On the Stability of a Nonhomogeneous Differential Equation
of the Fourth Order.

E. N. Cavkwr {Cleveland, Ohio) (*)

Sammary, ~ In previous papers Ezrivo [3], Harrow [4, 5] had established stability results for
the equations (1.3), (1.4) and (1.5). In the present poper these results are extended to hold
for the equation (1.1).

1. - Introduction.
The equation studied here is of the form
(L1) @+ f(a, &, B, 5T + glo, &, 8)2 + o, &) - i(2) = p(t, @, 4, %, F)

where f, g, k, i and p are funetions which depend only on the displayed arguments,
Denote

dz dx ., dz ..
f== 3 Ezg—:w_'—_z, .d——t-3-=w=w;

then equation (1.1) is equivalent to the system

(1.2) &=y, ¥y =z, g =uw,
W= — w]’(w, Y, 2, w) —g(@, ¥, 2)2 — h(z, y) — i) +plt, 2, 9, 2, w).

In what follows, we assume the following derivatives exist:

., _ di(x) _ oh(z, ¥) _ Oh(z,y) __og(z, 9, 7)
o= 7 y km:z'z aw y h.,,:—"a‘y“——y gme7
go= og(%, ¥, #) f :af(xv Yy 2y ) f =8ﬂw, Y, %) W) 29@_’_?_7 2 w)
T8k e o ’ v oy ’ v ow g
and that

t'y By, Gy Goy 1, o and p

are continnous for all , ¥, 2, w and ¢.

(*) Entrata in Redazione il 16 novembre 1970.
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The main problem of interest here is as follows: what further conditions on p,
4, b, g and f guarantee that every solution of the system (1.2) tends to zero as ¢ tends
to infinity. This problem has been investigated by Ezrerno [2], [3] for the simple
variant of (1.1) given by

(1.3) 2O+ {(B)VE + aglt + g(@) + a@ = p(t, ®, &, %, &),

where a, and a, are constants. In more recent papers HArrow ([4], [5]) studied
the equations

(1.4) &9+ a,fF -+ ab + s + b(z) = p(1),

(1.5) a® + al + fo(#) + fo(£) + ful@) = p(t)

where @, a,, @; are constants. These researches established the required stability
result under the hypotheses that suitable generalizations of the well-known RouTH-
Hurwrrz condition are fulfilled.

The present paper is a direct re-examination of {2}, [3], [4], [5]. The main result,
a8 stated in Section 2, contains the earlier results as special cases.

2. —~ Statement of result.

In addition to the basic suppositions on the system (1.2), suppose
i) h{w, 0) =0 =1(0),
ii) i(x) sgnz> 0 (23£0), i(#)sgna —> + oo a8 |@|—> oo,
i'(w)<d for all x; d> 0, a constant,
i) flz, ¥, 2, wy>a for all =, ¥, 2, w;
glx, ¥, 2)>b  for all o, y, #;

Zb—(%l)>c for all # and y # 0,

where

iv) a, b ¢ are positive constants such that
(ab — h,)e— adf > (ab—c)c—a*d = A4,> 0

for all o, ¥, 2, w,
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for all # and y 0, where o, > 0 is a constant such that

2d4,

oty <<
Y acr

F(z)

v) - Hay 4, 2) <y

for all 2s=0, where

Fe) = [f(@, v, s, 0)ds,

o, 18 positive constant sueh that

ZAO .
o, ate’
vi) d,—i' (%) <eola*D,),
where D, = ab + be/d, and &> 0 is a constant such that
60< & = min [_1_ Ao a (240 %) , 4d.D, (_ZA.,d _ “1)}

a! 16a0D0; 4D, \aze ¢ ack

vii) The funetion f, f., fi, fzy 92y 9vs 9. and h, satisfy (for y 540, 2540)

>0 for all z, w,
I, < .‘%’E for all o, w,
1"3<SZ0 for all o, w,
i< Z—i) for all z, w,

where

F1:§f+52yfw+sz’

1 ] z
I, = ,yg.(2, y,2) — 3 [51f39v(w7 Yy, 8)ds + | sf (2, y, 8, O)ds] y
0

0
¥

Z 1 K
Iy= 62J\fm(w, Y.y 8, 0)ds —}—; [fhx(m, s)ds + 8,1} sg.(=, v, O)ds] ;
1] [t] Q0

L= taffto, o5, 00ds + 8o, 0+ 3 [ [ottes 5,05+ 0 [ot0, v, 9
1}

0 0

1 d
61=;+e, 62=~0+e;
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viii) For all z, 9, 2, w, 1,
D, @, 9, 2, W) <O:(8) + Ou(8) (UF + 2 + w0t -+ Su(y? + 2 + w)t

where 0 <o <1, and 6,20, and the continuous funetions §,{H)>0 (4 =1, 2)
satisfy

max ,(t) < co, f91(¢)< 0.
9

Then there exists & constant 6>0 such that if d,<d, then every solution
(w(t), y(t), 2(t), w(t)) of (1.2) satisfies

(2.1) 23() -+ y2(t) + 22(2) + wi(t) >0 as t—co.

REMAREKS. — Observe that the hypotheses ii), iii) and the first part of iv) are sui-
table generalisations of the well-known RovTH-HURWITZ criterion:

(2.2) a>0, b>0, ¢>0, d>0, ab—ec>0, (ab—c)c—a*d>0,

for the asymptotic stability (in the large) of the frivial solution of
2N e - b e - de=0.

When (1.1) is specialized to (1.3) the result above, the Lyapunov function V and
the method of proof are similar to those of [3]. But when (1.1) is specialized to (1.4)
or (1.5) the result above differs from those in [4] or [5] because the methods used to
verify that V is positive definite and V negative definite are different. Hypotheses
vii) are introduced because of the general nature of the non-linearities. They are
comparable to those in a third order system by SiMaxov as pointed out by CART-

WRIGHT [1].

3. — The funection V.

The LyapuNov function on which the verification of (2.1) rests is a direct exten-
sion of the funetion V in ([3], Seetion 3), and is hereby defined by

(3.1)  2V= Qaszi(s) ds + 254 sg (x, 8, 0)ds — 8,dy® + 2fh(m, s)ds+
Q0 0 g

- 264 8g (@, ¥, §) ds — 6,2 + 2fsf(m, ¥y, s, 0)ds + d,w* + 2yi(@) +
1]

0

-+ 26, 20(w) + 26, yff(ac, Y, 8, 0)ds + 26,2h(w, y) + 28, yw + 22w,
0
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where

1 a
(3.2) h=Fe, d=C+e, e>0

2 constant, We shall prove in two stages that V is indeed a Livapunov function:
Lemma 1 gives the required property of V; and Lemma 2 that of V.

Lemma 1. — Suppose that all the conditions of the theorem hold, then
V(0,0,0,0) = 0. Furthermore, there exists positive constants D, (i=1,2, 3, 4)
which depend only on a, b, ¢, d, ¢, a, &, and 4, such that, for all @, y, 2 and w

(3.3) V>lez'(s)ds 1 D,y* + D, + D,uw?
13

ProoF. — Since #(0)= 0= h(0, 0) =0, it is immediate that V{0, 0, 0, 0)=0.
It remains to verify (3.3). This is done in two stages: When z =0, and when
2% 0. In these calculations we need the following inequalities:

1
(3.4) 61~——f—>e, for all o, 9,2, w;
dy
(3.5) 0y — 5 2 for all  and y5£0;
Ao
(3.6) b— 6:h,— 82}>Ec--— Dye, for all v, 9,2z and w,
where
be
Dy= —
c = ab + F]

To verify these insert the values of 4, and 4, in (3.2) into (3.4}, (3.5) and (3.6) re-

spectively.
Then
1 1 11 s as
a-{-g.—.?_g»{—(&-—}—-)}s} by hypethesis iii);
d dy , 1 gy ...
E”T—__ETd(E—Z)}S’ by hypothesis ii);

4
b-—élh,,—ézf:b——;m—c—~a(k,,+ f);-é-e(hwf)

by hypothesis iv). Also by iv), h,< ab, f<be/d, and thus

A be 4
b— dyhy — Lo 90) e = Lo
4 62f> P (ab ’{“- d) £ Py 0
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where

Dozab—i—%g—.

The three inequalities are now established.
Next, (3.3) will be shown to hold when zs:0. In this case, recall that

(347) Fe) = [f(, 9,5, 0)ds
Now define »(y) by
h(z,
(3.8) y{y) = %@, ¥y#0,
- hv(mi 0) b y = O
Then
(3.9) 2V= F( ; [w + F(z) + by —Q} ( 3 Li(z) + yy(y) + S.2p(y)1® +

+ [61—2'%5] w? + 20, | sg(x, y, 8)ds — 8,27 — d5ya* +2fh:v, syds — yy(y) +

g

+262fsg(w,s, 0)ds — 8,dy* — 85—~ ( 2+26f s)ds—y((;)).

o
Now,
x

Vy=268,)i(s)ds — @)

y(¥)

[

:262fi(s)ds——(@+(l—-%) ()>2ﬂ ——iif—)]z‘(s)ds,

Sinee 1jo—1/y>0, by iii). Thus V,> ¢[i(s)ds, by hypothesis ii) and by (3.5),
since 4(0) = 0. ¢

V, = 252fsg(x, s,0)ds — 51dy2_ 5§

]

F(z)

y?

f[ézg(c&, 5,0)— 8;d— &}

(]

F (2)]
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But by hypothesis ii) the integrand

F(z) 5 F(2)

Bag(, 8, 0) — O:d — 03—

>0, [b = 0uy(y) —
So that, since

2

p) = by, Oy)  amd 1O

we have in using (3.5) and (3.6}, that

Ve [%]-g - D.,e] %yﬂ, by bypothesis vi).

Now, let

V,= 2jh(m, syds —yhlz, ¥) .
0

Since yh(w, y) = fh(m, s)ds + fsh,,(m, 8)ds,
0

._f {k(m’ @, s}] sds,

24,4 2dDoe
P

so that

V+m/[

But 24,d/ac? —o, > 0. Hence,

Aod
Vr+Vg>w[5§n—ﬁ]>o,

24,d
e<4 [ oy acl]/(dl)o) .

In much the same way as above one soon obtains that

sinee by hypothesis vi)

[261fsg(m, Yy 8)ds —0,2° — diyz ] [ fsf(o:, 7, 8, 0)ds ——zF(z)] >% [

a

(6,2)0<0,<1

SO+t - .

- ocl] sds by hypothesis iv).

24,

(i=1,2)

ocz] 22=>0,
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since
a [24, o
¢< D, [&% - “2] y by hyphothesis vi).

Finally,

e o g . 1 "]
Vi [51“17@] = [51 7@ 9, 65,0) m] v

since F(0) =0 implies
Flz) = zf(z, 4, 0z, 0) (09«1,
Thus,
V> ew?, by (3.4).
Hence
2V>afi(8)ds + [4“—4-* %EJ ¥+ % F—é’ - ac._,] 22 -F sw? .

ac? 2 a’e
0

Therefore, for the case 240 (3.3) holds.
The case z = 0 is trivial and the verification of Lemma 1 is complete.

4. — The property of dV/dt.

The required property of the derivative V is given in Lemma 2.

LEMMA 2. — Assume that all the conditions of the theorem hold. Then there exist
constants D, (=6, 7, 8, 9) which depend only on «, b, ¢, d, ¢, & and 4,, such that
if (w,y, 2, w) is any solution of (1.2}, then

V(s, 9, 2, w) <—[Dey? + D722 +Dyw?] +D9[]wl + 2]+ ]?/}][lp(t’ Ty Yy 2y w)ﬂ

S

41) V=

Proov. - Let (z, ¥, 2, w) by any solution of (1.2). Using the identity

av V oV vV oV .
- = é’"?/'f““z’{“‘ "am—“w‘*“—'[”‘f(a’; Y, 2, wyw — g(x, Y, 2) 2 — (@, y) — i(z) + p]
dt oz oy oz ow

in a straight-forward calculation, one obtains

(42)  — V=TVt Vet Vo
+ 8, [d — i'(w)]yz + Iyz — [61w + 2 4 duy][p(, 2, ys 2, W),y
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where V,, V, and V, are identified below.
V= —w[8,f — 1] — z2w[f(x, y, 2, w) — f(2, ¥, 2,0)] — Syw[f(2, y, 2, w) — [(2, ¥, 2, 0)]

= — w0 f 4 2fu(@, ¥, 2, Orw) + o¥fu(®, ¥, 2 fOyw) — 1] (0<8,<1,i=1,2),
by the Mean Value Theorem.

But

1
[&f~1}=f[a~7}>ep
Thus
. e, ¢f
V4>3.f+ 62.7/fw+ sz"x"r1+§f> 5,

where I, is defined in vii).

F(z)
P

Vy= 22 [g(w, Yy 2) — O1hy(2, y) — O, } — 0.2y [g(z, ¥, 2) — g(@, y, 0)] +-

-+ 612f3§y(;17a Y, 8)ds + zfsfy(xa Y, 8, 0)ds

R 0 o
Since

F
””éi):f(eaz) 0<63<19
necessarily

Vi y|
[9('737 Yy 2) — 1hy(@, y) — b, ".’z(z*’):[ = [g—~ 6,h, — 0, f(, y, 205, O)]>E§ — Dye .

By the Mean Value Theorem,

.

—dy2ylg(®, ¥, 2) — g(®, y, 0)] = — S, yg.(=, y, 02)2 (0<b<1).

Thus
Ag . v
Viz —o— Dozl ##+Iz*, by hypothesis vii) .

h(z, y)

- % v s o
Ve=1y?|d, —i(z) — (aszx('ry Y, 8, 0)ds -+ ;‘J‘hz(wa 8)ds -+ % 3¢.(w, s, O)ds)]
) o o

o

=y s E%L@ — () — I"a]

| h{z, y)
2
>y -e 2y

+3+@-iw)-1),

by hypotheses iii) and viii).



10 E. N. CHURWU: On the stability of a nonhomogenecous differential equation eic,

Thus
o Mz y) | e .,
Ve>y [8W+—2—+d—@<w)]

by hypothesis vii).

Now
2,2
Ve+ 04 1d — i/ (x)]yz + Ilyz}/ewyz—k & [@/ + L EELC
2y 4 & &
2 2 .2rg
+ [d — 1 (z)] [y_;_ﬁf} — M
2 4
Therefore,
y h(m) ¥) 2 a3 Ao . = I’f 2(d_i’(‘v))
Ve ey VP o e e T |
&
- E;fwa + DD[le + ’z’ + Iy]] 'p(ta Z, Y, 2, w)[
where D, = Max [1, 6, J,].
By hypothesis vii)
. 4, I 2 (d“ Z,(m)) ] 0
since
2 (d‘" e,’(x}) Ao
o: 1 Dy and T6acD, €.
Hence,

M e éﬁf__ lﬂ + Dﬁﬂw} + ] + kyu lp(t, z, y, 2, w)| .

V<e Y 8ac 2

This proves the lemma for y #%0. The case y =0 is trivial. This completes the
proof.

5. — Proof of theorem,

The proof of the theorem is now a straightforward adaptation of EzEIno’s
([3], Section 3), and we shall only sketch it. From Lemma 1 and Lemma 2 we deduce
that

(3.1) [ty2t) + wt) +w2(e) dt < oo 5
0

(5.2) ZE) + y2(2) + 22(t) + w{) < k2, where Ky = Kg(®a, Yo, %oy Wo)
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is @ constant dependent only on @, b, ¢, d, %, %, w,, and on how (&) sgnaz — +oo
as |@]|— co.
From (5.1) and (5.2) it is easily seen that

(5.3) Y2AE) L 22(t) + wi(t) >0  as t—oo.

Then, on integrating both sides of the equality w=—f(w, y,2 2)w—g(z y, 2)s —
— k@, y) —i(z) -+ p(, 2, ¥, 2 w) from ¢ to -1 and utilizing (5.1), (5.2) and (5.3),
one obtains

li{w(2)) | —>0 as {—»co.

Bince ¢(0) =0, we conclude x{f) >0 as f— co. The proof of the theorem is now
complete.

REMARES. —~ Observe that the boundedness result in (5.2) above is the generali-
zation of ([5], Theorem 2).
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