The tangent direction bundle of an algebraic variety
and generalized Jacobians of linear systems.

By A. W. IngreTOoN and D. B. 8corr (London, England)

Summary. - It is well-known that, on an algebraic variety V of dimension d, there is asso-
ciated with a set of linear systems whose total dimension is d o Jacobian variety (of
dimension d — 1) at any point of which (other than base points of the lineasr
systems) there is al least ome line (formally) tangent fo every variety of each
system which passes through the point. This notion generalizes to a set of limear systems
of total dimension d+r (0<<r <d), the generalized Jacobian being then of dimension
d—r—1. The final aim of this paper is to oblain a general formula (Theorem 5.2) for
the homnlogy class of this generaliced Jacobian. The proof is derived with the aid of
cohomological and bundle-theoretic methods from the study of the tangent direction
bundle of V, and the earlier part of the paper establishes the necessary techniques
(whick are not without their independent interest) for our purposes.

§ 1. Introduction.

The tangent direction bundle V* of an algebraic variety V is the variety
representing the tangent directions, or first neighbourhood points, on 7.
V* is an algebraic variety; it may be identified with the subvariety of the
product of ¥V and the Grassmannian of lines in the ambient space representing
those point-line pairs (p, 7} with [ tangent to V at p. V* is in a natural way
a fibre bundle over V, the fibre being a projective space of dimension one
less than that of V.

In a recent paper [9] one of us has considered the properties of V*
using classical techniques of algebraic geometry; it is shown, inter alia, that
the homology ring of V* is generated by the inverse images in V* of the
elements of a base for homology on ¥ together with a single additional
homology class. The same result (in terms of cohomology) had been proved
earlier by CHERN [4] using fibre bundle techniques. A snitable additional
generator is obfained in [9] as an «invariant lift> defined by means of a
pencil of primals on V; CHERN’s generator is the characteristic class of a
certain 1-sphere bundle over V*. The copjecture is expressed in [9] that the
two generators coincide (apart from a difference of sign) and strong supporting
evidence is produced for the cases when V is a surface or threefold.

The truth of the conjecture is proved in this paper. The identification
is first established for pencils of prime sections using fibre bundle theory;
this part of the proof occupies §§ 2 and 3. The rest of the paper is more
geometrical in character. In § 4 we carry out the extension to arbitrary
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peuncils of primals and also study more general «lifts » from V to V* defined
by means of linear systems of all dimensions. In § 5 we introduce a <« gene-
ralized Jacobian » (locus of points at which there are common tangent lines)
of a family of linear systems with total dimension not less than, but less
than double, the dimension of V and apply the earlier results to obtain an
expression for this Jacobian in terms of the canonical systems on V. The
procedure here is quite straightforward: having established independently
the conjecture of [9] we are then enabled to puf the arguments of that paper
into reverse, thus effectively applying the intersection theory on V* to obtain
more complicated geometrical results on V.

The notion of « Jacobians can be generalized still further. Omne can
consider, for instance, the locus of points at which the members of any
family of linear systems have a common tangent [k] or satisfy even more
complicated contact conditions. A universal tool for studying these loci, by
methods generaliz ng those used here, is the tangent flag bundle of the variety
V, the theory of which is the subject of another paper [7].

§ 2. Flag manifolds.

This preliminary section is devoted to the notation and results concerning
flag manifolds which will be required in the sequel. Fuller details of the
fibre bundle aspect of these manifolds may be found, for example, in [6],
and of the geometrical aspect in [8].

2.1, - A flag in n-dimensional complex projective space P,(C) is a
nested system

8 S8 .. S8, =P,C) , dim8 =i,

of projective subspaces (or equivalently a nested system of vector subspaces
of (n - 1)-dimensional complex vector space).

The flag manifold F(n 4 1) is an algebraic variety the points of which
are in one-to-one correspondence with the flags in P,(C).

2.2. - The operation of the full linear group GL{(n + 1, C) on P,(C) and
hence on F(n + 1) may be used to define a projection

n: GLn 41, C)— Fin -+ 1)

by putting nd = A8 (AeGL(n+1,C), S being the fixed flag in Which S; is
of spanned by the first ¢+ 1 reference points. = is the projection of a
principal fibre bundle £ with group and fibre the triangular group An+1,0),
the subgroup of GL(n+1, C) which leaves § invariant.
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2.3. - We denote by &, ..., £ the diagonal C*-bundles of £ in natural
order (see [6] § 4.1. ¢)) and by v; =cy(f) the first CHERN class () of §
(¢ =0, .., n). The cohomology group (*) H (F(r - 1)) is without torsion and is
generated by any n of y,,..., v», Which satisfy the relation

Yottt +1a=0
(see for instance [6] § 14.2).
Moxxk [8] has given a geometrical interpretation of the y; up fo an
ambiguity of sign and order. A more direct method of obtaining the inter-
pretation (and removing the ambiguity) is the following.

2.4. - Let Qr, n) be the Grassmannian of r-dimensional subspaces of
P (Ci. The natural projection Fn -+ 1)— Qir, n) may be incorporated in a
commutative diagram
GLn+ 1, C)—F(n + 1)

(2.4.1) =N 4

Q(r, n)

where = is the projection of a principal fibre bundle & with group and fibre
GLr + 1, n—r; C), the group of matrices of the form
<--A —13-—), A eGLir + 1, C), A"€GLin—r, 0).

04",

Let &, £ be the sub- and quotient bundles of £ with groups GLr41, C),
GL{n —r, C) respectively (6] § 4.1. ¢)). Then H*Q(r, n)) is generated by
e:(E) (8] I,-§ 162). On the other hand, it is Well-known (see e.g. [6]) that the
homology group of Qr, n} in codimension 2 is generated by the homology
class of ths SCHUBERT subvariety representing th- [#]'s wh'<h meet a fixed
[# —r — 1]. Hence, this class corresponds by Porxcarf duality to =t c(E).
In fact, using the natural orientation of Q(r, # and 1he present sign convention
for CHERN classes, the minus sign is correct (3] I, § 29.3.

Now, the diagram (2.4.1) shows that & = 9%, so that ¢*€ is a A{r+1, C)-
bundle with diagonal bundles &, ..., & . Hence (6] Satz 4.1.5)

CP*E’ =5® 51 D ..DH Er;
and so

$¥eulE) = C(9¥E) = Yo + Y1 F o F Yo

Thus ,
Yottt rr=—o

{*} We adopt the definition of CHmrN classes given in [B8] 8 42 For the relation of
this to other definiiions see (3) LI, Appendix L

{*s All the cohomology groups in this paper are with integral coefficients, We shall
omit the symbol for the coefficiont group in the notation.

Annali di Malemalicg 46
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where o,€ H¥F(n + 1)) is dual to the subvariety of F{n 4 1) representing
flags § for which 8, meets a fixed [# — r — 1]. Hence

g Yo = == Wyg,
(242) i = Wiy — 0 (§ = 1, .., %-—1).
{ Y = Wy,

in agreement with Moxk ([8] Theorem 6).

§ 3. Tangent direction bundles.

3.1. - Let V be a non-singular algebraic variety (over the complex
field) of dimension d, and let V* be its tangent direction bundle, fibre Py ..(C).
‘We consider also the bundle T(V) over V, fibre C4* representing non-zero
(contravariant) tangent vectors to V. We have a commutative diagram of
natural projections

T(V)— V*

(8.1.1) \ o
v

where o (or oV} if we wish to emphasise the variety V) is the projection of
a principal C*~bnundle %(V).

8.2. - According to CHERN [4]
e*:  HNV)— HY(V¥)

is a monomorphism and H¥V#* is generated by p*H*(V) together with the
element ¢,(n(V)) of H*V¥), subject to the relation ([4] Theorem 5)

d
(32.1) () = = (— 1 e*eq)ea(n(V))+,

where ¢; = cg(V) € H¥V) (i = 1, ..., d) are the CHERN classes of V.
Following the notation of [9] We Wwrite

a(V)=—wv, ()

(3) This is an inconsistency compared with our basic notation of §4 where we use a capi-
tal letter and the corresponding lower case letter to denote respectively a subvariety of v
and the dual cohomology class. As we have no need of the symbol ¢ in this sense {the
dual of V being the unit class) it is hoped that this will cause no confusion.
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so that (3.2.1) becomes
d -
(3.2.2 vt = — 3 (p*c;jvd—i.

3.3. - To obtain the geometrical interpretation of v we suppose that V
is imbedded in projective space P = P,{C). The inclusion map

i:V~—P

induces a map di of tangent vectors and a map di of tangent directions
which may be incorporated in a commutative diagram

T(V) - T(P)
(3.3.1) o V)i 1P

v B ps

The map di is clearly fibre-preserving for the fibrings o; that is 7(V) is
the induced bundle di*n(P). Hence

(3.3.2) v = — ¢,(n(V)) = — di*c,(n(P)),
which reduces the problem to that of identifying c.{n(P)).

3.4. For this purpose We bring into the picture the flag manifold F(n-1)
which is in a natural Way a bundle over P with fibre Fin) and may be
regarded as the tangent flag bundle of P. The fibres C*. P,_(C), F(n) of the
bundles TiP), P* Fn - 1} over P are all representable as coset spaces of
GLn. C). Hence (') all three bundles may be regarded as factor bundles of
their common associated principal bundle E over P, fibre GL{%n, C). (E is the
principal tangent bundle of P). We exhibit the relationships in a commutative
diagram

E
/N
(3.4.1) T(P) | Fim+1)

N/

P’k

(%) See [11] §§ 7-9 for a detailed treatment of this type of situation.
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where t is the natural projection obtained by identifying P* with the variety
representing incident point-line pairs in P.

E over Fin + 1) is a principal bundle 6 with group and fibre A(n, C);
let 6,,.., 8, be the corresponding diagonal C*-bundles in natural order.
E over P* is a principal bundle 8 with group and fibre GL(1, n—1; C).
The bundle %(P) (T{P) over P*) is associated With the sub-C*-bundle of § and

so (cf. 2.4)
{3.4.2) T*(P) = 6;.

35. - Pinally, we relate this to the results of § 2 by considering the
commutative diagram

GLn +1, C)—E

N/

Fn 4+ 1)

where A identifies F with the space of cosets of GL(» 4+ 1, C) modulo the
subgroup H of matrices of the form (°)

(a/oo £ 2 a«m)

0 Aooly

On each fibre over F(n-1), A acts as the homomorphism A(n-1, C)— An, 0),
with kernel H, defined by

o 4

Qoo ‘ oy +er Qon
) d'4 (A€ A, O).
Thus the 6; are related to the & of 2.3 by
0 = &% i=1,.., n).

Combining this with (3.4.2) and (2.4 2) We obtain

e,(n(P)) = ¢u(8:)
= — (&} + €:(&1)

=—Yo+ T
::2(,00—-0)1,

{5) See para. d) of the proof of Satz 13.L.1 in [6].
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which determines ¢,(n(P)) completely, t* being a monomorphism since the
fibre of < is F(n—1) (4.
Hence, using (3.3.2), we may Write

(3-5.1) = Cﬁ*t*_l(wl i 2(00).

We have already identified P* with the set of all incident point-line
pairs {p, I); if we then identify V* with the subvariety of P* consisting of
pairs for which ! is tangent to V at p, dé is just the inclusion map and
we see immediately from the definition of w; in 2.4 that di*t*1w, is the
cohomology class dual to the subvariety of V* consisting of those pairs for
which p is in a fixed general prime sec ion of V, while di*t*—'w, is the coho-
mology class dual to the subvariety of V* consisting of those pairs for which /
meets a fixed general secundum in P,(C).

§ 4. Varieties on V* associated with linear systems on V.

The tangent lines to V which meet a fixed secundum are precisely the
lines which are tangent to the members of a fixed pencil of prime sections
of V. Thus (3.5.1) verifies the conjecture of [9] in that special case. In this
section We complete the verification by proving that an arbitrary regular
pencil of primals (in the sense defined belcw) can be used instead of prime
sections to obtain an analogous expression for v; the proof is a straightfor-
ward generalization of that given in [9] for surfaces. We also extend the
formula to one involving a regular linear system of higher dimension Which
will be required for the calculation of « Jacobians» in § b.

4.1. Any given non-singular primal 4 on V is contained in a complete
linear system | 4| of dimension ¢, say. For any (p, /)€ V¥ we denote
by | A|p, the subsystem of | A | consisting of those primals in | 4 |
to which [ is (formally) tangent at p. The dimension of | 4|,y is in
general ¢ —2. To any subsystem £,(4) of | A| of dimension r 0 <r <=
< max (g, 2d — 1)) we associate a subvariety L,(4) of V* consisting of the
pairs (p, /) such that

dim (£44) 0 [ 4 |ip,5) =7 — 1

(cf. the «lifts» from V to V* using pencils of primals described in (9)).

(°) Bee [2] Props. 293 and 4.1; F(n — 1) is the coset space of the unitary group
U(n — 1) modulo a maximal torus.
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‘When #:=0 no condition is imposed on (p, {) (with the usual convention
that —1 is the dimension of the empty;set) and so, for any non-singular 4,

(4.1.1) L(d) = V.

Now suppose that »>0. Then L.(4) includes all the pairs (p.!) in V* with p
on the base locus (if any) of £,4). If p is not on the base locus, then
ip, ))e L{4) it and only if [ is {formally) tangent at p to every member of
£,{4) through p.

Freedom considerations show that L,A) is in general a subvariety of
codimension r on V* The formula which we obtain below for the cohomology
class of L,{A4) (€ H*(V*) is obviously not valid in exceptional cases Where
L.{4) has too high dimension; there are also cases in which a maultiplicity
greater than one has to be attached to some components of L,(4) to make
the formula fit. To avoid all such difficulties We shall confine our attention
from now on to what we shall call regular linear systems. This qualification
imposes no restriction in the trivial case r = 0. We discuss the cases
0<r<d, d<r=d—1 separately.

It 0<r <d, £74) will be called regular if

a) at least one member of £,{4) is non-singular and irreducible,

b} each component of the base locus of £.(A4) is of dimension d—r—1
and is a component of multiplicity one of the intersection of at least one
set of r -4 1 primals of £,{4).

Under these conditions IL,{A4) can be defined more simply as follows.
Through a generic point of V pass oo'~! members of £,(4) giving a linear
space Pg_,.., of tangent directions (formally) tangent to all these primals.
The generic element of this Py.,.; corresponds to a poiut of V* (of transcen-
dence degree 2d —r — 1) and L,{A4) is the subvariety of V* of Which this is
the generic point. Thus if £,A4) is regular, r < d, then LJ4) is irreducible
and of codimension r on V*.

If r>d, the projection J of LJ{A) on V is the « Jacobian » of £,{4) in
the sense of B.1 below (the classical Jacobian when »=d). J is the inter-
gection of the Jacobians of all the systems £,{4) contained in SA4); i e d
is the base of the Jacobian system of £4A4). We shall say that £.{4) is
regular if (a) (above) is satisfied together with

b’) £,{(4) has no base locus,

¢) each component of IL,{4) is of dimension 2d —r—1 and projects
onto a subvariety of V of the same dimension Which is a component of
maultiplicity one of the intersection of at least one set of »—d -+ 1 members
of the Jacobian system of £.(4) if » > d, or a component of multiplicity one
of the Jacobian of £,(4) if r =d.
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4.2, THROREM. - Let S,(A) be a regular linear system on V of dimension r,
0<r<<2d -1, and let LA} be the associated subvariely of V*. Then the
cohomology class l{A) dual on V* to L,A4) is given by

”
(4.2.1) Lid)= % (* i‘ 1)(9*@5%5,

B0
where a is the cohomology class dual on V fo A, p is the natural projection
V*—V, and v is-the Chern class introduced in 3.2. (7)

The proof breaks up into a number of stages.

4.3. Proof for the case r = 1. - If W is a prime section of V (for some
imbedding of V in a projective space) then, as We have already remarked,
(3.6.1) can be written in the present notation as

(4.3.1) L(W) = v 4 2p%*w.
By 3.2 we can, for any £,(d), write
ll(A) =nv + p*w,

Where » is an integer and x e H*(V). Since the intersection of I,(4) with a
general fibre is the same for all pencils, » must be the same for all pencils.
That is, in view of (4.3.1),

4.32) Lid) = v + o,

Now we consider the Jacobian J_of d pencils £,(4,),..., £(4q). J is the
projection on V of the intersection J of L,4,),.., Li(4z). The cohomology
class dual to J is, with an obvious notation,

J=

k3

ll(Ai} = ﬁ (v + p*xq).

f =

K
I =

Using (3.2.2) and (4.3.2) we obtain expression of the form

7= (e*)vit + (p*iaJvt2 - . 4 %

= (P (A + (P44 + o + 6%,

() Cf. the footnote to that section.
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where j;, ji€ H#V) and in particular
(4.3-3) jl = ¥y + Ly + “en + Xg — Cy»

But J contains just one point of the fibre over a general point of J, while
(Li(4))%! has a single intersection with any general fibre. Hence j; is the
cohomology class dual to J.

Now, it is well-known that

(4.3.4) J =24+ 4. + ... + 4a) + Xa—, ()

where X4, is the canonical divisor on V; dualizing we obtain the cohomo-
logy equation

(4.3.5) hi=2a,+ a; + ... +aq) —c ().
We may take 4,,.., 44-1 to be prime sections, so that by (4.3.1)
Xy = 2W = 2a; (¢t=1,.., d—1).

It then follows from (4.3.3) and (4.3.5) that xg = 2a4. Since 44 is arbitrary,
(4.3.2) becomes, for any £,(4),

(4.3.6) L(4) = v + 2¢p%a,
which is (4.2.1) with r = 1,

44. LeMMA - Let A* be the tangent direction bundle (*°) of a non-singular
primal A on V and suppose that the complete system | A | includes a regular
pencil. Then the cohomology class o* dual o A* regarded as a subvariety of V¥
is given by

44.1) a* = (p*aj(v + p*a).

Proor. - We calculate the intersection p—'4 » L,(4) on V* by specializing
to the case Where A is a member of the pencil £,(A). It is then clear from
the definition of I,(4) that the intersection breaks mp into A* and p~'B

(®) See, e.g., Baupassarrr {1] VIIL 2},

(®) It is perhaps worth remarking that we do not in fact need to assume the known
theorem that ¢, is dual to — X;—,; this duality follows from (4.3.1) on comparing (43.3)
and (48.4) in the case when 4,,.., 4, are all prime sections.

{(*%) There is a change in notation here from that used in [9] The symbol 4% was
there used to denote p—'4, and what is now called 4% would there have been denoted by
4~ (the «<mataral lift-).
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where B is the base of £,(4). Thus
o014 < L{4) = A* J o~ Y4 - 4).
The dual cohomology equation is
(p*a)l(4) = o* + [p"a)’,
from which (4.4.1) follows using (4.3.6).

4.5. LEMMA. - Let £,{A) be a regular linear system, r = 2. Then, with
the notation of 4.2 and 4.4,

(4.5.1) 1(A4) = L{A),_s(A) — a*T,_s(A).

Proor. - In view of (4.1.1) and (4.3.6) we may assume as an inductive
hypothesis that /f4) depends only on the homology class of 4 if i<r. We
may therefore calculate the intersection L,(4).L,_1(4) on V¥ by specializing
to the case wWhere £,(4) and £,_,(4) are both contained in the given £,(4),
and We may suppose moreover that A is their {only) common member. Let
Sr—s'A) be a subsystem of £, _(4) which does not contain A.

If p is not on A the pairs (p, {) in L,(A). L,_,{4) are precisely those in
L,{4), and the base B of £,{4; is the intersection of the bases of £;14) and
Lp—1(4). If p is on A—B the pairs (p, I) in Ly(4) - L._1{4) are those in L,_,(4)
for which 7 is tangent to A at p. Thus

Li(4) - L1(4) = L{4) + A% + Le—{4).
and (4.5.1) follows on dualizing to cohomology.
4.6. - Combining (4.4.1) and (4.5.1) we obtain the recurrence relation
I{4) = L{AN—(4) — (p¥a)v + p*a)l. o(4).

On the other hand, if we denote the right hand member of (1.2.1) temporarlly
by 2., we can write formally

Ar = v (v 4 p*a)tH — (pFa)rtt}
= é (e*aji(v + *a)y—+,

i=o0

whence it is easily verified that
Ay = MApoi = (p*a)iv - p*a)d,_;.

Anngli di Matematica &
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Bat ,(4) =X, by (4.1.1) and {4)=2X, by (4.3.6); hence, by induction, I(4)=%,
for all r. This completes the proof of the theorem (4.2).

4.7, - As [{4) depends only on the homology class of 4, i. e. on the
cohomology class a, it makes for a more consistent notation to Write it in
future as [{a). Just as in (9), we can use the formula (4.2.1) to define I.a)
for an arbitrary a € H4V) whether or not it is dual to a primal A4 belonging
to a regular £.(4). In particular, /,(0) = v".

§ b. Generalized Jacobians.

5.1. - Let £,.(4y) (¢=1,.., k) be &k general regular linear systems of
primals on V, where

sty Fre=d—1-+3s, 1=s<d.

Then the intersection J of the corresponding varieties L, (45 on V* is of
dimension d - s. We define the Jacobian J of the systems to be the projection
of J on V. In other words, J is the locus of points p through which there
passes a line ! which is {formally) tangent at p to each member through p of
each system of which p is not on the base. J is also of dimension d—s and
a single point of J overlies a general point of J.

5.2. THEOREM. ~ The Jacobian defined in B.1 is homologous to the coeffi-
cient of 1¢ in the formal power series expansion of

521) (1 — Xa_gb 4 o + (— l)dXotd)—lifI (L4 gyt — (Attt}
:1

where X, denotes the canonical system of dimension h on V and producls are
to be interpreted as intersections (*').

() When s=1, this reduces to a weaker form (since we have a broader equivalence
relation) of the known formula (see, e.g, SEVERI [10], p. 20)

J=X4, + Z(r; + 1} 4,.

We have, of course, already used this result in the special case of d pencils in proving
Theorem 4.2, When s==2 or 3, 5.2 generalizes formulae given in [9] for the Jacobians of
three pencils on a surface (p. 66) and of four and five pencils on a threefold (p. 77 - owing
to a misprint the pencils are unfortunately described there as < pencils of curvess).
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ProoF. - By 4.2 the cohomology class dual to J is

=1 i=1h=o

- & sy
(6.2.2) j= 11 lri(ai) = i (?‘@2- 1) (Faifrori—H,

Using (3.2.2) We can express j as a polynomial in v of degree d —1 with
coefficients in p*H*(V), say

(5.2.3) § = (%50t 4 o (%ol € HE(T),

Then j, is dual to J (cf. 4.3).
Translating the assertion of the theorem into cohomology, we have to
show that j, is the coefficient of # in C{)~'P({}, Where

Oty = 1+ et + ... + cyt@

is the CHERN polynomial of V and

P(t) = JE (L agtjntt — (aut)ritt |

s+l "
=B

P(l) is formally of degree d— 1 -4 s (but actually the coefficient of # is
in H**(V) and so vanishes for 2> d). We denote the «reverse polynomial» by
P(t) = t8-1++p(i-Y).

Then (5 2.2) can be written

(5.2.4) j = ¢*P(v),

where p* is to be applied coefficientwise. Similarly (3.2 2) can be written

{6.2.5) p*C(v) =0
where
C(t) = ().
Now, we may put

Clt)~'Pi) = Q(t) + t°R(f)
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where Q{t) is of degree s — 1 and then

(5.2.6) Pil) = Qi)Ct) + t2U (1),
where
U(t) = R({H)C(Y)

and is formally of degree d — 1. Introducing the «reverse polynomials »

Q) = =), U(t) =110,

we obtain from (5.2.6)

Hence, by (5.2.4) and (5.2.5),
j=e"Pl) = ¢*Tlv),
so that ¢*U(v) must be identical with the right hand side of (5.2.3). Thus
Js = coefficient of 14 in U(t)
= coefficient of {° in U(f)
== coefficient of #* in R(f)
== coefficient of # in C(fj—'P({),

which completes the proof.
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