A two phase Stefan problem with temperature
boundary conditions

Joun R. Caxnox (1) and Mario PrIMICERIO (%) (*) (*¥)

Riassunto. - Si studia un problema di Slefan a due fasi in uno strato piano indefinito, quando
sia assegnata la temperatura sui piani che delimitano lo strato stesso.
Viene dimostrata 1esistenza (in grande) e Vunicitd della soluzione solto ipofesi
assat generali swi dali iniziali ed al conforno. 8% prova la dipendenza continua e
monotona della soluzione dai dati iniziali ed al contorno.

Abstraet. - We studied a two phase Stefan problem in a dufinile plane slab, when the
temperatures are prescribed on the lwo limiling planes.

We proved global existence and unigueness of the solution under minimal smoothness

assumptions upon the initial and boundary data. Furthermore, we demonstrated the

continuous and monotone dependence of the solution on the initial and boundary data.

1. - Introduetion.

An example of the two phase STEFAN problem considered in this paper
is a slab of unit thickness consisting partly of water and partly of ice with
the temperature specified on the bounding planes. We consider the simplest
case of only one water-ice interface x=si{). Mathematically, the problem con-
sists of determining two functions, u(ax, #) and o, ¢, and a function x =
= s{t) such that (u, v, s} satisfy

L) = thy, — u, = 0, 0 <z <sti), O<it T,
(L.1) w0, )= f(t),  wusl), 8 =0, 0<t<T,
ulewe, 0} = y(x), O<e<bh, 8{0) = b, O<b<1.
Ls(v) = %00 — 0, =0, s{f) < < 1, O0<t< T,
(1.2) v(1, t) = g(!), v(s(f), 1) =0, O<t<T,

U(m’ 0} == (), b==ax<1,
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and
{1.3) s(t) = — Kufs(t), 1) + Ko (s(t), 1), 0<i<T,

where x, = kp ¢!, i =1, 2 represent the diffusivities, k;, ¢ ==1, 2, the con-
ductivities, p;, ¢ =1, 2, the densities, ¢;, i ==1, 2, the heat capacities; K;=
=kip;'L, i=1, 2, and L is the latent heat; all cf the preceding constants
are positive. T is an arbitrary but fixed positive number, and the functions
>0, g<0, =0, $<0, and the value b, 0 <b < 1, are the boundary and
initial data for (1.1), (1.2) and (1.3).

Problems like (1.1), (1.2}, and (1.3) have been considered by several
authors (see [1, b, 8 9, 10, 12, 13, 14, 15, 16)). In each of the references
cited the results require considerable smoothness assumptions on the data.
In this paper we prove the global existence and uniqueness of the solution
and demonstrate the continuous and monotone dependence of the free bonndary
z == §(t) on the data. The results of this paper are based upon the maximum
principle and the tecbnigque of the retarded argument and hence require
minimal smoothness requirements upon the data. However, as in [b], it is
necessary to require that the data functions are sufficiently small in order
that an a priori bound for s can be obtained. From our method of argument
it is evident that the results generalize to more general parabolic operators
for which the maximum principle holds.

2. - Definitions, hypotheses, and rveformulation of the free boundary
comdition.

We begin with a list of the assumptions needed for the existence theorem.

(A) Let f=/{(f) and g==g(¢) be bounded piecewise continunous functions
such that there exist four positive constants a«;, §; ¢=1, 2 such that

(2.1) O<oay <flt)< B and —Bs<glh) < — az <O,

{B) Let ¢ = ¢{z} and ¢ = ¢(z} be piecweise continuouns functions such
that . there exist four positive constants a,, v;, 4=1, 2 such that

(2.2) 0 < 9@ < m(l —exp [ %'mlz — b} })
and
(2.3) 0= ¢(z) = — asfl — exp | — »7'afz — b) }).

{0} Finally, we assume that
I'=max (2K %", 2K,e,%;") < 1, where

e = max (B, o} and e = max (B, az).
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We note that (2.2) and (2.3) are essentially assumptions of local LipscHiTZ
continuity of the initial data at 2 ==b while (2.4) is the restriction on the data (3).

Sometimes it will be necessary to designate (1.1) and (1.2) as an auxiliary
problem for a given LipscHITZ continuous functions s(¢). By a solution of the
auxiliary problem, we mean a pair of functions u = u(z, {) and v =z, {
such that

10, the derivatives appearing in the equations exist and are continuous
in their respective domain of definition,

20, wu and v are continucus in the closure of such domains except at
points of discontinuity of the data,

30, for such points of disconfinuity

O<limu<limu <oco and —oco<limv<limv<0

as each such point is approched from the region in question,
40, wu and v satisfy (1.1} and (1.2) respectively.

Classical analysis of parabolic equations [11] asserts that the solution of
the auxiliary problem exists and is unique under the assumptions listed
above. Moreover, it follows [4, 11] that wu.s{f), §) and wv.fs(f), {) exist and are
continuous for O <¢<<T. If ¢ and ¢ are continuously differentiable in a
neighborhood of b, then wu.(s(f), § and wv.(s(f), {j exist and are continuous for
O<t<T.

By a solution (u, v, s) of the STEFAN problem (L.1), (1.2) and {(1.3), we
mean that

1o, s=s{{) is a continuously differentiable fanction for 0 <¢{<<T
(0<t<<T if 9 and ¢ are continuously differentiable in a neighborhood of
z=1>0) and continuouns for 0<<t<< T, s(0)="0, and 0 < s(f) <1,

20, w and v is the solution to the aunxiliary problem for this s=s({)
in the sense specified above, and
3°. u, v and s satisfy (1.3).
We consider now the reformulation of the boundary conditions (1.3).
By integrating the operator L,{u)=0 over the region O <yi<<z=<s7), 0 <
<t<<t=<t and the operator L,v)=0 over the region stjsz<y.<]1,
0 <fto<<t< ¢ and multiplying the resulting equations by K respectively,

(3) It is worth to note that, in the case of a water-ice system, (2.4) requires that the
initial and boundary temperature lie in the range (—40°C; 1+ 40°C) approximately: a range
covering, under normal conditions, the entire range of validity of the description of the
fusion process by means of (1.1}-(1.3).
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it follows from adding the equations that

(2'5) J(‘ [szx(S(T)» T)— K1Mx(S{T), T)]dt =

o

f[szx(‘(z, 7) — Kiuay1, T))de —

5(1) ¥
— Kyt f ulz, f)dr — Kot f v(ex, t)de -
Yt (1)
*{to) 3
4 le;l f ulz, L)dr + szglfv(x, to}dz.

1 s{t0)

Hence, if (#, v, s) is a solution of (1.1}, (1.2), and (1.3), then it follows from
(1.3) that

(2.6) st) = s{to) + f [Kodyz, 1) — Ky, 7))ds —

s(t) 12
— leflfu(z, Yjdx — Kax;* J v, tyde +

Yi s(¢)
(o) e
-+ lel—‘fu(x, b)de + Kyn;t fv{x, to)da.
Y1 s(ty)

holds for any vi, vz, fo satisfying O<yi<<s(tj<y.<1, O<bh<1<{ Con-
versely, if (u, v, s) satisties (1.1), (1.2) and (2.6), where s is assumed fo be
LrpscHITZ continuous, then since u and v satisfy (1.1) and (1.2) for this s,
it follows that u, v and s satisfy (2.5). Hence, (2.6} and (2.5} imply that

L

2.7 s{t) — slto) =j{szx(s(t), 7 — Kiu.(s(z), tjid

fo

whence (1.3) follows. In what follows it will be convenient to interchange
(1.3) and (2.6) from time to time,
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3. - Existence.

This section is devoted to the proof of the following result.

TaEorEM 1. - Under the hypotheses (4), (B), and (C) of section 2, there
exists a solution (u, v, s) of the STEFAN problem (1.1}, (1.2}, and (1.3) in the
sense of section 2 which is defined for all £ > 0.

Proor. - We begin with the construction of a family of approximations
to a solution of (1.1), (1.2) and (1.3). Let x® be such that for each 6 suffi.
ciently small

1, Oax<b—9,
(3.3) 8 =<0, b—b<x<b0,
1, b+o<w<1.

Extending ¢ and ¢ to be zero outside of their respective domain of definition, set

(3.4) g =% and 5= x%.

Consider the time interval 0 <<#<C0 and let (uf 4% be the solution of the
auxiliary problem with ¢ and ¢ replaced by ¢4 and s respectively and with
boundary s§%==s%f) = b. Next, we define s® in the interval 6 <{={26 by re-
tarding the argument in the boundary condition (1.3) and obtaining

(3.5) $0(f) = b + f [Ka0(s"(c — 6, © — 6) —
()
— K —6), < — O)dr, 0 ={= 2.

Next, we obtain u° and v® for 6 <<{< 26 by solving the anxiliary problem
(1.1) and (1.2) for 6 << # <20 with the «initial» conditions u®(x, 8) and v, 6)
at ¢ =~0, boundary s given by s for 8 <<¢<C 26, and boundary data f and g
for 6 <<t<26. Since u®(s5(f), #) and 0s%f), ) exist [4, 11] and are confinuous
for 8 <<{<28, it follows that (3.5} can be used to define s® for 20 <{ <39,
By induction, s* can be defined for 0 <<t < Ty, #® can be defined via the
auxiliary problem in 0 <<x<<s%(#) and O0<<{<< Ty, and v can be defined via
the auxiliary problem in s%f)<<x <1 and O0<{< T;, where T, is the first
positive time that s¥Ty)=28 or sTj=1—28, O0<e<b<l—-3<1, and
clearly T, = T¢(2). In the following we demonstrate the

T0= inf Te>0

0 H<H*
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for 6% sufficiently small so that %® is defined. This will follow from the
derivation of an apriori bound on s® which is independent of 6. Thus in the
interval 0 <t << T the &% will form a bounded equicontinuous family. The
AscoLi-ARrzZEuA theorem will give the existence of the free-boundary s at
least for O0<<¢<< Ty. It will then be shown that any solution of (1.1}, (1.2)
and (1.3) can be continued from ¢ to ¢4 o for any t= 1, where o is inde-
pendent of £ From this will follow the existence of the solution of the STEFAN
problem (1.1}, {1.2) and (1.3) for all time.
Since the function s® is continuous for 0 <<¢<< Ty, it follows that

(3.6} |8%]jo= sup |s°(f)] < oo.
()gth9

We demonstrate the following lemma.

LeEMMA 1. - For 0<t<<T,,

B.7) Tulls'(e, t)1£61<1 —GXP{@%EE}Yl (180 [l 4 ),

and

(3.8) | W3(s(l), 8] <ol —exp [~ (1]8° [y + na)n;?3 )1
71180 flo + o),

where ¢, = max (3., 1) and ¢ = max (fs, as).

Proor. ~ Set

(3-9) Wi, §) = ex(l — exp [ — (|| 8 [}o + m}n2 ) )"
. { i — exp{ H_s@_]‘:iﬂ o — 894} } } — ulx, )

for Ot <s(t) and O0<<{ << T,. Direct computation shows that
(3:10) LWy = — &l —exp [~ (]| s [}s + nu8 1) -

. exp{ Ii_se—ﬂi_!_ nl“” — s(1)) }{ (1l 4 + (L o+ mls? ) <0

11 %1 f

since

(B.11) |2 28 flm A4 2 18 [y 8° + 0,80 > || 8 [ + 02 > 0.
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Moreover, we have

(3.12) WO, &)= ex(l — exp [ — (|| 8° ||y + mhn8 ] )" «
(1 —exp{— %t (|80 ]o 4+ skt — flf) =
= —f() =8 — f(t) =0,

since

(3.13) st = 2.

Also

(3.14) Wis*tl), §) =0

and

(3.15) Whx, 0) = el —exp { % 'mix — b) 1) — glx) =

= m(l — exp i 7'l — b} ) — plo) =
=0

since ¢ satisfies (2.2). Hence, by the maximum principle Wi =0 in O <
= §%#) and 0 < {< Ty. Therefore,

(3.16) WS (s0(t), &) =< ulls®(t), £) < O.
Sinece

ka1

BAT) WOl §) = — eall — exp | — ([} 8° g + ma)n® 1)1 (f_—~—f o & ’71>,

(3.7) follows immediately. Also, the result (3.8) follows from a similar appli-
cation of the maximum principle.
Differentiating (3.5) and applying (3.7) and (3.8) we see that

B.A8) 1|8 = % K1 — exp i — (8 o+ mb8 )=« (180 o+ 3,
Recalling

{3.18) ['=max (2Kie1x]?, 2Ksen;7%) < 1.

and setting

(3 20) 1 == max (i, )
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and

(3.21) £ =3 min (x?, %),

we obtain

(3.22) |8 flo << (1 —exp | —E[[s® o ! 172 |8 [lo -+ 7).

From (3.22) we can demonstrate the following lemma.

LEMMA 2, = For 8% on O<i<< T,

: 1, {L—T| eIy
i ;) = ) Pl P el N I
(3.28) |5 Hegmax( glog[ > \ 1_r)
Proor. - First, suppose that

1 1 —T 2Iy
(8.24) —glog [*2 } <I—1
Then, either

- 1, [1—
(3.20) I8l g log | =3~
or
‘ , 1, [1—T
(3.26) 180> — ¢ log| =5 -

Cousider (3.28). From (3.22) we see that

-l )

(11890 4 ) =

— I‘(l —i}fr( 188 lo + )=

(3.27) 159 Jlo < r(1 — exp

2r .
=T_F‘f(H 8% {lo + ).

Henece,

. 2Ty
(3'28) ” E4l HB ‘Sl—‘:*“f
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which demonstrates (3.23) for the case (3.24). For the case

2“1 <—}loor

1—1r
[ N

1

-

(3.29)

the supposition (3.26) leads to the contradiction (3.28). Hence for (3.29), (3.25)
holds which demonstrates (3.23).
Select now a &, such that 0 <8 <b <1 — 8, < 1. It is clear that

Ty = inf Te(30) > 0.
i

Moreover, s form a bounded equi-continuous family on O0<t< 7,. By the
ASCOLI-ARZELA theorem there exist a sequence s% which converges unifor-
mly to a function s=s{f) on 0<<{<CT, as 6;—0. The function s is LIPSCHITZ
continuous, with LipscHITZ constant given by the right hand side of (3.28)
with & set equal to 3. Let 4 and v denote the solution of the auxiliary
problem for this s. Clearly u®% tends to u uniformly as 6,— 0 and v% tend to
v uniformly as 6, — 0. Since

(8.30) 8ot + 0) — s%(to + 6) = f { B2, 1) — Kb, 7)) dv—

Iy

N0 :
— K f ubslx, f)de — Kor;* f(v@j(m, tide +
o s%i)
sef(to) Y2
-+ Klnl—lfuﬁj(m, to) dox - Kgx;’fv"j(ac, bo)dax,

n s%i (to)

it follows that #, v and s satisfy the heat balance (2.6). Hence, (u, v, s) is a
solution to the STEFAN problem (1.1}, (1.2) and (1.3) for O <<i{< T},

In order to continue a solution to (1.1), (1.2) and (1.3) to times larger
than T,, it is necessary to obtain some a priori information on solutions of
the STEFAN problem (1.1), (1.2} and (1.3). For the moment, it is convenient
to assume that there exists a po> 0, 0 < po<b <1 — po <1, such that

(8.31) arpsH(po — ) < (), O<wx =< po,
and
(3.32) ap (L — po) — @) = V), (1—p)<w <Ll

Anngli di Matematica 2
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We shall demonstrate later that (3.31) and (3.32) can easily be removed. Note
that for consistency here if it must be assumed that a, is related to «; via
afl —exp|{—rmbi) =,

and a, to o via
asfl — exp { — %7 na(l — ) | ) = as.
Lemma 3. - If s is the free boundary of a solution (u, v, s) of (1.1), (1.2)

and (1.3), then there exists a p;, 0 < << po, such that p, <s(f) <1 — s for
all £ for which the solution is defined.

Proor. - Since po < b <1 — p,, it follows that if s takes on the value
p then there is a first time ¢* at which say s(t*) = pn. Clearly, s(t*) < 0. But
by condition (3.31) it follows from an elementary application of the maximum
principle that

— ufs(t¥), t*) = oap!
while
vfs(t*), ) = — 4,

where A is a constant which depends only on v, B, and .. Hence, from
(1.3) we see that

(3.33) s{tf) = ot — 4> 0

for p sufficiently small.
By similar reasoning to that of lemmas 1 and 2, the following lemma
is valid.

Leuma 4. - If (u, v, s) is a solution of the STEFAN problem (1.1}, (1.2)
and (1.3) for 0 << ¢ << T¥%, then for O <t < T*

(3.34) Puafs(f), 1) = el —exp { — w7t b )T o] 8 I+ ),
(3.35) Lusle), 8) ] < el — exp { — wlpapa ) e (1] 8 || ).
and

(3.36) [ ] < max (——Ei*]og L;J, TQELI‘)’
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where || s | =0<stu<1;*{s.(t} l, n is defined by (3.20), I' is defined by (3.19) and

(3.37) £* = py min (x7%, %)

1’

Consider now the u component of a solution of the STEFAN problem {1.1},
(1.2) and {1.3). For t =T, it follows from (3.36), (3.34), (2.1) and (2.2) that
there exists a positive constant %s; which is independent of ¢ such that

for p < <<s(f). Since 0 < ulx, f) < e and u(s(f), ) =10, we have

%
g, 0 <o <%

(3.39) O0<ux f=< g
[ nsfstt) — a), 2* < < s{t),

where «* == s(f) — v;'e; and s is increased if necessary so that v;'e; < 27
which implies that x* is positive. Given ¢ > 0, consider the fanction

{3.40) o) = (&1 +¢)(l — exp {n:ie—slf)}})

From (3.39) it is clear that there exists an 7. = (e, v;'e:) sufficiently large
such that

(3.41) 0 < ulz, § < ox).

Similarly, there exists an 7s such that

(3.42) 0 = vi, )= bix).
where
(3.43) Yla) = — (e2 -+ &)(l — exp i — ns(xc — s{t)) | ).

Suppose now that a solution (u, v, s) of the STEFAN problem (1.1), (1.2
and (1.3) exists for 0 < ¢ < T1'* where T* = Ty. Then, for ¢ sufficiently small
and fixed, {3.41) and (3.42) imply that the discussion of Lemma 1, Lemma 2,
and the paragraph following Lemma 2 can be duplicated with &; replaced by
e -+ ¢, & replaced with e - ¢, n; replaced with 7., n. replaced with v;, and
3, replaced with 2—'p,. Hence, there exists a positive ¢ which does not depend
upon { such that the solution (u, v, s) of the STEFAN problem (1.1), (1.2}
and (1.3) can be continued to the interval I'* <t < T* 4 . By induction, it
follows that the solution (u, v, s) exists for 0 < ¢ < T for any arbitrary T.
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The removal of (3.31) and (3.32) is quite easy. Recall that the argument for
the existence of (u, v, s) for 0 <¢ <7, did not require the assumptions (3.31)
and (3.32). Hence, for data satisfying only conditions (A), (B) and (O) of section
2, a solution exists for O <é< T,. At {=1T,, u>0 for 0 < < §(To) and
v <0 for §(Tol <o < 1. Consequently the existence of a po> 0 and the con-
ditions (3.31) and (3.32}) at {= T, follow from the continuity of # and » and
the conditions (2.1). Reconsideration of the problem for == T, and the previous
arguments yields the result stated in Theorem 1.

4. - Stability.

Let (u:, v;, 8), ¢ =1, 2, denote solutions of the STEFAN problem (1.1),
(1.2) and (1.3) for the respective data f;, g, @, ¢:, and b;, i=1, 2, which
satisfy assumptions (A), (B), and (C) of section 2. Assume that

(D) ¢ and ¢, é=1, 2, are continuously differentiable in 0 <x <y
and 1 —y < e =<1, y>0, respectively.
We state the following result.
THEOREM 2. - There exists a constant C which depends upon 7, %, K;

ai, Bi, o, %, ¢=1, 2, v and min(h, b, (1 — &), (I — b)) such that for
O=<i=<T

(4.1) |aalt) = slt)] < €1 sup | id) — fe) | +
+ Sup. | gu(t) — galt) | + gup | Du(x) — Dufx) |
+ sup |9ie) — gale) |+ sup | dife) — i) | +
O<Cwsly 1-—\(ng]
+ ' bl — b2 I ta
where

S lel_lf i(ee), O=sx=<b,
@t(m) =
2 Kong i), h<wm<l.

Proor. - A straight forward application of the technique used in [3] yields

4.2) |sifl) — saft) | < G

+Of&,

bt + [ D) — Ot +

duz

am
3p 1 Oy )| dt +
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t ov L
o[BSt 5 = e, 5|
0
a'l/h auz
for 0<t<T 0<yi<yand 1—y <y:<1 Next, E(Yl’ T)*g{;(}’z,’C) and
8—95(72, T) _%?E(Yz, 7) can easily be estimated in terms of the data and

ox dx

sup | 8i{n) — s2(n) |. Consequently, (5.1) follows from an application of Grow-
Ozt

wALL’'S lemma via [2, lemma 2 page 380].

5. - Uniqueness,

As a corollary to the stability result we have the following uniqueness
theorem,

THEOREM 3. ~ Under the hypotheses (A), (B), (C), and (D), the solution
(u, v, 8} of the STEFAN problem (1.1), (1.2} and (1.3) is unique.

6. - Monotone dependence.

The following result is a consequence of the maximum principle and
the stability theorem.

THEOREM 4. - Under the assumptions (A), (B), (C), and (D) if (i, v, 8);
i=1, 2, are solutions of the STEFAN problem (1.1}, (1.2), and (1.3) correspon-
ding to the data fi, g:, @, $i, and b, and if i < fo, 1 <@, 1 <2, 41 <o,
and by < b, then 8i(f) < sy(¢) for all £ > 0.

Proor. - Suppose first that by < b.. Then, 8i(f) < so(f). If not, then there
exists a first time #* such that §,(f¥) == s,(t*) and s(t*) =s.(f*). By the maximum
principle, u, —uy >0 in O<x <siff), O <t<t* At (si(l¥), %), uz —uy =0.
Hence, by the parabolic version of Horr’s lemma,

ouy k) pE o ) %
@{Sl(t ), ¢ ) < —a“x—(sl(t ), t ).

Similarly,
81)2

v, .
a—;(sl(t*’, t*} > aTv—(S](t*}, t*).

By (1.3), it follows that s,(t*) > ss(f). Hence, si(f) < s5(f). The remainder of the
theorem follows from fhe stability by considering the solutions of (1.1), (1.2),
and (1.3) for b, + ¢, f2, g2, 92, and ¢ and by letting ¢ tend to zero,
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7. - Asymptotic behavior.

Referring to the asympotic behavior result in [8; p. 71] if f and g are
such that
[¢s)
(7.1 [t = e+ g — oz <o,

1

where f, is a positive constant, a1 < fo <31 and g, is a negative constant,
— B2 < go < — 22, then the solution (u, v, s} of problem (L.1), (1.2}, and (1.3}
tends asymptotically to the steady state solution

u?o - b;olfaa(bco - .’l'/), O S X S boo;
(7.2
Voo == (1 — beo)™H— g)lbo — ), b < < 1,
where
‘73) boy = AKlfoc(Klfoo -+ Ksi— goc,”"'lc
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