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Summary. - The search for almost  periodic solutions o f  any  dissipative equation of  the 
form (1.1), in  which  p(t) is an  almost periodic function, has come to be closely l inked 
up  w i t h  a n u m b e r  of  s tandard  ~ convergence ~> restrictions on f ,  g', g" and k (see, for 
example, [2] and [3]). The object of  the present paper is to showy that  as far  as the 
existence, alone~ of  an  almost  periodic solution of  {L1) is concerned these • convergence 
~'estrictions on f~ g'~ g'~ and  k are quite unnecessary. The f irst  result (Theorem 1) shows 
in  fact  that  the conditions (1.2) alone are quite sufficient for the existence of  an  almost  
periodic solution of  (L1); and Theorem 2 extends this result (though under stronger 
conditions on f and  g) to the case in which  the forcing funct ion depends on x and  
x as well.  

1 .  - Consider the equation 

(1.1) x + kf(x) x ~- g(x) - -  kp(t) 

in which k > 0 is a constant and f, g, p are continuous functions depending 
only on the arguments  shown. Let  F(x), G(x), P(t) be defined by 

x 

0 0 

I t  is known (see, for example, [1]) that if 

f ( x )  > 0 (I x j ~ 1) ,  

(1.2) xg(x) .'> 0 (I x l~-- 1), 

L.P(t)L <_~<~ 

t 

P(,) 
0 

F ( x )  s g n  x - -  + ~ a s  ix]  - -  

G ( x )  - +  4 -  ~ a s  Ix[ --* c<~ 

for all t ~ 0 

then all solutions of (1.1) are ult imately bounded and that if p(t) is periodic 
in t then, subject to the same conditions, there exists at least one periodic 
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solution with the same period as p(t). The corresponding situation, when p(t) 
is almost periodic in t, has not been as fully invest igated and alt available 
results  in this direction have been obtained always subject  to certain quite 
heavy extra conditions on f, g and k. A typical result  is that of REUT]~n 
who shows in [2] that there is a unique almost periodic solution if f, g' are 
both positive for all x and if fur ther  k ~ k o  where ko is a constant whose 
precise magni tude depends on the values of f, if, g" in some interval txt<:xo. 
OPIAL has shown in a very recent  paper  [3] that this result  holds under 
conditions which are weaker  than those given in [2], but  Opial 's  conditions, 
though a significant ref inement  of Reu te r ' s  conditions, nonetheless retain 
many of the essential features  of Reu te r ' s  conditions. 

The present  paper  originated from a desire to determine precisely what 
roles the various condi t ions  in [3; Theorem 7] play in the <<uniqueness 
and in the <( existence >> of the almost periodic solution of (1.1). Pre l iminary  
investigation along certain lines suggested by the methods in [ 4  § 3] showed 
tha~ the condition k~_ko plays no distinguishing role in the proof of the 

existence ), and that in fact the precise value of the constant k is immaterial  
to the <~ existence >> provided that 0 ~ k ~ o0. Therefore so long as our  inve- 
stigation is confined to the problem of << existence >) only we may take our 
equat ion in a parameter - f ree  form:  

(1.3) x + f(x)x + g(x) = p ( t ) .  

For this equation we have obtained an <~ existence >> theorem which throws 
some light on the quest ion raised in connection with the conditions in Opial ' s  
result  [3; Theorem 7]; 

TKEOREhI 1. - Let (p(t) be almost periodic in t and suppose also that 
f, g, F, G and P satisfy the conditions (1.2). Then there exists at least one 
almost periodic solution xo(t) of (1.3) whose derivative x~(t) is also an almost 
periodic function of t. 

The most important  feature of the present  theorem is the absence of 
the usual ~ convergence >> restrictions on f, g', g" which dominate the results  
in [2] and [3], but  it must  b e e m p h a s i z e d  here once again that our theorem 
deals only with the << existence >> while [2] and [3] consider the << uniqueness  
as well. 

With  somewhat  stronger conditions on f and g it is possible to extend 
the conclusion of Theorem 1 to the case where the forcing function p is a 
function of w and x as well. Consider, for example,  the equation 

(1.4) x -[- f(x)~c + g(x) --p(t, x, ~) 
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in which f and g, as before, are continuous functions of x. We  shall assume 
here that the function p, which depends on the arguments  explici t ly shown, 
is such that p(t, x, y) is continuous for all values of t, x and y. Our 
<~ existence ~ results  is as fol lows:  

THEORE~ 2 . -  In  the equation (1.4) let p be such that p(t, x, y) is almost 
periodic in  t uniformly with respect to x and y, and suppose that 

(1.5) 

and that 

(1.6) (x~q-y~)~I~[p( t , x , y ) l :o (y2q-min tx~ ' , xg(x ) l )  as x ~ + y ~ o o  

uniformly in t(-- ec ~ t ~ ~ ) .  Then there exists at least one solution x~( t) of 

(1.3) whose derivative xo(t) is also an almost periodic function of  t. 

In the course of the verification of this result  we shall have occasion 
to refer  to the following resul t :  

T~EORE~ 3. - Suppose that f, g satisfy the conditions (1.5) and that p is 
such that 

(1.7) (x2 ~ y~)~/2 tp(t ' x, y)] --  o(y ~ ~ xg(x)) as x 2 Jr y~ -* c~z 

uniformly in t for 0 ~ t < ~ .  Then there is a constant D, 0 < D < c~, whose 
magnitude depends only on f, g and p such that every solution x(t) of  (1.4) 
satis/ies 

Ix(t)[ ~ D, ix(t) l ~ D 

for all suf[iciently large t. 

As this boundedness  result  is not included in any of the existing boun- 
dedness results  for equations of the form (1.4), an explicit  proof in the present  
paper  is quite  in order even though the topic is out of line with the general  
objective of the paper. 

Observe that, if [g(x)] ~ as Ix I ~ c~, the conditions (1.6) and (1.7) are 
satisfied by all bounded, as well as some unbounded,  functions p(t, x, y). 
In i l lustrat ion of the type of function in the lat ter  category one may note 
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that if, for exemple g ~ a~x, with the constant a~ positive, both (1.6) and (1.7) 
are satisfie4, for instanc% by the function 

p(t, x, y) - -  (y2 + x2)~/4 sint 

which is unbounded for arbi trari ly large x2-[ - y~. 
Concerning the equation (1.4) one may also remark  that, with a suitable 

periodicity condition on p, it is quite possible to deduce the existence of a 
periodic sotution from Theorem 3 by using the well known ,~ BaOUWER fixed 
point technique ~> in [5]. We shall however not pursue this matter  any fur ther  
beyond stating one form of result  that can be obtained in this way:  

COROLLARY. - Let  p(t. x, y ) - - p ( t  + to, x, y) u n i f o r m l y  in  x a n d  y, a n d  
suppose that f, g a n d  p sa t i s fy  the condit ions (1.5) and  (1.7) and  are also 
such that solut ions o f  (t.4) are un ique l y  defined func t ions  o f  their in i t ia l  
values. Then there exists at least one periodic solut ion of  (1.4) with  the per iod (0. 

2. The theoret ical  basis for our  method for Theorem 1. - The procedure 
here is derived from an adaptation of the LERAY-SCHAUDER arguments  in 
[4]. As in [4; § 3] we shall not tackle the problem direct ly ;  instead we shall 
consider a pa ramete r -dependen t  equation 

(2.1) x + a~x + a~x= ~ I a~x + a~x - -  f(x)'x - -  g(x) + p(t) } 

in which al ,  a2 are arbi trari ly chosen (but otherwise f ixed)posi t ive constants 
and 1~ is a parameter  having as its range the closed interval 0 --< 1~ ~ I. Two 
important  features of the equation which we shall exploit are (i) the fact 
that at the ext remity  ~t -- 1 of the parameter  range the equation (2.1) reduces 
to the given equation (1.3) and (ii) the fact that, a! the other ext remity  
~ -  0, (2.1) reduces to the simple equation 

x + a ~  + a~x = 0 

with constant coefficients. By setting x l -= x, x 2 - - x l  in (2.1) we can repre- 
sent (2.1) in the form of a system: 

(2.2) X --  A X  + ~F(Xl t )  
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where 

( ) ( o > (2.3) X- ' -  x~ , A = 0 1 iF -" 

Observe that, since a~, a2 are both positive, each eigenvalue of the matr ix  
A has a negative real part, so that, in particular,  

(2.4) {]eat{{ ~ abe-'% t t ~ O .  

where I:" II here denotes the sum of the absolute values of all the members  
of the matr ix  e At. From this and from the fact that p(t) is finitely bounded 
for all t in ( - - c% c,o) one can show quite readily that if X(t)--(x~(t), x2(t)) 
is f initely bounded for all t in ( - - c% cx~) (that is, if max (x~(t) + x~ t ) ) ~  oo) 

--o¢<~<0o 
then the infinite integral 

t 

(2.5) t eA(~-~) FCX(~)' ~)d~ 
- -OO 

exists and is differentiable in t. Fur thermore  any bounded X(t)E C(--~o,  ca) 
which satisfies the equation 

t 

X --  is fea(t--c)F(X('~), r.)dz 
- - 0 0  

necessari ly satisfies the differential  equation (2.2). These properties of the 
integral  (2.5) may be interpreted in quite another  way. Let So denote the 
BA~-Ac~ SP~oE of all almost periodic 2-veet0rs X(t) with the norm 

ilXllo = sup (ixl(t)i + Ix=Ct)[) 
t 

and let To(X) represent  the integral  (2.5) for XE  So. Then, by applying quite 
s tandard arguments  (see, for example, CHA*'~1~R 13 of [8]) to the integral  
(2.5), one can show that To : So ~ So. Fur thermore ,  in view of the properties 
obtained earl ier  on for the integral  (2.5), any solution XE So of the functio- 
nal equation 

(2.6) X --  ~To(X) -- 0 

is also a solution of the equation (2.2). Because of the special relationship 
between (1.3) and (2.2) with 1* = 1, it is clear now that the existence of a 

A n n a l i  di  M a t e m a t i e a  30 
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solution xo(t) of (1.3) with the property stated in the conclusion of Theorem 1 
would be established if we can prove that, for ~ = 1, there is a solution 
in So of the functional  equation (2.6). Our object in the analysis which follows 
is to show that there is, indeed, such a solution for (2.6) if f, g and p satisfy 
the conditions (1.2) 

3. - A Leray-Schander  theorem and its application. - The proof of the 
existence of a solution for (2.6) (at ~ = 1) can be handled quite easily by 
means of the following result  of LEr:A¥ and SCm~UD~R [6]: Let  S be a 
BANAGI-I space and let T(~, X )  be an operator depending continuously on a 
parameter  iL for all ~t in the range a -<-~_<b  and such that for each ~ in 
this range T is a completely continuous mapping of S into itself. Suppose 
that there is a uniform a priori bound 

[[ X II < Ao 

for all solutions of the equation 

(3.1) %(X) _= x -- T(~, X) = 0 

where Ao, 0 < A o  < c ~ ,  is a constant independent  of ~, a<_ ~_< b. Let  QA0, 
denote the open set l iXli  < A o  in S and for each in [a, b] let dl~.~-d(z~, 
9..4o, 0) denote the degree (defined in [6; § 5]) of the mapping y----%~(X) at 
the point y - - 0 .  If d~0#=0 for some ~o in [a, b] then d ~ . ~ 0  for all other 1~ 
in [a, b] and, in that case, the equation (3.2) has at least one solution in S 
for cach ~ in [a, b]. Turning  now to our equation (2.6) we note that at 

- - 0  the mapping X -  v~To(X) is the identi ty mapping. Thus the LE~A¥ 
SCKAUDER Theorem given above would be applicable with P-o : 0, a : 0, 
b : 1 and the existence of a solutions in So for the equation (2.6) at b - -  1 
would follow as soon as the following result  is ver i f ied:  

L E ~ A .  - Subject to the conditions on f, g and p in Theorem 1, (i) the 
operator To is completely continuous, and (ii) there exists a fixed finite positive 
constant Ao, whose magnitude is independent of ~, such that 

(3.2) II X !Io < Ao 

for every X E So satisfying (2.6) (0 _<,I~ <_ 1). 

Proof of the lemma. - The proof of part  (i) of the Lemma is quite strai- 
ghtforward and requires  only the continuity of f, g and p, the result  (2.4) 
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and the boundedness of p(t). Let X , , ( n - - 1 ,  2,...) be an infinite sequence 
in S~ with 

1[ X.  !!o_< m < ~  (n ~ 1, 2,...). 

Then from the definition of To and the result  (2.4) it is a simple mat ter  to 
ascertain that the sequence To(X,) ( n - - 1 ,  2, ...) is also uniformly bounded. 
Next by direct differentiat ion one obtains that 

d 
at To(X.) = F(X,;(t), t) + ATo(X.)  (n - -  1, 2, ...) . 

Thus the uniform boundedness of (X) ( n -  1, 2,...) necessari ly implies the 

d To(X,) ( n - -  1, 2,...) and this in turn implies the uniform boundedness o f - ~  

equieont inui ty of the sequence To(X,) ( n - - 1 ,  2,...). Applying now Ascoli 's  
theorem we have the compactness of this sequence T o ( X , ) ( n - - t ,  2, ...). Hence 
To is completely continuous. 

Coming now to part  (it) of the lemma, the proof of the a priori bound 
(3.2) direct  from the functional  equation turns out to be quite difficult  espe- 
cially in view of the nature  of the conditions on f and g. However  because 
of the definit ion of the norm It • IIo in the space So it is evident that the 
result  (3.2) would hold if it can be shown that there is a finite constant 
D1 ~ 0 whose magnitude is independent  of t~ such that every solution x(t) 
of (2.1) satisfies 

(3.3) Ix(t) l + t x(t)] ~ D I  ( - - c ~  <: t < ~ ) .  

In  fact since space So consists only of almost periodic functions it is not 
even necessary to prove that the equality for x(t) in (3.3) holds for all t in 
( - - ~ ,  ~ ) .  It  would be quite enough, for example, to show that there exists 
a fixed finite constant D2 :> 0 whose magnitude is independent  of ~ such 
that every solution x(t) of (2.1) satisfies 

(3.4) Ix(t) l + I x(t) l ~ D ~  

for all suff iciently large t; for if 
(3.4) for t~_~to then, by using the 
show, for instance, that 

x(l), x(t) are almost periodic and satisfy 
almost periodicity of x and x we can 

I. x(t) l 4- [ x(t) l ~ D~ Jr l ( -  c,o < t < ~ )  , 
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and the bound D~-{-1 is independent  of ~ if D~ is independent  of ~. Hence 
the proof of the required a priori bound would be completely verified as 
soons as it is proved that aI1 solutions of (2.1), with 0 ~--~t <:~ 1, are ult imately 
bounded in the sense of (3.4) with the bound D~ independent  of ~. 

For the proof of (3.4) it is convenient to put (2.1) in the form 

(3.5) x + + g (x) = p (t) 

by setting 

(3.6) 
f~ - -  (1 --  ~)al + ~f(x) 

g ~  - -  ( 1  ~ ~)a2x + ~g(x), p~ -- ~p(t). 

Next we observe that if 0 ~  ~-< 1 and if f, g, P satisfy the conditions (1.2) 
then necessari ly : 

/ 
0 

X 

0 

xg~(x) > 0 ( I x t ~  1), Ggx) ~ /g l (~)d{  -*c, oas  j x l ~ c~ .  

0 

But these conditions are identical with Reuter~s conditions in [1]. Thus our 
equation (2.1) has ul t imately bounded solutions. This is however not quite 
(3.4) until  it is verified that the ult imate bound i n  question can chosen 
independent  of ~. A close study of ~the proofs given in [1] will show that 
the ul t imate bound can indeed be chosen independent  of ~t provided that 
t l ,  g~ are such tha t :  

(I) the manner  in which ~\(x)sgn x and G~(x) tend to infinity is inde- 
pendent  of l~, so that given any finite constant ao ~ 0 there exists another  
constant bo :> O, whose magnitude is independent oT ~, such that 

Gl(x) ~ a2 and F~(x) sgn x ~ ao for I x I ~ bo 

(II) the bounds for fl ,  gl, F1, G1 in any given finite x - -  interval can 
be chosen quite independent  of ~t, so that given any finite constant ao ~ 0 
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there are constants b , > 0 ,  b 2 > 0 ,  b s > 0  and b 4 > 0 ,  all independent  o f  ~t 
such that 

L fdx) l ~ b l ,  I gdx) I G G ,  I G ( x )  l G b ~  and I G~(x) l G b ,  for I (x) ]  G a o .  

Therefore to conclude our proof of the lemma it is enough now to verify (I) 
and (II). 

Since f(x), g(x) are continuous the property (II) follows at once from 
definition (3.6) and the fact that 0 "~- ~ ~ 1. To verify (I) note first from the 
definition of g~ that 

(3.7) 
1 

Gdx) - -  ~ (1 - -  ~t)azx 2 -4- ~O(x) . 

Next observe that, as a result  of the condit ion:  G ( x ) ~  d-cx~ as I x l  ~ c ~ ,  
there exists a finite x o > 0  such that 

G(x) > 0 I x  I >~ Xo. 

1 
From these two observations it is quite clear that if 0<--~t <_ ~ then 

1 
G(x) ~ ~ a~x ~ , I x l ~ X o ,  

1 
and that i f 2  "<:'~t <~ 1 then 

1 
G(x) >_ ~ G(x) , t x l ~ x o .  

Hence  

Gl(x)>__min a~x ~, ~, G(x) , L x ] >~xo. 

for arbi t rary ~ in 0<~ l~ <~ 1. Since the constant Xo and the lower bound 
for G1 in the above inequal i ty  are independent  of ~t the property ( I ) n o w  
follows if we bring in the fact that G(x) ~ -t- ~ as [ x I ~ c~. The verifica- 
tion of the lemma is now complete. 
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4. Completion of  the  proof  of  Theorem 1. - It remains now to assemble 
the various prel iminary steps into a formal proof. First, from the lemma 
and the remarks  immediately preceding it, we have that the functional 
equation (2.6) at 1~--1 admits of a solution Xo(t)ESo. Then, by the 
remarks  in § 2 this solution Xo(t) necessari ly satisfies the equation 

2 = A X  + F(x~t). 

But this equation is the phase-space system of equations corresponding 
to the original equation (1 3), and the Sheorem then follows. 

5. P roo f  of  Theorem 3. - Because of the dependence of the proof of 
Theorem 2 on the method of proof, as well  as the actuM content, of 
Theorem 3 it seems desirable to establish Theorem 3 first. 

For this purpose let 

B --  max  [ [ ( X )  l 
I x l ' < x  

and consider the function V(x, y) defined by 

whoro 

2 V(x, y) -- 4G(x) + 2a~ / ~f(i)di + 2y= + 2alxy T 2b~y~ (x) 
0 

b~ ~ 8(a~ ~ B)21I~r: -~ and q0(~) is the differentiable funct ion given by 

(5 .2 )  

(x)  - 

1 , X ~ 2 ,  

sin (7:~v/4), t x i < 2, 

- - i  , ~ < , - - 2 .  

We can rewrite  the expression for 2 V(x, y) in the form: 

$ff 

2v( , y) = + (y + alx) + 2al f + 
0 

+ 4G(x) -{- 2by~(x). 
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Since f ( ~ ) ~ a l ( l ~ l ~ l  ) and [~ (~ ) ]  ~--1 for all ~v and since the 
hypothesis x g ( x )  ~ + ~ as [ ~  I c~ implies also that G ( x ) ~ - { - . ~  as 
Ix ] ~ cx~, it is clear from (5.2) that 

(5.3) 1 
2 V(x, y) ~ ~ y~ + (y -~- a~x) ~ - -  Da 

for all x and y where Ds,  0 ~ 1 ) 8 ~ c , o ,  is a constant. 

Consider next the system 

(5.4) x~ = x~, x2 = - -  (x:f(x~) -{- g(xl)) + p(t,  x~, x~) 

obtained as usual  by sett ing x ~ - - x ,  x 2 - - x l  in (1.4). To prove Theorem 3 
it will be sufficient to show that every solution (~(t), x2(t)) of (5.4) satisfies 

(5.5) Ix~(t) l ~ D, [ x,(t) I D 

for all sufficientls~ large t, where D is a constant of the form given in the 
theorem. 

Let us then take any solution (x~(t), x~(t)) of (5.4) and set 

V(t) ~ V(x~(t), x2(t)). 

Then by an e lementary calculat ion from (5.2) and (5.4) one obtains that  

---- - -  a~xlg (x~) - -  x~2 t 2 f (x ,)  - -  a~ -t- b~ ' (  x~) } --}- 

(5.6) + i2x~ -]-- a~x~ -}- b~(x l )g(x~)}p( t ,  x l ,  x~) 

- -  big (xl)~ (xl) - -  b l x ~  (x~) f(xl). 

To estimate a lower bound for the coefficient of (--x~) in (5.6) we 
require  the results (which may be easily checked up from the definition 
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(5.1)) that 

Since 
that 

also that 

e~'(x) ~ 0 always and that 

~ ' ( ~ ) ~ 7 : 1 ( 4 \  ~) ( ix  I 1). 

f ( x ) ~  a ~ ( [ x l ~  1) one then finds, with the aid of these results, 

2f(x~) - -  a~ -t- b~'(x~) ~ 2f(x l )  - -  a~ 

2f(x~) - -  a~ ~ b~ ' (x)  ~__ - -  2 B  --  a~ ~ b~7: / (4 V2) 

= a ~ ,  (Ix I g 1), 

from the definition of b~. Hence  

2f(x~)-- al + b~'(x~) ~ a~ for all x~.  

The other terms g(x~)~(x~), f x~)~(xl) are also readily checked 
definition (5.1) to satisfy: 

I g ( x l ) ~ ( x l )  t ~ max I g(x~) l ,  i f(xl)cp(x~) t ~-- max t f(x~)l 

On combining all these results with (5.6) we obtain at once that 

(7<_ - al(xlg(xl) + x~) + a~(~ + J xl I + I x~. I) I p(t,  x, ,  x2) I + a,  [ x~ I 

from the 

(5.7) 17--~--a~, if x~(t)-~-x~(t)~_~a~ 

where eta, a~ are finite positive constants. If x l g ( x l ) ~ - - b  c~ 

and p satisfies (1.7) it follows then from our estimate of 
there exist fixed positive constants as,  as such that 

17 above that 
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The inequali t ies  (5.3) and (5.7) are the two main ingredients  in our 
proof of (5.5), and the procedure  is an adaptation of a technique in 
YOStIIZAWA'S paper  [7]. Let  (x~(t), x~(t)) be any solution whatever  of (5.4). 
Then for any given to there exists always a value tl > to such that 

(5.8) ~ (t~) < x,  (t~) + x~ _ a~; 

since otherwise x~(t)-~ x~(t)~> a6 ( t~ to )  and then by ~5.7) we shall have 
that 

d 
v=_ ht V(x~(t),  xf l))  <_ - -  a~(t  ~_ to) 

and this would imply that there are values of t for which V(t) is arbi t rar i ly 
large and negative, in clear contradict ion of the result  

1 / ~  - - D o ,  

from (5.3). :It is also clear from (5.3) that 

Thus we can find a f ixed constant aT, a6 <aT  < ~ ,  such that 

(5.9) rain V(~, 7 ) >  max V(~, ~). 

We  now assert  that our t ra jec tory  (x~(t), x2(t)) satisfies 

(5.10) x~(t) + 2: _ x.At) < a7 (t ~ t~) 

where tl is determined by the inequal i ty  (5.8) For suppose on the contrary 
that at a certain instant  t ~ t2 > tl we have 

x~(t,) + x~(t) > a ,  

then, because of (5.8) and the continuity of x~( t )~  x~(t) as a function of t, 

Anna~i eli Matematiea 51 
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there exist necessari ly t'~, t'~ 

(5.11) 

and 

(5.12 

such that t ~ t ' ~ t ' 2 ~ t 2  and such 

ao ~ x~(t) + zi(t) <_ a~ C <-- t <- G .  

But then, by (5.7) and (5.12) we shall have that 

V(t'~) < V(t'~ 

and this would contradict  the resul t :  

V(t'~) > V(t'~) 

from (5.9) and (5 11). Hence our trajectory (x~(t), xfl)) 
thus we have (5.5). 

satisfies 
The proof of Theorem 3 is thus complete. 

that 

(3.10) and 

6. - P roof  o f  Theorem 3. - The procedure  is similar to that used for 
Theorem 1, and, for reasons which have been careful ly outlined in § 2, 
the proof of Theorem 2 will be achieved on showing that the functional  
equation 

(6.1) X -  t~To(X) -- 0 

at ~ t - -1  has a solution in the BAN±c~ space So. Here  So is the usual 
BAI, TAC~ space with the usual norm and To(X) is the integral (2.5)but 
defined now with respect to the system 

(6.2) x l - - x ~ ,  x ~ = - - ( t - - ~ ) ( a ~ x ~ + a 2 x l ) - -  ~ { f ( x l ) x 2 + g  x l ) - - p ( t ,  xl,  x~)}. 

The usual LERAY-ScItAUDER technique is applicable once again, and 
we turn then to verify that the lemma in § 3 holds for the present  operator 
T~. The arguments  in § 3 for the proof of part  (i) of the lemma carry  
over very readily and with only slight changes, and I shall therefore omit 
details of its proof here. To obtain the a priori bound in part  (it) of the 
lemma we resort once again to the indirect  approach in §3  and obtain 
oar  result  by verifying that every solution (xl(t), x~(t)) of the system (6.2) 
(0 ~-- ~ ~ '  1) satisfies 

(6.3) f xl(t) I ~ D, I x~(t) J ~-- D 
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for all suff ic ient ly  large t, where D ~  0 is a fixed finite constant  whose 
magni tude  i-s independen t  of ~t. 

For  the actual  verif icat ion of (6.3) it is useful  to recall  that  (6.2) is the 
equivalent  system for the single different ia l  equat ion 

(6.4) 

in which 

x + f~(x)~ + g~(x) = p~(t, x, x) 

f2 = (1 - -  ~)a~ + ~f (z)  

g~ = (1 - -  l~)a2x + ~g(x), p~ - -  ~p(t,  x, x). 

With  our condi t ions on f(x)  and g(x) it can be verif ied that, for 
0 ~ ' ~  1, 

(6.5) f ~ ( x ) ~ a l  ( t x J  ~ 1 ( ,  x g 2 ( x ) ~ + ~  as [ x [  ~ c ~ .  

Also, f rom the def ini t ion of g2, 

(6.6) xg~ "- (1 - -  ~)a2x ~ + ~xg(x); 

and hence,  by consider ing the expression on the r ight  hand  side of (6.6) in 
1 1 

each of the ~- intervals  0 _ ~  ~ and ~ ~ - - 1 ,  we see that  if x o ~ 0  be 

possible since xg(x) ~ + c ~  as I x ] - - - - ~ )  such that  chosen (as is 
xg(x) ~ O for 

(6.7) 

for arbi t rary  

[ x [ ~ x o  then 

xg2(x) ~ ~o min (x 2, xg(x)) [ x l ~ X o  

in 0 ~ _ l ~ l ,  where  ~ o - - m i n ( ~ a l ,  1). 

F rom the resul t  (6.7) one obtains at once that  if p(t ,  x, y) satisfies the 
condi t ion (1.6) then  necessar i ly  p~ satisfies 

(6.8) (x 2 + y~-)ll~ t p2(t, x, y) ] -"  o(y ~ + xgz(x)) 

uni formly  in t ( - - ~ ) .  Thus  the funct ions /'2, g2, P2 in (6.4) satisfy condi- 
t ions s imilar  to those in Theorem 3. Hence  the conclusion of Theorem 3 is 
appl icable  to (6.4), and all solutions of (6.2) are therefore  u l t imate ly  
bounded,  and it remains  only  to ascer ta in  that  the u l t imate  bound in 

Anna~i ¢~ MatematO~a 51, 



404 J . O . C .  EZEILO: 0~b the existence of almost periodic solutlons~ etc. 

question can be chosen independent  of I~ for 0 <--t~_< 1. For  this purpose 
we consider the function V,(x, y) defined by 

X 

0 0 

-Jr- 2b~y?(x) 

where b~ ~ 8(al + B)2~/~n -~, with B ~ max I f(x)], and ?(x) is the function 
Imi~1 

(5.1). This function V, is in fact the funct ion V used in the proof of 
Theorem 3 but  with f2, g~ now in place of f, g respectively.  By rewrit ing 
the expression for 2V2 in a form corresponding to (5.2) and then making 
use of the results  (6.5) and (6.7), we can show that 2V, also satisfies the 
same inequal i ty  

1 
2 V~ ~ 2 y2 + (y ~ alx)~ _ Ds 

for all x and y, jus t  as for the function V in (5.3). Also, if (x~(t), x~(t)) is 
any solution of (6.2)~ one finds~ by using precisely the same arguments 
which were employed in the estimating V in the proof of Theorem 3, that 
if 0~-- t~_~l  and f ( x ) ~ a ~ ( t x  I ~ 1 )  then 

d V2(xl(t), x~(t)) ~ - -  a l  t xlg2(xl) -[- x~} + 

+ a8(1 + [ xl [ -Jr- i x~ I) [ p(t ,  x~, x=) I Jr- a4. 

In view of the inequali ty (6.7) it is clear from this estimate for G that 
if (1.6) holds and if x g ( x ) ~ - - [ - ~  as I x ]  ~ ~ then there are fixed 
finite positive constants a~ and as, whose magnitudes are both inde- 
pendent  of [~, such that 

V~----a~ if x~(t)+x~(t):~a., 

analogous to (5.7). The C Y0SglZAW& technique,) is therefore applicable 
here and the inequulity (5.10) can be shown to hold for any solution 
(xl(t), x~(t)) of (6.2) with the  bounding constant ar in (5.10) quite  inde- 
pendent  of ~. 

Thus the key lemma in § 3 is indeed available for our functional  
equat ion (6.1), and Theorem 2 may now follow as in § 4. 
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