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In a perfect spin up spin down antiferromagnet new B.C.S. electronpairs are being de-
scribed, which are coupled by only a slightly decreased effective interaction. A repulsive inter-
action is added by virtual spin wave excitation. Depending on the relative strength, super-
conductivity may exist in such an antiferromagnet.

On a adapté la théorie de B.C.S. & un antiferromagnétique parfait caractérisé par un double
réseau & spins inversés. L'interaction entre les nouveaux pairs d’électrons est légérement plus
faible que dans un corps non magnétique. Malgré 'interaction répulsive causée par les excit-
ations virtuelles des ondes de spins, un tel modéle peut étre supraconducteur pour certaines
valeurs du quotient entre les deux interactions.

In einem perfekten Spin aufwirts Spin abwirts Antiferromagneten werden neue B.C.S.
Elektronenpaare beschrieben, deren Kopplung gegeniiber einem nichtmagnetischen Korper
nur leicht vermindert ist. Durch die Anregung von virtuellen Spinwellen tritt eine abstoBende
Wechselwirkung zwischen den Elektronen auf, so daf es von der relativen GroBe der beiden
Wechselwirkungen abhingt, ob Supraleitung méglich ist oder nicht.

1. Introduection

ANDERSON [1] in his theory of dirty superconductors starts with the exact one
particle eigenfunctions in the perturbed crystal. To each wave ¢, ,, there exists
another eigenfunction ¢, , of the same energy, where the time reversal operator
J leads to the conjugate complex wave function with opposite spin. These pairs
of functions are then used to build a B.C.S. [2] state. In this new representation the
effective interaction between pairs is only slightly diminished.

ANDERSON’s treatment does not apply when the system contains magnetic
ions. Magnetic impurities have in fact a strong influence on the properties of a
superconductor.

In the present work the superconductivity in an antiferromagnet is being dis-
cussed. The model used is an ideal antiferromagnet in which equal ionic spins point
up and down alternatively on successive lattice positions. It describes an antiferro-
magnet with a sufficiently strong anisotropy energy. ANDERSON’s method can be
generalized in order to provide a treatment for this case. To each eigenfunction
®n, » there exists an orthogonal eigenfunction % ¢, , of the same energy, where
4 = J &. The operator & translates the space coordinates by half of a primitive
translation vector of the magnetic structure.
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The effective phonon induced and Coulomb interactions between these pairs
are not much different from those between Bloch states in a similar non magnetic
lattice, and they can therefore give rise to superconductivity.

Farx [3] and KarpPENKO [4] have pointed out that spinwaves contribute to the
effective electron-electron interaction. This contribution is of opposite sign as
compared to the phonon part. It is repulsive for scatterings in which the energy
changes less than the spinwave energy. Numerically this interaction will often be
weaker than the attractive interaction in good superconductors.

It is therefore possible that antiferromagnetic metals are superconductors. It
may be of interest in this connection that vanadium has some antiferromagnetic
properties [4].

2. The model

The Hamiltonian which describes conduction electrons in an antiferromagnet
is written as

H:He+th+Hsp+He—ph+He~sp‘}‘Hc (1)
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at, a creation and annihilation operators for Bloch electrons;
E (k) Bloch energy;
b+, b creation and annihilation operators for phonons;

w(q) phonon energy;
z ! sum over the first Brillouin zone;

d?*,d? creation and annihilation operators for the two modes of spin waves in an
antiferromagnet;

w(q) spin wave energy;
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coupling constant between electrons and phonons;

volume of the system;

atomic volume;

exchange coupling between the conduction electrons and an inner shell [6];
position and spin of the ion ;

shielded Coulomb interaction.

We consider a magnetic structure of ionic spins with two sublattices with
labels ¢ respectively j, such that in the ground state (87 = 8 and (8% = — 8.
The z- and y-components of the ionic spins are related to the spin wave operators

[7].

The normal coordinates

_1/20 iq-1ti
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Q=28 Se-wmis;
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form the following operators in an antiferromagnet

7 s
Ql,q = cl,q Ql,q + C2,q QQ,*()
7’ 7
Qz,—q == C2,q Ql,q + ¢1,q Qz,—q
7 7
Pig=c¢iqP1q—¢2,q P24 (2b)

’ 7
Py _q=—03qP1qt¢1,qP24

where the coefficients ¢p,q (p = 1, 2) are given by formula (92) of reference [7]

C1,q 1 C2, = C(q)- (2¢)

The spin wave absorption and emission operators are given by

1 7’ . 4
d’g = V:‘)j [Qp_,q + ?/Pp,——q] >

1 ’ . 4
df;+ = 75 [@p,—q — 1 Pyl

Ve



Superconductivity in Antiferromagnets 23

The electron-spin interaction by this transformation takes the following form

He«sp = Hé—sp -+ If%—sp, (3)
HY = 5 3.7 (a)S {0y ars — aif_ag,_} e~ Ri — g —iaRi}, (3a)
Izz ;c’
kK —k=gq
1 S
B = 3 ) 52 S0@T @l e {5} + b (@ g a2 (3)

k' —-Ek=q

where terms of second order in creation and annihilation operators for spin devia-
tions have been neglected.

3. Superconducting pairs in an antiferromagnet

The wave functions which satisfy

(He‘l'_HeI——sp) wn,a:En,awn:a (4)

are Bloch functions
w",c(r: S) = un,a(r) 8in.r770’(s) (5)
for the magnetic period 2 R;

Uy, o (T + 2 R) = 11y, o(r) (6)

where R is a period of the crystal lattice.

The conjugate complex function y,s , is an eigenfunction to the same energy.
Furthermore H, -+ He sp is invariant with respect to an operation which simul-
taneously reverses the electron spins and translates the coordinates from one sub-
lattice to the other. Let & contain the three operations

G = (*s—>—s,r—>r-+R) (M)
then

—iner

TG Y o (1, 8) = P_no(r, 8) = Uy, _o(r) e 75 (s) (8)
is an orthogonal eigenfunction to the same energy. The phase factor has been
chosen so that

U_mo(r) = uk o(r - R). (9)

Let ¢;f , and ¢, , be the creation and annihilation operators for electrons in the
states v, ,. Since B, =E_,,_ = K, the pairs cn+cin_ can be used to construct
the B.C.S. wave function. Superconductivity always appears when the sum of all
interactions has a negative matrixelement between pair states near the Fermi
surface.
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4. Effective interactions

The effective interaction between the electrons in the (n, o) representation
has to be evaluated. The terms Hpp 4+ Hepp and Hgy -+ H%_sp give rise to
phonon and spin wave induced interactions.

Heff = Z (V?zl'l,n + Vf{i,n + Viz’,n) C;Iz-’—{- Cn+ ci—n’« Com—- (10)
n,n

Here and in the following, only the interactions between the chosen pairs are
retained.
To obtain Vﬂf‘, » We first replace in (1d) the operators a,, , by the operators ¢, ,

cn,u:Z(nlk)O'ak,c: (11)
13
Hepn =3 (a) (55 ) 01 K)a )0 %0 0 gn o0 +5g). (12)
W
K —-k=q

Using the relevant terms in the equation of motion we get
hbh=1im(q) —}—ng ( q)) —n'[U) g (—n|D)¥ ety sy . (13a)
lal q

In first order perturbation theory (13a) becomes
hbg = i(By — Bp)b . (13b)
20— (5 F)

+ —
bq + b”“l— th (En — En)? — w(q)?
l’—l,:q

With

U)o (| D¥, ey (14)

-0

the phonon operators can be eliminated.

Since in this treatment the effective interaction of the density mode ¢%, ;¢
with the electron field is considered, a factor 1/2 is necessary in the Hamiltonian
to avoid counting interactions twice.

1 g 2(q) / ? I 7
Via= 5 5 e DT l)E (R (—n| D (w1
Tr
—k=q=1—-1

(15)

The part H, ,, of the electron spin interaction has been diagonalized at the
beginning. The remaining part H;_,, is an electron-spin wave-interaction, which
by a similar treatment leads to

S J?2 02 1y
V,g?,,,_+21,zu~%("—(];n—_gin~ (nB)E (0| K)s (— n|D)* (— o[ 1)

T (16)
K-k=q=U—1
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The positive sign corresponds to a repulsive interaction for electron levels near
the Fermi surface. This sign is due to the fact, that the emission and absorption
of spin waves by an electron is accompanied by a spin flip.

Fig. 1 shows graphically, that for the pair interaction this
produces an exchange of the members of the scattered 7%
pair. The anticommutation property of the electron opera-
tors then leads to a change in sign, which does not occurin  _,- n+

the phonon case.
For the Coulomb interaction the transformation gives

Fig. 1. Spin wave induced
pair interaction

Vitin = 3. Vela) (mfi K (= m| ¥ (= ] 1)-. (17)

For a rough numerical comparison the parameters in (15), (16) and (17) may be
replaced by suitable constants ¢, w, J, w, C, and c.

2
——*gfocnrn for |E,, — E,| <o

Vi, = : (18a)
0 for | B, — E,| > o
J2SC2
- [“m—anr)” for IEn—-En'[ << w
Vil w= (18h)
0 for |E,, — By | > w
[
Vo n = 7 wn (18¢)
L= 2 (RS (0|K) (— n| )" (—n'|T)- (19)
KLU

h'l.qll

As a measure of the relative strength we consider

6 [ (T ) (20)

Using the typical values
g2 — 2 =10"35ergem3 w=3-10"lerg
J =1/10eV Q=5-10"24cm3 (21)
S=1 C==1

(20) becomes 5. In this case the attractive interaction is predominant.

The effect of the ordered background on the interactions appears in the form
of the factor o, 4. Of course when J28 = 0, we have o, , = 1.

The wave functions (5) adapt themselves to the magnetic structure. In an
antiferromagnet, however, the occuring increase of the kinetic energy keeps the
deformation small. Therefore a,, ,, will not deviate much from 1.

To estimate o, , we neglect the Bloch potential and assume a spin potential

H}_, with simple cubic structure. The variational function
,on 1 2mx 2y 27z )
u, (r) = ———= . g.
£\T) i 4 - cos I TCos T cos — J‘ (22)

B
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where L is the magnetic period, satisfies (9). The corresponding energy increase

n2ht 3 JSB
EP)=-my 5P ——3— (23)
is minimized with
L2JSm
B = H23m2 (24)

which is of the order 10-1 for L = 2 R. For small § (19) becomes

1 .
TR 1— Z/gz (25)

so that a«,, , is practically 1. Obviously this is no more true, when the magnetic
period L is large.

This model therefore suggests, that a pure and perfect antiferromagnetic metal
may well be a superconductor.
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