Fourth Order Nonselfadjoint Differential Equations
with Clamped-Free Boundary Conditions.
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Summary. — A class of nonseljadjoint fourth evder differeniial equations is investigated in this
paper by a pair of equations of the second order. Special atlention is given to establishing
conditions for the ewistence of solutions subject to two point boundary conditions, and is
achieved basically through various characterizations, comparison theorems and related eigen-
value problems.

1. — Introduction.

In this article we will study nonselfadjoint fourth order differential equations,
subject to a two-point boundary condition. In the selfadjoint case this boundary
condition arises in the case of a non-uniform elastic rod clamped at one end and
subjeet to a non-uniform loading. The equation which arises is

@) (p)a"y'— qtyw =0  (p(t) >0)

with boundary condition given by
(2) w(o) = &'(0) =0, (pa")(B) = (pa")' () = 0.

The smallest § > « for which there exists a nontrivial solution to (1) and (2) is the
smallest length of rod for which loss of stability occurs. (See «Stability and Oseil-
lations of Elastic Systems», Panovko and Gubanova, for an interesting study of
such equations and their historical development since the work of Euler.)

In[3] BARRETT gives growth conditions on ¢{¢) which are sufficient for the existence
of a smallest § for which there exists a nontrivial solution to (1), (2). For certain
nonselfadjoint equations he relates the existence of such a § to focal conditions for
certain associated second order equations. Our approach will be different, and our
results wiil apply to a large class of nonselfadjoint equations which can be described
by a second order system of the form

3) o' =a)w+bt)y, o =et)s+ dt)y

where a(f) >0, b() > 0, o(t) > 0, d(t)>0, and all coefficients are continuous on [«, co).

(*) Entrata in Redazione il 1° giugno 1977.
The first author is supported by the NRC of Canada under Grant number A3105.
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Equation (1) ean be described by such a system with a(f) = d(f) = 0, (1) = 1/p(i),
and o{t) = ¢(t). We also note that (3) is equivalent to the scalar equation

1N [{e@) + a@) L\ | (4 —a®))
W () _(( b0 )”) (55" «
a(tyd®) [(a(®)Y .
+(““‘—““‘b(t) "‘(-b—(}j) —c(t))x =0
which is nonselfadjoint if (d — «)/b is not constant (see [5] for an equivalence between

(3) and scalar equations). Generalizing boundary condition (2), we will establish
criteria for the existence of a smallest § > o for which

(5) wo) =a'() =0, yP =y =0

is satisfied by a nontrivial solution of (3). Such a B, if it exists, will be called the
u-point of « relative to (3), and will be denoted by u(«x, @) where

alt)  b(z)
(t) =
e(t)  d()
is the coefficient matrix of the linear system (3). We will obtain comparison theorems
for u-points, which in specific applications yield upper bounds. One such theorem, 4.2,
relates the existence of u(a, @) to that of n(e, @), which for (1) is the first conjugate

point introduced in [1] by Leighton and Nehari. #(ex, @) is defined by the boundary
condition

(6) wor) = &) =0, #(p)=0a(p)=0.

In Section 5, we derive integral growth conditions on the coefficients of ¢(¢) which
are sufficient for the existence of u(o, @). In Section 8, we study eigenvalue problems
associated to the boundary value problem defined by (3), (). Whenever the matrix
Q) is fixed we will use plx) for ule, Q).

2. — Preliminary considerations.

It will be helpful to interpret solutions to (3) as trajectories of a particle of unit
mags moving in a plane force field

F(t) = (F.(1), (1) = (a@® () + b(H)y(), e(®)2(f) + d)y(®)) -

The question of the existence of solutions of (3) satisfying the boundary conditions (5)
is then equivalent to the question of existence of a trajectory tangent to the y-axis
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at t = a, and to the z-axis at { = f. We first state the following fundamental lemma
which is elementary and can be proved by integration.

LemMA 2.1. - Any nontrivial solution {x(z), y(?)} of (3), determined by the initial
conditions x, #', ¥, ¥’ >0 (resp. <0) at t = d>«, satisfies », 2/, y, ¥’ > 0 (resp. << 0)
for t > 4.

It follows easily from the above that u(«) cannot be attained by a solution satisfy-
ing the initial condition x(x) == 2'(et) = y(a) = 0. We therefore assume that y(x) 540,
and by normalizing, that y(«) == 1. Hence we restrict our attention to trajectories
satisfying the initial conditions

(7) wlo) =o' () =0, =1, yla=£§<0.

Physically this corresponds to firing & particle of unit mass from the point (0, 1)
tangent to the y-axis in the y-direction with velocity £ < 0. The resulting £-dependent
trajectory or solution will be denoted by =2(f; & = {(¢;.£), y{¢; £)} where &, unless
stated otherwise, is always assumed to be negative. We will also denote the compo-
nents of 2'(4; &) and 2'(t; &) by @'(t; &), y'(t; £), and #'(t; &), y'(t; ).

The family {2(¢; £)|& < 0} satisfies various condifions which also allow dyna-
mical interpretations and are useful in our subsequent studies.

Let (&), o(&), 7(£) and (&) be the first zeros on (x, oo) of a(t; &), y(t; &), @'(t; &)
and y'(¢; &) respectively.

LEMMA 2.2. — ®(t; §) > 0 and y(t; &) >0 for a < t< o(f)<oco.

Proor. — y(t; &) >0 on («, o(f)) since y(x; &) =1. Now @(x; &) = a'(a; &) =
= o' (ot; &) == 0 and " (e; &) = b(a) > 0 implies x(¢; &) > 0 on some interval (e, o 4 ).
Assume, contrary to the lemma, that o{&) < p(&) for some £< 0. Then

o(§) o(§)
0=0(0); 8 = [ [ ao+by.

22 *

This is & contradiction, since (f) > 0 and y(f) >0 for a <t < o(f). QE.D.

The next two lemmas can similarly be proved.

Lemyma 2.3. - If g(8) < oo and 7(£) < oo, then o< g(&) < 7(&).

LeMMmA 2.4,
(i) Tf B(§) < oo and g(€) < oo, then x< g(£) < B(£).
(i) If 6(£)< oo, then o(&) < oo, (&)< oo, and a< o(&) < (&) < o(£).
(ifi) If o(f) < oo, and B(£) < oo, then a< o(&) < (&) < a(§).
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We close this section with the following lemmas which guarantee the existence
of two special trajectories.

TEMMA 2.5. — There exists a & < 0 such that §(§) < oo, and y(#; &) > 0, ¥'({; §) < 0
for a< << B(&)

Proor. — Taking & = 0, the solution 2(f; 0) satisfies a(f; 0), y(¢; 0), 2'(¢; 0), and
y'(t; 0) > 0 for t>a. It follows from the continuous dependence of solutions in
their initial conditions that, for & < 0 and [&] sufficiently small, the solution {x(t; &),
y(t; &)} satisfies y(t; &) > 0 for ¢ > a and y'(f; &) > 0 for sufficiently large ¢. It follows
that B(§) < oo, and the inequalities of the statement of the lemma are satis-

fied. Q.E.D.

LEMMA 2.6. — For every v > a, there exists a &£ << 0 such that e« << g(&) < ».

Proor. — Assume to the contrary that for all & < 0, o(§)=». Then
0<@/(V3§)—1+5(?’—“)+ff w(t; &) + dt)y(t; &) .
Now according to Lemma 2.1, o(f; & < #(¢; 0) and y(¢; &) < y(¢; 0). Hence we have
0<1+&v—a) +H a(t; 0) + d(t)y(; 0)

and if we let £|— oo, 2 contradiction is obtained. Q.E.D.

In particular, there exists a &< 0 such that g(§) << oo.

3. — Dynamical criteria.

Dynamical considerations snggest that if u(«) exists, it is realized by a trajectory
completely contained in the closed first quadrant. Also, if u(x) does not exist, there
should be a trajectory completely contained in.the open first quadrant for ¢ > «
and with velocity components #'(t) > 0, y'(1) < 0 for ¢ > . We will show these facts
below, but we first prove two monotonicity theorems.

LemMa 3.1. — If for some &< 0, the function y'(f; &) has a first zero > a,
then for all £< o< 0 the function ¥'(¢; 6) has a first zero &< §.

PRroOF. ~ It follows from Lemma 2.1 that for all o > &, y'(1; ) > y'(¢; &) for £ > o
Since ¥'{a;0) = o< 0 and ¥'(8; ) > y'(B; &) = 0, it follows from continuity that
¥'(t; o) has a zero on («, ). Q.E.D.
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The proof of the following theorem is similar.

LEmMMA 3.2. — If for some & < 0 the function y(¢; &) has a first zero ¢ > «, then
for all o << £< 0 the function y{t; o) has a first zero 6 < g.
Now we are able to prove an existence theorem for u(a).

THEOREM 3.3. — u(x) exists if and only if for every & < 0, y(¢; &) or y'(¢; &) has a
zero on (o, oo).

Proor. — Assume u(x) exists and is realized by the soluton #(¢; £). Then it follows
from Lemmas 2.1 and 3.2 that for every & < 0, either y{t; &) or ¥'(f; £) has zero
on (o, co). To show the converse, agsume for every &< 0, either y(f; &) or y'(i; &),
has a zero on {«, oo). Let z(t; &) and 2(7; &,) be the solutions guaranteed by Lemmas 2.5
and 2.6 respectively. By Lemma 3.2, & < & < 0. Let A = {§e[&,, &]ly(t; &) has
2 zero before y'(¢; £)} and let B = {£ €[&,, &1ly'(¢; &) has a zero before y{l; £)}. Then
& € B, &, € A, so that both A and B are nonempty. By definition 4 N B = §. More-
over, it follows from the continuous dependence of solutions in the initial conditions
that both A and B are open subsets of [&, &]. Since [&,, ;] is connected, 4 U B
#[&,, &], and hence we conclude that there exists a £ €[&,, &] such that the function
y(t; &) satisfies y(8; &) = y'(B; &) = 0 for some > «. It is clear that the trajectory
2(t; &) realizes u().

As an immediate consequence we have the following:

COROLLARY 3.4. — If u{o) exists, it is realized by a solution 2(¢; &) = {x(t; &), y(#; &)}
such that x(f; &) > 0, y(t; &) >0, 2'(t; £) > 0, and ¥'(¢; &) < 0 on (a, ,u(oc).

Note that by Lemma 2.3, if neither y(t; &) nor 4'(¢; &) vanishes, then neither does
a(t; &) or #'(t; £). In other words, theorem 3.3 says that u(«) does not exist if and
only if there is a solution 2(¢; &) satisfying #(¢; &) > 0, y(t; &) > 0, «'(t; &) > 0, and
y'(t; &) < 0 for t > «. Hence we have generalized a result of Barrett [3, Theorem 2.2],

We shall conclude this section with the following two characterizations of u(x),
which apply if p(e) < co.

THEOREM 3.5. — plo) = sup {f(E)|E< 0 and y(f; &) > 0 for a<t < B(&)}

PrOOF. — Let u{a) be realized by the trajectory z(f; v), and let § == sup {f(&)Pr <
<& < 0}. By Lemma 3 1 B(£) is monotone increasing as &}y, and bounded by u(a).
It follows that § = u(«). For & < v, Lemma 3.2 implies y(¢; &) has a zero on («, u(x)) =
= (e, ). Q.E.D.

The next theorem can be proved similarly.

THEOREM 3.6. — u(o) = sup {o(&)|E< 0 and y'({; &) < 0 for a<i<< o(&)}.
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4. — Comparison theorems.

In this section, we will be concerned with three types of comparison theorems.
The first concerns the relation between p(x) and 5(«), where () is defined to be the
smallest § > « for which there exists a nontrivial solution to (3) satisfying the boundary
condition (6). The second concerns the relation between u(e, @) and u(a, @*) where

' aw) b
(®) (1) = (G(t) a(t))

is obtained from @ by interchanging a{t) and d{¢). The third is a Sturmian type com-
parison theorem for u{wa, @) and u(«, P), where

A@)  B()
9) P(t) = o) D

and A(f)>=a(t), B(t)>b), Ct)>e(t), D) >d() for i>a.

It has been shown by Barrett [3, Theorem 2.1] that for the case ¢ =0, d =0,
the conditions o << u(x) < 5(x) are satisfied. We will show below the same result
holds for system (3).

Leuma 4.1. — If y(«x) relative to (3) exists and is realized by the solution 2(f) =
= {x(t), y(t)}, then y'(t) has a zero in (o, 7(a)).

PROOF. — We first remark that 2(f) = z(; &) for some & < 0 by Lemma 2.1, hence
it follows from Lemma 2.4 (ii) that y(f) has a first zero g € («, (). Now assume
to the contrary that y'(f) < 0 for « <t << #(x). We must then consider two cases:
#(t) > 0 for a < { < n(x) and x(t) has a first zero o€ (p, n{x)}. Suppose z(t) > 0 for
a< t<na), then z(n(e)) = &' (n(2)) = 0, y(n(x)) <0 and y'(n(x)) <0. It follows
from 2”(t) == a(t)x -+ b{t)y that w”(n(oc)) < 0 and hence 5(a) is a relaﬂ:ive maximum
for y'(t). This means #’(y(«)) = 0, which is a contradiction. Next assume #(t) has
a first zero o € (g, 4(«)), then 2(c) = 0, y(s) < 0, #'(0) <0 and y'(s) < 0. By Lemma 2.1,
#(t) < 0 for £ > ¢. Again this is a contradiction eompleting the proof. Q.E.D.

THEOREM 4.2. — If 5(«) exists, then so does w(x) and a << u(e) < 7(e)-

Proor. — Let 2(t; &) = {&(t; &), y(t; £)} be the solution of (1) that realizes n{a).
By Lemma 4.1, '(#; &) has a first zero f € («, 9(«)), and since 7(«) exists, #(t; &) has
a first zero. Hence by Lemma 2.4 (iii), y(t; £) also has a first zero ¢ such that « < ¢ < f.
Now for £ < ¢ < 0, y'(; o) has a first zero § < g by Theorem 3.1; and for o < &< 0,
¥(t; 0) has a first zero § << p by Theorem 3.2. Hence it follows from Theorem 3.3 that
(o) exists. Furthermore, by Theorem 3.1 and 3.2 either u{a)<o(&) < n{x) or plo) <
<P(£) < n(e). In either case the inequality « < u(x)< n(«) is satisfied. Q.E.D.
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Consider now the following system

{ u'= d(t)u -+ b(t)v
(10)

" = ¢(t) u -+ a(t)v

obtained from (3) by interchanging the coefficients a(f) and d(f). Let u(x, §*) denote
the p-point of « relative to this system where @* has been defined by (8). Since @*
satisfies the same assumptions as @, u(«, Q%) enjoys the same properties as u(x, Q)
Moreover, it can be shown that p(x, @) = u(e, @%).

Lemma 4.3. — Let {2(2), (1)} and {u(t), »(t)} be solutions of (3) and (10) respecti-

vely. Then
17 7 y 137
@y, — o, )| =0.
Proor.

v\" y\" ¢ a\fu ¢ ad\(x BD
(@, y) p — (u, v) z = (z, ¥) i bl le — (wu, v) e b \y = 0. Q.E.D.

THEOREM 4.4, — ulo, @) exists if and only if u(«, @*) exists, moreover, u(«, @) =
= ple, @)

Proor. — We will only show that if u(a, @) exists, then u(e, @*) exists and ple, Q%) <
plo, @). Assume to the contrary that there is a solution {u(t; &), v(t; &)} = {u(?), v(!)}
of (12) satisfying w >0, v >0, ' >0 and v < 0 for a<<t<< u(x, Q). Let {x(t; o),
y(t; )} = {#(?), y(t)} be the solution that realizes u(«, @). By Lemma 4.3, we have

#e) i At
u y
0= f [(w, 9 (@) — () (x)} a
* AN Y 7 Hu(x)
- [{x, ) (v) —(w,0) (x) } = (@0 — 02') (o)) < 0

which is the desired contradiction. Q.E.D.

As an application of the above theorem, we derive the following Sturmian type
comparison theorem.,

THEOREM 4.5. — Liet u(x, @) < oo and let u(e, P} denote the u-point of « relative
to the system

(11) f'=AWMf+ Bltyg, ¢ = CWHf-+ Dit)g
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where A(t)>a(t), B(t)>b(t), O)>c(t), and D(t)>d(t) for a<t<u(x, Q). Then u(x, P)
exists and a << ple, P) << ule, Q).

Proor. — Let {u{t; &), v(t; &)} = {u(t), v(t)} be the solution of (10) which realizes
wle, @%) = ple, Q). Assume to the contrary that the system (11) has a solution {f(#),
g()} such that f(t) >0, g{t) >0, f(x) >0 and ¢'(t) < 0 for a << < pfe, @). Then
we have

I R R [ R

c—OC a—A\[|u
::(fyg) d—1D b— Bl <0
for o<t < p(a, Q). Butb

v I g iu{x.Q)
[(fy 9) (%) — (4, ) (};) ]o‘ >0,

which is the desired contradiction. Q.E.D.

As another application of Theorem 4.4, we prove that u(f) is a monotone increas-
ing function of § e[a, co).

THEOREM 4.6. — If a << § and u(p) exists, then so does u(x) and u(e) < u(pB).

Proor. — Let {u(?), v(f)} be the solution of (10) which realizes u(8, @*) = u(p, @)-
Assume to the contrary that {w(f), y{¢)} is a solution of (3) such that # >0, y >0,
@'>0 and y'< 0 for a <<t < u(f,Q). Then we have

% Y 1 {u(B.Q)
0 =[(m, 9) (u) — (4, v) (x) L >0

which is the desired contradiction. Q.E.D.

In addition to the above comparison and monotonicity theorems, we can show
the continuity of u. This can be done most conveniently in the following more general
context. Let F be the set of all 2 by 2 matrices @(f) = (g.;(f)) with entries continuous
on [a, 00) and satistying ¢u(t) >0, gu(®) > 0, gu(®) > 0, gu(H)>0. For P(t) = (py(1)
and Q(t) = (g,,(%)) in F, write @ <P if ¢,,(t) <p,(t) for t>o. Assume F endowed with
the sup metric. It follows that there is a real valued function u(e, -) defined on a
suitable subset &, of F.

THEOREM 4.7. — plo, -): Fy = (@, o0) is continuous.

Proor. — Note that F, is just the set of @ for which u(e, @) is defined. For Qed,,
let p(x, Q) be realized by a trajectory z(¢; @, £). Our proof is by contradiction, and



8. 8. CuExNe - A. L. EpELsoN: Fourth order nonselfadjoint, ete. 139

we assume a sequence Q,€ F,, »=1,2,..., and an &> 0, such that |u(e, Q) —
— plo, @) > e. Let uler, @,) be realized by the trajectory z(t; Q,, £,). It is easy to
show that }LI_I}DIO &, = £ The condition |u(a, @) — ula, @,)] > ¢ implies that y'(¢; @,, &,)

ig of constant sign on the interval [u(o, @) — &, ule, @) + ¢]. It follows from the con-
tinuity of solutions in their equations and initial conditions, that since ¥'(¢; Q, &)
changes sign at u(«, Q), for @, and &, sufficiently close to @ and & respectively, the

function y'(¢; Q., &,) must change sign on (u(x, Q) — &, ulo, Q) + &), which completes
the proof. Q.E.D.

We can also prove the following:

THEOREM 4.8. ~ {«, @) is a continuous function of .

5. — Existence of u{x).

As applications of the previous development, we will derive some sufficient con-
ditions for the existence of u(a).

THEOREM 5.1. ~ If [o(v) [ [ [¢a({)dZds]dr = oo, then u(B) exists for every > a.
Proor. — Let 8> « and assume that {u(t; &), y(t; &)} = {o(t), y(t)} is a solution
of (3) satisfying #>0,y> 0,0 >0and y < 0fort>pf Nowa' > 0forf>p im-
plies the existence of positive constants &, 8 so that x(f) > ki for ¢ > 5. Hence from (3),

it s £ s
alt) = a(0) + (Ot — 8) + [ [aw + by> k[ [cat@)as.
8 6 d &

‘We then have

8

0> y'(t) = & + tGde}kac(r) [ffa(@)c’:déds]dr.
B 4] s 4

oo T 8
But f e(t)[ f f a({)Cdl ds]dr = oo implies that the right hand side of this equation
will eventually be positive as ijoco. This contradiction establishes the theo-
rem. Q.ERED.

COROLLARY 5.2. — If [o(r)[[ [¢d(l)dtds]dr = oo, then p(B) exists for every
f > a.

Proor. — This follows from Theorem 4.4,

Note that in the proof of the above theorem, we can obtain the inequality

t i

0> ') =&+ [oo + dy>§ + [co0)as.
8 8
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Hence we have a simpler test:

THEOREM 5.3. — If ftc(t)dt: oo, then u(f) exists for every f> .

Theorem 5.3 can actually be improved in the case when a = d = 0 in (3) (see[2]).

THEOREM 5.4. — Let a =d=0 in (3). If

Lol

fc(m) { ' f c(s)dsdt]zdm = oo,

then u(f) exists for every f> .

THEOREM 5.0. — Let

where b > 0, &(t) > 0 and both are continuous on [«, co). If b>b and ¢>4& and n{et, Q)
exists, then u(x, Q) exists and o< p(a, Q) < n(z, Q).

Proor. — This follows from the comparison theorems.

Theorem 5.1 through 5.4 provide sufficient conditions for the existence of u(ax).
As a consequence of the sufficient conditions for the existence of n(oc,Q) given by
LergaroN and NgHARI [1], and BARRETT [3], Theorem 5.5 provides further sufficient
conditions for the existence of u(ex).

6. — Associated eigenvalue problems.

The vomparison and oscillation theory of differential equations is closely related
to eigenvalue problems [7]. In this section we will apply our previous results to the
eigenvalue problem

@

29(1) (y) , QW ed

@) = '(x) = 0 = y(f) = y'(B) .

p——

2w

S
I

(12)

LeMumA 6.1. - For each 7 > 0, there exists a positive A such that u(x, AQ) <o + 7.
Proor. — It is not difficult to show that for ¢~ 1.873/7, and

0 o
Ko = st 0/ wloy Ko) = o + 7.



S. 8. CEENG - A. L. EpELSON: Fourth order nonselfadjoint, ete. 141

Let A* be so large that K,<i*Q for a<i<a+4 7. Then pula, 1*Q<ulx, Ks) =
= a - 7 a§ required. Q.E.D.

LEMMA 6.2. — plo, 2Q)} oo as 4§ + 0.

Proor. — 1t can be shown by straightforward calculation that for any positive
constant M, if

o}z 2 2.395
K = , OR———
o2 6?2 M
then p(a, Ks) = a + M. Now suppose to the contrary that 1, > 0 exists such that
for all 0 < A<C g, plo, AQ) << & -+ M. Choose positive 1* so small that

Q< Ky fortele, o+ M].

Then p(ot, A*Q) > u(a, Ko) = o -+ M is a contradiction. Q.E.D.

The following existence theorem can now be shown.

TeEOREM 6.3. — The eigenvalue problem (12) has a positive eigenvalue 1, so that
(i) 4, is simple and the corresponding eigenfunction {u,v} satisfies >0, v> 0,
#'>0 and v'< 0 for o << t < f; and (ii) A, is smaller than any other positive eigen-
value.

ProOF. - By Theorem 4.6 and Lemmas 6.1 and 6.2, there exists a positive number 4,
such that #{«, 4,0) = 8, thus by Corollary 5.4, 1, is an eigenvalue of (12) and has
the desired property (i). To show (ii), let 4, < 4, be another positive eigenvalue of (12)
and {f, g} be its corresponding eigenfunction.” Now {f, g} satisfies the system

IR

and the conditions (5), hence f>u(e, 1,Q) by definition of u(a, 1,Q). However,
L@ < 2,Q, hence f = plx, 2,Q) < plx, 4,Q)<B which is the desired contradic-
tion. Q.E.D

We will denote the smallest positive eigenvalue of (12) by Aa, £, Q). Then as
shown in the proof of the above theorem, if u(a, 4,Q) = B, then Alx, 8, Q) = 4.
The converse is also true.

THEOREM 6.4, — Let 1,> 0, then u(ex, 1,Q) = f if and ounly if A(«, 8, Q) = 2.

PRrROOF. — We need to show that A(e, 8, @) = 4, implies u(e, 2,Q) = f. By defi-
nition of A, and (o, 4,Q), /3 o, 2,Q). Assume to the contrary that § > u(x, 4,Q),
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then by Theorem 4.6 and Lemmas 6.1 and 6.2, 1* exists in (0, 4,) such that
B = pla, A¥Q) which implies 1, = AU«, §,9) = ¥ < 4. Q.ED.

Theorem 6.4 has many consequences most of which are not difficult and will be
stated without proof.

COROLLARY 6.5. — e, B, Q) = Mo, B, QF).

COROLLARY 6.6. — Liet P, @ € ¥, and assume @ <P for «<i<f. Then Ao, 8, P)<

<Me, 8, Q).

COROLLARY 6.7. — The function A(e, 8, Q) is a continuous monotone decreasing
function of f.

COROLLARY 6.8. — Ao, B, *): F — (o, o0) is continuous.

COROLLARY 6.9. — u(x, Q) = oo if and only if A(x, f,Q) > 1 for all > .
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