On the existence of almost periodic solutions of some
dissipative second order differential equations (*)

by J4. O. C. EzeiLo (Ibadan, Nigeria)

Summary. - The search for almost periodic solutions of any dissipative equation of the
form (L1}, in which p(f) is an almost periodic function, has come to be closely linked
up with o number of slandard «convergence»> restrictions on f, ¢, ¢’ and k (see, for
example, [2] and [B]). The object of the preseni paper is to show that as far as the
existence, alone, of an almost periodic solution of {1.1) is concerned these « convergence »
restrictions on f, ¢, ¢’ and k are quite unnecessary. The first vesult (Theorem 1) shows
in fact that the conditions (1.2) alone are quile sufficient for the existence of an almost
periodic solution of (L1); and Theorem 2 extends this result (though under stronger
qond@'iions on f and g) to the case in which lhe forcing function depends on x and
x as well.

1. - Consider the equation

(1.1) & + kf (#) % + g@) = kp(h)

in which £> 0 is a constant and f, g, p are continuous functions depending
only on the arguments shown. Let F(z), G(z), P() be defined by

t

Flo) = [ FOE  G@= f gBdE Pl = f p(x) ds .

]

It is known (see, for example, [1]) that if

flz)y>0 (|z|=1), F(z)sgng — + occas|z| — oo
(1.2) zglz) >0 (Jz|=1), Gz) — +ocas|z! — o0

(Pl =M <o for all =0

then all solutions of (1.1) are ultimately bounded and that if p(f) is periodic
in f then, subject to the same conditions, fhere exists at least one periodic

(*) Partially supported by N.S8.F. research project G-57 at The Universily of Michigan.
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solution with the same period as p(f). The corresponding situation, when p(f)
is almost periodic in #, has not been as fully investigated and all available
results in this direction have been obtained always subject to certain quite
heavy extra conditions on f, g and k. A typieal resnlt is that of ReurEr
who shows in [2] that there is a unique almost periodic solation if f, ¢ are
both positive for all 2z and if further &=k, where %, is a constant whose
precise magnitude depends on the values of f, ¢, ¢” in some interval |z|=<,.
Op1aL has shown in a very recent paper [3] that this result holds under
conditions which are weaker than those given in [2], but Opial’s conditions,
though a significant refinement of Reuter’s conditions, nonefheless refain
many of the essential features of Reuter’s conditions.

The present paper originated from a desire to determine precisely what
roles the various conditions in [3; Theorem 7] play in the «uniqueness»
and in the « existence » of the almost periodic solution of (1.1). Preliminary
investigation along certain lines suggested by the methods in [4. § 3] showed
that the condition %=k, plays no distingnishing role in the proof of the
< existence » and that in fact the precise value of the constant % is immaterial
to the «existence » provided that 0 <<k <C oo. Therefore so long as our inve-
stigation is confined to the problem of «existence» only we may take our
equation in a paramefer-free form:

(L3) z + f@)z + glx) = p() .

For this equation we have obtained an «existence » theorem which throws
some light on the question raised in connection with the conditions in Opial’s
result [3; Theorem 7];

TaEOREM 1. -~ Let (p(f) be almost periodic in [ and suppose also that
f, 9, F, G and P satisfy the conditions (1.2). Then there exists at least one
almost periodic solution xzf) of (1.3) whose derivative zit) is also an almost
periodic function of 1.

The most important feature of the present theorem is the absence of
the usmal « convergence » restrietions on f, ¢, g” which dominate the results
in [2] and [3], but it must be emphasized here once again that our theorem
deals only with the «existence » while [2] and [3] consider the « uniqueness »
as well.

With somewhat stronger conditions on f and g it is possible to extend
the conclusion of Theorem 1 to the case where the forcing function p is a
function of x and x as well. Consider, for example, the equation

(1.4) & + f@x -+ glo) = plt, @, @)
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in which f and g, as before, are continuous functions of z. We shall assume
here that the function p, which depends on the arguments explicitly shown,
is such that p({, =z, y) is continuous for all values of ¢ z and y. Our
« existence » results is as follows:

TagoreMm 2. -~ In the equation (1.4) let p be such that p(t, =, y) is almost
periodic in t uniformly with respect to x and ¥, and suppose that

(1.5) f*\x)2a1>0({x\21), zg(z) — -+ oo as 1{”:”_’00

and thal

(1.6) (=" 4y p(t, 2, )| = o(y® + min { 2%, 2g(x) }) as 2* + y* — oo

uniformly in l(— oo << t << oo). Then there exists ot least one solution xzt) of

(1.3) whose derivative z(t) is also an almost periodic function of t.

In the course of the verification of this result we shall have occasion
to refer to the following result:

THEOREM 3. - Suppose that f, g satisfy the conditions (1.5) and thal p is
such that

(L.7) @* + Y2l plt, =, y)| = oly® + xg(x) as «* + y* — oo

uniformly in t for O < { << co. Then thereis a constant D, 0 << D << oo, whose
magnitude depends only on [, g and p such that every solution z() of (1.4)
satisfies

%) <D, |af)|<D
for all sufficiently large ¢.

As this boundedness result is not included in any of the existing boun-
dedness results for equations of the form (1.4), an explicit proof in the present
paper is quite in order even though the topic is out of line with the general
objective of the paper.

Observe that, if |g(z)| — oo as |z| — oo, the conditions (1.6) and (1.7) are
satisfied by all bounded, as well as some unbounded, functions p(, z, ¥).
In illustration of the type of function in the latter category one may note
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that if, for exemple g = a,z, with the constant g, positive, both (1.6) and (1.7)
are satisfied, for instance, by the function

p(ta z, ?j) = (yz -+ 5‘32)1’(4 sint

which is unbounded for arbitrarily large z* 4 ¢

Concerning the equation (1.4) one may also remark that, with a suitable
periodicity condition on p, it is quite possible to deduce the existence of a
periodic solution from Theorem 3 by using the well known « BROUWER fixed
point technique » in [b]. We shall however not pursue this matter any further
beyond stating one form of result that can be obtained in this way:

COROLLARY. - Lef p(t. x, y) = p(t + v, x, y) uniformly in z and y, and
suppose that f, g and p satisfy the conditions (1.5) and (1.7) and are also
such that solufions of (1.4) are uniquely defined functions of their initial
values. Then there exists al least one periodic solution of (1.4) with the period o.

2. The theoretical basis for our method for Theorem 1. - The procedure
here is derived from an adaptation of the LLERAY-SCHAUDER arguments in
[4]. As in [4; § 5] we shall not tackle the problem directly; instead we shall
consider a parameter-dependent equation

@.1) &+ a3 + Ga= p{as + g — (2 — glz) + pih) |

in which a,, @, are arbitrarily chosen (but otherwise fixed) positive constants
and p is a parameter having as its range the closed interval 0 =p<<1. Two
important features of the equation which we shall exploit are (i) the fact
that at the extremity p =1 of the parameter range the equation (2.1) reduces
to the given equation (1.3) and (é) the fact that, at the other extremity
w =0, (2.1) reduces to the simple equation

i‘ll‘aﬂé"l‘azmzo

with constant coefficients. By setting 2, =, 2z, = z, in (2.1) we can repre-
sent (2.1) in the form of a system :

2.2) X = AX 4+ pF(Xyt)
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where

2.3) X:(“"‘>,A=( o 1 )F:( 0 )
T2 — Oy — O 1% + G221 — [ (22)22 — gl@,) 4 p(F)

Observe that, since a,, a, are both positive, each eigenvalue of the matrix
4 has a negative real part, so that, in particular,

@2.4) | e4t]| < age=ait £=0.

where | - || here denotes the sum of the absolute values of all the members

of the matrix e4. From this and from the fact that p[f) is finitely bounded

for all ¢ in (— oo, o) one can show quite readily that if X(8) = (z,(f), x:(¢))

is finitely bounded for all { in (— oo, o<) (that is, if méth (@y(t) + 22 8)) << o0)
00 {00

then the infinite integral

t
(2.5) [ eAlt—=1 /(X (x), ©)dr

Q0

exists and is differentiable in {. Furthermore any bounded X(#) € C{— oo, ov)
which satisfies the equation

¢
X=yp [ edt—) F(X (x), t)dr

—00
necessarily satisfies the differential equation (2.2). These properties of the

integral (2.5) may be interpreted in quite another way. Let S, denote the
Baxacun Spack of all almost periodic 2-vectors X (f) with the norm

| X[lo = sgp(lwl(t)i + |28 ])

and let T(X) represent the integral (2.5) for X € S,. Then, by applying quite
standard arguments (see, for example, CHAPTER 13 of [8]) to the integral
(2.5), one can show that T, : S, — S,. Furthermore, in view of the properties
obtained earlier on for the integral (2.5), any solution X€ S, of the functio-
nal equation

2.6) X — pTyX)=0

is also a solution of the equation (2.2). Because of the special relationship
between (1.3) and (2.2) with p=1, it is clear now that the existence of a
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solution x,(f) of (1.3) with the property stated in the conclusion of Theorem 1
would be esfablished if we can prove that, for p = 1, there is a solution
in 8, of the functional equation (2.6). Our object in the analysis which follows
is to show that there is, indeed, such a solution for (2.6) if f, g and p satisfy
the conditions (1.2)

3. = A Leray-Schauder theorem and its application. — The proof of the
existence of a solution for (2.6) (at p = 1) can be handled quite easily by
means of the following result of LErRAY and ScHAUDER [6]: Let S be g
BanacH space and let T(p, X) be an operator depending continuously on a
parameter p for all p in the range a < p =<0b and such that for each p in
this range T is a completely continuous mapping of S into itself. Suppose
that there is a uniform a priori bound

X < 4o
for all solutions of the eguation
3.1 W X)=X—Tp, X)=0

where 4,, 0 < 4y < oo, is a constant independent of n, a S p<b. Let Qu,
denote the open set || X| <4, in S and for each in [a, b] let d, = d(t,,
Qy4,, 0) denote the degree (defined in [6; § 5]) of the mapping y = t,(X) at
the point y = 0. If d, =0 for some , in [a, b] then d, 4=0 for all other p
in [a, b] and, in that case, the equation (3.2) has at least one solution in §
for cach p in [a, ). Turning now to our equation (2.6) we note that at
p =0 the mapping X — uTy(X) is the identity mapping. Thus the LERAY
ScHAUDER Theorem given above would be applicable with p, =0, ¢ =0,
b =1 and the existence of a solutions in S, for the equation (2.6) at p=1
would follow as soon as the following result is verified :

LemMMA. - Subject to the conditions on f, g and p in Theorem 1, (i) the

operator T, is completely continuous, and (i) there exisis a fixed finile positive
constant A,, whose magnitude is independent of p, such that

(3.2) X b <4
for every X €8, satisfying (2.6) (0 < p < 1).

Proof of the lemma. - The proof of part (¢) of the Lemma is quite strai-
ghtforward and requires only the continuity of f, g and p, the result (2.4)
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and the boundedness of p(f). Let X,(m=1, 2,...) be an infinite sequence
in 8, with

| Xnillo =< m < oo m=1, 2.).

Then from the definition of T, and the result (2.4) it is a simple matter to
ascertain that the sequence Ty(X,) (m=1, 2,..) is also uniformly bounded.
Next by direct differentiation one obtains that

91X, = P, )+ ATX,) =1, 2..).

Thus the uniform boundedness of (X) (n =1, 2,...) necessarily implies the
uniform boundedness of —%— ToX,) m=1, 2,...) and this in turn implies the

equicontinuity of the sequence Ty X,) (n=1, 2,..). Applying now Ascoli’s
theorem we have the compactness of this sequence Ty(X,)(n =1,2,...). Hence
T, is completely continuous.

Coming now to part (é4) of the lemma, the proof of the a priori bound
(3.2) direct from the funcfional equation turns out to be quite difficult espe-
cially in view of the nature of the conditions on f and g. However because
of the definition of the norm | .|, in fthe space S, it is evidenf that the
result (3.2) would hold if it can be shown that there is a finite constant
D; > 0 whose magnitude is independent of p such that every solution z(f)
of (2.1) satisfies

(3.3) | () | + | () | < D, (— oo <t < o0).

In fact since space S, consists only of almost periodic functions it is not
even necessary to prove that the equalify for a(f) in (3.3) holds for all { in
(— oo, oo). It would be quite enough, for example, to show that there exists
a fixed finite constant D, >0 whose magnitude is independent of p such
that every solution z(#) of (2.1) satisfies

(3.4) l2®) | + | alt) | < De
for all sufficiently large t; for if z(f), z(f) are almost periodic an'd satisty

(34) for #{=1, then, by using the almost periodicity of # and z we can
show, for instance, thaf

ba) | + |2t | <D, 41 (— oo <t < o0),
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and the bound D, + 1 is independent of p if D, is independent of p. Hence
the proof of the required a priori bound would be completely verified as
soons as it is proved that all solutions of (2.1), with 0 < p =<1, are ultimately
bounded in the sense of (3.4) with the bound D, independent of .

For the proof of (3.4) it is convenient to put (2.1) in the form

(3.5) z + fil@)z + gi(z) = pu(d)
by setting

fi=1 — pwa, + pf (@)
0= (1 —pax + pglx),  po=ppd).

(3.6)

Next we observe that if 0 << p<<1 and if f, g, P satisfy the conditions (1.2)
then necessarily :

1

} / pi@ds

0

Fl(x)Efﬂ(g)dE — - co(— o) a8 % — -+ oo (— o)

< M (— o0 < § < o0)

x

zh(x) >0( |z | = 1), G;(x)afgi{i}dﬁwooas |z | —oco.

0

But these conditions are identical with Reuter’s conditions in [1]. Thus our
equation (2.1) has ultimately bounded solutions. This is however not quite
(3.4) until it is verified that the ultimate bound in question can chosen
independent of p. A close study of the proofs given in [1] will show that
the ultimate bound can indeed be chosen independent of p provided that
f1, g, are such that:

(I) the manner in which Fyz)sgnz and Gy(z) tend to infinity is inde-

pendent of yu, so that given any finite constant @, > O there exists another
constant b, > 0, whose magnitude is independent oy p., such that

Gy(z) = a, and Fyz)sgnxz=>a, for | z | =b,

(IT) the bounds for fi, g., F,, G, in any given finite x — interval can
be chosen quite independent of p, so that given any finite counstant a,> 0
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there are constants b, >0, b, > 0, b, > 0 and b, > 0, all independent of
such that

L@ | b, [g@)] <b:, | Fiz)| <bs and | Gi(z) l<<b, for | (@) ]| < a,.

Therefore to conclude our proof of the lemma it is enough now to verify (I)
and (II).

Since f(z), g(x) are continuous the property (LI} follows at once from
definition (3.6) and the fact that 0°<Sp < 1. To verify (I) note first from the
definition of g, that

1
(3.7 Gy(z) = 5 (1 — poz® + pGx).

Next observe that, as a result of the condition: Fz) —~ 4+ oc as |z | ~ oo,
there exists a finite z,=0 such that

Giz) >0 |z | =u,.

From these two observations it is quite clear that if 0= p = ‘1) then
1 2
Gl(x)Zaazx; Lz =,

and that if ! =<p <1 then

2
1
Gl(x)2§G(x), lz | =
Hence
41, 1
G4(z) = min %% 3 Gx)}, || =%.

for arbitrary p in O0<p < 1. Since the constant z, and the lower bound
for G, in the above inequality are independent of p the property (1) now
follows if we bring in the fact that G(z) — 4 oo as | z | — oo. The verifica-
tion of the lemma is now complete.
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4. Completion of the proof of Theorem 1. - It remains now to assemble
the various preliminary steps into a formal proof. First, from the lemma
and the remarks immediately preceding it, we have that the functional
equation (2.6) at p=1 admits of a solution X (H€S8,. Then, by the
remarks in § 2 this solution X,(f) necessarily satisfies the equation

X =4X + F(X.t.

But this equation is the phase-space system of equations corresponding
to the original equation (1 3), and the theorem then follows.

5. Proof of Theorem 3. - Because of the dependence of the proof of
Theorem 2 on the method of proof, as well as the actual content, of
Theorem 3 it seems desirable to establish Theorem 3 first.

For this purpose let

B= max | f(z)]

l#]<1

and consider the function V(z, y) defined by

2V, ) = 40) + 26, | FOE + 27 + 2auzy + Dyol@)

where b, = 8(a, 4 B)2!/?n— and ¢(x) is the differentiable function given by

s@)= { sin mx/d), |v] <2
—1 , ® < —2.

We can rewrite the expression for 2V(x, y) in the form:

2V, ) = y* + (¥ + o) + 2w1f Eif(E) —ay} dE +

(5.2)
+ 4G(w) + 2byyia).
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Since fE)=0a.(|E|=1) and |[9(@)] =1 for all x and since the
hypothesis xg(x) — 4 oc as | x| oo implies also that Gx)— 4o as
{@ | — oo, it ig clear from (D.2) that

1
(5.3) 2V(a, ) =54+ U + @z — Ds

for all z and y where D,, 0 << Dy < co, is a constant.

Consider mnext the system
(5.4) T = @y, @ = — (@ [(@) + g(@) + plt, 71, z2)

obtained as usual by setting z, =z, 2, ==z, in (1.4). To prove Theorem 3
it will be sufficient to show that every solution (z,(f), #,({)) of (b.4) satisfies

(5.5) |20 | =D, [z()|= D
for all sufficiently large ¢, where D is a constant of the form given in the

theorem.

Let us then take any solution (z,(f), z,(f) of (5.4) and set

V() = Vi), (D).

Then by an elementary calculation from (5.2) and (5.4) one obtains that

V=-— 2,9 (1) — 234 2 () — a; + b,9'(z1)} -
(6.6) + {23, + ay2: - bip(@) g () 1 (¢ 21, 7o)

— b1g ()9 (1) — 1229 (1) f (1)

To estimate a lower bound for the coefficient of (— 23) in (5.6) we
require the results (which may be easily checked up from the definition
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(6.1)) that ¢(z)==0 always and that

Y@ =n/4\2) (j= |1

Since f(z)=a.(|z | =1) one then finds, with the aid of these results,
that

2f (@) — a1 + ba9' (1) = 2f (1) — @

= 0y, ('xl 3 21)?

also that
2f () — s + bu@(0) = — 2B — 0, + bym /A V)
=, ([o]| <1)
from the definition of b,. Hence

2f (z,) — ay + byp'() = a, for all z,.

The other terms g(z)p(x), [ ) ¢(x,) are also readily checked from the
definition (5.1) to satisfy:

lg@)elz) | < max [g@)|, [fl)e@)| < max | f(z)]

jaor =<2 EZS ]

On combining all these results with (5.6) we obtain at once that

Vs — ay(aglay) +a)Fa(l+ a4+ |z|) | pl 20, 22) | 4+ @0 | @2 |

where ag, @, are finite positive constants. If z,9(x))— -+ oc as |z | — oo

and p satisfies (1.7) it follows then from our estimate of V above that
there exist fixed positive constants a,, a, such that

6.7 V<—a,, it X+ ()= a,
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The inequalities (5.3) and (5.7) are the two main ingredients in our
proof of (5.5), and the procedure is an adaptation of a techuwique in
Yosuizawa’s paper [7]. Let (x.{f), x5{f)) be any solution whatever of (5.4).
Then for any given {, there exists always a value ¢ > #, such that

(5.8) w; (h) + x5 (1) < a6;

since otherwise z(¢) + 2i(f) > as({ =1{;) and then by 5.7) we shall have
that

V==, Viat), o) < — as(t = 1)

and this would imply that there are values of f for which V() is arbitrarily
large and negative, in clear contradiction of the result

V= - D,,
from (5.3). It is also clear from (5.3) that
VE 1) — 4 oo as & 4 92— oo
Thus we can find a fixed constant a,, as <a; <o, such that

5.9 min V(& v) > max V(E 7).

Ernf=ay E-Hnt=ag
We now assert that our trajectory (z.(f), 2.(f)) satisfies
(6.10) Bt Faih<a, =)

where £, is determined by the inequality (5.8) For suppose on the contrary
that at a certain instant {=1{, > { we have

z3(t) + 21 > oy

then, because of (5.8) and the continuity of «(f) 4 2;({) as a function of ¢,
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there exist necessarily #,, ¢, such that ¢ </{, < ¥, =¥ and such that

(6.11) 93? )+ -55; (t1) = ag, xi (t2) + xz (t2) = a,
and
(6.12 e < zi(t) F ) < a; =t <t,.

But then, by (5.7) and (5.12) we shall have that
V(') < Vit,
and fhis would contradict the result:
V') > V(£

from (5.9) and (5 11). Hence our frajectory (z.(f), =,(f)) satisfies (3.10) and
thus we have (5.5). The proof of Theorem 3 is thus complete.

6. - Proof of Theorem 2. - The procedure is similar to that used for
Theorem 1, and, for reasons which have been carefully outlined in § 2,
the proof of Theorem 2 will be achieved on showing that the functional
equation

(6.1) X —pTyX)=0

at =1 has a solution in the BanxacH space S,. Here S, is the usual
Baxacn space with the wusual norm and T(X) is the integral (2.5) but
defined now with respect to the system

(6.2) 1 = @, » Ty = — (1 — ) (0u22 + A2m1) — p{f@)a+ g ) —p ¢ 22, @)}

The nsual LERAY-ScHAUDER technique is applicable once again, and
we turn then to verify that the lemma in § 3 holds for the present operator
T,. The arguments in §3 for the proof of part (4) of the lemma carry
over very readily and with only slight changes, and I shall therefore omit
details of its proof here. To obtain the a priori bound in part (i) of the
lemma Wwe resort once again to the indirect approach in §3 and obtain
our result by verifying that every solution (#,(f), «.(f)) of the system (6.2)
(0 = p <1) satisfies

(6.3) | o) | <D, | alf)| =D
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for all sufficiently large f, where D> 0 is a fixed finite constant whose
magnitude is independent of p.

For the actual verification of (6.3) it is useful to recall that (6.2) is the
equivalent system for the single differential equation

(6.4) 2+ fi0)z + got) = palt, @, 2)
in which
fe =1 — p)o. + pf(x)

g = (1 — pa.s + pg@), p.=wp(, o, 2).

With our conditions on f(z) and g(z) it can be verified that, for
0=p=s1,

(6.5) fa@)=a, (|z | =1, 2gsx) — 400 as [z ]| —o0.

Also, from the definition of g,

(6.6) rg: = (1 — pa.2® 4+ pagle);

and hence, by considering the expression on the right hand side of (6.6) in
each of the p-intervals 0 <p < % and % < p =1, we see that if 2,>>0 be
chosen (as is possible since zg(z) — oo as |z | —oc) such that
zg(z) >0 for |z | ==z, then

6.7 xgo(x) == 8, min (a°, xg(w)) |z | =

for arbitrary p in 0<p =<1, where &, = min (—é @y, 1).

From the result (6.7) one obtains at once that if p(f, =, y) satisfies the
condition (1.6) then necessarily p, satisfies

6.8) @ + Y2 | pall, 7w, ) | = 0" + 294{x))

uniformly in #(— oo). Thus the functions £, g., p. in (6.4) satisfy condi-
tions similar to those in Theorem 3. Hence the conclusion of Theorem 3 is
applicable to (6.4), and all solutions of (6.2) are therefore ultimately
bounded, and it remains only to ascertain that the ultimate bound in
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question can be chosen independent of w for 0 =<p=<<1. For this purpose
we consider the function V.(z, y) defined by

2V, = 4[ g:(8)dE + 2“1[ & (8) dE + 2y* + 2a,2y

+ 2byo(x)

where b, = 8(a, + B)2'2zn—*, with B = max | f(z)|, and ¢(z) is the function
|zf=<1
(6.1). This function V. is in fact the function V wused in the proof of

Theorem 3 but with f,, g now in place of f, g respectively. By rewriting
the expression for 2V, in a form corresponding to (5.2) and then making
use of the results (6.5) and (6.7), we can show that 2V, also satisfies the
same inequality

¥+ (y + awx)’ — Dy

DOt

2V, =

for all x and y, just as for the function V in (5.3). Also, if (x(f), z.(f)) is
any solution of (6.2), one finds, by using precisely the same arguments
which were employed in the estimating V in the proof of Theorem 3, that
if 0=sp<1 and f(@)=a|z|=1) then

. d
V.(t) = ai Vz(x1(t); z:(1)) = —a Z1ga(%1) + a3} -

Fas(L4 @ | 4+ | z]) | pE 2, 22) | + 0.

In view of the inequality (6.7) it is clear from this estimate for V, that
if (1.6) holds and if zg(z) — - oc as |z | — oo then there are fixed
finite positive constants a; and a&,, whose magnitudes are both inde-
pendent of p, such that

VoS —as it 2X)+ 220 = a.,

analogous to (5.7). The «YosHIZAWA technique» is therefore applicable
here and the inequality (5.10) can be shown to hold for any solution
(£1(8), x2(2)) of (6.2) with the bounding constant a; in (5.10) quite inde-
pendent of .

Thus the key lemma in § 3 is indeed available for our functional
equation (6.1), and Theorem 2 may now follow as in § 4.
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