On the Stability of a Nonhomogeneous Differential Equation of the Fourth Order.

E. N. CHUKWU (Cleveland, Ohio) (*)

Summary. - In previous papers Ezello [3], Harrow [4, 5] had established stability results for the equations (1.3), (1.4) and (1.5). In the present paper these results are extended to hold for the equation (1.1).

1. - Introduction.

The equation studied here is of the form

$$(1.1) x^{(4)} + f(x, \dot{x}, \ddot{x}, \ddot{x}) \ddot{x} + g(x, \dot{x}, \ddot{x}) \ddot{x} + h(x, \dot{x}) + i(x) = p(t, x, \dot{x}, \ddot{x}, \ddot{x}),$$

where f, g, h, i and p are functions which depend only on the displayed arguments. Denote

$$\frac{dx}{dt} = \dot{x} = y$$
, $\frac{d^2x}{dt^2} = \ddot{x} = z$, $\frac{d^3x}{dt^3} = \dddot{x} = w$;

then equation (1.1) is equivalent to the system

$$\begin{aligned} \dot{x} &= y \;, & \dot{y} &= z \;, & \dot{z} &= w \;, \\ \dot{w} &= -w f(x,\,y,\,z,\,w) - g(x,\,y,\,z) z - h(x,\,y) - i(x) \,+\, p(t,\,x,\,y,\,z,\,w). \end{aligned}$$

In what follows, we assume the following derivatives exist:

$$i' \equiv \frac{di(x)}{dt}, \quad h_x \equiv \frac{\partial h(x, y)}{\partial x}, \quad h_y \equiv \frac{\partial h(x, y)}{\partial y}, \quad g_x \equiv \frac{\partial g(x, y, z)}{\partial x},$$

$$g_z \equiv \frac{\partial g(z, y, z)}{\partial z}, \quad f_x \equiv \frac{\partial f(x, y, z, w)}{\partial x}, \quad f_y \equiv \frac{\partial f(x, y, z, w)}{\partial y}, \quad f_w \equiv \frac{\partial f(x, y, z, w)}{\partial w};$$

and that

$$i'$$
, h_v , g , g_z , f , f_w and p

are continuous for all x, y, z, w and t.

^(*) Entrata in Redazione il 16 novembre 1970.

^{1 -} Annali di Matematica

The main problem of interest here is as follows: what further conditions on p, i, h, g and f guarantee that every solution of the system (1.2) tends to zero as t tends to infinity. This problem has been investigated by EZEILO [2], [3] for the simple variant of (1.1) given by

$$(1.3) x^{(4)} + f(\dot{x})\ddot{x} + a_2\ddot{x} + g(\dot{x}) + a_4x = p(t, x, \dot{x}, \ddot{x}, \ddot{x}),$$

where a_2 and a_4 are constants. In more recent papers HARROW ([4], [5]) studied the equations

$$(1.4) x^{(4)} + a_1 \ddot{x} + a_2 \dot{x} + a_3 \dot{x} + h(x) = p(t),$$

$$(1.5) x^{(4)} + a_1 \ddot{x} + f_2(\ddot{x}) + f_3(\dot{x}) + f_4(x) = p(t)$$

where a_1 , a_2 , a_3 are constants. These researches established the required stability result under the hypotheses that suitable generalizations of the well-known Routh-Hurwitz condition are fulfilled.

The present paper is a direct re-examination of [2], [3], [4], [5]. The main result, as stated in Section 2, contains the earlier results as special cases.

2. - Statement of result.

In addition to the basic suppositions on the system (1.2), suppose

i)
$$h(x, 0) = 0 = i(0)$$
,

ii)
$$i(x) \operatorname{sgn} x > 0$$
 $(x \neq 0)$, $i(x) \operatorname{sgn} x \to +\infty$ as $|x| \to \infty$, $i'(x) \leqslant d$ for all x ; $d > 0$, a constant,

iii)
$$f(x, y, z, w) \geqslant a$$
 for all x, y, z, w ; $g(x, y, z) \geqslant b$ for all x, y, z ; $\frac{h(x, y)}{y} \geqslant c$ for all x and $y \neq 0$,

where

iv) a, b c are positive constants such that

$$(ab-h_u)c-adt \geqslant (ab-c)c-a^2d \equiv \Delta_0 > 0$$

for all x, y, z, w,

$$h_{\widehat{\imath}}(x,y) - \frac{y}{h(x,y)} \leqslant \alpha_1$$

for all x and $y \neq 0$, where $\alpha_1 > 0$ is a constant such that

$$\alpha_1 < \frac{2d\Delta_0}{ac^2}$$

v)
$$\frac{F(z)}{z} - f(x, y, z) \leqslant \alpha_2$$

for all $z \neq 0$, where

$$F(z) = \int_0^z f(x, y, s, 0) ds,$$

 α_2 is positive constant such that

$$lpha_{2} < rac{2arDelta_{0}}{a^{2}c};$$

vi) $d_1 - i'(x) \leqslant \varepsilon_0(a^2 D_0)$

where $D_0 = ab + bc/d$, and $\varepsilon_0 > 0$ is a constant such that

$$\varepsilon_0 < \varepsilon = \min \left[\frac{1}{a} \, ; \, \, \frac{\varDelta_0}{16acD_0} \, ; \, \, \frac{a}{4D_0} \left(\frac{2\varDelta_0}{a^2c} - \alpha_2 \right) \, ; \, \, \frac{4dD_0}{c} \left(\frac{2\varDelta_0d}{ac^2} - \alpha_1 \right) \right]$$

vii) The function $f, f_w, f_v, f_x, g_z, g_v, g_x$ and h_x satisfy (for $y \neq 0, z \neq 0$)

$$\Gamma_1 > 0$$
 for all x, w , $\Gamma_2 < \frac{\varDelta_0}{2ac}$ for all x, w , $\Gamma_3 < \frac{\varepsilon c}{4}$ for all x, w , $\Gamma_4^2 < \frac{\varepsilon \varDelta_0}{4c}$ for all x, w ,

where

$$\begin{split} &\Gamma_1 = \frac{\varepsilon}{2} \, f + \delta_2 y f_w + z f_w \,, \\ &\Gamma_2 = \delta_2 y g_z(x,\,y,z) - \frac{1}{2} \left[\delta_1 \int_0^z \! s g_v(x,\,y,\,s) \, ds + \int_0^z \! s f_v(x,\,y,\,s,\,0) \, ds \right] \,, \\ &\Gamma_3 = \delta_2 \int_0^z \! f_x(x,\,y,\,s,\,0) \, ds + \frac{1}{y} \left[\int_0^y \! h_x(x,\,s) \, ds + \delta_2 \int_0^z \! s g_x(x,\,y,\,0) \, ds \right] \,; \\ &\Gamma_4 = \delta_2 \int_0^z \! f_v(x,\,y,\,s,\,0) \, ds + \delta_2 h_x(x,\,y) + \frac{1}{z} \left[\int_0^z \! s f_x(x,\,y,\,s,\,0) \, ds + \delta_1 \int_0^z \! s g_x(x,\,y,\,s) \, ds \right] \\ &\delta_1 = \frac{1}{a} + \varepsilon \,, \qquad \delta_2 = \frac{d}{c} + \varepsilon \,; \end{split}$$

viii) For all x, y, z, w, t,

$$|p(t, x, y, z, w)| \leq \theta_1(t) + \theta_2(t)(y^2 + z^2 + w^2)^{\alpha/2} + \delta_0(y^2 + z^2 + w)^{\frac{1}{2}},$$

where $0 \le \alpha < 1$, and $\delta_0 > 0$, and the continuous functions $\theta_i(t) > 0$ (i = 1, 2) satisfy

$$\max \theta_i(t) < \infty \,, \qquad \int\limits_0^\infty \theta_i(t) < \infty \,.$$

Then there exists a constant $\delta > 0$ such that if $\delta_0 \leqslant \delta$, then every solution (x(t), y(t), z(t), w(t)) of (1.2) satisfies

$$(2.1) x^2(t) + y^2(t) + z^2(t) + w^2(t) \to 0 \text{as } t \to \infty.$$

REMARKS. - Observe that the hypotheses ii), iii) and the first part of iv) are suitable generalisations of the well-known ROUTH-HURWITZ criterion:

$$(2.2) a>0, b>0, c>0, d>0, ab-c>0, (ab-c)c-a^2d>0,$$

for the asymptotic stability (in the large) of the trivial solution of

$$x^{(4)} + a\ddot{x} + b\dot{x} + c\dot{x} + dx = 0$$
.

When (1.1) is specialized to (1.3) the result above, the Lyapunov function V and the method of proof are similar to those of [3]. But when (1.1) is specialized to (1.4) or (1.5) the result above differs from those in [4] or [5] because the methods used to verify that V is positive definite and \vec{V} negative definite are different. Hypotheses vii) are introduced because of the general nature of the non-linearities. They are comparable to those in a third order system by Simanov as pointed out by Cartwright [1].

3. – The function V.

The LYAPUNOV function on which the verification of (2.1) rests is a direct extension of the function V in ([3], Section 3), and is hereby defined by

$$(3.1) \qquad 2V = 2\delta_{2}\int_{0}^{x}i(s)\,ds + 2\delta_{2}\int_{0}^{y}\operatorname{sg}\left(x,\,s,\,0\right)ds - \delta_{1}dy^{2} + 2\int_{0}^{y}h(x,\,s)\,ds + \\ + 2\delta_{1}\int_{0}^{z}\operatorname{sg}\left(x,\,y,\,s\right)ds - \delta_{2}z^{2} + 2\int_{0}^{z}sf(x,\,y,\,s,\,0)\,ds + \delta_{1}w^{2} + 2yi(x) + \\ + 2\delta_{1}zi(w) + 2\delta_{2}y\int_{0}^{z}f(x,\,y,\,s,\,0)\,ds + 2\delta_{1}zh(x,\,y) + 2\delta_{2}yw + 2zw,$$

where

(3.2)
$$\delta_1 = \frac{1}{a} + \varepsilon, \qquad \delta_2 = \frac{d}{c} + \varepsilon, \qquad \varepsilon > 0$$

a constant. We shall prove in two stages that V is indeed a Lyapunov function: Lemma 1 gives the required property of V; and Lemma 2 that of \dot{V} .

LEMMA 1. – Suppose that all the conditions of the theorem hold, then V(0,0,0,0)=0. Furthermore, there exists positive constants D_i (i=1,2,3,4) which depend only on $a,b,c,d,\alpha_1,\alpha_2,\epsilon$, and Δ_0 such that, for all x,y,z and w

(3.3)
$$V > D_1 \int_0^z i(s) ds + D_2 y^2 + D_3 z^2 + D_4 w^2$$

PROOF. - Since i(0) = 0 = h(0, 0) = 0, it is immediate that V(0, 0, 0, 0) = 0. It remains to verify (3.3). This is done in two stages: When z = 0, and when $z \neq 0$. In these calculations we need the following inequalities:

(3.4)
$$\delta_1 - \frac{1}{t} > \varepsilon$$
, for all x, y, z, w ;

(3.5)
$$\delta_2 - \frac{dy}{h} > \varepsilon, \qquad \text{for all } x \text{ and } y \neq 0;$$

(3.6)
$$b - \delta_1 h_y - \delta_2 f \geqslant \frac{A_0}{ac} - D_0 \varepsilon, \quad \text{for all } x, y, z \text{ and } w,$$

where

$$D_0 \equiv ab + rac{bc}{d}$$
 .

To verify these insert the values of δ_1 and δ_2 in (3.2) into (3.4), (3.5) and (3.6) respectively.

Then

$$\begin{split} &\frac{1}{a} + \varepsilon - \frac{1}{f} = \varepsilon + \left(\frac{1}{a} - \frac{1}{f}\right) > \varepsilon, & \text{by hypothesis iii)}; \\ &\varepsilon + \frac{d}{c} - \frac{dy}{h} = \varepsilon + d\left(\frac{1}{c} - \frac{y}{h}\right) > \varepsilon, & \text{by hypothesis iii)}; \\ &b - \delta_1 h_y - \delta_2 f = b - \frac{hy}{a} - \frac{df}{c} - \varepsilon (h_y + f) > \frac{A_0}{ac} - \varepsilon (h_y + f) \end{split}$$

by hypothesis iv). Also by iv), $h_y < ab$, f < bc/d, and thus

$$b-\delta_1 h_{\scriptscriptstyle y}-\delta_2 f\!>\!rac{arDelta_0}{ac}\!-\left(ab+rac{bc}{d}
ight)arepsilon\equivrac{arDelta_0}{ac}\!-D_0arepsilon$$

where

$$D_0 = ab + \frac{bc}{d}.$$

The three inequalities are now established.

Next, (3.3) will be shown to hold when $z \neq 0$. In this case, recall that

(3.7)
$$F(z) = \int_{0}^{z} f(x, y, s, 0) ds.$$

Now define $\gamma(y)$ by

(3.8)
$$\gamma(y) = \frac{h(x, y)}{y}, \qquad y \neq 0,$$
$$= h_y(x, 0), \qquad y = 0.$$

Then

$$(3.9) 2V = \frac{z}{F(z)} \left[w + F(z) + \delta_2 y \frac{F(z)}{z} \right]^2 + \frac{1}{\gamma(y)} [i(x) + y\gamma(y) + \delta_1 z \gamma(y)]^2 +$$

$$+ \left[\delta_1 - \frac{z}{F(z)} \right] w^2 + 2\delta_1 \int_0^z sg(x, y, s) ds - \delta_2 z^2 - \delta_1^2 \gamma z^2 + 2 \int_0^z h(x, s) ds - y\gamma(y) +$$

$$+ 2\delta_2 \int_0^z sg(x, s, 0) ds - \delta_1 dy^2 - \delta_2^2 \frac{F(z)}{z} y^2 + 2\delta_2 \int_0^z i(s) ds - \frac{i^2(x)}{\gamma(y)} .$$

Now,

$$egin{align} V_1 &\equiv 2\delta_2\!\int\limits_0^x\!i(s)\,ds - rac{i^2(x)}{\gamma(y)} \ &= 2\delta_2\!\int\limits_0^x\!i(s)\,ds - rac{i^2(x)}{c} + \left(rac{1}{c} - rac{1}{\gamma}
ight)i^2(x) > 2\!\int\limits_0^x\!\left[\delta_2 - rac{i'(s)}{c}
ight]i(s)\,ds \,, \end{split}$$

Since $1/c - 1/\gamma > 0$, by iii). Thus $V_1 > \varepsilon \int_0^x i(s) ds$, by hypothesis ii) and by (3.5), since i(0) = 0.

$$egin{aligned} V_2 &\equiv 2\delta_2\!\int\limits_0^y\! sg(x,s,0)\,ds - \delta_1 dy^2 - \delta_2^2rac{F(z)}{z}\,y^2 \ &= 2\!\int\limits_0^y\! \left[\delta_2 g(x,s,0) - \delta_1 d - \delta_2^2rac{F(z)}{z}
ight]s\,ds \;. \end{aligned}$$

But by hypothesis ii) the integrand

$$\delta_2 g(x,s,0) - \delta_1 d - \delta_2^2 \frac{F(z)}{z} \geqslant \delta_2 \left[b - \delta_1 \gamma(y) - \delta_2 \frac{F(z)}{z} \right] + \delta_1 \left[\delta_2 \gamma(y) - d \right].$$

So that, since

$$\gamma(y) = h_y(x, \theta_1 y) \quad \text{and} \quad \frac{F(z)}{z} f(\theta_2 z) \, 0 \leqslant \theta_i \leqslant 1 \qquad (i = 1, 2)$$

we have in using (3.5) and (3.6), that

$$V_2\!\geqslant\!\left[rac{\varDelta_0}{ac}\!-D_0arepsilon
ight]rac{d}{c}y^2, \qquad {
m by\ hypothesis\ vi)}\,.$$

Now, let

$$V_3 = 2 \int_0^y h(x, s) ds - y h(x, y)$$
.

Since $yh(x, y) \equiv \int_0^y h(x, s) ds + \int_0^x sh_y(x, s) ds$,

$$V_3 \equiv \int_0^y \left[\frac{h(x,s)}{s} - h_y(x,s) \right] s \, ds \,,$$

so that

$$V_2 + V_3 > \int_0^r \left[\frac{2\Delta_0 d}{ac^2} - \frac{2\mathrm{d}D_0 \varepsilon}{c} - \alpha_1 \right] s \, ds$$
 by hypothesis iv).

But $2\Delta_0 d/ac^2 - \alpha_1 > 0$. Hence,

$$V_2 + V_3 > y^2 \left[\frac{\Delta_0 d}{ac^2} - \frac{\alpha_1}{2} \right] > 0$$
,

since by hypothesis vi)

$$arepsilon \leqslant rac{c}{4} \left[rac{2 arDelta_0 d}{a c^2} - lpha_1
ight] / (dD_0) \ .$$

In much the same way as above one soon obtains that

$$V_4 = \left[2\delta_1\!\int\limits_0^z\!sg(x,\,y,\,s)\,ds - \delta_2z^2 - \delta_1^2\gamma z^2\right] + \left[2\int\limits_0^z\!sf(x,\,y,\,s,\,0)\,ds - zF(z)\right] \geqslant \frac{1}{2}\left[\frac{2\varDelta_0}{a^2c} - \alpha_2\right]z^2 \geqslant 0\;,$$

since

$$arepsilon \! < \! rac{a}{4D_0} \! \left[rac{2arDelta_0}{a^2c} - lpha_2
ight], \qquad {
m by\ hyphothesis\ vi)} \; .$$

Finally,

$$V_5 \equiv \left[\delta_1 - rac{z}{F(z)}
ight] w^2 = \left[\delta_1 - rac{1}{f(x, y, \theta z, 0)}
ight] w^2,$$

since F(0) = 0 implies

$$F(z) = zf(x, y, 0z, 0)$$
 $(0 \le \theta \le 1).$

Thus,

$$V_5 \geqslant \varepsilon w^2$$
, by (3.4).

Hence

$$2\,V\!\geqslant\!\varepsilon\!\int\limits_0^z\!\!\!i(s)\,ds+\left[\frac{\varDelta_0\,d}{ac^2}-\frac{\alpha_1}{2}\right]\,y^2+\frac{1}{2}\left[\frac{2\varDelta_0}{a^2\,c}-\alpha_2\right]z^2+\varepsilon w^2\;.$$

Therefore, for the case $z \neq 0$ (3.3) holds.

The case z = 0 is trivial and the verification of Lemma 1 is complete.

4. – The property of dV/dt.

The required property of the derivative \dot{V} is given in Lemma 2.

LEMMA 2. – Assume that all the conditions of the theorem hold. Then there exist constants D_i (i = 6, 7, 8, 9) which depend only on $a, b, c, d, \varepsilon, \varepsilon_0$ and Δ_0 , such that if (x, y, z, w) is any solution of (1.2), then

$$(4.1) \qquad \dot{V} \equiv \frac{d}{dt} V(s,y,z,w) \leqslant -[D_{\rm e} y^2 + D_{\rm 7} z^2 + D_{\rm 8} w^2] + D_{\rm 9} [|w| + |z| + |y|] [|p(t,x,y,z,w)|].$$

PROOF. - Let (x, y, z, w) by any solution of (1.2). Using the identity

$$\frac{dV}{dt} = \frac{\partial V}{\partial x}y + \frac{\partial V}{\partial y}z + \frac{\partial V}{\partial z}w + \frac{\partial V}{\partial x}[-f(x, y, z, w)w - g(x, y, z)z - h(x, y) - i(x) + p]$$

in a straight-forward calculation, one obtains

(4.2)
$$- \dot{V} = V_4 + V_5 + V_6 +$$

$$+ \delta_1 [d - i'(x)] yz + \Gamma_4 yz - [\delta_1 w + z + \delta_2 y] [p(t, x, y, z, w)],$$

where V_4 , V_5 and V_6 are identified below.

$$\begin{aligned} V_4 &= -w^2 \left[\delta_1 f - 1 \right] - zw \left[f(x, y, z, w) - f(x, y, z, 0) \right] - \delta_2 yw \left[f(x, y, z, w) - f(x, y, z, 0) \right] \\ &= -w^2 \left[\delta_1 f + z f_w(x, y, z, \theta_1 w) + \delta_2 y f_w(x, y, z, \theta_2 w) - 1 \right] & (0 \leqslant \theta_i \leqslant 1, i = 1, 2) , \end{aligned}$$

by the Mean Value Theorem.

But

$$[\delta_1 f - 1] = f \left[\delta_1 - \frac{1}{f} \right] > \varepsilon f.$$

Thus

$$V_4 > \varepsilon f + \delta_2 y f_w + z f_w \equiv \Gamma_1 + \frac{\varepsilon}{2} f > \frac{\varepsilon f}{2},$$

where Γ_1 is defined in vii).

$$egin{aligned} V_5 &= z^2 \left[g(x,y,z) - \delta_1 h_
u(x,y) - \delta_2 rac{F(z)}{z}
ight] - \delta_2 z y \left[g(x,y,z) - g(x,y,0)
ight] + \\ &+ \delta_1 z \int_0^z s g_
u(x,y,s) ds + z \int_0^z s f_
u(x,y,s,0) ds \; . \end{aligned}$$

Since

$$\frac{F(z)}{z} = f(\theta_3 z) \qquad 0 \leqslant \theta_3 \leqslant 1 ,$$

necessarily

$$\left[g(x,\,y,\,z)-\delta_1h_{\scriptscriptstyle y}(x,\,y)-\delta_2\frac{F(z)}{z}\right]=\left[g-\delta_1h_{\scriptscriptstyle y}-\delta_2f(x,\,y,\,z\theta_3,\,0)\right]\geqslant \frac{\varDelta_0}{ac}-D_0\varepsilon\;.$$

By the Mean Value Theorem,

$$-\delta_2 zy[g(x, y, z) - g(x, y, 0)] = -\delta_2 yg_z(x, y, \theta z)z^2 \qquad (0 < \theta < 1).$$

Thus

$$\begin{split} V_5 & > \left[\frac{\mathcal{A}_0}{ac} - D_0 \varepsilon\right] z^2 + \varGamma_2 z^2, \qquad \text{by hypothesis vii)} \;. \\ V_6 & = y^2 \left[\delta_2 \frac{h(x,y)}{y} - i'(x) - \left(\delta_2 \int_0^z f_x(x,y,s,0) ds + \frac{1}{y} \int_0^y h_x(x,s) ds + \frac{\delta^3}{y} \int_0^y s g_x(x,s,0) ds \right) \right] \\ & \equiv y^2 \left[\delta_2 \frac{h(x,y)}{y} - i'(x) - \varGamma_3 \right] \\ & > y^2 \left[\varepsilon \frac{h(x,y)}{2y} + \frac{\varepsilon c}{2} + (d-i'(x)) - \varGamma_3 \right], \end{split}$$

by hypotheses iii) and viii).

Thus

$$V_{
m 6} > y^2 \left[arepsilon rac{h(x,y)}{2y} + rac{arepsilon c}{2} + d - i'(x)
ight]$$

by hypothesis vii).

Now

$$\begin{split} V_6 + \delta_1 [d-i'(x)]yz + \varGamma_4 yz \geqslant & \varepsilon \, \frac{h(x,y)}{2y} \, y^2 + \frac{\varepsilon c}{4} \left[y + \frac{\varGamma_4 z}{\varepsilon c} \right]^2 - \frac{\varGamma_4^2 z^2}{\varepsilon c} \, + \\ & + \left[d - i'(x) \right] \left[y + \frac{\delta_1 z}{2} \right]^2 - \frac{\delta_1^2 z^2 [d-i'(x)]}{4} \, . \end{split}$$

Therefore,

where $D_9 = \operatorname{Max} [1, \delta_1, \delta_2]$.

By hypothesis vii)

$$V_7\!\equiv\!rac{arDelta_0}{2ac}\!-D_0arepsilon-rac{arGamma^2}{arepsilon c}\!-\delta_1^2\!rac{\left(d-i'(x)
ight)}{4}\!>\!rac{arDelta_0}{4ac}\!-D_0arepsilon-arepsilon_0\!D_0\!>\!rac{arDelta_0}{8ac}\,,$$

since

$$\delta_1^2rac{\left(d-i'(x)
ight)}{4}arepsilon\;.$$

Hence,

$$\dot{V}\! <\! \varepsilon \, \frac{h(x,y)}{y} \, y^{\scriptscriptstyle 2} - \frac{\varDelta_{\scriptscriptstyle 0} z^{\scriptscriptstyle 2}}{8ac} - \frac{\varepsilon f w^{\scriptscriptstyle 2}}{2} \, + \, D_{\scriptscriptstyle 0} \big[|w| + |z| + |y| \big] \, |p(t,x,y,z,w)| \; .$$

This proves the lemma for $y \neq 0$. The case y = 0 is trivial. This completes the proof.

5. - Proof of theorem.

The proof of the theorem is now a straightforward adaptation of EzeIlo's ([3], Section 3), and we shall only sketch it. From Lemma 1 and Lemma 2 we deduce that

(5.1)
$$\int_{2}^{\infty} [y^{2}(t) + w^{2}(t) + w^{2}(t)] dt < \infty ;$$

(5.2)
$$x^2(t) + y^2(t) + z^2(t) + w^2(t) < k_0^2$$
, where $k_0 = k_0(x_0, y_0, z_0, w_0)$

is a constant dependent only on $a, b, c, d, x_0, z_0, w_0$, and on how $i(x) \operatorname{sgn} x \to +\infty$ as $|x| \to \infty$.

From (5.1) and (5.2) it is easily seen that

(5.3)
$$y^2(t) + z^2(t) + w^2(t) \to 0$$
 as $t \to \infty$.

Then, on integrating both sides of the equality $\dot{w} = -f(x, y, z, z)w - g(x, y, z)z - h(x, y) - i(x) + p(t, x, y, z, w)$ from t to t+1 and utilizing (5.1), (5.2) and (5.3), one obtains

$$|i(x(t))| \to 0$$
 as $t \to \infty$.

Since i(0) = 0, we conclude $x(t) \to 0$ as $t \to \infty$. The proof of the theorem is now complete.

REMARKS. - Observe that the boundedness result in (5.2) above is the generalization of ([5], Theorem 2).

REFERENCES

- [1] M. L. CARTWRIGHT, Quart. J. Mech. and Appl. Math., 9 (1956), pp. 195-196.
- [2] J. O. C. Ezerlo, Journal Math. Analysis and Appl., 5 (1962), pp. 136-146.
- [3] J. O. C. Ezeilo, Annali de Mat. Pura ed Appl. IV, 66 (1964), pp. 233-250.
- [4] M. HARROW, Proc. Camb. Phil. Soc., 63 (1967), pp. 147-154.
- [5] M. HARROW, SIAM J. Math. Anal., 1 (1970), pp. 189-194.