
The ttmgent direction bundle of an algebraic variety 
and generalized Jacobiaus of' linear systems. 
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Summary. - I t  is ~veU-known that, on an algebraic variety V of dimension d, there is asso- 
ciated with a set of linear systems whose total dimension is d a Jacobian variety (o[ 
dimension d -  1) at any point of which (other than base points of the linear 
systems) there is at least one line (formally) tangent to every variety of each 
system which passes through the point. This notion generalizes to a set of l~near systems 
of total dimension d q--r ( O ~ r  ~ d), the generalized Jacobian being then of dimension 
d ~ r  -- 1. The final aim of this paper is to obtain a general fbrmula (Theorem 5.2) for 
the homology class of this generalized Jacobian. The proof is derived with the aid of 
cohomologieal and bundle-theoretic methods from the study of the tangent direction 
bundle of V, and the earlier part of the paper establishes the necessary techniques 
(which are not without their independent interest) [or our pu~'poses. 

§ t. I n t r o d u c t i o n .  

The t a n g e n t  d i rec t ion  b u n d l e  V* of an algebraic variety V is the variety 
represent ing  the tangent  directions, or first  neil:hbourhood points, on V. 
V* is an algebraic variety;  it may be identified with lhe subvariety of the 
product of V and lhe Grassmannian of lines in Ihe ambient  space represenl ing 
those point- l ine pairs ~p, It with l tangent  to V at p. V* is in a natura l  way 
a fibre bundle over V, the fibre being a projective space of dimension one 
less than that of V. 

Ia  a recent  paper [9] one of us has considered the properties of V* 
using classical te thniques  of algebraic geometry;  it is shown, inter  alia, 1hat 
the homology ring of V* is generated by the inverse images in V* of the 
elements of a base for homology ou V togelher with a single addit ional 
homology class. The same result  {in terms of cohomology) had been proved 
ear l ier  by C~ER~ [4J using fibre bundle techniques.  A suitable addit ional 
generator  is obtained in [9] as an <(invariant lift ~ defined by means of a 
pencil  of primals on V ;  CHEnN's generator  is the character is t ic  class of a 
cer ta in  1 - sphe re  bundle over V*. The conjecture is expressed in [9] that the 
two generators coincide (apart from a difference of sign) and strong supporting 
evidence is produced for lhe cases when V is a surf ,  ce or threefold. 

The t ru th  of the conjecture  is proved in this paper.  The identif ication 
is first established for pencils of prime sections using fibre bundle theory;  
this part  of the proof occupies §§ 2 and 3. The rest of lhe paper is more 
geometrical in character .  In § 4 we car ry  out the extension to a rb i t r a ry  
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pencils of primals and also study more general  ~ lifts ~> from V to V* defined 
by means of l inear  systems of all dimensions. In § 5 we introduce a <~ gene- 
ralized Jacobian >> Ilocus of points at which lhere are common tangent lines} 
of a family of l inear systems wilh total dimension not less 1hun, but less 
th~n double, the dimension of V and apply lhe earl ier  results to obtain an 
expression for this Jacobian in terms of lhe canonical  systems on V. The 
p r o c e d u r e  here  is quite s t ra ightforward:  having established independent ly  
the conjecture  of [9] we are lhen enabled to put the arguments  of lhat paper 
into reverse, thus effectively applying the intersection theory on V* to obtain 
more complicated geometrical  results on V. 

The notion of << Jaeobian ~> can be generalized still further .  One can 
consider, for instance, the locus of points at which the members of any 
family of l inear  systems have a common tangent [k] or satisfy even more 
complicated contact conditions. A universal  tool for studying these loci, by 
methods generaliz ng 1hose used here, is the tangent flag bundle of lhe variety 
V, the theory of which is [he subject of another  paper  [7]. 

§ 2. F l a g  m a n i f o l d s .  

This prel iminary section is devoted to the notation and results concerning 
flag manifolds which will be required in Ihe sequel. Ful ler  details of the 
fibre bundle aspect of these manifolds may b e  found, for example,  in [6], 
and of the geometrical aspect in [8]. 

2.1. - A flag in n-d imens ional  complex projective space P,(C) is a 

nested system 

S: So C S~ ~ ... c S,  ~ P+~(C) , d i m S ~ - : i ,  

of projective subspaces (or equivalently a nested system of vector subspaces 
of (n 4- l )-dimensionaI complex vector space). 

The flag manifold F(n ~ 1) is an algebraic variety the points of which 
are in one- to-one  correspondence with the flags in P~(C). 

2.2. - The operation of the full l inear  group GL(n ~ 1~ C) on P~(C) and 
hence on F(n-]-1} may be used to define a projection 

~:: GL{n 4- 1, ¢ ) ~  Fin 4- 1) 

by putt ing ~ : A - - A ~  IAeGL(n-~I ,  C)}, ~ being the f ixed flag in wh i (h  S~ is 
of spanned by the first i-{-1 reference  points, r: is the projection of a 
principal  fibre bundle ~ with group and fibre 1he t r iangular  group 5(n~t,C),-  
the subgroup of GL(n+I,  C} which leaves S invariant.  
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2.3. - We denote by ~o,..., ~n the diagonal C*-bundles of ~ in natura l  
order  (see [6] § 4.1. c)) and by 7~--c~(~i) the first  C~En~ class (~} of ~ 
(i ~ 0, ..., n). The cohomology group {2~ H-(FIn-[-1)) is wilhout  torsion and is 
genera ted by any n of 70, ..., Y,,, which satisfy the rolation 

1'0 A- t"1 -{- ... -[- Y,, -- 0 

(see for instance [6] § 14.2). 
)[ONK [8] h~s given a geometrical  interpretat ion of the 1'~ up to an 

ambigui ty  of sign and order. A more direct  method of obtaini~g the inter- 
pretat ion (and removing the ambiguity) is the following. 

2 . ~ . -  Let  ~(r, n) be the Grassmannian  of r -d imens iona l  subspaees of 
P,,(C~. The natura l  projection F(n ~ 1)--~ g2(r, n) may be incorporated in a 
commutat ive diagram 

GL(n -}- 1, C) --~ F(n + 1) 

(2.4.1) ~"~, //¢p 
~2(r, n) 

where  ~ is lhe projection of a principal  fibre bundle ~ wilh group and fibre 
GL(r zr-1, n - - r ;  Cb the group of matr ices  of the form 

, e O (r + e), x "  r, c) .  

Let  ~', ~" be the s u b - a n d  quotient  bundles of ~" wi~h groups GL r ~ l ,  C), 
GL(n--r ,  CI respectively ([6] § 4.1. ct). Then H"l~(r, n}) is generated by 
c,(~') 113] I,. § 16 2~. On lhe olher hand, it is wel l -known {see e.g. [511 lhat lhe 
h~)mology group of 9.(r, n ) i n  codtmension 2 is generated by ~he homology 
class of th~ Scgtr~Er~ subvariety represent ing ~h. [r]'s w h ( h  meet a fixed 
[ n - - r - - l j .  Hence,  this class corresl)onds by PO~Z¢CARE duali ty to +----c~t~'). 
In  fact, using the natural  orientation of f~(r, n and the present  s ign convention 
for CaEa~ classes, the minus sign is correct  113] II,  § 29.31. 

~ w ,  the diagram (2.4.1) shows ~htt ~--~*~,  so that ~*~' is a h(rq-1, C}- 
bundle w~th diagonal bandies  ~o,..., ~ .  Hence  ([6] Satz 4.1.5) 

and so 

Thus 

= i o ¢  ¢ ... e 

Yo -t- "~1 -t- ... -t- ~'~ = - -  co~. 

(q We adopt the definition of CrfEaN classes given in [61 § 42 For the relation of 
this to ottmr defini;ions see tBp l_I, Ap~eadix 1.. 

Is} All the cohomoto~y groups in this paper are with integral coefficients. We shall 
omit the symbol for the coeffieiaat group in the notation. 

Annali eli Matemativa 46 
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where  ¢o~EH2(F(n-+-1)) is dual to (he subvariety of F(n + 1) represent ing 
flags S for which S~ meets a fixed [ n - - r - -  1]. Hence  

(2.4.2) 

yo --- ~ tOO 

y~ -- to~ -- ~o~ (i -- I, ..., n -- I). 

in agreement  with ~¢Io~K ([8] Theorem 6). 

§ 3. T a n g e n t  d i r e c t i o n  b u n d l e s .  

3.1. - Let  V be a non-s ingular  algebraic variety (over (he complex 
field t of dimension d, and let V* be its tangent direction bundle, fibre Pd-~(C~. 
We consider  also lhe bundle T(V) over V, fibre Ca*, represent ing non-zero 
(contravariant) tangent  vectors to 3g. We have a commutat ive diagram of 
natura l  projections 

T r y )  - j  v *  

17 

where  ~ (or z(V) i[ we wish to emphasise the variety V) is the projection of 
a principal  C*-bundle ~{V). 

8.2. - According to CHERN [4] 

p*: H*~V) --~ H*(V*) 

is a monomorphism and H*(V*) is generated by p*H*(V) together with the 
element cl(~[V)) of H2(V*), subject to the relation ([4] Theorem 5) 

d 

(3 2.1) (o,(-~(17)))a --. X, (--  1)~+~(p*c~)(e,(~(V))) ~'(, 

where  c a -  ca(V)eH~(V) (i ~-1, ..., d) are the CHERN classes of V. 
Following the notation of [9] we wri te  

= - -  (') 

(s) This  is an  i n c o n s i s t e n c y  c o m p a r e d  w i t h  our  basic  no t a t i on  of §4 w h e r e  we  use  a eapl,  
ta l  l e t t e r  a n d  the  c o r r e s p o n d i n g  l o w e r  case l e t t e r  to deno te  r e s p e c t i v e l y  a s u b v a r i e i y  of V 
a n d  the  dua l  cohomology  class.  As  w e  h a v e  no need  of the  s y m b o l  v in  th i s  sense  ( the 
d u a l  of V b e i n g  the  un i t  class) i t  is hoped  t h a t  th is  wil l  cause  no  confus ion.  
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so tha t  {3.2.1) becomes 

d 

(3.2.2) v '~ = - -  Y~ (~*c~)v a-~. 

3.3. - To obta in  the geomet r ica l  i n t e rp re t a t ion  of v we suppose tha t  V 
is imbedded  in project ive  space P -  P,~(C). The inc lus ion  map  

i ' V - - ~ P  

induces  a map di of t angen t  vectors  and a map  di of t angen t  d i rec t ions  
w h m h  m a y  be incorpora ted  in a commuta t i ve  d iagram 

(3.3.1) 

T(V) --~ T(P} 

°(v) I _ i °(P) 
V* ~ P* 

The map  di is c lear ly  f ib re -p rese rv ing  for the f ibr ings  ¢~; that  is ~(:V) is 
the induced  bund le  di*~q(P). Hence  

{3.3.2) v --" - -  cl(~(V}} = - -  d-f*c~(~(P)), 

which  reduces  the problem to tha t  of iden t i fy ing  cl('~(P)). 

8.4. Fo r  this purpose  we br ing  into the p ic ture  the f lag mani fo ld  F(n-~.l) 
which  is in a na tu ra l  w;~y a bund le  over  P wi th  f ibre Fin)and m a y  be 
rega rded  as the t angen t  f lag bund le  of P. The f ibres  C*. P,-~{CI, F(n) of the 
bund les  TIP), P*, Fin-}-l} over P are all r epresen tab le  as coset spaces  of 
GLen, CI. H e n c e  (~) all  three  bundles  may  be regarded  as fac tor  bund les  o[ 
the i r  common associated p r inc ipa l  bundle  E over P, f ibre GLIn, CI. (E is the 
principal tangent bundle of P}. W e  exhibi t  the re la t ionsh ips  in a commuta t ive  
d i ag ram 

(3.4.1) 

E 

/ \  
T(P) F(n -4- 1) 

p* 

(4) See [11] §§ 7-9 for a detailed treatment of this tyloe of situation~ 
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where ": is the natural projection obtained by identifying P* with the variety 
representing incident point-line pabs in P. 

E over F i n ÷  1)is  a principal bundle 0 with group and fibre 5{n, CI; 
let 01,..., 0~ b e  the corresponding diagonal C*-bundles in natural order. 
E over P* is a principal bundle 0 with group and fibre GL(1, n - - 1  ; C). 
The bundle ~(P) (T(P) over P*) is associated with the sub-C*-~mndle of 0 and 
so (cf. 2.4) 

(3.4.2) ~*~(P) : 0~. 

8 5 . -  Flintily, we relate this to the results of § 2 by considering the 
commutative diagram 

GL(n ÷ 1, C~ "Z" E 

',, / 
F(n + l) 

where ), identifies E with the space of eosets of GL(n + 1, C) modulo the 
subgroup H of matrices of the form (2) 

( ~  aol ... ao. )  

aoo~n 

On each fibre over F(n÷l) ,  ), acts as the homomorphism 5(n-{-1, C)--,-A(n, C), 
with kernel H, defined by 

aoo no1 "'A ao~) 
- -  - - .  aToIA (A ~ ~(n,  C~). 
O 

Thus the 0~ are related to the ~ of 2.3 by 

O, = ~o-~, (i = 1, ..., n). 

Combining this with (3.4.2) and (2.4 2) we obtain 

~%,(,~(p)) = ~,(0,) 

= - ~1(~o) + ~1(5) 

- -  - -  7o + 71 

20)o - -  o)1 

(~) See para. d) of the proof of Satz 13.L1 in [6], 
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which  de te rmines  c~{~IP)) completely,  z* being 
fibre of -c is F ( n - - 1 )  ~6). 

Hence,  us ing ~3.3.2~, we may wri te  

a monomorph i sm since the 

(3.5.1) v = ~ * ~ * - 1 ( ~ o ~  _ 2~o ) .  

We have a l ready ident if ied P* with the set of all inc ident  po in t - l ine  
pairs  tP, /); if we then identify V* w~th the subvariety of P* consis t ing of 
pair's for which  l is tangent  to V at p, di is j u s t  the inc lus ion  map  and 
we see immedia te ly  from the def ini t ion of o)~ in 2.4 that  d~*'c*-1¢Oo is the 
cohomology class dual  to the snbvarie ty  of V* consis t ing of those pairs for 
which  p is in a fixed general  pr ime sec ion of V, while  ~*z*-kox is the coho. 
mology class dual  to the subvarie ty  of V* consis t ing of those pairs  for wh ich  1 
meets  a fixed general  s ecundum in P~,(C). 

§ 4. V a r i e t i e s  o n  V* a s s o c i a t e d  w i t h  l i n e a r  s y s t e m s  o n  V. 

The  tangent  l ines to V which  meet  a f ixed seeundum are precisely the 
lines which  are tangent  to the members  of a fixed penci l  of pr ime sections 
of V. Thus  (3.5.1) verifies the conjecture  of [9] in that  special  case. In  this 
section we complete  the verif icat ion by proving that  an arbi t rary regular  
penci l  of p r imals  (in the sense defined beh~w)can  be used ins tead of pr ime 
sections to obtain an analogous  express ion for v; the proof is a straightfor- 
ward  general izat ion of that  g i v e n  in [9] for surfaces.  We also extend the 
formula  to one involving a regular  l inear  system of h igher  d imens ion  which  
will  be requi red  for the calcula t ion of << Jacobians  >> in § 5. 

4.1. Any given non- s ingu la r  p r imal  A on V i s : con ta ined  in a complete  
l inear  system [ A ]  of d imens ion  q, say. For  any (p, l)E V* we denote  
by I A Iip.~) the subsystem of 1 A I consis t ing of those pr imals  in I A t 
to which  l is tformally) tangent  at p. The d imens ion  of ] A  ]4v.z) is in 
genera l  q -  2. To any subsystem £~tA) of I AJ  of d imens ion  r ( 0 ~ r  <- 

max(q,  2d - -1 )}  we associate a subvarie ty  Lr(A) of V* consis t ing of the 
pairs  {P, l) such  that  

d im (£.(A) fl 1 A I(p, z)) ~ r - -  1 

(el. the ((lifts)> from V to V* using penci ls  of pr imals  descr ibed in (9)). 

(0) See [2] Props. 29.3 and 4.1; F ( n -  1) is the coset space of the unitary group 
U(n - 1) modulo a maximal torus. 



366 A . W .  INGLEToN-D. B. SCO~: The tangent direction bundle, etc. 

When  r ~ 0 no condition is imposed on (p, l) (with the usual  convention 
that - - 1  is the dimension of the empty,se t )  and so, for any non-s ingular  A, 

(4.1.1) Lo(A) -  V*. 

NoW suppose that r > 0. Then L~(A) includes all the pairs {p. l) in V* with p 
on the base locus (if any I of £,.{A). If  p is not on the base locust then 
(p, 1) eLf(A) if and only if l is (formally) tangent a t  p to every member  of 
£r(A) through p. 

Freedom considerations show that L~(A) is in general  a subvar ie ty  of 
codimension r on V*. The formula which we obtain below for the cohomology 
class of L~(A~ (~H2~(V*)) is obviously not valid in exceptional  cases where  
L~(A} has too high dimension;  there are also cases in which a mult ipl ici ty 
greater  than one has to be at tached to some components  of  LrtA) to  make 
the formula fit. To avoid all such difficulties we shall confine our attention 
from now on to what  we shall call regular l inear systems. This qualif icat ion 
imposes no restr ict ion in Che trivial case r ~ 0. W e  discuss the cases 
0 < r < d ,  d ~ r ~ - - d - - 1  separately.  

I f  0 < r < d, £~(A) will be called regular if 

a) at least one member  of ~(A) is non-s ingular  and irreducible,  

b) each component  of the base locus of £~tA} is of dimension d--r- -1  
and is a component  of mult ipl ici ty one of the intersection of at least one 
set of r ~ 1 primals of £~(A). 

Under  these condit ions Z~(A} can be defined more simply as follows. 
Through a generic point of V pass c~ v-1 members  of £riA) giving a l inear 
space Pd-r-1 of tangent  d i r ec t ions  (formally) tangent to all these primals. 
The generic element of this Pd ~--1 corresponds to a point of V* (of transcen- 
dence degree 2 d - - r - - 1 )  and L~{A) is the subvar ie ty  of V* of which this is 
the generic point. Thus if £~.tA) is regular,  r < d, then LrtA) is i r reducible 
and of codimension r on V*. 

If  r ~  d, the project ion J of L~(A} on V is the ,~ Jacobian  ~> of £r(A} in 
the sense of 5.1 below (the classical Jacobian when r ~-d).  J is the inter- 
section of the Jacobians  of all the systems £dlA) contained in £~(A); i. e. J 
is the base of the Jacobian  system of £,.IA). We shall say that £~(A) is 
regular if (a) (above) is satisfied together with 

b'~ £¢(A) has no base locus, 

c) each component  of Lr(A) is of dimension 2 d - - r - - 1  and projects  
onto a subvar ie ty  of V of the same dimension which is a component  of 
mult ipl ici ty one of the intersection of at least one set of r - - d ~  1 members  
of the J acob ian  system of ~.(A) if r :> d, or a component  of mult ipl ici ty one 
of the ~[aeobian of £~(A) if r ~ d. 
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4.'- ). TttEOREM. - Let £~(A) be a regular linear system on V of dimension r, 
0 ~ r ~  2d - 1 ,  and  let L~(A} be the associated subvariety o f  V*. Then the 
cohomology class l~(A) dual  on V* to L~(A) is given by 

{4.2.1) l~(A)-- E ( r -~  1) 
~=0 i (P*a)~v~-~' 

where a is the cohomology class dual  on V to A, ~ is the natural  projection 
V * ~  V, and v i s . the  Chern class introduced in~ 3.2. (7} 

The proof breaks up into a number  of stages. 

4.3. P r o o f  for the  case r = l .  - If W is a prime section of V (for some 
imbedding of V in a projective space) then, as we have a l ready remarked,  
(3.5.1) can be wri t ten  in the present  notation as 

(4.3.~) li(W) : v + 2~*w. 

By 3.2 we can, for any £1(A), wri te  

l~(A) --  nv + ~*x~, 

where  n is an integer and x e H~'(V). Since the intersection of L~(A) with  a 
general  fibre is the same for all pencils, n must  be the same for all pencils. 
That  is, in view of (4.3.1), 

(4.3 2) l~(A) --  v J- ~*x, 

Now we consider the Jaeobian  J of d pencils £itA1),..., £~iAd). J is the 
projection on V of the intersect ion J -o f  L~(Ai}, ..., LItAd). The cohomology 
class dual to J-is ,  with an obvious notation, 

d d 
f =  n l~(A~)= n (v + ~*x~). 

~=I ~I 

Using (3.2.2) and (4.3.2) we obtain expression of the form 

f =  (~ ' j jv  ~-1 + (~*j~)v~-~ + ... + ~*j~ 

---- (~*jj(ll(A)) a-1 + (~*fi)(ll(A)) ~-~ + ... + ~*Ja,: 

(7) Cf. the  footnote  to t ha t  sect ion.  
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where  f i ,  j ~ H ~ ( V )  and in par t icular  

(4.3.3) j~ -= x ~ ÷ x ~ +  . . . + x a - - c ~ .  

Bu~ J contains jus t  one point of the fibre over a general  point of J, while 
(L~(A)) a-1 has a single intersection with any general  fibre. Hence  3"1 is the 
cohomology class dual  to J .  

~ow, it is wel l -known that 

(4.3.4) J ----_ 2(A~ ÷ A~ ÷ ... ÷ Aa) ÷ Z~- l ,  (8) 

whore Xd--t is the canonical  divisor on V; dualizing we obtain the cohomo- 
logy equation 

(4.3.5) j~ --  2(a~ W a2 + ... ÷ aa) - e~ (9). 

We may take A~, ..., Aa-1 to be pr ime sections, so that  by (4.3.1) 

x~ --  2w --  2a~ (i - -  1, ..., d - -  1). 

I t  then follows from {4.3.3) and (4.3.5) that x a - - 2 a d .  SiDce Ad is arbitrary,  
{4.3.2) becomes, for any £~(A), 

(4.3.6) l~(A) - -  v ÷ 2p'a, 

which is {4.2.1) with r = 1. 

4.4, LE~MA - Let A* be the tangent direction bundle (~o) of a non-singular 
primal  A on V and suppose that the complete system I A [ includes a regular 
pencil. Then the eohomology class a* dual to A* regarded as a subvariety of V* 
is given by 

(4 4.1) a *  = + 

P R O O F .  - We calculate the intersect ion ~ - ' A .  L~{A) on V* by specializing 
to the case where  A is a member  of the pencil ~(A). It is then clear from 
the definit ion of L~(A) that the intersection breaks up into A* and ~-IB 

(8} See,  e.g., :BALDASSARRI [1] V I I I .  2{i}. 
{~) I t  is perhaps  wor th  r e m a r k i n g  that  we  do not  in fact  need  to a s s u m e  the  k n o w n  

theorem that  ci is dual  to - - X d - l ;  lhis dua l i ty  fol lows f rom (~.3.1) on compar ing  {4:3.3) 
and (43.4} in the case w h e n  At . . . . .  Ad, are all p r ime  sections.  

(i0} There  is a change in notat ion here  f rom that  used in [9]. The symbol  A* was  
there  used to denole  ~--~A, and wha t  is n o w  cal led A* wou ld  lhere  have  been  denoted  by 
A -~ (the • na tura l  l if t  Q. 
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where  B is the base of £~(A). Thus 

e-*zt, r,!A) -- A* + ~- ' (A.  A). 

The dual eohomology equat ion is 

(e*a)l,(A) = a* + Ip*a) ~, 

from which (4.4.1) follows using (4.3.6). 

4.,5. LE~[I~A. - Let £~(A) be a regular linear system, r ~ 2. Then, with 
the notation of 4.2 and 4.4, 

(4.5.1) 1,(~t) = t , (A)t~_~(A) - -  a* l~_~(A) .  

P R O O F .  - In view of (4.1.1) and (4.3,6) we may assume as an induct ive 
hypothesis  tl, at l~A) depends only on the homology class of A if i < r. We  
may therefore calculate the intersection L,{A). L,,_IlA) on V* by specializing 
to the case where  ~(A) and £~-tIA) are both contained in the given £~(A), 
and we may suppose moreover  that A is their tonlyl common member.  Let  
£~-2'AI be a subsystem of £~_1(A~ which does not contain A. 

If p is not on A the pairs (p, l) in L~(At. Lr_l(AJ are precisely those in 
Lr(A), and the base B of £~{Ai is the intersect ion of the bases of £~A) and 
£~_~{A). i f  p is on A - - B  the pairs iP, l) in L~(A). Lr_I(A) are those in Lr-2(A) 
for which 1 is tangent to A at p. Thus 

LI(A t , L~_I(A) z L~(A) -[- A*.  L~_2(A). 

and (4.5.1) follows on dualizing to eohomology. 

4 . 6 . -  Combining t4.4.1) and [4.5.i) we obtain the recurrence  relation 

t r(~t) = l l(~lt~_l(A) - -  (p*a)(v + e*a)l~ ~(~t). 

On the other hand, if we denote the right hand member  of (4.2.1} temporar i ly  
by ).~, we can wri te  formally 

x~ = v-~ l (v + ~*a)~+ 1 - (~*a)~+l i 

= ~, (~*a)~(v + ~*a) "-~, 
~=o 

whence  it is easily verif ied that 

kr "-- ~,kr--1 ~ (~a)(V ~- ~*a)kr_ 2. 

Anna l i  di Ma tema t i ca  4~ 
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But  ldA)----= )~o by (4.1.1) and  l~tA)=X~ by {4.3.6}; hence,  by induct ion ,  I,(A)=;,,. 
for  all r. This  completes  the proof  of the theorem (4.2}. 

4.7. - As lr{A) depends  only  on the h0molog~j class of A, i. e. on the 
cohomology class a, it  makes  for a more cons is tent  no ta t ion  to wri te  it in 
fu tu re  as l~(a}. Jus t  as in {9), we can  use the fo rmu la  (4.2.1) to define l~(a) 
for  an a rb i t r a ry  aeH~iVi  whe the r  or not  it  is dua l  to a p r imal  A be longing  
to a r egu la r  £~(A). In  par t icu lar ,  l~ (0 ) -  v ~. 

§ 5. G e n e r a l i z e d  J a e o b i a n s .  

5,1. - Le t  £r~(Ai) 
pr imals  on 17, where  

( t - - 1 , . . . ,  k) be k genera l  r ega l a r  l inear  sys tems of 

r~ n u r~ + ... ~- re - -  d - -  1 n u s, 1 ~-- s _~ d. 

Then  the in te r sec t ion  J - o f  the cor responding  var ie t ies  L~JA~} on V* is of 
d imens ion  d - s. W e  def ine  the Jacobian J of the sys tems to be the project ion 
of J on V. In  other  words.  J is the locus of points  p th rough  which  there 
passes a l ine l wh ich  is 4formally) t angen t  at p to each member  th rough  p of 
each  sys tem of which  p is not  on the base. J is also of d imens ion  d - - s  and  
a single point  of ,] overl ies a genera l  point  of J. 

5.2. THEOREM. - The Jacobian defined in 5.1 is homologous to the coeffi- 
cient of t 8 in the format power series expansion of 

(5.2.1) 
k 

(1 -- Xd-l t  -1- ... -t- (-- 1)dXot4) - i  II { (1 -t- Ait)~ + i -  (Ad) ~+1 l,  
t= t  

where Xa denotes the canonical system of dimension h on V and products are 
to be interpreted as intersections (~. 

(ti) W h e n  s ~  I, this reduces  to a w e a k e r  ~orm (since we  have  a b roader  equ iva lence  
relat ion) of the known  formula  (see, e g ,  SEVERI [10], p. ~0) 

J ~ Xd-i -~ -V(rt -b 1)A~. 

W e  have ,  of course,  a l r eady  used this  resul t  in the special  case of d pencils  in p r o v i n g  
Theorem 4.2. W h e n  s--'~ 2 or 3, 5.2 genera l izes  formulae  g iven  in [9] for the J '~cobians of 
three penci ls  on a sur face  (p. 66} and of four  and f ive pencils  on a threefold  {p. 7 7 - o w i n g  
to a mispr in t  the pencils are unfor tuna te ly  descr ibed  there  as ~ pencils  of curves  ,). 
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PRooF. - By 4.2 the cohomology class dual  to , ] i s  

, Ii  1 ~, r~ 1 (~,a~)~vr_h" (52.2) i =  n ~ ( a ~ ) =  
t --1 h=o  

Using (3.2.2) we cau express  f as a polynomial  in v of degree d - - 1  wi th  
coefficients in p'H'iV), say 

(5.2.3) ) : --  (~*fl)v a-~ + ...-Jr" (~*ja)v ~-1 , jh e H2~(V). 

Then  fi  is dual  to J (el. 4.3). 
Trans la t ing  the assert ion of the theorem into eohomology, we have to 

show that  fi is the coefficient  of t~ in Ctt)-IP(t), where  

C(I) = 1 + cfl Jr" ... + ca ta 

is the C ~ E ~  polynomial  of V and 

k 

P(t) = ~=II 1 {~1 + ad)r~+ 1 - -  (ad)~+ 1 } 

- -  II r~ i (ad)h. 
~=I h=oX 

P(t) is formal ly  of degree d - - t  "l'-s tbut ac tual ly  the coefficient  of t h is 
in H~hlVj and so vanishes  for h >  d). We denote  the c reverse polynomial,> by 

Then  (5 2.2) can be wr i t ten  

(5.2.4) 

Eft) = ta-l+'P(t-1).  

where  p* is to be appl ied coefficientwise.  Similar]y (3.2 2) can be wr i t ten  

(52.5) r~(v) = o 

where  

Now, we may  pu t  

c(o = t , ' c ( t - , ) .  

c(O-JP(O = Q(O + ~'R(O 
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where  Q(t) is of degree s - - 1  and then  

(5.2.6) 

where  

Pit) = @}c(tl + ~'u(o, 

v(t)  = R(t)c(t) 

and is formal ly  of degree d - - 1 .  In t roduc ing  the ~( reverse polynomials  

~(t) = e-~Q(t-% u(O = ld-~U(t-~), 

we obtain f rom (5.2.6) 

Hence,  by (5.2.4) and (5.2.5), 

#(t) = Q(t)c¢) + if(t). 

= ~*P(v)= p*0(v), 

so that  ~*U(v) mus t  be identical  wi th  the r ight  hand  side of (5.2.3). 

f i -  coefficient  of ~d-1 i n  ~T(t) 

= coefficient  of t ° in U(t) 

= coeff icient  of t ° in R(t) 

- - coe f f i c i en t  of t s in C(t)-lP{O, 

which  completes  the proof. 

Thus 
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