Error Estimates for a Galerkin Approximation
of a Parabolic Control Problem (*) (*¥).

RaeNar WINTHER (Chicago, Ill., U.S.A.)

Summary. — Numerical approzimation of a parabolic control problem with a Newmann boundary
condition condrol is considered. The observaiion is the final state. The numerical approwi-
mation is based on backward discretization with respect to time and a Galerkin method in the
space variables. Optimal (emcept for a logarithmic term) L? error estimates are derived for
the optimal siate. Certain error estimates for the optimal control are also given.

1. — Introduction.

Let 2 be a bounded domain in R? where the boundary of Q, 24, is a (d— 1)
dimensional manifold of class 0°. We will denote the closure of 2 by 2, and for
3 fixed T, >0 let Q@ = (0, T,) x Q2 and X = (0, T,) X 8L2.

On the domain £, let L be the second order differential operator

a 8 ou

Ly = _i_glé'%;(%(@} -%:) +el@)u .

We will assume that ¢> 0 on 2 and that the matrix (a, ;(#))4.q 1S symmetric and

uniformly positive definite on £2. For convenience we also assume ¢, @ ;€ (D).
Consider now the parabolic inifial boundary value problem

(1.1) %u—l—LuxO on @,
(1.2) —2—3— = 2

. e =9 on 2,
(1.3) #(0,-) = o on 2.

4
Here 9/0v = > a,,;n,(0/0w;) where n, is the i-th component of the outward unit

=1
normal on 02. If the data v and g are given such that v € L2(Q) and g € L*(X), then
(1.1)-(1.3) has a unique weak solution u(t, ). If g = 0, we let E{?) denote the solu-
tion operator of (1.1)-(1.3), so that in this case w(t, -) = E()v.

(*) Entrata in Redazione il 4 maggio 1977.

(**) This work was supported by the Norwsgian Research Council for Secience and the
Humanities.
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Agsume now 9,, 2; € L*(£2) to be given, and for every ge L*(X) let, indicating
now the dependence on g, %(g, 1, ) = u{g, t}{(z) be the corresponding solution of
{(1.1)-(1.3) with initial data » = v,., In this paper we shall consider numerical approx-
imation of the following optimal control problem:

(1.4) minimize {|u(g, To) — 2;) 552y + ¢[9] 5z}

over ge L¥ZX). Here >0 is a given constant. This problem arises for example
as o mathematical model of certain air conditioning problems.

The problem (1.4) is analysed by Lions in [8]. It is proved that (1.4) has a unique
solution §e I*(X), and that this solution can be characterized by a system of two
parabolic equations. We analyse this system in Section 4 by introducing another
system where the coupling between the two unknown functions in simpler. For an
arbitrary z e L*({2) we consider the system

oW .
m-é?—}—l}w—() on ¢,

9

5;}10:0 on 2,

W(TLyy ) = 2 on £2,

od .

‘“a‘t‘+Lu= on ¢,

-a-'&:orlﬁ; on X

o ’

0,") =0 on O,

and we let R(T,)2 = u(T,). We will show that R(T,) is a bounded, positive semi-
definite operator on L2(2). The characterization of the optimal control 7 given in [8],
can now be expressed by the fact that

(1.5) g(t) = — o B(T,— t)2aq

where ze L2(£2) is the unique solution of the equation

(1.6) (I + R(T,)) # = B(Ty) v~ 2 .
In Section 5 we study a discrete analog of (1.4). Here the control functions will
N—1
be in X L2(982), where N > 1 is an integer, and the parabolic equation (1.1) - (1.3)
n=0

is replaced by a discrete time Galerkin approximation. This approximation is based
on backward diseretization with respect to time, and for every time level nk, # =1,
2y ..., N (k = T,/N), the solution is required to be in a finite dimensional space 8,
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{(h small and positive). The class of spaces that is considered will for example include
spaces of piecewise linear functions on L. We will show that the optimal control
of the discrete problem can be determined by analogs of (1.5) and (1.6), where the
operators H(t) and R(T,) are replaced by discrete analogs By, and RZ) respectively.
Brror estimates are then derived by comparing Fr, and R{Y) with E(t) and R(T,),
respectively. For example, if u(t) == u(g,¢) and {u,} is the corresponding discrete
solution obtained from the -discrete optimal contrel {7,}, then we will show that
there is a constant ¢ such that

[9(t) — W]l rooy <ot (111 %)2 (& + ) (Joo]z22y + [2a]me)

for 0 <t = nk<T,. Here H(£) denotes the Sobolev space of order one of functions
on 2.

Also by using max-norm estimates for parabolic equations, we will obtain an
estimate of the form

17— Gnlzmiomy= (52 (B + 5 (Il + Loelrcn)

for 0<t=nk<T)— ¢ and any ¢ > 0.

Section 2 will contain some necessary preliminaries, and precise assumptions on
the subspaces 8, will be made.

The necessary results for the discrete fime Galerkin method will be deseribed
in Section 3. Particularly we will state a eonvergence estimate for nonhomoegneous
equations of the type (1.1)-(1.3).

Numerical algorithms for the discrete control problem will be studied in a forth-
coming paper. These algorithms will be based on solving the discrete analog of (1.6)
by iterative methods.

We mention that a different numerical method for the problem (1.4}, using nume-
rical approximations of the Riccati equations (cf. [8]), is studied by NepeLEC [9].

Throughout this paper, ¢ will denote a generic constant, not necessarily the same
at different occurrences.

2. — Notation and preliminaries,

Function spaces.

For arbitrary Banach spaces X and Y we will denote the norm of X by | |5,
and £(X, Y) will denote the space of bounded linear operators mapping X into Y.

If p>0, let H2(Q2) and H?(0£2) denote the Sobolev spaces of order p of real valued
functions on £ and 222, respectively, For the definitions and characterizations of
these spaces, see e.g. Lions and MAGENES [7].
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If p < 0, the conventions of SCHECHTER [10] are adopted, H?(Q) and H?(38)
are defined to be the dual of H-2(2) and H—»(082), respectively, with respect to the
inner products of L2(2) and L*}(20), respectively.

On the spaces L*(Q2) and L2(20), respectively, we shall use the notation

(@, 9) = fwdm and  <p,p> = fwda
Q2 R

for the inner products and the associated norms will be denoted by | -] and |+|. For
convenience we also let |-, = | lgng and ||, = |- |gnaq) for any real p.

We recall that for p > %, the restriction to 042 is a continuous map from Hz(Q)
into H*"}(8Q), i.e. there is a constant ¢ such that

(2~1) l‘plmw%<0”¢nw '

For details we again refer to [7]. In Bramsrr and THOMEER [6] it was also proved
that there is a constant ¢ such that, for any > 0 and ¢ € HY({2),

(2.2) lp| <cfelp]+ e o]} .

If 4 e L(HYRQ), H?(2)), we will use |4],, to denote its norm, i.e.

l4¢],
Alpq = sup 12202
141, pere) 1o
P£0
Define now
W00, 2 = {ff e 220, 2o, B, 5 € 240, T2y B@)],

where d/dt is taken in the sense of distributions on (0, T,) with values in H¥{£). W(0, T,)
is a Hilbert space in the norm

af | ¥
1l e f2, 1 T
1 w0z (Hf iz @) + U at L=(0.T0.H"(9)))

and was used in [7] as solution space for a weak formulation of the problem (1.1)-(1.3).
It wad proved that there is a constant ¢, such that, for any f e W(0, T,) and ¢ €0, T,],

(2.3) 1@ <elflweo.r, -
For p, ¢>0, let also

HP(Q) = L*(0, T, H2(2)) N H(0, Ty, L) .
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These spaces are described in [7], and their norms are defined by

I ﬂm'ﬂ(@z) = (ﬂf H)232(0.T,,.HP(!2)) + 1/ H%{q(o.n.mm)))%-

The spaces H™*(2'), with associated norms [ - |gs.ez), are defined similarly by replac-
ing 2 by 22 above.

We recall that if p > } and ¢ == p — 1, then there is a constant ¢ such that for
any fe H"2(Q)

(2.4) I HH‘M!’Z(Z) <elf HHP-P/"(Q) s

and if p > 1, then for any fe H***(@Q), ge H™*X) and te[0, T,],

(2.5) 17®) o1 < el | gore
and 7
(2.6) 190)],—1 <c¢|g]gorrz -

The associated elliptic boundary value problems.

Define the bilinear form B: H{Q)xHY{Q) - R by

g op Oy
Zlai‘j(w) o, Eﬂ; + c(w)cpw} dz .

kB

B, y) = {
2

Note that it follows from the properties of the operator L that there exist constants
¢, ¢, > 0 such that

(2.7 [Blo, pY <edolilwl:
and
(2.8) Blp, p)>6leli,

for all ¢, v e HY(L).

We will now define solution operators for weak formulations of two elliptic
boundary value problems.

If fe HYQ), let Tfe HY(Q2) denote the unique solution of the problem

B(Tf, ‘P)Z(L ‘P)’ for ‘PEHI(Q)-
T is a linear operator on H-Y(£2) and, since
(Tf, ¢) = B(Tf, Tp) = (f, Tp)

for any f, ¢ € L3(2), T is self adjoint on L*(£2). From elliptie regularity it also fol-

12 —~ dnnali di Matematica
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lows that for any p>—1

T e L(H?(Q), H*+(Q))
and 7 has a unique linear extension to H»(Q) for any p < — 1 (eall it T also) such that
(2.9) T e L{(H?(Q), H**2(Q)) for all peR.
For details we refer to [10]. Define similarly I': H-¥2Q) — HY(2) by
(2.10) B(I'g,¢) =<g,¢>, for peHYQ).
As above it follows from [10] that I'.can be uniquely extended such that
(2.11) Ie L(H?(22), H**}(Q)) for all peR.
In order to introduce certain function spaces we now consider the eigenvalue problem
Ly =lp in Q,

5395:—-0 on 90.
oy

It is known that this problem has a sequence {1};2, of positive eigenvalues, which
we assume are in nondecreasing order and a corresponding sequence of eigenfunc-
tions {p;};2,, forming a complete orthonormal set in L*(2). For details we refer
to [3]. Note that if we let u, = 7%, then

T(}7j=Mj(Pj 7::1, 2, vee s

For p>0 we now define

Q) = {w & L)yl = ( > P E) < °°} '

i=1
Similar spaces were uged in the case of Dirichlet boundary conditions for example

by Bramble and Thomée [5]. H?(2) is a Hilbert space with norm |[f-]|,, and by a
proof analogous to the proof of Lemma 2.2 in [5], we can show that for any non-

negative integer p

(2.12) Hr(Q) = {y) GHP(Q)*%LM/) =0 on 08, for j<}7;—1}’
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and there is a constant ¢ such that

(2.13) Myl <llvll<elvl,

for all y e H»(Q).
For p > 0, H»() is defined to be the dual of H»(2) with respect to the inner
product of L2(£2), with norm defined by

flyll-s = (22 (s %)22?)*_

We note that by (2.12), (2.13) and interpolation, H?(Q) c H(Q) for p>0 and the
injection of H?(Q) into H*() is continuous. Also by (2.12), HY(2) = HY). There-
fore, by duality and interpolation, H?(Q) = H?(Q) and |||, and || - ||, are equivalent
for any p such that — 1<p<1.

We will use [|-[|,, to denote the norm in £(H«(Q), H(2)).
Parabolic intial boundary value problems.

We now consider the following weak formulation of the problem (1.1)-(1.3).

d
(?z%’ 99) -+ B(u, ¢) = {g, 9>, for pec HY(Q),

#(0,*) == v.

(2.14)

It was proved in [7] that if v € L2(£2) and g € L*(X), then (2.14) has a unique solution »
in W{(0, T,), and there is a constant ¢, independent of » and g, such that

(2.15) lulmo.oy<e(lo] 4 1915 -

If g = 0, then the exact solution of (2.14) may be expressed by
(2.16) ut, @) = 3 (v, 9;) ¢ M opy(@) .

F=1

If Z(t) denotes the solution operator of this problem, so that u(i) = E()v for >0,
then from (2.16) it follows that

(2.17) 26, ,<1 >0, peR,
and if £ > 0 then
(2.18) NBO N, <at™?~  for p>q,

where ¢ is a constant depending on p and g.
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From [7] we also have the following regularity result for the problem (2.14).

THEOREM 2.1. - Let p>2 by an integer and let ¢ = p — §. Assume further that
v e HYQ) and ge Hev*(X) such that

o7 ) 0 . p._..2
R N g e
Btig(o’ ) == (— 1) BvL »  on 882 for 0<j< g

Then there is a constant ¢, independent of v and g, such that

9] goorggy <e(l],—1 + Hg{iya.alz(z)) .

Finite dimensional subspaces.

A class of finite dimensional function spaces will now be introduced.

We will consider a family {8,},.,« of finite dimensional subspaces of HYQ)
with the following approximation property:

For any given p, 1<p<2, there is a constant ¢ such that

(2.19) igsfa{llw — 2l + ke — ]y <er* o],

for all p € H*(2).

This condition is satisfied for a class of spaces consisting of piecewise linear, con-
tinuous functions on £.

Let P, denote the orthogonal L?-projection onto §,, and P, the orthogonal « H? »-
projection onto 8, with respect to the inner product B(-, -). We recall the well known
fact that there is a constant ¢ such that

(2.20) [T~ P, <ech? 0<p<l, 1<g<2.

For a proof of this, see e.g. [1]. Note that by interpolation (2.20) implies that there
is a constant ¢ such that

I — Pyllg <cht 0<q<2.
Since I — P, is selfadjoint on L2({2), it follows by duality that
(2.21) II— Py|po<chrta  0<p, ¢<2.

By using the so called duality trick we also obtfain the following result:

LEMMA 2.1. — There is a constant ¢ such that for any fe HY(£2), 1<¢<2,

(I — Pi)f|_y <chef|..
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PrOOF. — For any ge C°(52) we have
I — Pyf,g> = B(I— P)f, I'9) = B(I— P)f,(I—Py)Iy) .
Hence by (2.7), (2.11) and (2.20)
KU — P f, g| <el(I — PO — P) I'glli <ch|flq| Igla<ohe|f|lgls

which implies the desired result. [/

Define now 71,: H-3(Q) - HY2) by T,= P,T. Note that for any fe H-1(£),
T,f is the unique solution in 8, of the problem

B(T.f,2)=(fx), for xe8,.

Since

(T:f, p) = B(T,f, Ty) = B(T,f, Twp) = (f, Th‘P)

for all f, @ € L*(£2), it also follows that T, is selfadjoint on L*(Q). If welet M = M,
denote the dimension of §,, then there is a finite set {y;,};~, of positive eigenvalues
of T, and a corresponding set of eigenfunctions {g;,};Z,, forming an L*-orthonormal
basis for §,. Note also that if 1, = u;;}, then

B(‘P:‘,h; z) = }Lj,h((pi,hy 2, for ye&,.

Similar to the definition of ||:||,, we now define the following norms on §,:
For any p such that — 1<p<1l and ¢ € 8,, define

(2.22) Il = ( 3w 22)'

=1
We observe that for such ¢,

1= lol,

e
and, since [¢|¥ = (B(g, ¢))}, it follows from (2.7) and (2.8) that
el <lel? <dlel

By interpolation it therefore follows that there is a constant ¢ such that, forge 8,
and 0<p<1,

(2.23) el <lplP <elpl, -
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3. — A discrete time Galerkin method for paraholic equations.

In this section we will consider a discrete analog of the problem (2.14). First we
will consider discretization only in the time direction.

The semidiscrete problem.

Let N > 1 be an integer and let ¥ = T,/N. Define the bilinear form A,: HY{&)
X HY{) -~ R by

A, v) = (p, v) + kB(g, v) .

By backward discretization with respect to time we are léad to consider the follow-
ing semidiserete analog of (2.14):

Ayt @) = (Ua, @) + kg(nk), ¢y, dor ¢ € HY(Q),

’U/o:'v.

3.1)

If we assume g(nk)e H*0RQ), n=10,1,..., N—1, then it follows from the pro-
perties of A, that (3.1) has a unique solution {#,}Y_,c HY(Q).
For any fe H-Y(Q2) define E,fe HY{(2) by

3.2) AdEBrf,9) = (f,9), for pe HY(Q).

Then Eyp; = (1 4+ kA;)'g, and hence
(3.3) I Bxlls,<1 for all peR.

If g =0, then the solution of (3.1) may be represented by %, = Eiv. By using
the Fourier expansion of the operator #,, the following result is easily obfained

(see e.g. [6]):

LemMA 3.1, - Let p and ¢ be real numbers such that ¢ <p. Then there is a constant ¢
such that

(3.4) WL — Brllspra<ck,

and if }(p — ¢)k<t = nk<T,, then E}e L(HYQ), H*(Q)) and

(3.5) By < et @2,

We note that (3.5) shows that E? has a smoothing property, similar to (2.18). We
now consider the convergence properties of the operators E.

The following lemma may be proved by comparing the Fourier expansions of
the operators H(t) and E" (for a proof, see [12]).
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LeMMA 3.2. —~ Let p and ¢ be real numbers such that p<¢<p + 2. Then there is
a constant ¢ such that for 0 <t = nk<T,

IB@) — Byl <et™* =21
For later use we also introduce the operator I, on H?(Q) defined by
(3.6) L= (1 4+ ki)e g, =12 ...
Note that I.E, = B,I, = (k). We also have:
Lemma 3.3. — There is & constant ¢ such that
WL — Lillly,pa < ok’
for all pe R and 0<g<4.

Proor. — By interpolation it is enough to prove the desired result for ¢ == 0 and
¢ = 4. Bince there is a constant ¢ such that

(14 7)e 7| <e
for all >0, it follows that

W ellsp<e-

The result for ¢ = 0 now follows from the triangle inequality. Also note that there
is a constant ¢ such that

1— (14 7)e "|<er?

for all v>0. Therefore it follows from the Fourier expansions of the operators I
and I, that

T — Ll oo < ok?
and hence the lemma is proved. //

The discrete problem.
Consider the following discrete analog of (2.14). Let {w,}Y ., u,€ 8, for n>1,
be defined by

50 { AUy, g) = (Uay g) + Kgnk), x>, for y€ 8,

Uy = U,

where we assume g(nk) € H™#(9Q) for n = 0,1,..., N — 1.
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Define also By ,: H-YQ) - 8, by
(3.8) AdBenfy ) =(fx), for y€8,.

If g = 0, then the solution of (3.7) may be represented by u, = Ej,v for n =0,
1,..., N. Note also that from (3.8)

”Ek,hﬂ{z<Ak(Ek,hﬁ Ek,nf) = (fa Ek,hf) ’
and hence

{3.9) [ B ploo<1.

In the case of Dirichlet boundary conditions, convergence properties of the operators
By, were obtained by BAKER, BRAMBLE and THOMEE [2]. Their analyses makes
an essential use of the results derived in [4] for semidiscrete Galerkin approximations.
As observed in [4], these results also hold in the case of Neumann boundary conditions.
In the same way as in [2] we therefore obtain:

LEmMA 3.4. — For any given p, 0 <p <2, there is a constant ¢ such that for 0 < ¢
= nk<T,

NE(®) — Epylly, <t 22k -+ 3%

Note that for any fe L¥Q), E;.f = B »Pof, and
(3.10) Eipgip= 1 + ki p) @i

The following result will be useful later:

LeEMMA 3.5. — Let — 1<g<p<1. Then there is a constant ¢ such that, for any
p €8, and n>0,

(3.11) VI — Bp) P <ck((n 4+ 1)R) =R,
and if n>1, then

(3.12) LB @ |® < o(nk) @92 g [P,

Proov. ~ First observe that for any 7> 0, the function 6(m) = (1 + =/m)" (6(0) = 1)
is a nondecreasing function for m >0. Hence, for a given r>0, there is a constant ¢
such that

TT

3. e
(8.13) (1+'c/m)m<

¢ for t=0, m>r.



RAGNAR WINTHER: Error estimates for a Galerkin approwimation, ete. 183

If we let r = (p — ¢)/2, m = »n and v = nkl;,, then we obtain for n>1
(A 4 kA, 22, <(nk)" P92, j=1,2,.., M

and by (3.10) this implies (3.12).
Note also that

1
B — Eyp)@sn = (1 + kdjp)™ (1 - m) Pin

= (1 + Ed; 1) " V2w @i,
and as above it follows from (3.13) that for >0
(A A Ty Hm DA< P22 (0 + 1) j=1,2,.., M.
This implies (3.11). //
The following representations will also be used.

LeMMA 3.6. — Let {&,} and {u,} be defined by (3.1) and (3.7), respectively, where
we assume that ve L(Q) and g(nk) e H-(3Q) for n =0,1,..., N—1. For n>0
define f§, = w,— P, %, and &, = u,— P,%,. Then

(3.14) fo=72 By I — By Py — P, n=1,2,..., N,

i=1

and if v e HY(£2), then

A=l
(318) &, = Ep,(I—P)v -+ 3B —P)#,—%) n=0,1,2,..,N.

]
=0

Proor. — For any y €8, we have

A(PylUnirs 1) = Ay(Tnisy 3) + EB(Po— I)Uns, %)
= (P, )+ EKglnky, x> + Ak((Po““ Pyt X) -+ ((Pl_ Py)U g, Z) .

Hence by (3.7) we obtain
Butr=Eepfn+ (I — B p)(Pr— Po)lnis,
and, since F, ,f, = 0, this implies (3.14). Similarly we have
ntr = Brpbo + Hup(l — Py)(@nta — Wa)

and (3.15) follows. //
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In the following lemma we measure the error (E(f)— Hp,) v (in some sense) in
negative norms.

LEMMA 3.7. — There is a constant ¢ such that, for any 0 <t = sk <7, and ve HY(Q),

(3.16) 1(E(t) — PoByg) ] <e(k + B%)]o],
and
(3.17) [(PoBg — Bpp) w5 <chelo]s .

Proor. — Consider the identity
(B(t) — PyE;)v = (B(@t) — Bp)v + (I — P) Eyv.
Since || -], and [| - [l, are equivalent for |p| <1, we obtain from Lemma 3.2 that
{B(t) — BF) v|-1<ckljvll,<ck|v], .
Also from (2.21) and (3.3) we have
(T — Po) By o] <ot | Byo], <obe o,

and (3.16) is proved.
For n>1 we have by (3.14) and Lemma 3.5

(o BL — Br)ol®< 3 1B (L — By)(Py— Py) Blol®)

i=1

<ok 3 ((n—i + 18P~ Bo) Biv]
and hence by (2.13), (2.20), (2.21) and (3.5)

(P, By — Epy)o) % <”"2"le ((n—j+ 1)k~ HBLo],

<o (k3 (0 — i + DB HGE) o], < o8 o],
i=1
which is (3.17). [/

Finally we give a generalization of Lemma 3.4 to nonhomogeneous equations of
the type (1.1)-(1.3). This result is proved in [12], and is stated here with no proof.

THEOREM 3.1. — Assume that g e H#(X) and v e H?(2), 0 <p<1, and let « and
{u,} be defined by (2.14) and (3.7), respectively. Then there is a constant ¢, inde-
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pendent of ¢ and g, such that

Jut) — o] <ot (1n 2) &+ Wil + gl

for 0 <t =mnk<T,.

4. — The continuous problem.

We now return to the optimal control problem (1.4). In this section we shall
essentially reduce the study of this problem to the study of a family of related self-
adjoint positive semidefinite operators E(f). First we will give a precise formulation
of the problem (1.4).

Assume v,, 2, € L2(2) and o > 0 to be given, and for every g & L*(X) let u(g, t, #) =
= u(g, t)(z) be the unique solution of the problem

d
(Zz'?’ ‘P) + B(u, ) = {g, 9>, for g HYQ),
u{g, 0) == v,.

Define now &: L*(2) >R by

D(g) = |ulg, Ty) — 2,|* + “H!Jﬁi?(“:) .

Note that @(g) is well defined by (2.3) and (2.15).
The problem (1.4) can now be precisely stated as follows:

4.1) Find ge L*2) such that &(F) = inf D(g).

geL¥(X)

Note that if §e L*(2') is any solution of (4.1), then @(F)< P(0). Also by (2.17) we
obtain

D0) = [B(Ty)vo— 2a|? < (o]l + 2a])?,

and hence we have

(4.2) lu(g, To) — 24l < [wo] -+ |24l
and
(4.3) oGl sz < [ve] 4 l2al -

The inequalities (4.2) and (4.3) express the stability of the problem (4.1).
In order to see that the optimal control exists and is unique, note that by (2.3)
and (2.15), for any te[0, T,] there is an operator A(t) € £(L*(X), L*(£2)) such that

u(g, 1) = B(t)v, + A(t)g .
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Therefore @(g) can be written in the form
D(g) = [ (B(To)vo— 2a) + ATo) g|* + a]lg]7xx)
= |A(To)gli* + [ EB(To)vo— Za)® + 2(E(To)”o“ Zay A(To)g) + “Hg”iz(Z) .

Hence the problem (4.1) is equivalent to minimizing the quadratic functional

| A(To) gl® + ]glzecz) + 2(B(To)vo— 22, A(To)g)

over I2(X). Since « > 0, it follows from a standard theorem about minimizing qua-
dratic functionals over a Hilbert space (see e.g. [8]) that the problem (4.1) has a
unique solution §e I*(2), and g is characterized by

(4.4) (@(@, To) — 22, ATo)g) + o(F; Ppoxy =0,

for all g e L*(X). Here (-, *)p s denotes the inner product in L*(2).
In order to obtain a more useful characterization of the optimal control, define
we W(0, T,) by

dw
—(ﬁ, <p) + B(w,¢) =0, for g HY(Q),
w(To) = ulg, To) — 24-
Since B(-, ') is symmetric, we then have, for any g € L*(2) and almost all t € (0, T),

{d daA
(G 49) = B, 49 = Bag, ) = (L) + <o,

or

d
;ﬁ (w, Ag) = {w, g> .

Hence, since A(0) = 0, we obtain by integration that

T,
(4@, To) — 22y A(To)g) = f 2w, Ag)dt = (v, o))

0

for all g € L*(X), or by using (4.4)
g=—oltwy.

The argument above sketches a proof of the following characterization of the optimal
control given in [8].



RAGNAR WINTHER: Error estimaies for a Galerkin approximation, ete. 189

LEMMA 4.1. — Let g € L*(2) and let 4 = u(g, t)(x). Then ¢ is an optimal solution
of (4.1) if and enly if there is a w e W(0, T,) such that

a
(‘d‘?’q’) + B(u, @) + o Xw, > =0, for pe HY(Q),

" "(%2 99) + Blw, g) =0, for g HY(2),

w(0) = vy, w(Ly) = u(TLy) — 24,

where g = — a"'w|5.

Note that since the problem (4.1) has a unique optimal control, Lemma 4.1 im-
plies that the system (4.5) has a unigue solution %, we W(0, T,). The numerical
algorithm for the problem (4.1) that will be considered in Section 5, will essentially
be an approximation of the system (4.5).

In order to study the system (4.5), we first study a problem where the coupling
between the two unknown functions is simpler than in (4.5). For any given z € L*}({2)
consider the system

((fl_?’ 90) + B(d, ¢) = o ib, @y,  for g e HY(),
(4.6) MW”

,(p) + B, ¢) =0, for g e HY),
HO) =0, W(Ty) —z.

This system has a unique solution 4, & e W{(0, 7,). For any te [0, T,] we now de-
fine an operator R(f): L2(Q2) — I*) by

B(t)z = a(To) — B() 4Ty — ),
where 4 is defined by (4.6). We note that R(0) = 0 and R(7T,)z = #(T,). The ope-
rators R(f) will be important in the study of the system (4.5). Certain properties

of these operators will now be derived.

LEMMA 4.2. — For any ¢ [0, T,], we have that R(f) € £(L*(Q), HY(£2)), and there
i8 a constant ¢ such that

[B()[10<e for 0<t<T.
Proor. — Consider first the mapping
(4.7} 2=, )= B(Ty—t)z.

We will prove that this mapping is continuouns from L*(Q) into H'*(Q). By Theo-
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rem 2.1 this mapping is continuous from H*(L) into H>'(Q) and if z € H-Y(2) = H-Y(Q)
then

fesl

fﬂw tye)|2de ——fz 2, @) 02T df = 3 ¥ (2, @) A7 (1 — e~ 2AT) < B[22, < ef|2] s -

i=m1

Hence the mapping defined by (4.7) is also eontinuous from H-Y2) into L2(Q) =
= H*%Q), and by interpolation we therefore obtain the desired result concerning
the mapping (4.7).

Now let z € L2(2) and let 4, @ be the corresponding solution of (4.6). By the argu-
ment above it follows that @ € H*(Q), and that

(@ lz3ay <ol -

If we now let g = o]y, then by (2.4)

l9lut2cs) <clbmae <elel
and hence by Theorem 2.1, 4 € H*(Q) and

18]z <elglmtin <cle] -
From (2.5) we now obtain

4@ < ofd|gg<cle] for 0<i<T,
and by (2.13) and (2.17) we therefore have
[R (t)e] s < [@(To) |1 4 | BE) 4 To— D)o < [ATLo} 2 + e|éTo— t)[1<ele]

and hence the Lemma is proved. //

Note that by Rellich’s Lemma (see e.g. [7]), the result above implies that E(t)

is a compact operator on L*({2).

If ¢ > 0, then by arguments similar to those above, it is also possible to prove
that R(t) e L{(H»(Q), H+4(Q)) for any p>0.

We shall now give another, slightly different, characterization of the operators E(?).
For a given ze L¥Q) and te[0, T,] let 4, @< W(0,%) be defined by

d
(G0) + B w) =@y, tor pemi@),

48 a N
(4-8) m(—di:,gv)-{«B(w,gv) —~0, for geHYQ),

G0) =0, B(t) =z.
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Note that if 4, % is the corresponding solution of (4.6), then for 0 <s<?
B(s) = B(To—t + 5),
and therefore we have
#(8) — W Tyt -+ 38) = E(8)v,
where » = — 4{T, — ). Hence it follows that
W(8) = YTy — 1t -+ 8) — H(s) 4T, — 1)
for 0<s<?. By the definition of the operator R(¢) we therefore have
A(t) == 4Ty) — BE) Ty — 1) = R(t)z.

We now observe that if «, w is the solution of the system (4.3) then, if «(¢) is written
as a sum of it’s homogeneous and nonhomogeneous part, we have for any ¢ [0, T,]

u(t) = H(t)v,— (1),

where @, ¥ € W(0, 1) is the solution of (4.8) with 2 = w(t). Hence we have for any
te[0, T,)

(4.9) w(t) = BE(ty,— Rt)w(t) .

By using the characterization of the operators R(¢) that is obtained from (4.8), we
now prove the following:

Lemwma 4.3. — Eft) is selfadjoint and positive semidefinite on L*(Q) for any ¢ € [0, T,].
Proor. — For a given t €[0, T,] and z, 2, € L*(£2), let &, & and #,, @,, respectively,
be the corresponding solutions of (4.8). Then for almost all s (0, #)
di o N L
(ES—’ @) -+ B(#, By) = o (W, Byy = {~— ’w) + B(#ty, @),
or, since also B(#, W) = (&, (d/ds)®,) and B(#,, ®) = (i,, (d/ds)®),

ad . . a4 .
ds (U, Wy) = ds (to, @) .

~

Hence, since #(0) = #,(0) = 0, we obtain
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or
(B2, %) = (B(t)20, ) -

Therefore E(t) is selfadjoint. We also have for almost all s e (0, ¢)
o d . R d . .
oD [? = (;1; i, 'w) + B, ®) == 7 (i, @)

or by integration
4

(R(t)z, ) = zx'lf[e?;}?ds>0 .

4]

Note that, since R(t) is selfadjoint on L3(Q), it follows from Lemma 4.2 that R(¢)
can be extended to H-1(£) such that

(4.10) 1B o= |B(®)]10<e for 0<i<T,.

Also since R(T,) is positive semidefinite on L¥(Q), (I + R(T,))~* € £(1L*(2), L*(2)),
and since R(T,) also is compact on L2({2)

(4.11) I+ R(To) oo =1.

If now u, w is the solution of (4.5) then w(T,) = w{T,) - 2;, and hence (4.9) implies
that
w(Lo) + 20 = B(Lo)ve— B(To)w(Ty),

or
(4.12) w(To) = (I + R(Lo))"(B(To) vo~ 2a) -

The equations (4.9) and (4.12) have essentially reduced the study of the solution
w(t) and the optimal control g(f) = — ot E(T, — t)w(T,)|s of the problem (4.1) to
the study of the operators R(t). In the following section we will consider a discrete
analog of (4.1}, and we will derive formulas similar to (4.9) and (4.12) for this problem.
Error estimates will then be obtained by comparing these formulas with (4.9) and
(4.12).

5. — The discrete problem.

In this section we will consider a class of discrete analogs of the control pro-
blem (4.1). We shall first derive counterparts of (4.9) and (4.12) for these problems,
and then certain error estimates for the solutions will be derived. Define

N-1

¥ = ¥, = X L222),

n=0
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and if g = {g,}) 7 € ¥, let

¥
.

lalle = (&% I9n]2)

Then J¢ is a Hilbert space with norm |-|p. For any v e L*(2) and g€ J, define
{w3Y_ o, 4, €8, for n>1, by (cf. Section 3)

Ay Wni, ¥ = (Wny 2) + £Gu, 2> » for y € 8,

Ug = 0,

(5.1)

Now for every ge X, let {u.(g)} denote the corresponding solution of {5.1) with ini-
tial data v = v, and define @, ,: X — R by

Dinlg) = {uwlg) — %a|® + o] g% -
We now consider the following discrete analog of (4.1).

gefl

As in the continuous case, this problem has a unique optimal control g, and § can
be characterized by a certain system of equations.

LemmA 5.1. —~ The problem (5.2) has a unigue solution. Furthermore, if ge X

and {%,} = {u.(g)}, then ¢ is an optimal solution of (5.2) if and only if there is a
{w_y, wa €8, for n<N — 1, such that

At x) + okl w,, x> = (Ua, ¥), for y € 8,,

(5.3) A0,y ) = (War1, 1), Tor 3 €84,
Ug = Vy, Wy = Uy— 24,
where g, = — o W[50, B =0,1,..., N — 1.

The proof of this lemma is similar to the proof of Lemma 4.1 given in [8] and
will be omitted here.

We note that Lemma 5.1 also implies that the system (5.3) has a unique solution.
Ag we did in the continuous case, we now analyse the system (5.3) by introducing
operators R,f",’l which are discrete analogs of the operators E(t). The operators R,(c“,{
will be defined by using the operators By, and another operator G ,. Afterwards
we shall show that these operators are indeed discrete analogs of R(1).

Define first G ,: L(682) — S, by

(5.4) Ak(Glc,hgy y) = o tk{g, x>, for ZES.

13 ~ Adnnali di Malematiica
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We note that, for any geI2(082) and y& 8,
kg, x> = kB(P,Ig, y) = Au(P,:1g, x) — (P19, 3),

where P, is the projection onto S, with respeet to the form B(-, -) and [ is defined
by (2.10). Therefore we obtain

{(5.5) Grp=oYI— E,,)P,I'.
We now define R, ,: H-(Q2) — 8, by
(5.6) Ryp= G By,

where we have used the convention that G .E. .2 = G (B 12)lse. For n=0,1,
wey N we define B{": H-%(Q) — 8, by

-1 ) X

z Ei{ch GkhEgczl *

i=0

n—1
(3.7) By = 2 Ba B Bis =
j=

We note that R{®) = 0 and R{) = R,,. If ¢, p € L(Q) then
{6.8) (Rk,h% 1/’) = Ak(Rk,h% Ek,h#’) = “'1k<Ek,h¢, Ek,hw> .

Hence, by (5.7), R{™ is selfadjoint and positive semidefinite on L*(Q).
For a given ze L(Q) and an integer » such that 0 <n < N, consider now the system

AlBpq, ) = (@;, x) A o kB, x>, for ye S,
(6.9) A @y, x) = By4a, ), for y €8,

~

Uy=0, W,=2,
where {@;}"_,, {#}-¢c8,. This system has a unique solution {&#}, {#;} and by
Duhamel’s principle and (5.4)
k3 k3

n —1
~ n—j o 7§ m—-j+1 . i d+1
&, = > B3 Gppwiy = SEGG LB T e =2 By G By 2
j=1 i=1 i=0

Hence by (5.7)

Note that the characterizations of the operators R(t) and R, that are given by
the systems (4.8) and (5.9), respectively, show that R{, is a discrete analog of R(f).
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Now let {#,}, {w,} be the solution of (5.3). By writing %, as a sum of it’s homo-
geneous and nonhomogeneous parts, we have as in the derivation of (4.9) that

(5.10) w, = B2, v,— RMw,, for 0<n<N.

We note that as in the continuous case, it follows from the fact that R{™ is positive
semidefinite on L*(Q) that (I 4 RM)™* e £{L*(Q2), L*(2)), and, since R™ is identically
zero on the IL®-orthogonal complement of §,,

(5.11) I+ RE)-3yo=1 for n=20,1,.., N

Since w4y = wy -+ 2;, we therefore obtain from (5.9) that

(5.12) wy = (I + R(N)) (& kh’vo* 2)

Error estimates will now be derived for the difference between the solutions of (4.1)
and (5.2) by comparing (4.9) and (4.12) with (5.10) and (5.12), respectively. We
will first derive some preliminary results.

LeMMA 5.2. — There is a constant ¢ such that
(5.13) [ B nloo<ckt.
Furthermore, if 0 <p <1, then there is a constant ¢ such that for 0 <nk< T,

elnToyk if p=1
(5.14) [ B 0 = [ B0, —p < _
¢ if 0<p< 1,

and if g € 8, then

(5.15) 1] < {cm Mgl it p

cﬂqai](_h; if 0<p< 1.
Here |- | is defined by (2.22).

‘ Proor. — First note that for 0<p <1, we obtain form (2.2), (2.23) and (3.12)
that for any ¢ >0, ye 8, and 2>1

\Biazl <eolelBeaxly + &7 1 Eazxl)
<c(8(k,n)“(p+1)i2 + S—l(k,n)—-»ﬂ) Hx“i}z .

Therefore, if we let & = (kn)* then

(5.16) | B2, ] < o(nk) @Dy ®)
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We now recall that E,,= B, ,P, and if ye 8, then |x|{’ = [x]. From (5.8) we
therefore have, for any z, ¢ € L),

[(Ben2, )| = o k| Buu Py 2, By a Pog| <cki[z] o]

which implies (5.13).
If 0<nk<T, and y e 8, we also have by (5.7), (5.8) and (5.16) that

-1

(B D) = |( 3 Bl Ren B, 7))
i=0
=o'k ‘=1<E,fa'hz, B, x)l <g(k gl(jk)—(wl)/z 2] “x“%) 7
or
{6.17) 1§R1(c"}.z}§§,h)< e(ln To/k) 2| if p
o|2] if0<p<1.

By (2.23) and since R{") is selfadjoint on L*((2), this implies (5.14).
We also have for any ¢, y €8, that

(RS, )] = (@ B 201 < o |19 I RE 2157
and hence (5.15) follows from (5.17). [/

For technical reasons we also introduce the operators

B =3 E ,G,,E for 0<nk<T,,

n—1
i=0
where F, is defined by (3.2). Note that if 2, ¢ € L¥(Q) then from (5.4)
(E,ng, @) = Ak(ﬁggz, B up) =o'k Y (Biz, EL.e .
j=1

e

As in the proof of (5.16) it now follows from (3.5) that
By | < o(nk) ™ g,

for n>1, 0<p<1 and any ¢ € L*(L2). Hence, since |-]|_; and [|- ||, are equnivalent,
we have for 2, ¢ € L*(2) that

(B o)l <elk 3 157 el o]

i=%
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or

(5.18) 1B o, 2 <0 111% for 0<nk<T,.

The following lemma gives a certain stability property for the equation (5.1).

LeMMA 5.3. — Assume that z € HY{Q2) and let » be an integer such that 0<n< N,
Furthermore, let {u;} be defined by (5.1), where we assume that v = 0 and that
g = oc'“‘(E((n — k) — E’;Z‘;]) #|s0 for § = 0,1, ..., n — 1. Then there is a constant ¢,
independent of z and n, such that

Jo <o (1) & + 9]

Prooy. — Since the result is trivial for » = 0, we can assume that n>1. Note
that by Duhamel’s principle and (5.4), %, may be represented by

n

w, = 3 B Ga(B(in— j + DE) — By

J=1

#—1
=23 Eg’;.kGXc‘h(E({j + 1)k) — Eﬁi) 2.

§e=0

Define now

-1
uld =3 B,G,(B(G + 1)k — Bz,
i=0

-1
“;2) == Z B} Gl — Py) E;cﬂz ’
i=0
and

n—1
“2&6) = Z EIJC.hGIc.h('PlE;c+1 - Eﬂl) Z.
i=0

Then u, = u{" 4 4 - 4® The lemma will be proved by estimating each of the
terms in sum above. We first consider . By using the identity

B(G -+ 1)k) — B = Y B WB(k) — E,) B(ki)
i=0

we obtain
L A
u =3 3 B, G, By (B(k) — Ey) B(ki)z
i=04=0
w1 n—1 . L .
= Z E Elﬂc.th.hE;c%(E(k) - Ek) B(ki)z .

=0 j={
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By inftroducing the operator I, defined by (3.6) we have

-1 #—1
“g) == 2 Eli.h 2 Ei.—higk.hﬁi_iﬂak — I)E(ki)z
i=0 i

=9

n—1
= 3 Ej B (I, — I) B(ki)z
i=0

§=

where we have used the identity E,I,== E(k). Therefore, sinece ||-], and [[-§i,
are equivalent for |p|<1,

n—1
71 < 1B o 12— Tsalelh + 0 2 1Bialool B " lo.a T — Tll-1g Ik s ol
and hence by (2.18), (3.9), (5.18) and Lemma 3.3
To fi—~1 TD . To 2
(5.19) }[uﬁ}’u<\o(ln§)kuz”, + cgl(m .jc_)k2<m>~11;z;;1<o(1n};) Kels .
Consider now #?. By (5.5) we have

71
“5»2) = o 2 Eli.h(l — By ) Py (I — PI)E;'GHZ .
§=0

Note that (2.11) and Lemma 2.1 implies that
[T — Pyfla<ch®.

By using (2.13), (2.28), (3.5) and (3.11) we now have
n-1 .
1@ <™ 3 1Bl — Byp) Poloal DT — Po)ya [ B a2l
i=0

n—1
<e X E((G+ DR TG + D E) ey,
j=0
or

T
(5.20) lu®] <o (m «%_) Bee]s
Finally we consider »¥. From (3.15) we have that

n—1
Epy— P By = By, (I— Py) + 3 By’ — P)(By— DB .
i=0

3
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Hence we have by (5.7) that

n—1 i
U = 3 By Goa iy (Py— Dz + 2 EEkh wanBin (P — (B, — I) Bz

i=0 J=0 i=0
n-~1 n—1
(n)(P -I)z+E EEIH:, khE;c?%(P — I)(E, *I)Ek
t=0 j=1i

B3
= RM(P,— D2+ 3 B R (P, — I)(B,— I)Ei»

=0

By summation by parts we now obtain

“ilE’ B (P — DB — Bj)e = Biy RSP, — D) Bre— RONP, — 1)z
i=0
+ E (Bl RED — BIRPRES U — P Eitte
From (5.7) we now have
R:(f:?:l) g)h - EI:: th hEk b
and hence for any integers 4, >0
Eltc hROTl) EHlR}? )h Eli::;zi+1Rk.hE;;.h + B pld — Ek.h) R;:;J[ v,

Therefore, since R{) = R, ,, we obtain (j = n—¢— 1)

n—2
"1'5;3) == E;:.Zle.h(Pl I) By -+ Z By By ghz-l(l P )EWl
-2
+ 3 Bl — By RY (I — P B e
i=0

We now estimate each ferm in this sum. From (2.13), (2.20), (3.3), (3.9) and (5.13)
we have

B3 Bon(Py— 1) By 2] < |Bp3 o.ol Beallo.o 1Py — Lo 1 B 12l
<ck*hfe], <e(k + B)]e], -

Note now that it follows from (5.8) that, for any z, ¢ € L*(2) and integers 4,j>1,

(B3 ReaBin 2, 9) = o KB 12, By ) -
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Hence (5.16) implies that
1B Ry i .0 < ok(ik) 3 (jk)

Therefore by (2.13), (2.20) and (3.5)

n—32

i;) (EZ.th.hEZ.;i—l)(I - Pl) E;‘::-(—l z HE;: th hEn“@.—l ”0.0 “I - ‘Pl ”0.2 ”E;c_l-l ”2.1 ”zul
<ok 3 (k) H(n — ) BTG + )R],

E(ES (0= 897 + 00 lely <ol

Finally, since R, = P, R}, we obtain by (2.13), (2.20), (2.23), (3.5), (3.11) and
(5.14) that

-2
> B, — BRI — P B2
=0

<T BT = Boo) Pl LB Lol = Puloa B L el

<o S (i + 1) (10 ) Ba( + 1)),

<o ) Bele]l

Hence we have proved

uwnq(m ) s + 19)2]s

and because of (5.19) and (5.20), this implies the desired result. //
We will now use Lemma 5.3 to prove an estimate for the difference between
the operators R(t) and E{.

LeMMA 5.4. — There is a constant ¢ such that for 0 < ¢ = nk<T,,
T,
[R(t) — B@ o <ot In == . (k + By,

ProOF. — Liet £ = (0, 27T,) x 8£2. We recall from [7] that there exists a continuous
mapping g — § from H¥¥(X) into (L) such that § is is an extension of g.
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Now let 2 HY{Q) and define
git) = a1 B(Ty— t)2],g for 0<t<T,.
Then by Theorem 2.1 and (2.4), g H¥¥(X) and

l9]at,2z) <cl2]s

where ¢ is independent of z. For a given { such that 0 < ¢t = nk < T, define i € W(0, 1)
by

dil
(a‘?: 99) + B(@, ¢) = {go, >, for QEHI(Q%
#£(0) = 0,

where g,(s) = (T, —t -+ 5), 0<s<T,. Note that

1901 a2z <0l lmtas <cell2ly,

where ¢ is independent of z and . We also have from the characterization of R(1),
given by the system (4.8), that

ﬁ(t) e R(t)z .
Define now {u,}”_,c 8, by

Aoy 3) = (U, 1) + kgo(ik), x>, for z€8,,

u(', =0.
By Theorem 3.1 we now have
IR0 — ] <ot (1) & + ) nlatacn <t (1) G + W9l
By using the characterization of Rg“;{ given by the system (5.9), we also obtain from

Lemma 5.3 that

o= Rie] <o (1 )’ 6 + B9l

By the triangle inequality, this proves the lemma. [/

We now have the following convergence result for the systems (4.5) and (5.3).

THEOREM 5.1. — Let u, w and {u,}, {w,} be solutions of (4.3) and (5.3), respectively,
where we assume v, € L¥(Q) and z;€ HY(£2). Then there is a constant ¢, independent
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of v, and z;, such that
(5.21) Ju(t) — | < 0t (hi) (I + 5 (Joo] - [2e]1)
for 0 <t = nk<T,, and
(5.22) Jo(t) = wal <e(Zo — 07+ (1n 1) G -+ B) (o + el
for 0<t =nk < T,.
ProoF. — We will first prove that

T\
(5.23) ”u(To) - ’U/N“ = “w(To) - wN“ <0(1n“) (k + hz)(””o“ +”zd"1)

k
By (4.12) and (5.12) we have

w(Ty) — wy = ((I + B(Ty)) ™ — (I + B ") (B(T,) v — 2)

+ (I 4 BEDTHB(To) — B) s -
Note that since

R(T,) e L(HYQ2 2)), R(T,) is a compact operator on H(RQ). Since R(T,) also
is positive sermdeﬁmte on L2((2), it follows from the alternative theorem that

(I + R(T,)*eL{(HY2), HY(Q)) .

Hence it follows from (2.18), (5.11), Lemma 3.4, Lemma 5.4 and the identity

(I + R(Ty))™ — (I + R = (I + BE)HRBE) — R(T)) (I 4 R(Tp) ™
that
Jw(Ty) — wy| < I + R;cl\;b) 1”0 O”R(N) To)oal(I + R(To))—q”m 1 (o) v~ 2als

+ HI‘}‘R(N) IHOOH(E(T _Elzcvh)v()”

<c(1n€) (& + B (| B(To)vuls + 2als) + ek + 19)]oo]
<o(m ) 06 + w(ele + =il

and, since u(T,) — uy = w(T,) — wy, this implies (5.23).
Note also that from (2.17), (4¢.11) and (4.12)

HW(TO) ” < H (I -+ R(To))‘lno,ouE(To)'Uo— zd”
<|ool + |zl ,
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and since w(T,) = B(T,)vy— 23— R(To) w(T,), Lemma 4.2 implies that

(5.24) (o) s < (o]l + l2als) -

Hence we obtain from (3.9), (5.23) and Lemma 3.4 that for 0<t = nk< T,
lw(®) — wa < | B(To— 1) — By "o Jw(To) | + [ Biy " Jo,olw(To) — ww]]

<e(@y— 07 (1 ZE) & - w) oo el
which is (5.22).

Note that if { = T,, then (5.21) follows from (5.23).
Therefore we can assume that 0<f{ =nk < 7,. By (4.9) and (5.10) we obtain
u(t) — w, = (B() — By) v, + (R() — B) w(t) + B (w(t) — w,) .
From Lermma 3.4 we have
1B(@) — Bgy) o] < et~k + B2)|w,]
and by (2.17), (.24) and Lemma 5.4

[(BE) — B w(t) ]| < |RE) — B o, | E(To— t) 12 ]w(Ts) |1

T 2
<ett (10 3) @ + W (Jon] 4 oul)
Finally we note that

Bf(w(t) — w,) = REB " (w(To) — wy) + REE(T,— t) — BY7™) w(T,) .
We now have from (3.9), (5.14) and (5.23) that
“R(%)ENQM(W( - wN) < ”R(n) lo, o”E}th “lo. olw(Ty) — wyll

<o(m ) G+ wiol + Lk
and by (5.14), (5.15), (5.24) and Lemma 3.7

| BE (BT, — t) — EXmy w(Ty)]|

<c(1nT ){H(E(T — )= P Yo(To) s + (P — BT}
<c(ln ?) (b + h%)|w(Ty) ”1<c(lnT) b+ 19)(Joo] + [l)s

and hence (5.21) follows. //
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Consider now the case where we have errors in the data for the discrete pro-
blem (8.3). We then have the following:

THEOREM 5.2. — Let vy, 2, € L*(2) and let u, w be the corresponding solution of
{(4.5). Furthermore, assume that {u,}, {w,} is the solution of (5.3) with data v and 2
instead of v, and z,, respectively, where we assume v € L¥2) and ze HY({). Then
for any p >0, there is a constant ¢, independent of v,, z;, v and 2, such that for 0 < ¢ =
=ank<T,

(5.28)  [ult) — ) <c{t'1 (m %) (k= 1) (o] + Je]) +
+ le= sls + o= o]

and if 0<t = nk < T, then

T,

(5.26)  |w(t) — wa] <e(Ty— t) {(ln 7)2 (& + 1) (o] +]]:) +

+ e s oo = ol

Proor. — Let #, @ be the solution of (4.5) with data ¢ and 2. Then it follows
from (4.12) that

w(To) — W(Lp) == (I -+ R(To))—l(E(To)(”o— V) — (#g— z)) .

Note that by (4.10), B(T,) is a compact operator on H-1Q), and maps H-1(£) into
L), Since R(T,) is positive semidefinite on L*({2), we therefore obtain from the
alternative theorem that
(I -+ R(Tp)~*e L(HXQ), HX£2)) .

Hence by (2.18)

”w(To) — B(T,) ”—-1 < 0([”%“’“ @HL,, -+ sz —_ ZH_l) .
From (2.12) and (2.13) it also follows that for any p>0, H2(2) c H-»(2) with con-
tinuous injection. Therefore

Jw(To) — B(To) |- < e(1v0— v]—p + 22— 2]-) -
Since

w(t) — D) = E(To— t){(w(Ty) — B(Ly))

and ||-[-, is equivalent to [[-fi_;, it now follows from (2.18) that

() — @) <o(To— 1) (joa— 0] + Joa— 2]-1) -
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Because of (5.22) this implies (5.26). Note also that by (2.17),
lw(t) — D) | s < e(lvo— v]—s + l2a— 2]-)
for 0<i<T,, and from (4.8)
u(t) — d(t) = B(t)(v,— v) — BE)(w(t) — @()) .
Therefore we have from (2.18) and (4.10) that

lu(t) — @) <e(t2]v,— v|_, + [2a— 2]-1)

for 0 < t<7T,, and hence (5.25) follows from (5.21). //

Finally, if § and {g,} denote the optimal controls of (4.1) and (5.2), respectively,
then we are interested in estimating the error g(nk) — ..

We do this by applying certain max-norm estimates for parabolic equations.

If we assume that 2 c R (i.e. d = 1) and that §, consists of, say piecewise linear
fanetions, then by THOMEE [11], for any given £ > 0 there is a constant ¢ such that

H(B() — Byz) ] peooy <ok + k) |v]

for any ve L¥Q) and e<t = nk<T,. (This was stated in [11] only in the case of
Dirichlet boundary conditions, but the proof applies, with trivial modifications, to
the case of Neumann boundary conditions.) Therefore, since

w(t) — w, = B(Ty— t)(w(T,y) — wy) + (B(Ty— 1) — By wy ,

it follows from (2.18), (5.11), (5.12), (5.23) and Sobolev’s inequality that for any ¢> 0

T.\2
() = w0 uoier <o 1 22 & = 2] + )
for 0<t = nk<Ty—¢.

Hence, since g(t) = — a~tw(t)|;, and §, = — aw,|;,, we obtain that for any
& > 0 there is a constant ¢ such that

170) = leiom < (I 5E) G + W] + 12l

for 0<t = nk<Ty— &.
Similar results may also be obtained in the case when d > 1, if we apply the max-
norm estimates recently derived in [2].
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