q-Appell polynomials.

by WALLED A. AL-SALAM

Summary.. *A study of various properties of those sets of polynomials which satisfy* (1.2) *below is made.*

1. - Introduction.

Let $P_n(x)$, $n=0$, 1, 2, ... be a polynomial set, i.e. a sequence of polynomials with $p_n(x)$ of exact degree *n*. Assume further that $dP_n(x)/dx = nP_{n-1}(x)$ for $n=0, 1, 2, ...$ Such polynomial sets are called APPELL sets and received considerable attention since P. APPELL [2] introduced them in 1880.

Let q be an arbitrary real or complex number and define the q -derivative of a function $f(x)$ by means of

(1.1)
$$
D_q f(x) = \frac{f(qx) - f(x)}{(q-1)x}
$$

which furnishes a generalization of the differential operator *d/dx.* It is intimately connected with the so-called q -difference equations, e.g., equations of lhe type

$$
\sum_{i=0}^n f(q^i x) a_i(x) = g(x).
$$

The purpose of this paper is to study the class of polynomial sets $\{P_n(x)\}$ which satisfy

(1.2)
$$
D_q P_n(x) = [n] P_{n-1}(x) \qquad n = 0, 1, 2, 3, ...
$$

where $[a]=\frac{(q^a-1)}{(q-1)}$. Such sets were first introduced ay SHARMA and CHAK [9] whe called them q -harmonic. However we shall refer to them as \cdot q-APPELL sets in analogy with the ordinary APPELL sets. We note that when $q\rightarrow 1$, (1.2) reduces to $dP_n(x)/dx = nP_{n-1}(x)$ so that we may think of q -APPELL sets as a generalization of APPELL sets.

An important example of q-APPELL sets is the set of polynomials $\{H_u(x)\}$ where

(1.3)
$$
H_n(x) = 1 + \sum_{k=1}^n \frac{[n][n-1]\dots[n-k+1]}{[1][2]\dots[k]} x^k
$$

SzEGö [12] proved that the set ${H_n(-xq^{-1/2})}$ is orthogonal over the unit circle with respect to the weight function

$$
f(\varphi) = \sum_{n=-\infty}^{\infty} q^{\frac{i}{2}n^2} e^{i n \varphi} \qquad (|q| < 1).
$$

Another example of q -APPELL sets is

$$
A_n(x) = x^n G_n \left(-q^{n+\frac{1}{2}}\frac{1}{x}\right)
$$

where

(1.4)
$$
G_n(x) = \sum_{r=0}^n {n \brack r} q^{r(r-n)} x^r, \qquad n = 0, 1, 2, ...
$$

Wigert [17] (see also [3]) proved that the polynomials $\{G_n(-xq^{n+\frac{1}{2}})\}$ are orthogonal on the interval $(0, \infty)$ with respect to the weight function

$$
p(x) = \frac{k}{\sqrt{\pi}} e^{-k^2 \log^2 x}
$$

where $2k^2 = -1/\log q$ and $0 < q < 1$.

2. - Preliminaries.

Let α be real or complex and let $[\alpha] = (1 - q^{\alpha})/(1 - q)$. For a non-negatfve integer k we define the basic or q -binomial coefficient

$$
\begin{bmatrix} \alpha \\ 0 \end{bmatrix} = 1, \qquad \begin{bmatrix} \alpha \\ k \end{bmatrix} = \frac{[\alpha] [\alpha - 1] \dots [\alpha - k + 1]}{[k]!}
$$

where $[k]! = [1][2] \dots [k], [0]! = 1.$

We shall also use the notation

$$
(a)0 = 1, \t (a)k = (1 - a)(1 - aq) ... (1 - aqk-1)
$$

so that,

$$
\begin{bmatrix} \alpha \\ k \end{bmatrix} = (-1)^k q^{\frac{1}{2}k(2\alpha - k + 1)} \frac{(q^{-\alpha})_k}{(q)_k}
$$

$$
\begin{bmatrix} x+1 \\ k \end{bmatrix} = \begin{bmatrix} x \\ k-1 \end{bmatrix} + q^k \begin{bmatrix} x \\ k \end{bmatrix}.
$$

If n is a positive integer

$$
\begin{bmatrix} n \\ k \end{bmatrix} = \begin{bmatrix} n \\ n - k \end{bmatrix} = \frac{(q)_n}{(q)_k (q)_{n-k}} \qquad k = 0, 1, 2, ..., n.
$$

Let us also recal the well known formula [6]

(2.1)
$$
a^{n}(b/a)_{n} = (a - b)(a - qb)(a - q^{2}b) ... (a - q^{n-1}b) =
$$

$$
= \sum_{k=0}^{n} (-1)^{k} {n \choose k} q^{\frac{1}{2}k(k-1)} a^{n-k} b^{k}.
$$

This formula is an analogue of the binomial theorem. Another analogue of this theorem is given by WARD $[15]$

(2.2)
$$
[a+b]^n = \sum_{k=0}^n {n \choose k} a^{n-k} a^k.
$$

There are two q-analogues of the exponential function e^x in common use. They are

(2.3)
$$
e(x) = \prod_{n=0}^{\infty} (1 - (1 - q)q^n x)^{-1} = \sum_{k=0}^{\infty} \frac{x^k}{[k]!},
$$

and

(2.4)
$$
E(x) = \prod_{n=0}^{\infty} (1 + (1-q)q^n x) = \sum_{k=0}^{\infty} \frac{q^{k(k-1)/2} x^k}{[k]!}.
$$

Note that $(e(x))^{-1} = E(-x)$.

The following two important characterizations of q -APPELL polynomials were given by SHARMA and CHAK [9].

THEOREM 2.1. - A polynomial set ${P_n(x)}$ is q-APPELL if and only if there is a set of constants $\{a_k\}$ such that, $a_0 \neq 0$,

(2.5)
$$
P_n(x) = \sum_{k=0}^n {n \choose k} a_{n-k} x^k.
$$

THEOREM 2.2. - A polynomial set ${P_n(x)}$ is q-APPELL if and only if there is a formal power series

(2.6)
$$
A(t) = \sum_{k=0}^{\infty} \frac{a_k}{[k]!} t^k, \qquad a_0 \neq 0,
$$

Annali di Matematica 5

such that

$$
A(t)e(xt) = \sum_{k=0}^{\infty} P_n(x)t^n/[n]!
$$

Note that the sequences $\{a_k\}$ in (2.5) and in (2.6) are the same and the condition $a_0 \neq 0$ and $A(0) \neq 0$ are equivalent and necessary in order that $P_n(x)$ be of exact degree n.

In view of theorem 2.2 we shall say that the set ${P_n(x)}$ belongs to the determining function $A(t)$ or that $A(t)$ is the determining function for the q -APPELL set $\{P_n(x)\}.$

3. - Algebraic structure.

We denote a given polynomial set $\{P_n(x)\}\$ by a single symbol P and refer to $P_n(x)$ as the *nth* component of P. We define [2, 10] on the set $\mathcal S$ of all polynomial sets the following two operations $+$ and $*$. The first is given by the rule that $P+Q$ is the polynomial set whose *nth* component is $P_n(x)$ + *+ Q_n(x)* provided the degree of $P_n(x) + Q_n(x)$ is exactly n. On the other hand if P, Q are the sets whose *nth* components are, respectively,

$$
P_n(x) = \sum_{k=0}^n p(n, k)x^k, \qquad Q_n(x) = \sum_{k=0}^n q(n, k)x^k
$$

then P*Q is the polynomial set whose *nth* component is

$$
(P^*Q)_n = \sum_{k=0}^n p(n, k) Q_k(x).
$$

If α is a real or complex number then αP is defined as the polynomial set whose *nth* component is $\alpha P_n(x)$. We obviously have

$$
P + Q = Q + P \text{ for all } P, Q
$$

$$
(\alpha P^* Q) = (P^* \alpha Q) = \alpha (P^* Q).
$$

Obviousely the operation * is not commutative [101. One commutative subclass is the set $\mathcal A$ of all APPELL polynomials [2].

NOTATION. - We denote the class of all q -APPELL sets by $\mathcal{A}(q)$.

In $\mathcal{C}(q)$ the identity element (with respect to *) is the q-APPELL set $I=\{x^n\}$. Note that I has the determining function 1. This is due to the identity (2.3).

The following theorem is easy to prove.

THEOREM 3.1. - Let *P*, *Q*, $R \in \mathcal{C}(q)$ with determining functions $A(t)$, $B(t)$, and *C(t)* respectively. Then

- (i) $P + Q \in \mathcal{C}(q)$ if $A(0) + B(0) \neq 0$,
- (ii) $P + Q$ belongs to the determining function $A(t) + B(t)$,

(iii) $P + (Q + R) = (P + Q) + R$.

The next theorem is less obvious.

THEOREM 3.2. - If P, Q, $R \in \mathcal{A}(q)$ with determining functions $A(t)$, $B(t)$ and $C(t)$ respectively, then

- (i) $P \ast Q \in \mathcal{Z}(q)$,
- (ii) $P^* Q = Q^* P$,
- (iii) $P * Q$ belongs to the determining $A(t)B(t)$,

 (iv) $P^*(Q^*R) = (P^*Q)^*R$.

PROOF. - According to theorem 2.1 we may put

$$
P_n(x) = \sum_{k=0}^n \begin{bmatrix} n \\ k \end{bmatrix} a_{n-k} x^k
$$

so that

$$
A(t) = \sum_{n=0}^{\infty} a_n t^n / [n]!
$$

Hence

$$
\sum_{n=0}^{\infty} (P^* Q)_n t^n/[n]! = \sum_{n=0}^{\infty} t^n \sum_{k=0}^{\infty} \frac{a_{n-k}}{[k]![n-k]!} Q_k(x) =
$$

$$
= \sum_{k=0}^{\infty} \frac{Q_k(x)}{[k]!} \sum_{n=k}^{\infty} \frac{a_{n-k}}{[n-k]!} t^n =
$$

$$
= A(t) \sum_{k=0}^{\infty} \frac{Q_k(x)}{[k]!} t^k = A(t)B(t)e(xt).
$$

The rest of the theorem follows from this.

As a corollary to this theorem we have the following

COROLLARY. - Let $P \in \mathcal{A}(q)$ then there is a set $Q \in \mathcal{A}(q)$ such that

$$
P^*Q = Q^*P = I.
$$

Indeed Q belongs to the determining function $(A(t))^{-1}$ where $A(t)$ is the determining function for P.

In view of this corollary we shall denote this element Q by P^{-1} . We are further motivated by Theorem 3.2 and its corollary to define $P^0 = I$, $P^n = P^{*}(P^{n-1})$ where *n* is a non-negative integer, and $P^{-n} = P^{-1*}P(-^{n+1}).$ We note that we have proved that the system $(\mathcal{C}(q), *)$ is a commutative group. In particular this leads to the fact that if

$$
P^*Q=R
$$

and if any two of the elements *P, Q, R* are q-APPELL then the third is also q -APPELL.

As an application of theorem 3.2 we note that the polynomials which are inverse to the q -APPELL set (2.3) and which are generated by

$$
e(t)e(xt) = \sum_{n=0}^{\infty} H_n(x) \frac{t^n}{[n]!}
$$

is given by

$$
E(-t)e(xt)=\sum_{n=0}^{\infty}A_n(x)\frac{t^n}{[n]!}.
$$

The polynomials $A_n(x)$ are given by

$$
A_n(x) = \sum_{r=0}^n (-1)^r \binom{n}{r} q^{\frac{1}{2}r(r-1)} x^{n-r}.
$$

By (2.1) we have

$$
A_n(x) = (x - 1)(x - q) \dots (x - q^{n-1})
$$

\n
$$
A_0(x) = 1.
$$
\n
$$
(n \ge 1)
$$

Thus we can write

$$
x^{n} = \sum_{r=0}^{n} (-1) {n \choose r} q^{\frac{1}{2}r(r-1)} H_{n-r} =
$$

$$
= \sum_{r=0}^{n} {n \choose r} A_{r}(x).
$$

The first of these two relations was given by CARLITZ [4].

More generally if C is a q –APPELL set `and C^{-1} its inverse, and if we write

$$
(C^{-1})_n = a_0 x^n + a_1 x^{n-1} + \ldots + a_n
$$

then

$$
x^{n} = a_{0}C_{n}(x) + a_{1}C_{n-1}(x) + \ldots + a_{n}C_{0}(x).
$$

Sheffer has shown that the system $(8, *)$ is a non-commutative group. We have seen that $({\mathfrak{A}}(q), *)$ is a commutative subgroup. It is possible, as we shall do elsewhere, to prove that $(\mathcal{C}(q), *)$ is not only a maximal commutive subgroup but we further have the following characterization

THEOREM 3.3. - If $P \in Cl(q)$, $Q \in \mathcal{S}$ and if $P^* Q = Q^* P$ then $Q \in Cl(q)$.

4. - Orthogonal polynomials.

We determine those real sets in $\mathcal{C}(q)$ which are also orthogonal. It is well known [12] that a set of real orthogonal polynomials satisfy a recurrence relation of the form

(4.1)
$$
P_{n+1}(x) = (x + b_n)P_n(x) + C_n P_{n-1}(x) \qquad n \ge 1,
$$

with $P_0(x) = 1$, $P_1(x) = x + b_0$.

If we q-differentiate (4.1) and assuming that the polynomial set $\{P_n(x)\}$ is q -APPELL we get after some simplification

(4.2)
$$
P_{n+1}(x) = (x + q^{-1}b_{n+1})P_n(x) + C_n \frac{[n]}{q[n+1]}P_{n-1}(x)
$$

Comparing (4.1) and (4.2) we get

$$
b_{n+1} = qb_n
$$
 and $C_{n+1} = \frac{[n+1]}{[n]} qC_n$

so that

$$
b_n = b_0 q^n \quad \text{and} \quad C_n = C_1[n] q^{n-1}.
$$

Hence $\{ P_n(x) \}$ is given by

(4.3)
$$
P_{n+1}(x) = (x + b_0 q^n) P_n(x) + C_1[n] q^{n-1} P_{n-1}(x)
$$

$$
P_0(x) = 1, \qquad P_1(x) = x + b_0.
$$

These polynomials have the generating relation

(4.4)
$$
\frac{e(xt)}{e(at)e(bt)} = \sum P_n(x)t^n/[n]!
$$

where $1 + b_0t + \frac{C_1}{1 - c_0}t^2 = (1 - at)(1 - bt)$. , If we recall the polynomials $\{ U_n^{(a)}(x) \}$ (see [1; 8])

$$
\frac{e(xt)}{e(t)e(at)}=\sum_{n=0}^{\infty}U_n^{(a)}(x)t^n/(q)_n,
$$

we see that

$$
P_n(x) = \frac{b^n}{(1-q)^n} U_n^{(a/b)}(x/b).
$$

In terms of the q-hypergeometric function

$$
{}_{1}\mathcal{O}_{1}[a\,;\,b\,;\,x]=\sum_{r=0}^{\infty}\frac{(a)}{(q)_{r}(b)_{r}}q^{r(r-1)/2}x^{r}
$$

we see that

(4.5)
$$
P_n(x) = \frac{1}{(1-q)^n} x^n (b/x)_{n_1} \mathcal{G}_1 \left[q^{-n}; \frac{x}{b} q^{1-n}; -\frac{qa}{b} \right].
$$

We thus have proved the following theorem:

THEOREm[4.1. - *The set of q-Appell polynomials whioh are also orthogonal is given by* (4.4) *(or* (4.5)).

If $\{P_n(z)\}\$ is a set of polynomials orthogonal on the unit circle, then it follows [7, p. 132] that there are constants $\{a_n\}$ such that

$$
\bar{a}_n P_{n+2}(z) = (\bar{a}_n z + \bar{a}_{n+1}) P_{n+1}(z) - \bar{a}_{n+1} (1 - |a_n|^2) z P_n(z),
$$

where $\bar{a}_n = -P_{n+1}(0)$ and the bar indicates the complex conjugate.

This suggests the problem of determining those q -APPELL polynomials which satisfy a recurrence relation of the form

(4.6)
$$
P_{n+1}(z) = (z + b_{n+1})P_n(z) - C_n z P_{n-1}(z) \qquad (n \ge 1),
$$

$$
P_0(z) = 1.
$$

If we q -differentiate (4.6) and simplify, we obtain

(4.7)
$$
P_{n+1}(z) = \left\{ z + \frac{b_{n+1}}{q} - \frac{(1-q)C_{n+1}}{q(1-q^{n+1})} \right\} P_n(z) - C_n \frac{1-q^n}{1-q^{n+1}} z P_{n-1}(z).
$$

Comparing (4.6) and (4.7) we get

(4.8)
$$
\left\{b_n-\frac{b_{n+1}}{q}+\frac{(1-q)C_{n+1}}{q(1-q^{n+1})}\right\}P_u(z)=\left\{C_n-C_{n+1}\frac{1-q^n}{1-q^{n+1}}\right\}zP_{n-1}(z).
$$

This implies that, for all n ,

(4.9)
$$
b_n - \frac{b_{n+1}}{q} + \frac{(1-q)C_{n+1}}{1-q^{n+1}} + C_n - C_{n+1} \frac{1-q^n}{1-q^{n+1}} = \lambda_n.
$$

From (4.9) we get that

$$
C_{n+1} - b_{n+1} = q(C_n - b_n)
$$

so that

(4.10)
$$
C_{n+1} - b_{n+1} = q^{n}(C_1 - b_1) = \lambda q^{n}.
$$

We now proceed to show that λ_n is either zero or non-zero for all $n=1, 2, 3, ...$ Now if $\lambda_m = \pm 0$ for some m then, from (4.8), we have

$$
(4.11) \t\t\t P_m(z) = zP_{m-1}(z).
$$

Formula (4.11) and the q -APPELL property imply that

(4.12)
$$
P_k(z) = z^k \qquad k = 0, 1, 2, ..., m.
$$

This formula and (4.6) yield $b_m = C_m$ and hence $\lambda = 0$. Consequently we must have $b_n = C_n$ for all n. Substituting this fact in (4.6) we get

$$
P_{n+1}(z) - zP_n(z) = b_n[P_n(z) - zP_{n-1}(z)] \qquad (n > 1).
$$

We have now by induction and (4.12) $P_n(z) = z^n$ for all *n*.

Now we may assume that $\lambda_n=0$ for all n. We get

$$
C_n - C_{n+1} \frac{1 - q^n}{1 - q^{n+1}} = 0,
$$

and hence

(4.13)
$$
C_n = C_1 \frac{1 - q^n}{1 - q^{n+1}} = c_1 (1 - q^n),
$$

$$
b_n = C_1(1-q^n) - \lambda q^{n-1} = C_2 + \beta q^n.
$$

Substituting in (4.6) we get

(4.14)
$$
P_{n+1}(z) = (z + c_1 + \beta q^n)P_n(z) - z c_1 (1 - q^n)P_{n-1}(z) \qquad (n \ge 1),
$$

$$
P_0(z) = 1, \qquad P_1(z) = z + c_1 + \beta.
$$

The recurrence relation (4.14) has the solution

(4.15)
$$
P_n(z) = z^n + \sum_{k=1}^n {n \brack k} b_0 b_1 \dots b_{k-1} z^{n-k}
$$

where $b_0 = c_1 + \beta$, b_k is a given by (4.13). This can also be written as

(4.16)
\n
$$
P_n(z) = \sum_{k=0}^n {n \choose k} (-\beta/c_1)_k z^{n-k} =
$$
\n
$$
= z^n {}_2 \mathcal{O}_0^* \left[q^{-n}, -\beta/c_1; -; -c_1 q^n / z \right]
$$
\n
$$
= c_1^n (-\beta/c_1)_1 \mathcal{O}_1 \left[q^{-n}; -c_1 q^{1-n} / \beta; -z q / \beta \right]
$$

where

$$
{}_2\emptyset\, {}_0^*\,[a,\;b\,;\; -\,;\;z)=\mathop{\Sigma}\limits_{k=0}^{\infty}\frac{(a)_k(b)_k}{(q)_k}\,q^{-k(k-1)/2}z^k.
$$

THEOREM 4.2. - The q -APPELL polynomials which are also orthogonal on the unit circle are those defined by (4.15).

In analogy with a theorem of TOSCANC [13] we can determine those q -APPELL polynomials $A_n(z)$ whose reciprocal $B_n(z) = z^n A_n(1/z)$ are orthogonal. To do this we note that

$$
(4.17) \t\t B_n(z) = \sum_{k=0}^n \begin{bmatrix} n \\ k \end{bmatrix} z_k
$$

where $a_k \neq 0$ for all $k = 0, 1, 2, ...$

Put

(4.18)
$$
B_{n+1}(z) = (a_n z + \beta_n) B_n(z) + \gamma_n B_{n-1}(z)
$$

so that

$$
(4.19) \t a_n = a_{n+1}/a_n \text{ and } \beta_n + \gamma_n = 1.
$$

By means of (4.17), (4.18), and (4.19) we get

(4.20)
$$
q = \frac{a_{n+1}}{a_n} \frac{a_{k-1}}{a_k} - \gamma_n \frac{1 - q^{n-k+1}}{1 - q^n}.
$$

It is not difficult to prove that the only solution of (4.20) is given by

 \overline{a}

$$
a_n = q^{n^2 + \frac{1}{2}n}.
$$

We have thus proved that the:

THEOREM 4.3. - The only orthogonal polynomial set whose reciprocal is *q-Appell is given by* $\{G_n(-q^{n+1/2}x)\}\nwhere $G_n(x)$ is given by (1.4).$

This theorem may be restated in the following manner: The only q -APPELL

set whose reciprocal is orthogonal is given by

$$
A_n(x) = x^n G_n \left(-q^{n+\frac{1}{2}}\frac{1}{x}\right).
$$

5. - Characterizations of q -Appell polynomials.

We first remark that it is easy to prove the following theorem which is a q -analogue of a corresponding theorem of SHEFFER $[11]$ and its proof is quite similar to that employed in [11]. This proof we shall omit.

THEOREM 5.1. - A polynomial set $\{P_n(r)\}\$ is a q-APPELL set if and only if there is a function $\beta(x; q) = \beta(x)$ of bounded variation on $(0, \infty)$ so that

(i)
$$
b_n = \int_0^\infty x^n d\beta(x)
$$
 exists for all $n = 0, 1, 2, ...$
\n(ii) $b_0 \neq 0$
\n(iii) $P_n(x) = \int_0^\infty [x + t]^n d\beta(x)$.

The determining function is then

 \sim

$$
A(t) = \int_{0}^{\infty} e(xt) d\beta(x).
$$

SEEFFEn extended his theorem to polynomials of A-type 0. We remark that q-APPELL sets are of SHEFFER A-type ∞ . To see this note that, formally, $D_{q} = (q^{\delta} - 1)/x(q - 1)$ where $\delta = x \frac{d}{dx}$, so that

$$
x(q-1)D_q = e^{\delta(\log q)} - 1 = \sum_{k=1}^{\infty} \frac{(\log q)^k}{k!} \delta^k =
$$

$$
= \sum_{k=1}^{\infty} \frac{(\log q)^k}{k!} \sum_{j=1}^k a(k, j)x^j \frac{di}{dx^j} =
$$

$$
= \sum_{j=1}^{\infty} x^j \frac{d^j}{dx^j} \sum_{k=j}^{\infty} \frac{(\log q)^k}{k!} a(k, j).
$$

We also remark, following SHEFFER, that in this theorem $[x+t]^n$ may be replaced by any q -APPELL set. In particular we can give the following generalization which is parallel to that of VAnMA [15].

Annati di Matematica 6

Let $\{\delta_n(t)\}$ be any sequence of functions for which the integrals

$$
I_{n,r}=\int\limits_{0}^{\infty}\delta_{n}(t)t^{r}d\beta(t)
$$

exist for *n*, $r=0, 1, 2, ...$ with $I_{0,0} \neq 0$ and define

(5.1)
$$
K_n(x, t) = \sum_{k=0}^{n} {n \brack k} \delta_{n-k}(t) [x + t]^{k}
$$

then

(5.2)
$$
P_n(x) = \int_0^\infty K_n(x, t) d\beta(t)
$$

is q -APPELL.

In particular let

(5.3)
$$
K_n(x, t) = x^n \, s \theta_2 \left[q^{-n}, a, b; c, d; -qt/x \right] =
$$

$$
= x^n \sum_{k=0}^n \frac{(q^{-n})_k (a)_k (b)_k}{(q)_k (c)_k (d)_k} (-qt/x)^k.
$$

Tn determine $\delta_n(t)$ which gives rise to (5.3) we note that (5.1) and (5.3) imply

$$
\sum_{k=0}^{j} \binom{j}{k} \delta_{j-k}(t) t^{k} = \frac{(a)_j(b)_j}{(c)_j(d)_j} q^{\frac{1}{2}j(j-1)} t^{j} \qquad j = 0, 1, 2, \dots.
$$

Iuverting this relation we get

$$
\delta_n(t) = q^{\frac{1}{2}n(n-1)} t^n \sum_{r=0}^n (-1)^r \binom{n}{r} \frac{(a)_{n-r}(b)_{n-r}}{(c)_{n-r}(d)_{n-r}} q^{r(r-n)}.
$$

We further note that the generating function for these polynomials is then given by

$$
\sum_{n=0}^{\infty} \frac{u^n}{[n]!} P_n(x) = e(xu) \int_{0}^{\infty} \mathcal{O}_1(a, b; c, d; ut] d\beta(t)
$$

6. - The q -differential operator of infinite order.

Let S be a continuous linear operator defined on the space of analytic function in some region D. We say with DAVIS [5, p. 100] that S is regular if it takes analytic functions into analytic functions and uniform if it sets up a one-to-one correspondence between analytic functions. C. BOURLET [5] has shown that any linear, continuons, regular, and uniform operator S has the representation

$$
S(u) = \sum_{k=0}^{\infty} A_k(x) \frac{d^k}{dx^k} u(x)
$$

where

$$
A_k(x) = \sum_{j=0}^k (-1)^j {k \choose j} x^j S(x^{k-j}).
$$

An analogue of this theorem can be proved involving a q-differential operator of infinite order. In fact we can show that any continuous, linear operator which is also uniform and regular has the representation

$$
S(u) = \sum_{n=0}^{\infty} A_n(x) D_q^n u(x)
$$

where

$$
A_n(x) = \sum_{k=0}^n (-1)^k q^{k(k-1)} \begin{bmatrix} n \\ k \end{bmatrix} x^k S(x^{n-k}).
$$

Of particular interest to us is the linear operator which takes $xⁿ$ into $P_n(x)$ where P is a given q -APPELL set. Call this operator L_p . We have for some *A(t)*

$$
A(t)e(xt) = \sum_{n=0}^{\infty} P_n(x)t^n/[n]!
$$

so that

$$
A(t) = E(-t) \sum_{n=0}^{\infty} P_n(x) t^n / [n]! =
$$

=
$$
\sum_{n=0}^{\infty} \frac{t^n}{[n]!} \sum_{s=0}^n (-1)^s {n \choose s} q^{\frac{1}{2}s(s-1)} x^s P_{n-s}(x) =
$$

=
$$
\sum_{n=0}^{\infty} t^n L_n(x) / [n]!
$$

Hence $L_n(x) = a_n$ where a_n is independent of x. We assert that

$$
L_p = \sum_{k=0}^{\infty} a_k D_q^k / [k]!
$$

Indeed

$$
L_p(x^n) = \sum_{k=0}^n a_k D_q^k x^n/[k]! = \sum_{k=0}^n a_k \begin{bmatrix} n \\ k \end{bmatrix} x^{n-k} = P_n(x).
$$

If

$$
(A(t))^{-1} = \sum b_n t^n/[n]!
$$

then the operator inverse to L_p is given by $L_p \rightharpoonup 1$. To see this we know from above that L_p^{-1} must be given by

$$
L_p^{-1} = \sum_{n=0}^{\infty} b_n D_q^n/[n]!
$$

so that

$$
L_p^{-1}P_n(x) = \sum_{k=0}^{\infty} b_k D^k P_n(x) / [k]! =
$$

=
$$
\sum_{k=0}^n b_k \begin{bmatrix} n \\ k \end{bmatrix} P_{n-k}(x).
$$

Hence

$$
L_p^{-1}P_n(x) = x^n.
$$

Now it is easy to verify that $L_p^{-1}(x^n) = P_n^{-1} = P_n^{-1}(x)$ where $P_n^{-1}(x)$ is nth component of p^{-1} .

BEFERENCES

- [1] w. A. AL-SALAM and L. CARLITZ, Some orthogonal q-polynomials, Mathematische ~achriehten, vol. 30 (1965), pp. 47-61.
- [2] P. APPELL, *Une Classe de polynomes*, Annales scientifique Ecole Normale Sup., ser. 2, vol. 9 (1880), pp. 119-144.
- [3] L. CARLITZ, *Note on orthogonal polynomials related to theta functions*, Publicationes Mathematicae, vol. 5 (1958), pp. 222-228.
- [4] -- --~ *Some polynomials related to theta fnnctions~* Annali di Matematica pura ed applieata, ser. 4, vol. 41 (1955), pp. 359-373.
- [5] It. T. DAVXS, *Ths Theory of Linear Operators,* The Prineipia Press, (1936).
- [6] L. EULER, *Introductio in Analysin Infinitorum*, (1748), (Chapter 7).
- [7] L. YA. GERONIMUS, *Polynomials Orthogonal on a Circle and Interval*, Pergamon Press, (1960).
- [8] w. HAHN, *Über Orthogonal polynome*, die q-Differenzengleichungen genigen, Mathematische Natchrichten, vol. 2 (1949), pp. 4-34.
- [9] A. SHARMA and A. CHAK, *The basic analogue of a class of polynomials*, Rivista di Matematica della Università di Parma, vol. 5 (1954), pp. 325-337.
- [10] I.M. SHEFFER, On sets of polynomials and associated linear functional operator and *equations, The American Journal of Mathematics, vol. 53 (1931), pp. 15-38.*
- [11] $-$, Note on Appell polynomials, Bulletin of the American Mathematical Society, voL 51 (1945), pp. 739.744.
- [12] G. SZEDS. *Ein Beitrag zur Theorie der ~'hetafunktionen,* Preussische Akademie der Wissenschaften, Sitzung der phys.-math. Klasse, (1926), pp. 242-251.
- [13] --, *Orthogonal Polynomials*, *American Mathematical Society Colloquim Publications*, revised edition, New York, (1959).
- [l~t] L. TOSCA~O, *Polinomi orthogonali o reciproci di ortogonali nella classe di Appell,* Le Matematiche, vol. 11 (1956), pp. 168-174.
- [15] R.S. VARMA, *On Appell polynomials*, Proceedings of the American Mathematical Society, vol. 2 (1951), pp. 593.596.
- [16] M. WARD, A calculus of sequences, American Journal of Mathematics, vol. 58, (1936), pp. 955-266.
- [17] S. WIGERT, *Sur les polynomes orthogonaux et l'approximation des fractions continues*, Archiv for Mathematik och Eysik, vol. 17 (1923), n°. 18.