g-Appell polynomials,

by WarLLep A. AL-8anam

Sammary. - 4 study of various properiies of those sels of polynomials which satisfy (1.2)
below is made.

1. - Introduction.

Let Pux), n =20, 1, 2, ... be a polynomial set, i.e. a sequence of polyno-
mials with pu(z) of exact degree n. Assume further that dP,(z)/de = nP,_.(z)
for n=0, 1, 2, .... Such polynomial sets are called APPELL sets and received
considerable attention since P. APPELL [2] introduced them in 1880.

Let ¢ be an arbitrary real or complex number and define the g~derivative
of a function f(z) by means of

_ g5 — 1@
(L1 D, f(z) = W

which furnishes a generalization of the differential operator d/dz. It is
infimately connected with the so-called g-difference equations, e.g., equations
of lhe type ‘

L3

i}iof(qim}wi(@ = g(@).

The purpose of this paper is to study the class of polynomial sets { P,(z)}
which satisfy ‘

(1.2) D,P(z) = [n]P,_,(z) n=20,1, 2, 3, ...

where [a] = (¢* — 1)/(¢ — 1). Such sets were first introduced ay SHARMA and
CHAK [9] whe called them g-harmonic. However we shall refer to them as
» ¢-APPELL sets in analogy with the ordinary APPELL sets. We note that when
qg—1, (1.2) reduces to dP,(z)/dz = nP,_y(x) so that we may think of ¢-APPELL
sets as a generalization of APPELL sets.
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An important example of g-APPELL sets is the set of polynomials { Hy(z))
where

“ —1]..[n—k+ 1]

1.3 H=1+3 " . ¥

(19 W=1+z (121 .. (%]

Szeco [12] proved that the set { H,(— zg**) 1 is orthogonal over the unit eircle
with respect to the weight function

fo)= 3 g™ (lgl< 1)

H—="=CC

Another example of g-APPELL sets is

N _ ”H‘i}
Ayz) =z G"( q Ex)

where

(L.4) Golz) = 3 Mgz, n=0, 1,2, ..

r=0
Wigert [17] (see also [3]) proved that the polynomials {Gn(-xqvl+%)} are

orthogonal on the interval (0, oc) with respect fo the weight function

k
—k?log?
pla) = —— e~ ¥log™®
T

where 2k = - 1/logq and O < g < 1.

2. = Preliminaries.

Let « be real or complex and let [a] =(1 — ¢*%/(1 — ¢). For a non-negatfve
integer &k we define the basic or ¢g-binomial coefficient

g =1 m: } [

where [E]! = [1]({2]...[k], [O]l = 1.
We shall also use the notation

@) 2 — 1 [2— e+ 1]

@o=1 (@r=(1 —-a)l — ag).. (1 —ag™"
so that,

ocl P Li(aa—t+1) (@)%
k| (@)%
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r4+1] | = %
[ k ]— r—1] T4 [k]
If n is a positive integer
" " (@n
= e - k=01, 2 .., n
[75} K"”‘ k\ (@D "

Let us also recal the well known formula [6]
2.1 a”(b/a) = (@ — b) (@ — gb) (@ — ¢°b) ... (@ — ¢""b) =

=3 (— 1) [%l g™ g kb,
k=0 k

This formula is an analogue of the binomial theorem. Another analogue of
this theorem is given by WARD [15]

a"kak,

@.2) @+ 8" = & [Z

kes=g

There are two g-analogues of the exponential function e” in common
use. They are

= " R R— ) xk
@ =T -0 g =5 &
and
o) o) qlc(k—-l)/lec
(2.4) Eny=101+4+1—qgQz)=2 2 —

n=0 K== [k] '

Note that (e(@))~* = E(— =z).
The following two important characterizations of ¢-APPELL polynomials
were given by SHARMA and CHAK [9].

TuEOREM 2.1. - A polynomial set { P,(x)} is ¢-ArpELL if and only if
there is a set of constants {ax} such that, ¢, 3= 0,

7
k

(2.5) Pz) = g Oy rZ®.
a0

THEOREM 2.2. - A polynomial set { Pu(z)] is ¢-APPELL if and only if
there is a formal power series

(2.6) Ay =2 P e o == 0
) _kzo {I‘;]! ’ 0 ’
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such that

Abe(zt) =:§ P (2)t"/[n]!

==0

Note that the sequences {ax} in (2.5) and in (2.6) are the same and the condition
a#,+=0 and 4(0)==0 are equivalent and necessary in order that P,(z) be of
exact degree n.

In view of theorem 2.2 we shall say that the set { P,(x)] belongs to the
determining function A(f) or that A(f) is the determining function for the
g~APPELL set { P,(z)}.

3. - Algebraic structure.

We denote a given polynomial set { P,(z)} by a single symbol P and
refer to P,(z) as the nih component of P. We define [2, 10] on the set & of
‘all polynomial sets the following two operations - and *. The first is given
by the rule that P+ ¢ is the polynomial set whose nth component is P,(x) -
+ Quiz) provided the degree of P,(z) 4 Q.(z) is exactly . On the other hand
if P, Q are the sets whose nth components are, respectively,

P %{.’l‘) :kgop(n’ k)xka Q”(.’E) :ky:OQ(%’ k)“tk

then P*@ is the polynomial set whose nfh component is

n

(P* Q= 3 pln, B)u(z).

If « is a real or complex number then «P is defined as the polynomial set
whose nth component is aP,(z).§We obviously have

P4 Q=Q-+-P forall P, @
(@P*@) = (P*a@) = «(P*Q).
Obviousely the operation * is not commutative [10]. One commutative subeclass
is the set & of all APPELL polynomials [2].
Norarion. - We denote the class of all g-ApPELL sets by &(g).

In d(q) the identity element (with respect to *) is the ¢~APPELL set
I={z"}]. Note that I has the determining function 1. This is due to the
identity. (2.3).

The following theorem is easy to prove.
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TrEOREM 3.1. - Let P, @, Rel(q) with determining functions A(f), B(),
and C(f) respectively. Then

(i) P+ Qe g if A0)+ B(O) == 0,
(ii) P + @ belongs to the determining function A(f) 4+ B(¥),
(iii) P+{(Q+ B)= (P4 @) + E.

The next theorem is less obvious.

TeEOREM 3.2. - If P, Q, Rell(g) with determining functions A(#), B(f)
and C(f) respectively, then

(i) P*Qed(g),

(ii) P*Q = @*P,

(iii) P*@ belongs to the determiuing A(f)B(f),
(iv) P*(@*R) = (P*Q)*R.

Proor. - According to theorem 2.1 we may put
ln
ol

A =3 antn/[n]!

Hn=0

P,(z) :k

| 42

Gy 1"

g0 that

Hence

3 = S gn R Omek g o
E_.O(P "t /]! _ﬁf kio %] [n — K Q) =

-5 Or(x) § Gnr
k=0 [K]! wek ([ —F]

L Jp—
!t =

_ L Qulx) ,,
= Ai) 3 Tt = AW Blbe(z)

The rest of the theorem follows from this.

As a corollary to this theorem we have the following

CorROLLARY. — Let Ped(g) then there is a set Qe f(q) such that
P+Q=Q*P =1

Indeed @ belongs to the determining function (A(f))~* where A(f) is the
determining funection for P.
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In view of this corollary we shall denote this element @ by P—*. We are
further motivated by Theorem 3.2 and its corollary to define P° = I,
P" = P*(P"~") where # is a non-negative integer, and P~—" ="P~'*P(—n+%),
We note that we have proved that the system (&(g), *) is a commufative
group. In particular this leads to the fact that if

P*Q=~R

and if any two of the elements P, @, B are ¢-APPELL then the third is also
q-APPELL.

As an application of theorem 3.2 we note that the polynomials which
are inverse to the g-APPELL set (2.3) and which are generated by

e(t)e(xt) :ngoﬂn(x) [fT’]t'
is given by
o0 tn
E(— belzt) :’E‘}An(x) W .

The polynomials 4,(z) are given by

Ayx) =

r

| bas

(— 1

1]

%} i'r(ar‘—l) By
Q’2 Z .
r

By (2.1) we have
Afey=(z— Dz —q) .. —g"™) m=1
Ao(ﬁ:) preneg 1.

Thus we can write

n
" =2 {(—1) {Z Q%T(T_I)Hﬂ,, =

r=0

=éo jﬂ 4,(z).

The first of these two relations was given by CarrIiTz [4]
More generally if C is a ¢g-APPELL set 'and C~* its inverse, and if we
write

(O = @™ + 2"~ + ... + a,
then
z" = aoOu(x) + 0,0y _:(x) + ... + 2, Colz).
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Sheffer has shown that the system (8, *) is a non-commutative group.
We have seen that (f(g), *) is a commutative subgroup. It is possible, as
we shall do elsewhere, to prove that (&(g), *) is not only a maximal commutive
subgroup but we further have the following characterization

THEOREM 3.3. - If Pel(g), @€ 8 and if P*Q = Q*P then Qe d(g).

4. - Orthogonal polynomials.

We determine those real sets in d(g) which are also orthogonal. It is well
known [12] that a set of real orthogonmal polynomials satisfy a recurrence
relation of the form

4.1) Pyya(2) = (2 + 04)Pu(®) + CrPun-s() n=1,
with Poz) =1, Pz)y=x -+ b,.

1f we g-differentiate (4.1) and assuming that the polynomial set {P,(x))
is g-APPELL we get after some simplification

7]

4.2) Py is(@) = (€ + ¢ 0ur1)Pu(z) + Cu qn + 1] Py_(x)
Comparing (4.1) and (4.2) we get
1
Boss = ghe and  Cpys = [’l[j@i lq40,

so that
by = bog™® and O, = Cy[njg"*.

Hence { P.(z)} is gicen by
4.3) Ppuia(z) = (@ + bog™)Pul@) + Ci[0]g" " Pu_i(z)
Pyz) =1, Plzy=z-+b,.
These polynomials have the generating relation

e(xt) 5 n
4.4) é@m = X Pu(zx)t"/[n]!

where 1 - bt + r%?zt" = (1 — al) (1 — bi).

It we recall the polynomials { US’(@)) (see [1; 8))

e(xl) D ),
é—(z)«g(zg} —e:—.gU” @/ (@,
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we see that

Pz) = Uz /b).

bn
(1—q"

In terms of the g-hypergeometric fanction

g% (@) 132
Oila; b; 2] =32 —— qr V"
e b5 el =2 o C e
we see that
) — 1 ” —n. '26 I qa’
(4.5) Py(z) = m')—nm (b/2)m @1 |q™"; 547 T %

We thus have proved the following theorem:

TaroreM 4.1. — The set of q-Appell polynomials which are also orthogonal
is given by (4.4) (or (4.D)).

If {Pu#)} is a set of polynomials orthogonal on the unit circle, then it
follows {7, p. 132] that there are constants { a,} such that

AuPpis) = (AnZ + Onga)Ppya(8) — dn+1(1 —_ | Gy ]2)anfz),

where Gy = — Pu,(0) and the bar indicates the complex conjugate.
This suggests the problem of determining those g-APPELL polynomials
which satisfy a recurrence relation of the form

4.6) Puii(z) = (8 + by s )Pu(2) — CuzPy_4(2) (n=1),
Poe) = 1.
If we g-differentiate (4.6) and simplify, we obtain

(1 - Q) On+1
gl — g™+

(4'7) P n+1(z} =

2 + aﬂq-u - % Pw{z) - On __1_;_"_2’_2__ ZP”-g(’e‘)-

1 — qn-}-z
Comparing (4.6) and (4.7) we get

1 _ n
Cp — Cupn q%q_’l 2Py _y(?).

[ (1—(1)00@ 1}
4.8 y — + Ww(2) =
w8 o o Ty Pl

This implies that, for all r,

bn 1 (1 — )On 1 e n
(4.9) by — 252 4 _Qq”;;x + Cy— Cpps '1“.’_7%?1 = A
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From (4.9) we get that

Cogr — bygr = q(Cp — )
so that

(4.10) Gn+1 - bn+1 _— qn(C]_ —_— bl) = Xg".

We now proceed to show that A, is either zero or non-zero for all
n=1, 2, 3, .... Now if A, = == 0 for some m then, from (4.8), we have

(4.11) Pu(2) = 2Py, _y(2).
Formula (4.11) and the ¢-APPELL property imply that
4.12) Prle) = &F k=01, 2, ..., m.

This formula and (4.6) yield b,, = C,, and hence A =0. Consequently we must
have b, = O, for all n. Substituting this fact in (4.6) we get

Py 1(7) — 2P,(2) == by Pu(#) — 2Py.4(#)] (n > 1).

We have now by induction and (4.12) P,(») = 2" for all n.
Now we may assume that 2, =0 for all n. We get

1 —_—n
Gy — Gn-m I—:_-—Q%Il =~0’
and hence
¢ I — q" n
(4.18) Co= 0, g = a(l — ¢"),

bu = Ol — ") — A¢" ™ = Cs + g™
Substituting in (4.6) we get

(4.14) Pusal®) = (2 + ¢4 + Bg"Pu®) — 26(1 — q")Pr_s(¢) (n=1),

Py2) =1, Pi(z) = 2z 4'¢c, + B.

The recurrence relation (4.14) has the solufion

(4'15) Pn(z) p— z" “‘I"" g [7]::] bobl .es bk_lz"‘—k
=1
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where b, = ¢, 4 B, bx is a given by (4.13). This can also be written as

(4.16) Pie) = I [Z] (—B/edwe™F =

fe=o
=280, 1q™", —B/er; —; —aq"/z=
=c(— B/e) B [q7"; —eag"/B; — 2q/B)]
where

L (@0
* S b _ — 3 NTIEVR k(k 1)/2zk‘
2@0 [a’ b Z) b (Q)k q
THeEOREM 4.2. - The ¢-APPELL polynomials which are also orthogonal
on the unit circle are those defined by (4.15).

In analogy with a theorem of ToscaNc [13] we can determine those
g-APPELL polynomials 4,(z) whose reciprocal B,(z) = 2"4,(1/2) are orthogonal.
To do ‘this we note that

4.17) Bu(z) = § [g] 2k
k=0
where a; =0 for all k=0, 1, 2, ..
Put
(4.18) By 1(2) = (2 4+ Bu)Bu(2) + YnBu-1(7)
s0 that
(+.19) Op = Gyi1/0n and B, + v = 1.

By means of (4.17), (4.18), and (4.19) we get

o O _ ] — gkt
4.9 S e SR S

It is not difficult to prove that the only solution of (4.20) is given by

1
ni-om
[ T2 .

We have thus proved that the:

TaroREM 4.3. - The only orthogonal polynowmial set whose reciprocal is
q-Appell is given by { Gu(— q"+'/z)} where G, (x) is given by (1.4).

This theorem may be restated in the following manner: The only ¢-APPELL
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set whose reciprocal is orthogonal is given by

nitl
A lx) = x"Gﬂ(— q +2 Ec) .

5. - Characterizations of g-Appell polynomials.

We first remark that it is easy to prove the following theorem which is
a g-analogue of a correspondingtheorem of SHEFFER [11] and its proof is
quite similar to that employed in [11]. This proof we shall omit.

TeEEOREM D.1. ~ A polynomial set { P,(r)} is a ¢-APPELL sef if and only
if there is a function B(z; ¢) = B(x) of bounded variation on (0, oo) so that

(i) by :fx"d{i(zc) exists for all n=0, 1, 2, ...
]

(i) b0

(iti) Pole) = f [z + 1" d(z).

0

The determining function is then

o vl

Al = f e(zt)dB(z).

0

SHEFFER extended his theorem to polynomlals of A-type 0. We remark
that ¢-APPELL sets are of SHEFFER A-type co. To see this note that, formally,
D, = (g° — 1)/2(q — 1) where 3 = xd%, so that

i
a(g — 1)D, = e¥loz) — 1 = $ Gog @)y
Fosey, k!

o0 k k
=3 1029 5 o jwidi/dei =
Fome1 k ! j=1

2 ,d! ¥ (log g

= J—— B i)
]_Elx dl‘-" fomi k' a(ki 7)

‘We also remark, following SHEFFER, that in this theorem [z -4 {]” may

be replaced by any ¢g-APPELL set. In particular we can give the following
generalization which is parallel to that of Varma [15].

Annali di Matematica 6
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Let {8,(f)] be any sequence of functions for which the integrals

I, = f OO

exist for m, r =0, 1, 2, ... with I,, == 0 and define

6. Ko, =3 [V atlo + 1
k=0 K
then
s
62) Pute) = [ Kota, a0
4]
is g-APPELL.
In particular let
6.3 Kz, )y =2"s0.[(q7", a, b; ¢, d; — gt/z] =
—n % (@~ "x@rbe (— qt/a).

ko (@O
Tn determine 8,(/) which gives rise to (5.3) we note that (5.1) and (5.3) imply

ZV

JE,-_k(t)t’C _ (@) gt j=0,1,2 .
k=0 k

(©),(d);

Tuverting this relation we get

Bl = ™" 3 (— 1)

"l(ﬂ')"—’(b)%_—_f PP —n)
[ (On - r(Dn—y '

We further note that the generating function for these polynomials is then
given by

S " poa) = elor) f (0.0, b; ¢, d; ulldd(d)
E 0

6. - The g-differential operator of infinite order.

Let S be a continuous linear operator defined on the space of analytic
function in some region D. We say with Davis [5, p. 100] that S is regular
if it takes analytic functions into analytic functions and uniform if it sets
up a one-to-one correspondence between analytic functions. C. BourLET [b]
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has shown that any linear, continuons, regular, and uniform operator S has
the represenfation
k

o] a
I E . { N\
S(u) _kzoAk(m) ok W

where

%
Ap(z) = Z (— 1)J (I;) 2 S ).

j=0

An analogue of this theorem can be proved involving a g-differential
operator of infinite order. In fact we can show that any continuous, linear
operator which is also nniform and regular has the representation

S(u) = b3 Aw(@)Dyu(z)

n=0

where

Ay(x) :ki(— Lyeqke—n [;: zES(z" ).

Of particular interest to us is the linear operator which takes z" info
P,(x) where P is a given ¢g-APPELL set. Call this operator L,. We have for
some A(f)

Abe(el) = 3 Puz)i"/[n]!
g0 that

Al = E(— 1) 3 Pu@)in/[n]! =

n=0

o0 7 ki3
=3 3y ﬁa]ﬁs‘*‘“x*mx@ =
L 8=0

Hence L,(z) = a, where a, is independent of z.
We assert that

o0, k
Lp =3 akl)q/{k]i
k=0
Indeed

Lp{m“) = § OLR-D;:E"/[B?]! = X O [;ﬂ z* % = P,(z).

K0 K=o



44 WALLED A. AL-SALAM: g-Appell Polynomials

If
(A = 2 but"/[n)!

then the operator inverse to L, is given by L, — 1. To see this we know
from above that L,” must be given by

L' = T bDl/[n)!

H=0
g0 that
L;'Pa(e) = S beD*Pula)/[k]! =
k=0¢
— N "
—-k=obk [k P%_k(:v).
Hence

Ly 'Pou(z) = z".

Now it is easy to verify that L,'(s")= P, = P.'(z) where P,'(z) is nih
component of p—.

BEFERENCES

[1] w. A. ArL-Saram and L. Carrirz, Some orthogonal g-polynomials, Mathematische
Nachrichten, vol. 30 (1965), pp. 47-61.

[2] P. AprrLL, Une Classe de polynomes, Annales scientifique Ecole Normale Sup., ser. 2,
vol. 9 (1880), pp. 119-144.

[8] L. CariaTz, Note on orthogonal polynomials related to theta functions, Publicationes
Mathematicae, vol. 5 (1958), pp. 222-228,

[4] — —, Sowme polynomials related fo theta functions, Annali di Matematica pura ed
applicata, ser. 4, vol, 41 (1955), pp. 359-373.

[8] H.™M. Davis, The Theory of Linear Operators, The Principia Press, {1936).

[6] L. Honewr, Introductio in Analysin Infinitorum, (1748), (Chapter 7).

{71 L.Ya. GeroNiMUS, Polynomials Orthogonal on a Circle and Inferval, Pergamon Press,
(1960).

[8] w. Hanx, Uber Orthogonal polynome, die g-Differenzengleichungen genigen, Mathema-
tische Natchrichten, vol. 2 (1949), pp. 4-34.

9] A. Suarma and A. CHaK, The basie analogue of a class of polynomials, Rivista di
Matematica della Universitdh di Parma, vol. 5 (1954), pp. 825-837.

[10] L. M. SuerrER, On sets of polynomials and associated linear functional operafor and
equations, The American Journal of Mathematices, vol. 53 (1931}, pp. 15-38.

[11] — —, Note on Appell polynomials, Bulletin of the American Mathematical Society,
vol. 51 (1945), pp. 739-744.



WALLED A. AL-SALAM: g-Appell Polynomials 45

[12] G. SzEepd, Hin Beilrag zur Theorie der Thetafunkiionen, Preussische Akademie der
‘Wissenschaften, Sitzung der phys.-math. Klasse, (1926), pp. 242.251,

{18] — —, Orthogonal Polynomials, American Mathematical Society Colloquim Publications,
revised edition, New York, (1859).

[14] L. Toscano, Polinomi orthogonali o reciproci di ortogonali nella classe di Appell, Lie
Matematiche, vol. 11 (1956), pp. 168-174.

[15] R.8. Varma, On Appell polynomials, Proceedings of the American Mathematical Society,
vol. 2 {1951), pp. 593-596.

[16] M. WaRrD, 4 calculus of sequences, American Journal of Mathematics, vol. 58, (1936),
pp. 255-266.

[17] 8. Wigert, Sur les polynomes orthogonawx ef I approximation des fractions continues,
Archiv for Mathematik och Eysik, vol. 17 (1928), n° 18.




