A two phase Stefan problem with flux boundary conditions (*).

Joux R. Cannox (1) and Mario PriMIcerIO (B) (*¥)

Riassunto, - Si studia un problema di Stefan a due fasi in uno sirato piano indefinito quando
st suppongono asseguati 1 flussi termici sui piani che delimitano lo strato sfesso.

Viene dimostrata Iesistenza e Uunicila della soluzione con ipolesi assai gemerali
sui datli iniziali ed al contorno del problema, nonché la dipendenza continua e monotona
della soluzione da tali dati.

Si esaminano infine ¢ casi in cui una delle due fasi pud sparire ed il comportamenio
asintotico in caso di permanenza delle due fasi.

Abstract. - We studied a fwo phase Siefan problem in a infinite plane slab, when the ther-
mal fluxes are assigned on the two limiting planes.

We proved existence and unigucness of the solution upon minimal smoothness assum-
ptions upon the initial and boundary datfa, and we demonsiraied the continuous and
monotone dependence of the solution on the data.

In sec. 5 we studied in which cases one of the lwo phases disappears and the asym-
plotic behavior in the cases in which the iwo phases exist for all time.

1. - Introduction.

In this paper we consider the two phase STEFAN problem descibed in
(8] with specified boundary temperatures replaced with specification of the
heat flux at the two fixed boundaries. Specifically the mathematical problem
consists of determining two functions, u(», {) and v(x, f), and a function
x = §(f) such that (u, v, s) satisfy

Lyu) = vu.. — u, =0, 0<x <s(t), O0<tc T,
uistty, ¢} =0, O<t<T,

ka0, ) =fi), O<t<T,

ufe, 0) =9x), O<ax<b s0j=b 0O<b<l,
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La(v) = %900 — v, = 0, sy <w < 1, O<t=T,
ost, =0, 0<i<T,

(1.2)
ko, ) =gl), O0<t<T,
Loz, 0) = d(x), b<ax =<1,
and
(1.3) s(t) = — Kuu(s{f), ) + Kw.(s(t), 1),
O<it<T,

where »; = kip'c™!, i =1, 2, represent the diffusivities, k;, 4 =1, 2, the con-
ductivities, g;, ¢ = 1, 2, the densities, ¢;, 4 = 1, 2, the heat capacities, K; =
= kip;? L™, ¢ =1, 2, L is the latent heat, all of the preceding constants are
positive, 7 is a positive constant to be discussed later, and the functions
=<0, g<0, =0, 4 <0, and the value b, 0 <b < 1, are the boundary and
initial data for (1.1), (1.2) and (1.3).

In this paper we demonstrate existence, uniqueness, stability, monotone
dependence, and various asymptotic properties of the free boundary. The
results of this paper are based upon the maximum principle and the techni-
que of the retarded argument as applied in [4, b, 6, 8]. Hence the smoothness
requirements upon the data are minimal, but as in [5,8] it is necessary to
require that the data functions are sufficiently small in order that an a
priori bound for s can be obtained.

2. — Definitions and hypotheses.
We begin with a list of the assumptions needed for the existence theorem.

(A) Let f=f(f) and g = g(f) be bounded piecewise continuous functions
such that there exist two positive constants a; and «, such that

(2.1) — oo <f(H<0 and — a <g(f)<<0.

(B) Let 9 = ¢{x) and ¢ = {(x) be piecewise continuons functions such
that there exist four positive constants a;, w:, ¢ =1, 2, such that

(2.2) 0 < () = mfl — exp i»'mlx —b)t)
and

(2.3) 0= lr) = — az(1 —exp i — %Nl —b)! ).
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(O) Finally, we assume that
I' = max | 2Kie 42 + 2an7Y), 2Keea 42 + 2va ) 1 < 1,
where

2.4 ey = max (wmk!, @) and ¢ = max (wk;', ).
As in [8], we note that (2.2) and (2.3) are assumptions of local LIPscHITZ
continnity of the initial data at @ =0 while (2.4) is the restriction on the
constants o; and a;, ¢ = 1, 2,.

REMARK. - The assumption f, g<<0 is a simple sufficient condition to
prevent the temperature at « = 0 from becoming negative (the temperature
at ¢ == 1 from becoming positive} and, consequently, fo prevent the appearance
of a third phase.

The assumption (2.4) restricts the range of variation of the initial and
surrounding temperature. Actually, in the case of a water-ice system, this

range is {— 20°C, 4 20°C) which covers — under normal conditions — the
entire range of validity of the description of the fusion process by means of
(L.1)~(1.3).

It is convenient to designate (1.1) and (1.2} as an auwxiliary problem for
a given LipscHITZ continuous funection s(f). By a solution of the auxiliary
problem, we mean a pair of functions u = u(x, {) and v = v(x, ¢) such that

1¢ the derivatives appearing in the equations exist and are confinuous
in their respective domain of definition,

2° 4 and v are continuous in the closure of such domains except at
points of discontinuity of the initial data,

3° the lim Ziu.{x, ) and lim kw.(x, {) exist except at points of disconti-
Py z—pl

nuity of the boundary data
40 y and v are bounded, and

b° u and v satisfy (1.1) and (1.2) respectively.

Classical analysis asserts [12] that the solution of the auxiliary problem exists
and is unique under the assumptions above.

By a solution (u, v, s) of the STErFAN problem (1.1), (1.2) and (1.3), we
mean that

10 s =s(f) is a continuously differentiable function for 0 < < T, s(0) =9,
and 0 <s(f) <1,
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2° the pair u and v is the solution to the auxiliary problem for this
s = s{f) in the sense specified above, and

3° u, v and s satisfy (1.3).

Note that in the reformulation of the free boundary condition (1.3} (see
{(2.6) in [8)]) v can be taken to be zero, y: as one, and / as zero.

3. - Existence.

In this section we prove the following result.

THEOREM 1. - Under th) hypotheses (A), (B), and {C) of section 2, there
exists a 7, > 0 such that the STEFAN problem (1.1), (1.2} and (1.3} possesses
a solution in the sense of section 2 for O < < 7.

Proor. - Recalling the p:ioof of Theorem 1 in [8], it is clear that the
method of retarding the argument in (1.3) will work here provided that esti-
mates for u.(s(f), £), v.{s(t), £} and s(f) can be obtained.

For 8> 0, let

(3.1) Ts=inf{¢*|*>0, sii*) =8 or s(t*) =1 —3 .

Clearly, T5> 0 provided 0 < 8 <min (b, (L — b)). Now for any solution of (1.1),
(1.2) and (1.3) we demonstrate the following resalt.

LeMMA 1. - For O <t < T,
(8.2) | wals(t), €] << (L —exp { — %7 [ 8 z; 4+ m)p )
. asﬁl{ ]‘ 8 HT(S‘ + 7]1)%;']
(3.3) |was(t), 8| << (1 —exp i — %7 || iry + 128 1)
(s + sl | 8 ][ry + o)™

where for any function F(f) on 0 < 1< T,

(3.4) | Fllr= sup [F(})],
0T

(3.5) g = max (k™ a.), i=1, 2

13.6) as = 2 4 2uan7,

and

(3.7) Ay = 1 —l— 2%27)2_1 .
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Proor. -~ Consider the function
(3.8 wiwe, 1) = dilas — ) | 1 — exp { asfw — s{t)) |}

in O <x <s(l), 0 <t Ts, where

3.9 A= (1 —exp{—asdi) e
and
(3.10) as = (|| 8|y + mpr*

Elementary calculus demonstrates that

(3.11) Li(w) = — Aias exp { as(@ — s(¢)) I

. [-'— 2%1 + 7..1%3(6!3 — w) + S(a3 — w}] < O,

(3.12) W0, §) = — A1 {1 —exp | —ass{f) } } —
— 40503 Xp | — as8{f) | =
<—4i{l—exp{—ai}l,

8.13) wle, 0) = Aifas — 1) i 1 —exp {nux;He — b1} =
= A1l —exp{qx e — b,

and

(3.14) w(slt), §) =0

Consequently, a direct application of the maximum principle implies that
w=unin 0 <a < sf), 0<<t<"T;. Since w=u=0 for x=s(f) it follows that

(3.19) w.(8(8), 1) < us{f), t) <O
and that
(3.16) Luals(t), )| << (1 — exp { — #74(]] 8 |z + )3 1) -

caser(]]8 |lry + mn

Considering the function

(3.17) (e, 1) = — s + as) { 1 — exp | — asfe — s(8)) } §,
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where

(3.18) Ay = (1l —expi—ad}) e,
and

(3.19) o = (|8 |'ry + maryt

It follows from a similar application of the maximum principle in s{fj<x <1
and 0 <« ¢ < T that

(3.20) | ods(t), B! < (1 —expt— x| |lr, + 78} -
(s 4 et [} 8 [y 4 m2bes

which concludes the proof of the lemma,
Considering (1.3) and applying (3.2) and (3.3) we see that

. 2
(3.21} H 8 HTS <3 I(,:&,'%i—l(ag_g_z 4§ — 1} .
i==1

ol —exp{ — |18 |y + m)B 1) (] 8 |lzy + 1)

Recalling
(3.22) = max { 2K,e,%712 4 27, CKaean M2 4-2wm Y L < L

and setting

(3-23) M = max (1, 1.

and

(3.24) § =3 min (x, %),

we obtain

(3.25) I8l <T(L —exp | —Ejis g ) 8 e + 0)-

The argument of lemma 2 of [8] can be applied to yield the following
result:

LemMa 2. - For 0 <t< T,

- 1 1—T] 2@y
(3.26) 1%szgfasmax(—-é log [T} 12:’_7,‘_‘%
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1t is clear that the results of Lemma 1 and Lemma 2 hold for the
approximations obtained by retarding the argument in (1.3). Consequently,
by the method of proof of Theorem 1 in B8], there exists a solution of (1.1},
(1.2) and (1.3) for 0 <<{<< Ts and 0 <8 < min (b, (1 — b)). Setting

(8.27) To=  sup Ty
0<8<min{s, (1—5}}

the resnlt in theorem 1 follows.

4. - Stability, Uniqueness and Monotone Dependence.

Let (u;, v, s), ¢ =1, 2, denote solutions of the STEFAN problem (1.1},
(1.2), and (1.3) for the respective data f;, g, ¢, ¢:, and b;, ¢ =1, 2, which
satisfy the assumptions (A), (B) and (C) of section 2. Then the following result
is valid.

THEOREM 2. -~ For 0 < T'< To, there exists a constant C; which depends
upon T, %, K;i, ai, o, wi, ¢=1, 2, and min (b, bs, (1 — &), (1 — b2} such
that for 0 <<{< T,

i

| Kk i) — i) s+

0

n f Kokt | gols) — gal) | i |,

where
; Km;‘lcpi(‘x), O0< << bi,
(4.2) Ofz) = .
Z Ko i), b<wx< 1, i=1, 2.
Proor. ~ The proof is a straight-forward application of the technique

used in [3,8].

CorROLLARY. - Under the hypotheses (A}, (B) and (C}, there exists one and
only one solution of the STEFAN problem (1.1), (1.2) and (1.3) for 0 < ¢ < T,.

The following result is a consequence of the maximum principle and
the stability theorem.

TaeorEM 3. - If fa<<fi, g2 =g, ©2=¢1, $2=t%, and b, =0, then
S)(i) £82(t) for O gt < ’/.0.

Proor. - The proof is similar to that of Theorem 4 given in [8]
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5. - Disappearance of a phase.

In this section we shall discuss the relation between the disappearance
of a phase and the total energy supplied to the media. Recall the definitions
of Ts, (8.1), and To, (3.27), and let

(5.1) D) = :

TaroreMm 4. - If
1

{5.2) — paLb < f@(m)d.}a +f[g{r) ~ flu)ldy < p2 Lil — b)
0 0

for all ¢ >0, then T = co which means that neither phase disappears in a
finite time period.

Proor. - Suppose T) < oc. Then, there exists a sequence {98;} with limit
zero such that s(T5)—1 or §(T5)}—0 as 8;— 0. Suppose s:T5)—1, as &;—0.
Then, from {2.6) of [8] with =10, y2= 1, and y; =0,

Tsi
{5.3) 8(Ts) = b+ f{ Kok 'git) — Kik7'f(e) | de —
0
S(TSi) 1
- Kl”flj u(x, Ty)dr — szglfv(ar, Ts)dx +
) {Ts)

b

+ Kot f plajdre + Kox;* f Yleijdx.

0

(7.4) palds(Ts) — b) = f(l)(ac)dm +f[g(t) — fir)ldt —
.s[TSi)

— klxl—lfu(m, s lde —

0
1

— kot | v, Ty)de.

E(Tgi)
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(5.5) pﬁw%»—m<f@wm+fwm—ﬁwM—
— ko' | v, Ts)dex.

Therefore, as §(T5)— 1 as & — 0, then

(5.6) o L(l — b) < f x)de + f

which contradicts the assumption I) < oc. A similar argument handles the

case of §(T5)-—0 as 8 — 0 and concludes the proof.

Next we define two functions U= Ulx, {) and V = V(x, £}, where U satisfies

| LiU) =0, 0<ue<l, 0<t,
(P(QU), Ogmgb,
¢ 0, bax<1,
{5.7)
( Uyd, =0, 0<l,
| klUZ(O7 t):f(t), O< t;

and where V satisfies
Ly(Vj =0, 0<e<l, 0 <t

0, 0<<w=<b,
V(w, O) =
! o), b=wo<l,
V{0, t) = 0, 0 <t

kZVx{ly t) = g(t)> 0 < t)

(5.8)

We demonstrate the following result.

TraeoREM D. - If there exists a T* >0 such that
(.9 f x)dx -+ j f{)]dr —

Annali di Matematica
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1
— klelf Ule, T#)de > p2L(1 — b),
)
then T, < T* If there exists a T** > 0 such that

(5.10) f x)da +f o) — fla)lds — kv 1f V(w, T*)da < — poLb,

then To < T#*,

Proo¥. - Suppose {5.9) holds and To> T* Then, O <s{fj <1l for0<{=<T*
and s(f) is continuous. Set

(5.11) Hil) = f Dlajder + f [9(5) — F(s)lds —
s(2) 1

- kml—lfu(m, lidx - kzxz-lffu(w, tide.
0 s{t)

Clearly, H({) is continuous, H{0) = O, and by the maximum principle

6.12) H(T*) > f cjdx —!—f tjjdt —km’“‘j Ule, T*)dx > p2L{1 — b).

Consequently there exists a f,, 0 <t < T% such that

5.13) e2L(s(to) — b) = H(to) = p2L(1 — b).
Hence,

which implies To <t < T5 which is a contradiction. A similar argument
prevails for the assamption (5.10).

CoroLLARY 1. - If f and g are identically constant and f==g, then
clearly (5.9) or (5.10) will be satisfied and thus one phase will disappear in
a finite time period.
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CoroLLARY 2. - If f =g =0, then condition (5.9) can be replaced by

1

{5.15) f@{w}daz > po Ll — b)

0

and (5.10) can be replaced by

1

(5.16) f D()diw < — paLb

0
since U and V tend uniformly to zero as {— oo,

CoroLLARY 3. - If f and g are identically constant and f =g, then con-
dition (5.9} can be replaced by

1

(5.17) f@(w}dm + #7127 > poL(1 — b)
0
and
1
(4.18) f@(m)dm — %127 g < — p,Lb

0

since U and V tend uniformly to their straight line steady state solutions
as t—r co,

Returning now to the situation of Theorem 4 in which neither phase
disappears, we consider the problem of determining the asymptotic limit of
s(t) as t— co. Recalling (5.3) and (D.4), we see that

(6.19) p2Ls(t) = poLb + f@(m)dm +

‘ 1)
+ [ 1o — s — oy [ e, e —

0
1

Clearly, the first condition that we must have is

[0}

{5.20) f [gir) — flr)ldr < oo,

0
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Hence, g(t) — f(t)—0 as T-—oc. Next, we see that the combination u, v,
and s must tend to limits. With respect to u and v, the only finite limits
that we can guarantee are # = v = 0 or linear steady state combinations of
u, v, and 8, = lim s(f) which would involve the limit of s in an implicit way.
Since steady. state solutions of the STEFAN problem (1.1}, (1.2) and (1.3) are
not unique, the limit case of (5.19) must be employed to determine an equa-
tion for s,. Affer s, has been determined the problem of demonstrating that
the determined s, is actually taken on in the limit is a formidable one in-
deed! Consequently, the case in which # and v tend uniformly to zero as
t — oo holds the only promise of solution in the sense that sufficient condi-
tions can be given fo guarantee the disappearance of # and v. We conclude
this part with the following asymptotic result.

TuroreMm 6. - Under the conditions of Theorem 4,

t-500

(6.21) Lim poLs{t) = g2 Lb - f Dleide + f[g('c} — flx)}dx,

provided that (5.20) holds and that

(5.22) lim <—£—:{_—t_L; dt =0
>R V -~ T

and

(5.23) lim f I
t->00 v i — T

Proor. - The conditions (5.22) and (5.23) guarantee that the boundary
temperatures of the quarter plane majorants for U and V tend to zero. Since
f and g do not change sign it follows that the quarter plane majorants tend
uniformly to zero as {-—oco. Hence, U and V tend uniformly to zero as
{ — oo, and likewise u and v fend uniformly to zero as ¢{-— co. Hence (5.21)
holds.
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