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S u m m a r y .  - A class o/nonsel]adjoint ]ourth order di/#rential equations is investigated in this 
paper by a pair o] equations o/ the second order. Special attention is given to establishing 
conditions for the existence o/ solutions subject t o  t w o  point boundary conditions, and is 
achieved basically through various characterizations, comparison theorems and related eigen. 
value problems. 

1 .  - I n t r o d u c t i o n .  

I n  this article we will s tudy  nonselfadjoint  four th  order  differential equa.tions, 
subject  to  a two-point  boundary  condition. I n  the  selfadjoint case this boundary  
condit ion arises in the  ease of a non-uniform elastic rod  clamped at one end and 
subject  to  a non-uniform loading. The  equat ion which arises is 

(1)  (p(t)x")"-- q(t)x = 0 (p(t) >0)  

with  boundary  condit ion given b y  

(2) x ( ~ )  = x ' ( ~ )  = o ,  (px")([J) = ( p x " ) ' ( ~ )  = o . 

The  smallest  fi > ~ for which there  exists a nontr ivial  solution to  (1) and  (2) is the 
smallest  length of r o d  for  which loss of s tabil i ty occurs. (See (~ Stabi l i ty  and Oscil- 
lations of Elast ic Systems ~, Panovko  and Gubanova,  for an in teres t ing s tudy  of 
such equat ions and thei r  historical  deve lopment  since the  work of Euler.) 

In  [3] BA~ETT gives growth conditions on q(t) which are sufficient for  the  existence 
of a smallest  f~ for which there  exists a nontr ivial  solution to (1), (2). For  certain 
nonselfadjoint  equat ions he relates the  exis tence of such a fl to focal conditions f o r  

certain associated second order  equations.  Our approach will b e  different,  and o u r  

resul ts  will apply  to a large class of nonself~djoint  equat ions which can be described 
by  a second order  sys tem of the  form 

(3) x~= a(t)x + b(t)y , y" ~- c(t)x + d(t)y 

where a(t)>~O, b(t) > O, e(t) > 0, d(t)~>0, and  all coefficients are cont inuous on [a, co). 

(*) Entrat~ in Redazione i l  1 ° g iugno  1977. 
The first author is supported by the NRC of Canada under Grant number A3105. 
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Equation (1) can be described by such a system with a(t) ~ d(t) ~- O, b(t) = l i p ( t ) ,  
and c(t) --~ q(t). We also note that  (3) is equivalent to the scalar equation 

(4) 1 \t~ 

~ - ' - b ( t )  - - ' ~ ' ~ ' "  - - c ( t )  x = 0 

which is nonselfadjoint if (d --  a)/b is not constant (see [5J for an equivalence between 
(3) and scalar equations). Generalizing boundary condition (2), we will establish 
criteria for the existence of a smallest fi ~ ~ for which 

(5) x ( ~ ) = x ' ( ~ ) ~ - O ,  y ( f i ) = y ' ( f l ) = O  

is satisfied by a nontrivial solution of (3). Such a fi~ if it exists, will be called the 
/~-point of ~ relative to (3), and will be denoted by #(~, Q) where 

(a(t) b(t) t 
Q(t) = \c(t) d(t)] 

is the coefficient matrix of the linear system (3). We will obtain comparison theorems 
for #-points, which in specific applications yield upper bounds. One such theorem, 4.2, 
relates the existence of #(~, Q) to that  of ~(~, Q), which for (1) is the first conjugate 
point introduced in [1] by Leighton and ~ehari. ~?(~, Q) is defined by the boundary 
condition 

(6) x(~)=x'(~)=0, x(~)=x'(~)=0. 

In Section 5, we derive integral growth conditions on the coefficients of Q(t) which 
are sufficient for the existence of/~(~, Q). In Section 6, we study eigenvalue problems 
associated to the boundary value problem defined by (3), (5). Whenever the matrix 
Q(t) is fixed we wilt use /t(~) for/~(~, Q). 

2. - Pre l iminary  considerat ions .  

I t  will be helpful to interpret solutions to (3) as trajectories of a particle of unit 
mass moving in a plane force field 

F(t) • (F~(t), F~(t)) -~ (a(t)x( t)  -~ b(t) y(t), c(t) x(t)  -t- d(t) y(t)) . 

The question of the existence of solutions of (3) satisfying the boundary conditions (5) 
is then equivalent to the question of existence of a trajectory tangent to the y-axis 
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~t t = ~, ~nd to the  x-axis a t  t = ft. We first s ta te  the  following fundamenta l  lemma 
which is e l ementa ry  and  can be  proved  b y  integration.  

LEPTA 2.1. - Any  nontr ivial  solution {x(t), y(t)) of (3), de te rmined  by  the  initial 
conditions x, x', y, y ' > 0  (resp. <0)  at  t = ~>~ ,  satisfies x, x', y, y' > 0 (resp. < 0) 
for t > ~. 

I t  follows easily f rom the  above t h a t  #(~) cannot  be  a t t a ined  by  a solution satisfy- 
ing the  initial condition x(~) =- x'(~) = y(~) ----= O. We therefore  assume tha t  y(~) # O, 
and by  normalizing, t ha t  y(~) = 1. Hence  we restr ict  our a t ten t ion  to trajectories 
sat isfying the  initial  conditions 

(7) x(~) -~ x'(~) ----- O, y(~) = l ,  y'(~) = ~ <  O. 

Physical ly  this corresponds to firing a part icle of uni t  mass f rom the  point  (0, 1) 
t angen t  to  the  y-axis in the  y-direct ion with veloci ty  ~ < 0. The resul t ing ~-dependent  
t ra jec to ry  or solution will be denoted  b y  z(t; ~) = {x(t;~), y(t; ~)} where ~, unless 
s ta ted  otherwise,  is always assumed to be negative.  We will also denote  the  compo- 
nents  of z'(t; ~) and z"(t; ~) by  x'(t; $), y'(t; ~), and ~'~(t; ~), y"(t; ~). 

The  f~mily (z(t; ~)1~< 0} satisfies various conditions which also allow d~ma- 
mical  in terpre ta t ions  and are useful  in our subsequent  studies.  

Le t  a(~), e(~), ~(~) and fl($) be the  first zeros on (g, co) of x(t; ~), y(t; ~), x'(t; ~) 
and  y'(t; ~) respectively.  

LE)[~A 2.2. - x(t; ~) > 0 and  y(t; ~) > 0 for g <  t < ~o(~)<co. 

P~OOF. - y ( t ;~ )>O on (a, 9(~)) since y ( a ; ~ ) : l .  Now x ( ~ ; ~ ) = x ' ( a ; ~ ) - ~  
= $ '(a;  ~) ~ 0 and x"(~; ~) = b(~) > 0 implies x(t; ~) > 0 on some interval  (a, ~ + s). 
Assume,  cont rary  to the  lemm~, tha t  a(~) < ~(~) for some ~ < O. Then  

tZ O~ 

a x + b y .  

This is a contradict ion,  since x( t )> 0 and  y ( t )>  0 for ~ < $ < a(~). 

The nex t  two lemmas can similarly be proved.  

Q.E.D. 

L E ~ A  2.3. - I f  e(~) < co and  ~(~) < co, t hen  ~ < ~(~) < z(~). 

LE~ 2.4. 

(i) I f  /~(~)< co and 9(~)< co, t hen  ~ <  ~o(~)<fi(~). 

(ii) I f  ~(~) < co, t hen  9(~) < co, ~(~) < 0% and  ~ < 9(~) < ~(~) < a(~)- 

(iii) I f  ~(~) < 0% and fi(~) < co, t hen  a < 9(~) < fi(~) < a(~). 
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We close this  section with  the  following l emmas  which guaran tee  the  existence 

of two special  t ra jector ies .  

LE~IM~ 2.5. - There  exis ts  a ~ < 0 such t h a t  fi(~) < c~, and  y(t; ~) > O, y'(t; ~) < 0 
for ~ < t < fi(~). 

P~ooF.  - Tak ing  ~ - =  0, t he  solution z(t; 0) satisfies x($; 0), y(t; 0), $'(t;  0), and  
y'( t ;  0 ) >  0 for t > a. I t  follows f rom the  cont inuous dependence  of solutions in 

the i r  init ial  conditions tha t ,  for ~ < 0 and  [~t sufficiently small,  the  solution {x(t; ~), 
y(t; ~)} satisfies y($; ~) > 0 for t > ~ and  y'($; ~) > 0 for sufficiently large t. I t  follows 
t h a t  f l (~)<  0% and  the  inequali t ies  of the  s t a t e m e n t  of t he  l e m m a  are  satis- 

fied. Q.E.D.  

L E ~ L ~  2.6. - Fo r  e~exy v > ~, the re  exis ts  ~ ~ < 0 such t h a t  ~ < ~(~) < v. 

P~0oF. - Assume  to the  con t ra ry  t ha t  for all  ~ <  0, ~(~)>v. Then  

o < v(v; ~) = 1 + ~(~ - ~) + e(t)~(t; ~) + d(t)y(t; ~). 

N o w  according to L e m m a  2.1., re(t; ~) < ~(t; 0) and  y(t; ~) < y(t; 0). Hence  we have  

¢; 0 < 1  + ~ ( v - - ~ )  + e(t)oo(t;O)+d(t)y(t;O) 
t~ 0¢ 

and  if we let ~ - -  0% a contradic t ion is obtained.  Q.E.D. 

I n  par t icular ,  there  exists  a ~ < 0 such t ha t  ~(~) < c~. 

3. - D y n a m i c a l  criteria.  

D y n a m i c a l  considerat ions suggest  t ha t  if #(~) exists ,  i t  is realized b y  a t r a jec to ry  
comple te ly  conta ined  in the  closed first quadrant .  Also, if #(~) does not  exist,  there  
should be  a t r a jec to ry  comple te ly  conta ined  i n  the  open first quadran t  for t > 
and  wi th  ve loc i ty  componen t s  x'(t) > 0, y'(t) < 0 for t > a. W e  wilt show these  facts  

below, bu t  we first p rove  two monoton ic i ty  theorems.  

LE~I)IA 3.1. - I f  for some $ <  0, the  funct ion  y'(t; ~) has a first zero f i >  ~, 

then  for all $ < a < 0 t he  funct ion y'(t; o) has  a first zero $ < ft. 

PlCOOF. -- I t  follows f rom L e m m a  2.1 t h a t  for all a > $, y'(t;  a) > y~(t; $) for t > ~. 
Since y ' (~;  ~ ) ~  a <  0 and  y ~ ( f l ; a ) >  y ' (~;  $ ) :  0, i t  follows f rom cont inu i ty  t h a t  

y'(t; (~) has  a zero on (~,/~). Q.E.D.  
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The  proof  of the  following t h e o r e m  is similar.  

L ] ~  3.2. - I f  for some $ <  0 the  funct ion  y(t; ~) has  a first zero @ > ~, then  
for  all a < $ < 0 the  funct ion  y(t; a) has  a first zero b < @. 

Now we are able to p rove  an  exis tence t heo rem for #(:¢). 

T~tn0RE~ 3.3. - #(~) exists  if and  only if for every  $ < 0, y(t; $) or y'(t; ~) has  a 
zero on (~, c~). 

P~ooF. - Assume  #(~) exists  and  is real ized by  the  soluton z(t; ~). Then  it  follows 
f rom L e m m a s  2.1 and  3.2 t h a t  for every  $ < 0, e i ther  y(t; $) or y~(t; $) has  zero 
on (~, c~). To show the  converse,  ~ssume for every  $ < 0, e i ther  y(t; $) or y '( t ;  $), 

has  a zero on (a, co). L e t  z(t; $~) and  z(t; $o) be  the  solutions gua ran teed  b y  L e m m a s  2.5 

and  2.6 respect ively .  B y  L e m m a  3.2, t 0 <  $1<  0. L e t  A -~ {$ ~[$0, $~]]y(t; $) has 
a zero before y'(t; $)} and  let  B -~ {$ ~ [$o, $~]lY'(t; $) has  a zero before y(t; $)}. Then  
$o ~ B,  $~ ~ A ,  so t h a t  bo th  A and B are n o n e m p t y .  By  definit ion A ~ B = 0. More- 
over, i t  follows f rom the  cont inuous dependence  of solutions in the  initial  conditions 

t h a t  b o t h  A and  B are  open subsets  of [$o, $~]. Since [$0, $~] is connected,  A w B 
# [$o, $~], and  hence we conclude t h a t  there  exists  a ~ e [$0, $1] such t h a t  the  funct ion 
y(t; ~) satisfies y(fi; ~) = y'(fi; ~) = 0 for some fi > ~. I t  is clear t h a t  the  t r a j ec to ry  
z(t; ~) realizes #(~). 

As an i m m e d i a t e  consequence we have  the  following: 

CO~0LLA~Y 3.~. - I f  #(~) exists,  it is realized by  a solution z(t; $) = {x(t; ~), y(t; ~)} 
such t h a t  x(t; ~) > O, y(t; $) > 0, x'(t; $) > 0, and  y'(t; $) < 0 on (~, #(~)). 

~ o t e  t h a t  b y  L e m m ~  2.3, if ne i ther  y(t; $) nor y'(t; $) vanishes ,  then  nei ther  does 

x(t; ~) or x'(t; ~). I n  o ther  words,  t h e o r e m  3.3 says t h a t  #(~) does not  exis t  if and  
only if there  is a solution z(t; $) sat isfying x(t; ~) > O, y(t; $) > 0, x'(t; ~) > O, and  

y'(t; ~) < 0 for t > ~. Hence  we have  general ized a resul t  of Ba r r e t t  [3, Theorem 2.2]. 
We  shall conclude this section with  the  following two character izat ions of/~(~), 

which app ly  if #(~) ~ cx~. 

THE0~E~r 3.5. -- #(~) = sup {fi($)I$< O and y(t; ~) > 0 for = < t <  fi(~)}. 

PI~OOF. - Le t  #(~) be  real ized b y  the  t ra jec to ry  z(t; v), and  let fi : sup (fi(~)lv < 
< $ ~ 0}. B y  L e m m a  3.1/3($) is mono tone  increasing as ~.~v, and  bounded  by/~(~).  

I t  follows t h a t  fl = #(~). Fo r  $ < v, I, e m m a  3.2 implies  y(t; ~) has  a zero on (~, #(~)) = 
= (~,/3). Q.E.D.  

The nex t  t h e o r e m  can be p roved  similarly.  

TKE0~E~t 3.6. -- #(:¢) = sup (@($)I~< 0 and  y'(t; $) < 0 for g < t <  @($)}. 
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4. - Comparison  theorems .  

I n  this  section, we will be concerned with three  types  of comparison theorems.  
The first concerns the  relat ion between/~(~) and ~(a), where ~(~) is defined to  be the 
smallest  fl > ~ for which there  exists a nontr ivial  solution to (3) satisfying the  boundary  
condit ion (6). The second concerns the  relat ion be tween tt(~, Q) and #(~, Q*) where 

(8) 
(d(t) b(t)t 

Q*(t) -~ \c(t) a(t)] 

is obta ined  f rom Q by  interchanging a(t) and d(t). The  th i rd  is a S~urmian t y p e  com- 

par ison theorem for re(a, Q) and  # (a , / ) ) ,  where 

IA(t) B(t) 1 
(9) P(t) -= \C(t) D(t)] 

and A(t)>~a(t), B(t)>~b(t), C(t)>~v(t), D(t)>d(t) for t>~g. 
I t  has been shown by  Bar re t t  [3, Theorem 2.1] t ha t  for the  case a ~ 0, d =~ 0, 

the  conditions ~ <  # ( = ) <  ~(~) are satisfied. We will show below the  same result  
holds for  sys tem (3). 

L ] ~ ) t ~  4.1. - I f  ~(~) re la t ive to (3) exists and is realized by  the solution z(t) -= 
= {x(t), y(t)}, t hen  y'(t) has a zero in (~,~](~)). 

P~oo~. - We first  r emark  t h a t  z(t) = z(t; $) for some $ < 0 b y  L e m m a  2.1, hence 
it  follows from L e m m a  2.4 (if) tha t  y(t) has a first zero ~o e (a, V(a)). Now assume 
to the  cont rary  tha t  y ' ( t )< 0 for ~ <  t < V(a). We mus t  t h e n  consider two cases: 
x(t) > 0 for a < t < N(a) and x(t) has a first zero a e (o, ~(a)). Suppose x(t) > 0 for  
a <  t <  N(a), t hen  x(N(~)) = x '~ ( a ) )  = 0, y(N(a)) < 0 and y'(N(~)) <0 .  I t  follows 
f rom g'(t) = a(t)x ~ b(t)y t ha t  g~(~(a)) < 0 and hence N(a) is a re la t ive  ma x i mu m 
for y'(t). This means x'~(~](~)) -~ 0, which is a contradict ion.  Next  assume x(t) has 

first zero a e (@, N(~)), t hen  x(a) -~ O, y(a) < 0, x'(a) < 0 and y'(a) < O. B y  L e m m a  2.1, 
$(t) < 0 for t > a. Again this  is a contradict ion complet ing the  proof. Q.E.D. 

THEORE~i 4.2. - I f  ~(~) exists, t hen  so does #(:¢) and ~ ~ tt(~) ~ U(~). 

P~OOF. - L e t  z(t; ~) = (x(t; ~), y(t; ~)} be the  solution of (1) t ha t  realizes U(~). 
By  L e m m a  4.1, y'(t; ~) has a first zero f i e  (~, ~(=)), and since ~(~) exists, x(t; ~) has 
a first zero. Hence  by  L e m m a  2.4 (iii), y(t; ~) also has a first zero ~o such tha t  ~ < ~ < ft. 
Now for ~ <  a <  O, y'(t; a) has a first zero ~ <  fi by  Theorem 3.1; and for a <  ~ <  0, 
y(t; a) has a first zero ~ < ~ by  Theorem 3.2. Hence  i t  follows f rom Theorem 3.3 t h a t  
#(~) exists. Fur thermore ,  by  Theorem 3.1 and 3.2 ei ther  #(a) < ~o(~) < V(=) or #(~) < 
<fl(~) < ~(~). In  ei ther  case the  inequal i ty  g <  # ( g ) <  ~7(~) is satisfied. Q.E.D. 
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Consider now the following system 

(lO) 
{ u::= d(t)u @ b(t)v 

v" = e(t) u + a(t)v 

obtained from (3) by interchanging the coefficients a(t) and d(t). Let #(~, Q*) denote 
the #-point of ~ relative to this system where Q* has been defined by (8). Since Q* 
satisfies the same ~ssumptions as Q,/~(~, Q*) enjoys the same properties as/~(~, Q) 
Moreover, it can be shown that/~(~, Q) = #(~, Q*). 

LE>~IA 4.3. - Let  {x(t), y(t)} and {u(t), v(t)} be solutions of (3) and (10) respecti- 
vely. Then 

=0 
P]~OOF. 

,x,, (: : )( : ) , .  v, (: :)(;)=0 Q.E.D. 

T]~EO~E)[ 4.4. - / t ( a ,  Q) exists if and only if/t(~, Q*) exists, moreover,/ t(a,  Q) = 
= # (~ ,  Q*). 

P~ooF. - We will only show that if/~(a, Q) exists, then #(~, Q*) exists and #(a, Q*) < 
#(~, Q). Assume to the contrary that  there is a solution {u(t; ~), v!t; ~)} ~ {u(t), v(t)} 
of (12) satisfying u > 0 ,  v > 0 ,  u ' > 0  and v ' < 0  for a < t < # ( ~ , Q ) .  Let {x(t;a), 
y(t; a)} -- {x(t), y(t)} be the solution that realizes /~(~, Q). By Lemma 4.3, we have 

~(~) : 1' 

i x / J  
= ( x v ' - v x ' ) ( ~ ( ~ ) )  < o 

which is the desired contradiction. Q.E.D. 

As an application of the above theorem, we derive the following Sturmian type  
comparison theorem. 

THEOI%E3I 4.5. -- Let #(~, Q) < oo and let #(~, F)  denote the/ , -point  of ~ relative 
to the system 

(11) f '  = A(t) J @ B(t) g,  g" = C(t) f 4- D(t) g 
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where A(t)>a(t), B(t)>b(t), C(t)>c(t), ~nd D(t)>d(t) for ~ < t < t t ( ~  , Q). Then  #(~, P)  

exists and ~ < tt(~, P)  < #(~, Q). 

P~0OF. - Le t  {u(t; ~), v(t; ~)) ~ {u(t), v(t)} be the  solution of (10) which realizes 
#(~, Q*) ~ #(a,  @). Assume to the  cont ra ry  tha t  the  sys tem (11) has a solution {](t), 
g(t)} such tha t  ](t)>O, g(t)>O, ] ' (x)>O and  g'( t )<O for ~ < t < # ( ~ , Q ) .  Then  

we have  

[,, =,, (: :)(:) 

for ~ <  t < #(~,Q).  Bu t  

;)(;) 
< 0  

[(:) q,~) -(u,~)U] ]~ >0,  

which is the  desired contradict ion.  Q.E.D. 

As another  applicat ion of Theorem 4.4, we prove t h a t  #(fi) is a monotone  increas- 

ing funct ion of f i e  [~, oo). 

T g E O ~  4.6. - I f  ~ < fl and tt(/~) exists~ then  so does #(~) and/~(~) < #(/~). 

P~ooF. - Le t  {u(t), v(t)} be the  solution of (10) which realizes #(fi, Q*) -~ #(fl, Q). 
Assume to the  cont rary  tha t  {x(t), y(t)} is a solution of (3) such t h a t  x > 0, y > 0, 
x ' >  0 and y ' <  0 for ~ <  t <  #(fi, Q). Then  we have  

[ ( : )  0 = ( x ,  ~) (~, ~)(Yt 
#(fl.O) 

-- > 0  
\~/j~ 

which is the desired contradict ion.  Q.E.D. 

In  addit ion to the  above comparison and monoton ic i ty  theorems,  we can show 
the  cont inui ty  of #. This can be done most, convenient ly  in the  following more general  
context .  Le t  5 be the  set  of all 2 by  2 matr ices Q(t) ~ (q~j(t)) with entries continuous 
on [~, oo) and satisfying qll( t)>0,  q~(t) > O, q~.~(t) > 0, q2~(t)>0. For  P(t) = (p~(t)) 
und Q(t) = (q~s(t)) in 5 ,  write Q < P  if q,(t)< p,(t) for t >  g. Assume 5 endowed with 
the  sup metric.  I t  follows tha t  there  is a real v~lued funct ion # ( ~  .) defined on a 

sui table subset  go of ~ .  

TgEO~E~ 4.7. - # ( ~  ") : ~-o -~ (~, co) is continuous. 

P~ooF. - Note  tha t  g0 is just  the  set of Q for which #(~, Q) is defined. For  Q e g0, 
let  #(~, Q) be realized by  a t ra jec tory  z(t; Q, #). Our proof is by  contradict ion,  and 
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we assume a sequence Q~eYo,  n = 1 , 2 , . . . ,  and an e > 0 ,  such tha t  [ /~ (a ,Q) -  
- #(~, Q-)I > s. Le t  F(~, Q.) be realized b y  the  t ra jec tory  z(t; Q,, ~). I t  is easy to 
show tha t  !i roe ~,, = ~. The  condit ion ]#(a, Q ) - / ~ ( a ,  Q~)] > s implies tha t  y'(t; Q,, ~)  

is of constant  sign on the  in terval  [#(a, Q) - s,/~(~, Q) + s]. I t  follows from the  con- 
t i nu i ty  of solutions in thei r  equat ions and initial  conditions, t h a t  since y'(t; Q, ~) 
changes  sign a t / , (a~  Q), for Q~ ~nd ~. sufficiently close to  Q and ~ respectively,  the  
funct ion y'(t; Q,, ~)  must  change sign on (#(a, Q) - s, #(~, Q) ~ e), which completes 
the  proof. Q.E.D. 

We can also prove  the  following: 

T g ~ o ~  ~.8. - ~/(o~, Q) is a continuous funct ion of a. 

5. - Ex i s t enc e  o f  # (~) .  

As applications of the  previous development ,  we will derive some sufficient con- 
ditions for the  existence of tt(~). 

cx~ T g 

T g ~ o ~  5 . 1 . -  I f  fo(~) [ f  f~a(~)d~ds] d~ = c<), then  #(fl) exists for every  fl > ~. 
P~ooF. - L e t  fi > z¢ and  assume t h a t  {x(t; ~), y(t; ~)} = {x(t), y(t)} is a solution 

of (3) sat.isfying x > 0, y > 0, x ~ > 0 and  y'  < 0 for t > ft. Now x" > 0 for t > fi im- 
plies the  existence of posi t ive constants  k, ~ so t.hat x(t) > kt for t > O. ]~ence ~ o m  (3), 

t s t s 

0 ~ 6 6  

We then  have  
t t r s 

co  Z 8 

But  fc(~)[f fa(~)~d;ds]d~ = c~ implies t h a t  the  r ight  hand  side of this equat ion 
will eventual ly  be posit ive as tlvoo. This contradict ion establishes the  theo- 
rem. Q.E.D. 

rx~ "g 8 

Co~oLLA~ 5.2. - ~f fo(~) [ f  fCd(¢)dCd~]d~ = ~ ,  then /z(fi) exists  for every 

PRoo~. - This follows f rom Theorem 4.4. 

~-ote t ha t  in the  proof of the  above theorem,  we can obtain the  inequal i ty  

t t 

0 > yr(t) = ~ + f ~  + d y > ~  + f~e(~)d~.  
t~ t~ 
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Hence  we h a v e  a s impler  t e s t :  
c o  

T H E O ~  5.3. - I f  f tc( t )dt  = 0% t h e n  #(fl) exis ts  for every  ~ >  

Theo rem  5.3 can ac tua l ly  be  improved  in the  case when a = d - -  0 in (3) (see [2]). 

TIIEOI~E~ 5.4. - L e t  a = d - - 0  in (3). I f  

co  X t 

t h e n  #(fl) exis ts  for every  fi > ~. 

THEO~E~ 5.5. - L e t  

0 

where  ~ > 0, ~(t) > 0 and  b o t h  are cont inuous on [~z, oo). I f  b~>b and  e ~  and  ~(a, Q) 
exists ,  t h e n  /t(~, Q) exis ts  and  ~ < #(~, Q) < V(~, Q). 

P~ooF.  - This  follows f rom the  compar ison  theorems .  

Theorem 5.1 th rough  5.4: provide  sufficient conditions for the  exis tence of #(~). 
As a consequence of the  sufficient conditions for the  exis tence of ~(~, Q) given b y  
L~IGHTO~ and  I~E~I_~I [1], and  BAlZlCETT [3], Theo rem 5.5 provides  fur ther  sufficient 
conditions for  the  exis tence of #(~). 

6. - Associated eigenvalue problems. 

The compar ison and  oscillation theory  of differential equat ions is closely re la ted  
to eigenvalue problems [7]. I n  this section we will app ly  our previous resul ts  to the  

eigenvalue p rob lem 

= ,~.q(t) , Q ( t )  e ~- 
( 1 2 )  

x ( ~ )  = ~ ' ( ~ )  = o - -  v ( ~ )  = v ' ( ~ )  • 

L E P t a  6.1. - For  each ~ > 0, there  exists  a posi t ive ~t such t ha t  #(c~, 2Q) < c~ -t- T. 

P ~ o o r .  - I t  is not  difficult to show t h a t  for cr ~ 1.873/z, and  

(o :) 
K~ = tt(~, K~) = ct + 

0 . 2  ~ 
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Le t  A* be so large t ha t  K~<A*Q for g < t < ~  + ~. Then #(~, 2 * Q < # ( g , K ~ ) =  
-~ g i f - ,  as required. Q.E.D. 

~ 6.2. - #(o~, )~Q)~c~ as ~ ~ -~ O. 

PROOF. -- I t  can be shown by straightforward calculation tha t  for any  positive 
constant  M, if 

{(~/2 ~ / 2  t 2.395 

then/~(g,  K~) = ~ ~ M. I~ow suppose to the contrary tha t  ;-o > O exists such tha t  
for all 0 < ~ < Ao, # ( ~  AQ) < ~ -[- M. Choose positive A* so small that, 

A*Q<.<Ko for t e [ ~ ,  ~q-  M] . 

Then /,(~, A'Q) ~ # ( ~  K~) ~ ~ q- M is a contradiction. Q.E.D. 

The following existence theorem c~n now be shown. 

Tm~o~E).f 6.3. - The eigenvalue problem (12) has a positive eigenvalue Ao so tha t  
(i) A0 is simple and the corresponding eigenfunction {u, v} satisfies u > 01 v > 0, 
u ' ~  0 and v ' ~  0 for ~ < t ~ fi; and  (if) ~o is smaller th~n any  other positive eigen- 
value. 

P~ooF. - By  Theorem 4.6 and Lemmas  6.1 and 6.2, there exists a positive number  Zo 
such tha t  ~](e, AoQ) = fi~ thus  by Corollary 5.4, ),o is an eigenvalue of (12) and h~s 
the  desired property  (i). To show (if), let ~ < ~o be another  positive eigenvalue of (12) 
and {f~ g} be its corresponding eigeniunetion.  Now {], g} satisfies the system 

(;; (;) 
and the conditions (5), hence /3>#(~, }.~Q) by definition of tt(c~, ;.~Q). 
)~Q< AoQ, hence fi : # ( ~  ) .oQ)<#(~,  A~Q)<fl which is the desired 
tion. Q.E.D. 

~ O W e V e r ~  

contr.~dic- 

We will denote the smallest positive eigenvalne of (12) by ).(~, fi, Q). Then as 
shown in the  proof of the above theorem, if #(g, ~0Q)= fl, then  A(g, fi, Q)---~0. 
The converse is also true. 

THEO~EI~f 6.4. -- Le t  ).o ~ 0, then  #(~, ~oQ) = fi if and  only if A(~, fl, Q) = ;.0. 

PRooF. - We need to show tha t  AIg~ fi, Q) ~- ~o implies # ( ~  )~oQ) -~ ft. By deft- 
nition of 2o and /~(~, AoQ), fi>,u(~, )~oQ). Assume to the contrary tha t  fi > #(~:~ )~oQ), 

10 - .Annali  dt Matemal ica  
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t h e n  b y  T h e o r e m  4.6 a n d  L e m m a s  6.1 and  6.2, A* exists  in (0, 20) such  t h a t  

fi = #(~, ~*Q) which  impl ies  ~o ~ ~(~, fi, Q) ~- ~* < )~o. Q .E .D.  

T h e o r e m  6A has  m a n y  consequences  m o s t  of which  are  no t  difficult  and  will be  

s t a t e d  w i t h o u t  proof.  

COI~OLLA~Y 6.5. -- ~(~, fl, Q) ---- )~(g,/~, Q*). 

COBOLLAI~Y 6.6. -- L e t  P ,  Q ~ ~-, a n d  g s s u m e  Q < P for  g < t < ft. T h e n  ~.(~, fi, 2 )  < 
< ~(~, ~, Q). 

CO~OLLAI¢¥ 6.7. - T he  f u n c t i o n  A(g, fi, Q) is a con t i nuous  m o n o t o n e  decreas ing  

f u n c t i o n  of ft. 

COI~O]~LAICY 6.8. - g(~, fl, ") : ~ --> (~, co) is con t inuous .  

COIC0LLA~Y 6.9. - /~(~, Q) ~ c~ if ~nd on ly  if ~(a, fl, Q) > 1 for  ail # > ~. 
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