are minimal surfaces; hence we have a transformation from the minimal surface, S, which is parallel to P, to new minimal surfaces, which for convenience we shall call the surfaces \overline{S} .

In § 3 we apply to the P-surfaces parallel to the surfaces \overline{S} (call them the surfaces \overline{P}) the GUICHARD transformations and find that the determination of all these transformations requires only quadratures. However, these new minimal surfaces are imaginary.

In § 4 we apply to the surfaces \overline{P} the transformation of GUICHARD in which $+i$ has been replaced by $-i$ and vice-versa. Among the infinity of transforms of a surface \overline{P} there is always one real minimal surface other than the original surface S.

In this manner we can obtain from a given minimal surface an infinity of real minimal surfaces, whose determination requires the solution of a pair of RICCATI equations. The relation between the original surface and any one of these transforms is perfectly reciprocal, so that when the transforms S_1 of S have been found, one can get the transforms S' , of the surfaces S_1 by quadratures.

CALAPSO has shown (*) that, given any isothermic surface, a surface of GUICHARD can be found by inverting the transformation of GUICHARD. In § 5 we apply this inverted transformation and also its conjugate to the surfaces \overline{S} , and in both cases we find that all the transforms are imaginary.

^(*) L. c., pag. 230.

§ 1. SURFACES P.

Consider the minimal surface S with the linear element

$$
d s2 = e2 \theta (d u2 + d v2), \t\t(1)
$$

and for which the coefficients of the second quadratic form are

$$
D = -1, \qquad D'' = 1. \tag{2}
$$

Now the linear element of the spherical representation is

$$
d s^2 = e^{-2\theta} (d u^2 + d v^2), \tag{3}
$$

and the GAUSS and CODAZZI equations are satisfied, if θ is a solution of the equation

$$
\frac{\partial^2}{\partial u^2} + \frac{\partial^2}{\partial v^2} = e^{-2\theta}.
$$
 (4)

If we denote by X_1 , Y_1 , Z_1 ; X_2 , Y_2 , Z_2 ; X , Y , Z the direction-cosines of the tangents to the curves $v =$ const, $u =$ const, and of the normal to the surface respectively, we have (*)

$$
\frac{\partial x}{\partial u} = e^{\theta} X_1, \quad \frac{\partial X_1}{\partial u} = -\frac{\partial \theta}{\partial v} X_2 - e^{-\theta} X, \quad \frac{\partial X_2}{\partial u} = \frac{\partial \theta}{\partial v} X_1, \quad \frac{\partial X}{\partial u} = e^{-\theta} X_1,
$$
\n
$$
\frac{\partial x}{\partial v} = e^{\theta} X_2, \quad \frac{\partial X_1}{\partial v} = \frac{\partial \theta}{\partial u} X_1, \quad \frac{\partial X_2}{\partial v} = -\frac{\partial \theta}{\partial u} X_1 + e^{-\theta} X, \quad \frac{\partial X}{\partial v} = -e^{-\theta} X_2,
$$
\n(5)

and similar equations in the *y's* and *z's.*

A surface parallel to S at the distance α is given by

$$
\xi = x - a X, \qquad \eta = y - a Y, \qquad \zeta = z - a Z.
$$

The fundamental quantities of this surface are found to be

$$
E = (e^{\theta} - a e^{-\theta})^2, \qquad F = 0, \qquad G = (e^{\theta} + a e^{-\theta})^2, \nD = -e^{-\theta} (e^{\theta} - a e^{-\theta}), \qquad D' = 0, \qquad D'' = e^{-\theta} (e^{\theta} + a e^{-\theta}).
$$

(~) BIANC~II, *Zezioni,* vol. II, p. 336.

Annali di Matematica, Serie III, Tomo XIII. 33

These expressions satisfy equation (II), if $a=1$ and only in this case. Hence the surface detined by

$$
\xi = x - X, \qquad \eta = y - Y, \qquad \zeta = z - Z,\tag{6}
$$

is a surface of GUICHARD of the first kind; we designate such a surface by P . From above it is seen that the fundamental quantities for P are

$$
E = 4\sinh^2\theta, \quad G = 4\cosh^2\theta, \quad D = -2e^{-\theta}\sinh\theta, \quad D'' = 2e^{-\theta}\cosh\theta. \tag{7}
$$

CALAPSO has shown (*) that the necessary and sufficient condition that a surface be a surface of GUICHARD is that the linear elements of the surface and its spherical representation be reducible to the respective forms

$$
d \sigma^2 = e^{2t} (\sinh^2 \Theta \, d \, u^2 + \cosh^2 \Theta \, d \, v^2)
$$

\n
$$
d \sigma^2 = (\cosh \Theta + H \sinh \Theta)^2 \, d \, u^2 + (\sinh \Theta + H \cosh \Theta)^2 \, d \, v^2,
$$
\n(8)

the lines of curvature being parametric, and the functions t , H and Θ being solutions of the system of equations

$$
\frac{\partial H}{\partial u} = (H + \coth \Theta) \frac{\partial t}{\partial u}, \quad \frac{\partial H}{\partial v} = (H + \tanh \Theta) \frac{\partial t}{\partial v},
$$
\n
$$
\frac{\partial^2 \Theta}{\partial u^2} + \frac{\partial^2 \Theta}{\partial v^2} + \coth \Theta \frac{\partial^2 t}{\partial u^2} + \tanh \Theta \frac{\partial^2 t}{\partial v^2} - \frac{1}{\sinh^2 \Theta} \frac{\partial \Theta}{\partial u} \frac{\partial t}{\partial u} +
$$
\n
$$
+ \frac{1}{\cosh^2 \Theta} \frac{\partial \Theta}{\partial v} \frac{\partial t}{\partial v} + (\cosh \Theta + H \sinh \Theta) (\sinh \Theta + H \cosh \Theta) = 0.
$$
\n(9)

In order that (3) may take the form of the second of (8), we must have

$$
\cosh \Theta + H \sinh \Theta = e^{-\theta}, \qquad \sinh \Theta + H \cosh \Theta = -e^{-\theta},
$$

from which it follows that

$$
\Theta = \Theta, \qquad H = -1. \tag{10}
$$

Moreover, the first of (8) reduces to (1) , if

$$
e^t = 2.\tag{11}
$$

 \bar{z}

In consequence of (4) equations (9) are satisfied by the above values $(10), (11).$

^(*) L. c., p. ~214.

CALAPSO has shown $(*)$ that the surface N', which is related to N in the manner stated in the theorem leading to the relation (I) , is defined by the forms (8), where now the functions t_1, H_1, Θ_1 relating to N' are given by

$$
e^{t} = e^{-t} (1 - H^2), \quad \sinh \Theta_t = \frac{-1}{1 - H^2} \left[\sinh \Theta (1 + H^2) + 2 H \cosh \Theta \right],
$$

$$
\cosh \Theta_t = \frac{1}{1 - H^2} \left[\cosh \Theta (1 + H^2) + 2 H \sinh \Theta \right].
$$

When the surface N is a surface P , the surface N' is the unit sphere upon which the Gaussian representation of P is made.

§ 2. THE TRANSFORMATION OF GUICHARD.

GUICHARD (**) has announced the following theorem:

Given a surface satisfying conditions (8) and (9) , a function φ can be determined in such a way that the surface \overline{S} defined by

$$
\overline{x} = \xi + e\mathfrak{p}(X_1 + i X_2), \quad \overline{y} = \eta + e\mathfrak{p}(Y_1 + i Y_2), \quad \overline{z} = \zeta + e\mathfrak{p}(Z_1 + i Z_2) \quad (12)
$$

is isothermic.

CALAPSO shows (***) that the function φ is determined by the following pair of illimitably integrable equations:

$$
\frac{\partial \varphi}{\partial u} + i \frac{\partial \Theta}{\partial v} = -\sinh \Theta \cosh (\varphi - t) -
$$

\n
$$
- i \tanh \Theta \frac{\partial t}{\partial v} - \frac{1}{2} e^{\varphi - t} (H^2 \sinh \Theta + 2 H \cosh \Theta),
$$

\n
$$
i \frac{\partial \varphi}{\partial v} + \frac{\partial \Theta}{\partial v} = \cosh \Theta \sinh (\varphi - t) -
$$

\n
$$
- \coth \Theta \frac{\partial t}{\partial u} + \frac{1}{2} e^{\varphi - t} (H^2 \cosh \Theta + 2 H \sinh \Theta).
$$

 $(*)$ L. c., p. 214. (**) L. c., p. 161. When the surface of GUICHARD is a surface P , these reduce to

$$
\begin{cases}\n\frac{\partial \varphi}{\partial u} + i \frac{\partial \theta}{\partial v} = \frac{1}{2} e^{p-\theta} - e^{-p} \sinh \theta, \\
i \frac{\partial \varphi}{\partial v} + \frac{\partial \theta}{\partial u} = \frac{1}{2} e^{p-\theta} - e^{-p} \cosh \theta.\n\end{cases}
$$
\n(13)

In consequence of (5) and (6) we get from (12) by differentiation

$$
\frac{\partial \overline{x}}{\partial u} = 2 \sinh \theta \, X_1 + e^{\varphi} \left(X_1 + i X_2 \right) \left(\frac{1}{2} e^{\varphi - \theta} - e^{-\varphi} \sinh \theta \right) - e^{\varphi - \theta} \, X, \\
\frac{\partial \overline{x}}{\partial v} = 2 \cosh \theta \, X_2 - i \, e^{\varphi} \left(X_1 + i X_2 \right) \left(\frac{1}{2} e^{\varphi - \theta} - e^{-\varphi} \cosh \theta \right) + i \, e^{\varphi - \theta} \, X,\n\tag{14}
$$

so that

$$
\overline{E} = \Sigma \left(\frac{\partial \overline{x}}{\partial u} \right)^2 = e^{2\gamma}, \quad \overline{F} = \Sigma \frac{\partial \overline{x}}{\partial u} \frac{\partial \overline{x}}{\partial v} = 0, \quad \overline{G} = \Sigma \left(\frac{\partial \overline{x}}{\partial v} \right)^2 = e^{2\gamma}.
$$
 (15)

From (14) we find that the direction-cosines, \overline{X} , \overline{Y} , \overline{Z} , of the normal to the surface \overline{S} are of the form

$$
\overline{X} = e^{-\rho} (X_1 - i X_2) + X. \tag{16}
$$

By differentiation we get

$$
\frac{\partial \overline{X}}{\partial u} = e^{-2} \mathbf{P} \frac{\partial \overline{x}}{\partial u}, \qquad \frac{\partial \overline{X}}{\partial v} = -e^{-2} \mathbf{P} \frac{\partial \overline{x}}{\partial v}, \qquad (17)
$$

so that

$$
\overline{D} = -\Sigma \frac{\partial \overline{x}}{\partial u} \frac{\partial \overline{X}}{\partial u} = -1, \quad \overline{D'} = 0, \quad \overline{D''} = 1.
$$
 (18)

Hence \overline{S} is a minimal surface, and the linear element of its spherical representation is

$$
d\overline{s}^2 = e^{-2\varphi} (d\,u^2 + d\,v^2). \tag{19}
$$

Denoting by \overline{X}_1 , \overline{Y}_1 , \overline{Z}_1 ; \overline{X}_2 , \overline{Y}_2 , \overline{Z}_2 , the direction-cosines of the tangents to the curves $v = \text{const.}$, $u = \text{const.}$ respectively on \overline{S} , we have

$$
\overline{X}_1 = e^{-\varphi} \frac{\partial \overline{x}}{\partial u}, \qquad \overline{X}_2 = e^{-\varphi} \frac{\partial \overline{x}}{\partial v},
$$

which in consequence of (14) reduce to

$$
\overline{X}_1 = \left(\frac{1}{2}e^{-\theta} + e^{-\theta}\sinh\theta\right)X_1 + \left(\frac{1}{2}e^{-\theta} - e^{-\theta}\sinh\theta\right)iX_2 - e^{-\theta}X,
$$
\n
$$
i\overline{X}_2 = \left(\frac{1}{2}e^{-\theta} - e^{-\theta}\cosh\theta\right)X_1 + \left(\frac{1}{2}e^{-\theta} - e^{-\theta}\cosh\theta\right)iX_2 - e^{-\theta}X.
$$
\n(20)

If e be replaced by ρ , equations (13) take the RICCATI form. Hence there exists a family of imaginary minimal surfaces depending upon a parameter, transforms of P and consequently of S ; and the complete determination of these surfaces requires the integration of a pair of RICCATI equations.

§ 3. GUICHARD TRANSFORMATIONS OF \overline{S} .

Since \overline{S} is a minimal surface, we have a new surface \overline{P} parallel to \overline{S} . From (6) , (12) and (16) it follows that this surface is defined by equations of the form

$$
\overline{\xi} = \xi + e \mathbf{P}(X_1 + i X_2) - e^{-\varphi}(X_1 - i X_2) - X. \tag{21}
$$

We apply to \overline{P} a transformation of GUICHARD. From (12) it follows that the transform $S₁$ is defined by equations of the form

$$
x_{i} = \overline{\xi} + e^{\varphi_{1}}(\overline{X}_{i} + i \overline{X}_{i}), \qquad (22)
$$

where φ_1 is a solution of the equations

$$
\frac{\partial \varphi_i}{\partial u} + i \frac{\partial \varphi}{\partial v} = \frac{1}{2} e^{\varphi_i - \varphi} - e^{-\varphi_i} \sinh \varphi, \quad i \frac{\partial \varphi_i}{\partial v} + \frac{\partial \varphi}{\partial u} = \frac{1}{2} e^{\varphi_i - \varphi} - e^{-\varphi_i} \cosh \varphi. \quad (23)
$$

In consequence of (20) and (21) equation (22) is reducible to

$$
x_1 = \xi + (1 + e^{\varphi_1-\theta}) \left[e^{\varphi} \left(X_1 + i X_2 \right) - e^{-\varphi} \left(X_1 - i X_2 \right) \right] - (2 e^{\varphi_1-\theta} + 1) X. \quad (24)
$$

On replacing $\xi + X$ by x in this equation, we get a transformation involving two parameters, which changes the original minimal surface S into another minimal surface S_i .

tf equations (23) be written in the form

$$
\frac{\partial \varphi}{\partial u} + i \frac{\partial \varphi_1}{\partial v} = -\frac{1}{2} e^{\varphi - \varphi_1} + \frac{1}{2} e^{-\varphi} \sinh \varphi_1,
$$

$$
i \frac{\partial \varphi}{\partial v} + \frac{\partial \varphi_1}{\partial u} = -\frac{1}{2} e^{\varphi - \varphi_1} + e^{-\varphi} \cosh \varphi_1,
$$

and be compared with (13), it is seen that a solution of them is given by

$$
e^{\varphi_t} = -e^{\theta}.\tag{25}
$$

Hence, since equations (23) are of the RICCATI type, they are integrated completely by quadratures. Therefore, the complete determination of the doubly-infinite group of surfaces S_t defined by (24), requires the solution of a pair of RICCATI equations and quadratures.

Evidently the transformation determined by (25) leads to S itself. We inquire whether any of the other surfaces S_1 are real, when S is real.

I1 we put

$$
\varphi = \alpha + i \, \beta,
$$

where α and β are real, equations (13) are replaced by

$$
\frac{\partial \alpha}{\partial u} = \left(\frac{1}{2}e^{\alpha-\theta} - e^{-\alpha}\sinh\theta\right)\cos\beta, \quad \frac{\partial \alpha}{\partial v} = \left(\frac{1}{2}e^{\alpha-\theta} + e^{-\alpha}\cosh\theta\right)\sin\beta, \n\frac{\partial \beta}{\partial u} + \frac{\partial \theta}{\partial v} = \left(\frac{1}{2}e^{\alpha-\theta} + e^{-\alpha}\sinh\theta\right)\sin\beta, \n\frac{\partial \beta}{\partial v} - \frac{\partial \theta}{\partial u} = -\left(\frac{1}{2}e^{\alpha-\theta} - e^{\alpha-\cosh\theta}\right)\cos\beta.
$$
\n(26)

In like manner, if φ_1 is real, equations (23) can be written

$$
\frac{\partial \alpha}{\partial u} = \left(\frac{1}{2} e^{\rho_1 - \sigma} - e^{-\rho_1} \cosh \alpha\right) \cos \beta, \quad \frac{\partial \alpha}{\partial v} = -\left(\frac{1}{2} e^{\rho_1 - \alpha} + e^{-\rho_1} \cosh \alpha\right) \sin \beta,
$$

$$
\frac{\partial \varphi_1}{\partial u} - \frac{\partial \beta}{\partial v} = \left(\frac{1}{2} e^{\rho_1 - \alpha} - e^{-\rho_1} \sinh \alpha\right) \cos \beta,
$$

$$
\frac{\partial \varphi_1}{\partial v} + \frac{\partial \beta}{\partial u} = -\left(\frac{1}{2} e^{\rho_1 - \alpha} + e^{-\rho_1} \sinh \alpha\right) \sin \beta.
$$

In order that the first two equations of these two sets be consistent,

we must have

$$
\frac{1}{2} e^{p_1 - \alpha} - e^{-p_1} \cosh \alpha - \frac{1}{2} e^{\alpha - \theta} + e^{-\alpha} \sinh \theta = 0,
$$

$$
\frac{1}{2} e^{p_1 - \alpha} + e^{-p_1} \cosh \alpha + \frac{1}{2} e^{\alpha - \theta} + e^{-\alpha} \cosh \theta = 0,
$$

from which by addition we get (25). Hence of all the surfaces defined by (24) *S is the only real one.*

§ 4. CONJUGATE GUICHARD TRANSFORMATIONS OF \overline{S} .

We apply now to the surface \overline{P} , defined by (21), the conjugate transformation of GUICHARD, that is, the transformation with $+i$ replaced by $-i$. Now the equations analogous to (23) are

$$
\frac{\partial}{\partial u} \frac{\theta_1}{u} - i \frac{\partial}{\partial v} \frac{\varphi}{v} = \frac{1}{2} e^{\theta_1 - \varphi} - e^{-\theta_1} \sinh \varphi, \quad i \frac{\partial}{\partial v} \frac{\theta_1}{v} - \frac{\partial}{\partial u} \frac{\varphi}{v} = -\frac{1}{2} e^{\theta_1 - \varphi} + e^{-\theta_1} \cosh \varphi, \quad (27)
$$

and the coordinates of the transform S_{μ} are of the form

$$
x_{1}=\overline{\xi}+e^{\theta_{1}}(\overline{X_{1}}-i\,\overline{X_{2}}),
$$

which reduces to

$$
x_1 = \xi + e^{\varphi} (X_1 + i X_2) + (e^{\theta_1 + \theta} - 1) e^{-\varphi} (X_1 - i X_2) - X. \tag{28}
$$

As in the preceding case, if $\xi+X$ be replaced by x, this gives a transformation from one minimal surface, S, to a double-infinite family of surfaces, S_1 . Later we shall find a particular solution of equations (27); hence the complete determination of all the above transforms of a surface S requires the solution of an equation of RICCATI and quadratures.

We inquire whether any of these transforms are real. On the assumption that θ_1 is real equations (27) can be written

$$
\frac{\partial \alpha}{\partial u} = \left(\frac{1}{2} e^{\theta_1 - \alpha} - e^{-\theta_1} \cosh \alpha\right) \cos \beta, \qquad \frac{\partial \alpha}{\partial v} = \left(\frac{1}{2} e^{\theta_1 - \alpha} + e^{-\theta_1} \cosh \alpha\right) \sin \beta, \tag{29}
$$

$$
\begin{aligned}\n\frac{\partial \theta_1}{\partial u} + \frac{\partial \beta}{\partial v} &= \left(\frac{1}{2} e^{\theta_1 - \alpha} - e^{-\theta_1} \sinh \alpha\right) \cos \beta, \\
\frac{\partial \theta_1}{\partial v} - \frac{\partial \beta}{\partial u} &= \left(\frac{1}{2} e^{\theta_1 - \alpha} + e^{-\theta_1} \sinh \alpha\right) \sin \beta.\n\end{aligned}
$$
\n(30)

In order that equations (29) be consistent with the first two of (26) , we must have

$$
\frac{1}{2}e^{\theta_1-\alpha} - e^{-\theta_1}\cosh\alpha - \frac{1}{2}e^{\alpha-\theta} + e^{-\alpha}\sinh\theta = 0,
$$

$$
\frac{1}{2}e^{\theta_1-\alpha} + e^{-\theta_1}\cosh\alpha - \frac{1}{2}e^{\alpha-\theta} - e^{-\alpha}\cosh\theta = 0,
$$

which reduce to the single equation

$$
e^{\theta_1} = 2\cosh\alpha \cdot e^{\alpha-\theta}.\tag{31}
$$

It is readily found that this value of θ_1 satisfies equations (30). Substituting in (28) and replacing ξ by $x - X$ we get the equation

$$
x_{i} = x + 2 e^{i} (\cos \beta X_{i} - \sin \beta X_{i}) - 2 X,
$$
 (32)

and similar expressions for y_1 and z_1 which define a real transform, S_1 , of a given surface, S.

By differentiation we get

$$
\frac{\partial x_1}{\partial u} = (e^{2\alpha-\theta}\cos 2\beta - e^{-\theta})X_1 - e^{2\alpha-\theta}\sin 2\beta X_2 - 2e^{\alpha-\theta}\cos \beta X,
$$

\n
$$
\frac{\partial x_1}{\partial v} = e^{2\alpha-\theta}\sin 2\beta X_1 + (e^{2\alpha-\theta}\cos 2\beta + e^{-\theta})X_2 - 2e^{\alpha-\theta}\sin \beta X.
$$
\n(33)

From these and similar expressions in y_1 and z_1 we derive the following values for the direction-cosines of the normal to S_1

$$
X' = \tanh \alpha X + \frac{1}{\cosh \alpha} (\cos \beta X_1 - \sin \beta X_2). \tag{34}
$$

And the direction-cosines of the tangents to the curves $v=$ const. $u =$ const. on $S₁$ are of the respective forms

$$
X'_{1} = \frac{1}{2 \cosh \alpha} \left[\left(e^{\alpha} \cos 2\beta - e^{-\alpha} \right) X_{1} - e^{\alpha} \sin 2\beta X_{2} - 2 \cos \beta X \right],
$$

\n
$$
X'_{2} = \frac{1}{2 \cosh \alpha} \left[e^{\alpha} \sin 2\beta X_{1} + \left(e^{\alpha} \cos 2\beta + e^{-\alpha} \right) X_{2} - 2 \sin \beta X \right].
$$
\n(35)

From (32) and (34) we get

$$
\Sigma X(x_1 - x) = -2, \quad \Sigma X'(x_1 - x) = 2,
$$
\n
$$
\Sigma (x_1 - x)^2 = 4(e^{2\alpha} + 1).
$$
\n(36)

and

Hence the line joining corresponding points on two surfaces S and
$$
S_1
$$
 makes equal angles with the normals to the surfaces at these points. As this angle is not a right angle, the transformation is different from the one due to T_{HYBAUT} (*).

From (34) it follows that the direction-cosines of the line of intersection of the tangent planes to S and $S₁$ at corresponding points are

$$
\sin \beta X_1 + \cos \beta X_2, \quad \sin \beta Y_1 + \cos \beta Y_2, \quad \sin \beta Z_1 + \cos \beta Z_2.
$$

Hence this line is perpendicular to the projection upon the tangent plane to S of the line joining the points of tangency on S and $S₁$.

Denote by ξ , η , ζ the coordinates of the point of intersection of these two lines. Since we must have

if we put

 $\xi = x + \lambda (\cos \beta X_1 - \sin \beta X_2),$

 $\Sigma X(\xi - x) = 0, \quad \Sigma X'(\xi - x') = 0,$

it is found that

 $\lambda = 2 \cosh \alpha$.

From the foregoing discussion it follows that each pair of solutions of equations (26) gives a real transform of S. The form of these equations is such that the arbitrary constant entering in the complete solution appears in both α and β . From (32) it is seen that the points, on all the transforms, corresponding to a point on S lie in the plane parallel to the tangent plane to S and at the distance 2 from it.

We inquire whether the normals to the surfaces S and $S₁$ at corresponding points meet. In order that this may happen two functions λ and μ must exist which are such that

$$
x_{0}=x+\lambda X=x_{1}+\mu X'.
$$

and similar equations in y' s and z' s.

^(*) BIANCHI, *Lezioni*, vol. II, p. 334.

Annali di Matematica, Serie III, Tomo XIII. **36**

If the above values be substituted, it is found that these equations are satisfied when

$$
\lambda = \mu = -2 e^{\alpha} \cosh \alpha.
$$

This result suggests that this transformation which we have found coincides with one previously discovered by BiAxcm (*) as an outcome of a theorem of GUICHARD. It is readily found that the two transformations are the same $(**)$. From the investigation of B I ANCHI we know that the locus of the point (x_0, y_0, z_0) is a surface applicable to a paraboloid of revolution.

§ 5. INVERSE TRANSFORMATIONS OF GUICHARD.

 α _{LALAPSO} has show'n (***) that the transformation of GUICHARD can be inverted, that is, every isothermie surface ean be considered as derived from a GUICHARD surface by means of the construction indicated in the theorem of GUICHARD. We shall apply this inverse transformation to the surfaces \overline{S} .

In the first place we solve equations (16) and (20) for X , X_1 , X_2 , getting

$$
X_{1} = \left(\frac{1}{2}e^{p-\theta} + e^{-p}\sinh\theta\right)\overline{X}_{1} - \left(\frac{1}{2}e^{p-\theta} - e^{-p}\cosh\theta\right)i\overline{X}_{2} + e^{-p}\overline{X},
$$

\n
$$
i X_{2} = -\left(\frac{1}{2}e^{p-\theta} - e^{-p}\sinh\theta\right)\overline{X}_{1} + \left(\frac{1}{2}e^{p-\theta} + e^{-p}\cosh\theta\right)i\overline{X}_{2} + e^{-p}\overline{X},
$$

\n
$$
X = -e^{-\theta}(\overline{X}_{1} - i\overline{X}_{2}) + \overline{X}.
$$
\n(37)

In consequence of these relations equation (12) can be written

$$
\overline{x} = \xi + 2\left(\sinh\theta\,\overline{X_1} + \cosh\theta\cdot i\,\overline{X_2} + \overline{X}\right). \tag{38}
$$

If \overline{S} is any minimal surface and the linear element of its representation is written in the form (19), the function φ must satisfy equation (4). But

$$
\frac{\Phi}{W} = 2 e^a \cosh a, \quad \frac{\cos \beta}{\cosh a} = -\frac{2 e^{-\theta}}{\Phi} \frac{\partial \Phi}{\partial u}, \quad \frac{\sin \beta}{\cosh a} = 2 \frac{e^{-\theta} \partial \Phi}{\Phi}.
$$

 $(***)$ L. c., p. 230.

^(~) Lezioni, vol. II, p. 333.

 $(**)$ The formulae of comparison are

this is the condition that equations (13) be consistent in θ . Hence (38) is the transformation from a surface \overline{S} to P as well as equations (12) define the transformation from P to \overline{S} . But since equations (13) are completely integrable in θ for a particular φ , it follows that each of the surfaces defined by

$$
\xi_1 = \overline{x} - 2 \left(\sinh \theta_1 \overline{X}_1 + \cosh \theta_1 i \overline{X}_2 + \overline{X} \right), \tag{39}
$$

where θ_i is any solution of

$$
\frac{\partial \varphi}{\partial u} + i \frac{\partial \theta_1}{\partial v} = \frac{1}{2} e^{\varphi - \theta_1} - e^{-\varphi} \sinh \theta_1, \quad i \frac{\partial \varphi}{\partial v} + \frac{\partial \theta_1}{\partial u} = \frac{1}{2} e^{\varphi - \theta_1} - e^{-\varphi} \cosh \theta_1, \quad (40)
$$

is a surface of GUICHARD, P_i , which is an inverse of the surface $\overline{S_i}$ determined by the function φ .

From (37) it is seen that the direction-cosines of the normal to P_1 are of the form

$$
X' = -e^{-\theta_1} \overline{X}_1 + e^{-\theta_1} i \overline{X}_2 + \overline{X}.
$$
 (41)

Denoting by S_i the minimal surface parallel to P_i , we have

$$
x_1 = \xi_1 + X', \quad y_1 = \eta_1 + Y', \quad z_1 = \zeta_1 + Z',
$$

which by means of (39) , (41) , (12) and (20) reduce to

$$
x_1 = x + (1 - e^{\theta_1 - \theta}) \left[e^{\varphi} (X_1 + i X_2) - e^{-\varphi} (X_1 - i X_2) - 2 X \right], \tag{42}
$$

and similar expressions for y_1 and z_1 . Since θ is a solution of (40), the complete determination of the doubly-infinite family of transforms of S defined by (42) requires the solution of one pair of RICCATT equations (13) and quadratures.

If the differential quotients of φ be eliminated from equations (13) and (40) , we get

$$
\frac{\partial \theta_1}{\partial u} - \frac{\partial \theta}{\partial u} = \left[\frac{1}{2} e^{\alpha} (e^{-\theta_1} - e^{-\theta}) - e^{-\alpha} (\cosh \theta_1 - \cosh \theta) \right] \cos \beta +
$$

+ $i \left[\frac{1}{2} e^{\alpha} (e^{-\theta_1} - e^{-\theta}) + e^{-\alpha} (\cosh \theta_1 - \cosh \theta) \right] \sin \beta,$
 $i \left(\frac{\partial \theta_1}{\partial v} - \frac{\partial \theta}{\partial v} \right) = \left[\frac{1}{2} e^{\alpha} (e^{-\theta_1} - e^{-\theta}) - e^{-\alpha} (\sinh \theta_1 - \sinh \theta) \right] \sin \beta +$
+ $i \left[\frac{1}{2} e^{\alpha} (e^{-\theta_1} - e^{-\theta}) + e^{-\alpha} (\sinh \theta_1 - \sinh \theta) \right] \sin \beta.$

From this it follows that for θ_1 and θ to be real we must have

$$
\frac{1}{2} e^{\alpha} (e^{-\theta_1} - e^{-\theta}) + e^{-\alpha} (\cosh \theta_1 - \cosh \theta) = 0,
$$

$$
\frac{1}{2} e^{\alpha} (e^{-\theta_1} - e^{-\theta}) - e^{-\alpha} (\sinh \theta_1 - \sinh \theta) = 0,
$$

which reduces to $\theta_i = \theta$. Hence all the minimal surface transforms (42) of S are imaginary.

We pass finally to the case in which we apply to the surfaces \overline{S} the conjugate inverse transformation. In place of equations (40) we have

$$
\frac{\partial \varphi}{\partial u} - i \frac{\partial \theta_1}{\partial v} = \frac{1}{2} e^{\varphi - \theta_1} - e^{-\varphi} \sinh \theta_1 \quad i \frac{\partial \varphi}{\partial v} - \frac{\partial \theta_1}{\partial u} = -\frac{1}{2} e^{\varphi - \theta_1} + e^{-\varphi} \cosh \theta_1,
$$

and the equations of transformation are of the form

$$
x_1 = x + e^{\varphi} (X_1 + i X_2) - e^{-\varphi} (e^{\theta_1 + \theta} + 1) (X_1 - i X_2) - 2 X.
$$

Proceeding as in the former case, we find that the condition that θ_1 be real is

$$
e^{\theta_1} = -e^{\alpha-\theta} (e^{\alpha} + e^{-\alpha}),
$$

which evidently is impossible.

Princeton University, January, I906.

l,