A fundamental lemma from the theory of holomorphie
functions on an algebraic variety.

Memoria di Oscar Zarisgr {a Cambridge, Mass, USA}

1. The concept of a holomorphic function.

The contents of this article are in close connection with a theory of
holomorphic functions in the large which we have developed for algebraic varie-
ties over arbitrary ground fields {!). To give this article its proper background
it will therefore be necessary to reproduce here and discuss briefly the
concept of a holomorphic function in the large.

Let V be an irreducible algebraic variety over a given ground field £,
and let & be a fixed function field of V/k (this field is only defined to within
an arbitrary k-isomorphism). It P is a point of V, we denote by o(P/V) the
local ring of V at P, by m{P/V) the ideal of non-units in o(P/V) and by
o¥(P/V) the completion of o(P/V). Any element of the complete ring o*(P/V)
is called o holomorphic function on V, defined at P, or briefly: a holomorphic
function ol P.

Starting from this local, well known concept, we now consider an arbitrary
set G of points on V and we denote by 0% G/V) the direct product of the
rings 0¥ P/V), Pe G. If £ 0%G/V) and Pe G, we denote by £ P] the P-com-
ponent of §. Then g P] is a well defined holomorphic function at P, which
we shall call the analytical element of § at P.

An infinite sequence {x;} of rational functions on V{x;eX) converges
at a point P if it is a CAUCHY sequence in the local ring of V at P. Tf {x;}
converges at P, then its limit af P is a well defined holomorphic function
x* at P, and we write x*==lim », af P.

('} A brief smumary of this unpublished work has appeared in the Absiracts of addresses
given at the Conference on Algebraic Geomelry and Algebraic Number Theory, the Universify
of Chicago, the Department of Mathematics, January, 1949. In the abstract of our address
(Theory and applications of holomorphic functions on algebraic varieties), given at that
conference, we also present the principal application of the theory of holomorphic functions,
namely the derivation of the «prineiple of degeneration» in abstract algebraic geometry.
Some of the ground work for this theory has been laid in the following papers of ours:
{1) Generalized semi-local rings,, «Summa Brasiliensis Mathematicae », Vol. I, fasc. 8, 1946.
(2) Analytical irreducibility of normal varieties, < Ann. of Math. », vol. 48, 1918. (3) 4 simple
analytical proof of a fundamental property of birational transformations, « Proc, Mat. Acad.
Sei. », vol. 35, 1949,
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A sequence { ;! of ralional functions on V converges on G if it converges
et each point P of G. If {2,] converges on (, there is a well deflined elem-
ent § of O(G/V) such that EP]==lima, at P, for all P in (. We say then
that £ is the limit of the sequence {w;} on G.

Uniform convergence is defined in the usual fashions: the sequence {x;}
converges uniformly on @, if for any infeger # there exists an infeger N(n)
such that x;, —x; e (m(P/V)]* for all 4, j > Nin) and for all points P of G.

Preliminary to the concept of a holomorphic function is the following
definition of a strongly holomorpliic function :

An element & of O0%G/V) is a strongly holomorphic function along G if it
is the Uimit of « sequence of rational functions on V which converges uniformly
on G.

If @& is a subset of G, we denote by tg ¢ the natural projection of
0%(G/ V) ento 0%(G/ V). The projection into 0%/ V) of any element § of 0%G/V)
will be referred to as the G'-compenent of & and will be denoted by E[G'

To define holomorphic functions on V, with G as domain of definition,
or briefly : Twlomorphic functions along G, we use the topology of the variety V
in which the closet sets are the algebraic subvarieties of V (*). There is then
an induced topology in @, and the terms <« open set», «open covering» in
the following definition are in reference to this induced topology.

DEFINITION. — An element & of O%(G/V) is a holomorphic function along G
if there exists a finite open covering {G,} of G such that TG.] is strongly
holowmorphic on G, (all «).

It is not difficult to see that the holomorphic functions along a given
set ¢ form a subring of 0% G/V). This subring will be denoted by o*(G/V).

2. The main lemma and its application to holomorphie functions.

We now come to the connection between the concept of holomorphic
functions and the question which we propose fo treat in this paper.

We first point out that in all that precedes we use the term « point .
in its widest possible sense: the coordinates of a point P are arbifrary
quantities which are not necessarily algebraie over k. In the preceding defin-
ition the set @ is arbitrary, but the case which is of interest is the one in
which @ is a subvariety of V, say W. Let W, be the sct of algchraic points
of W. Unless W is zero-dimensional, W, is a proper subset of W. We have,
then, a priori two rings of holomorphic [unctions associated with 1V: o*(W; V)
and 0*(W,/V). In applications one is primarily interested in algebraic points,

(%) See our papor The compactness of the Riemann wanifold of an abstract of algebraic
functions, « Bull. Awmer. Math. Soc.», vol. 40, 1044
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and for that reason one would really wish to study the second of these two
rings. On the other hand, it is much .easier to study the ring o*( W/V), since
from the above definition we have many more data about the functions of
this ring than of the ring o*(W,/V). The difference becomes very clear if we
assume, for the sake of simplicity, that W is irreducible. Any non-empty
open subset of W is the complement of a proper algebraiec subvariety of W
and hence contains all the general points of W. Hence when we study the
ring o*(W/V} we deal with sequences of rvational functions on V which nec-
essarily converge at the general point of W. This property of our sequences
plays an essential role in the theory. It is not at all obvious that this same
property belongs fo all sequences which converge uniformly on the set of
algebraic points of W or of some open subset of W (?}. The main object of
the present paper is to prove a general result (see main lemma below) from
which it will follow that the two rings o*(W/V) and o*(W,/V) are isomorphic,
or, in less precise, but more descriptive terms: every holomorphic function
on V, which is defined along the set of all algebraic points of a given subvariety
W of 'V, con be extended fo a holomorphic function defined along the set of
all points of W, and the exiension is unique. Hence one may safely replace
the ring o*(W,/V) by the technically more manageable ring o*(W/V), without
fear of losing touch with function-theoretic realities.

For expository reasons we introduce the following terminology: if P is
a point of V and # is a rational function on V, we shall say that z vanishes
to the order v at P if ze[m(P/V)P, 28 [m(P/V)]+L.

MAIN LEMMA. - Let W be an drreducible subvariety of V and let G be a
subset of W such that W is the closure of G (i.e., W is the least algebraic
variety containing G). If z is a rational function on V and z vanishes to an
order = v at each point P of G, then z also vanishes to an order =v al each
general point of W.

We now apply this lomma to the question discussed above. For the sake
of simplicity, we shall only cousider the case of an irreducible subvariety W.
The extension to holomorphic functions on V which are defined along a
redacible variety W is straightforward.

Let & be any element of o¥* W,/V). There will exist then a finite open
covering { Gy} of W, such that [G,o] is strongly holomerphic on G,. For
each G,o there is a subvariety W, of Wsuch that G, is the set of all algebraie
points of W— W,. Since the G, cover W,, it follows that the intesection
of the W, contains no algebraic points, and is therefore empty (HILBERT s
Nullstellensatz). Heince if we set G,="W — W, then | G,} is an open cover-
ing of W.

(3) That the sequences in question do have this property, is proved below.
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Let {a,, ®,..}1 be a sequence of rationai functions on V which con-
verges uniformly on G, to §[G,]. Then if » is a given integer, we will have
that a,; — @, vanishes to an order =n at cach point of G,, i.e., at each
algebraic point of G,, provided ¢, j = N(n). Now let P be an arbitrary point
of G, and let U be the irreducible algebraic variety whose general point is P.
If U’ is the closure of the set U [)] Gu, then the variety U’ + W, contains
all the algebraic points of U, since UCC W. Hence UC U’ 4- W,. Since U is
irreducible and since Uclz W,, it follows that UC U’, and hence U= U’
since U’ is the least variefy containing the set U [J Gy. If in the main lemma
we now replace W by U[] G, we conclude that x,; — 2, vanishes o an
order =>n at I, for 4, j > N(n). Hence the sequence {X,, X,2,..| converges
uniformly on G,. Let £, be the limit of this sequence on G,. It is clear that

{1) &l Gl = Eo[GoﬁQ]

If «==B, then the sequence |, — g, ®,2 — Xga,..| converges uniformly
to zero on Guo ] Ggo (= W, — W, — Wp). It follows by the same argument as
above that this sequence converges uniformly to zero also on G, [} Gg. This
signifies that any two of the functions %, have the same analytical element
at each common point of definition. Hence there exists a well defined elem-
ent £ iu O W/V) such that

(2 E,==§G,), all o

Since each £, is strongly holomorphic along G, and since | G, is a finite
open covering of W, it follows that & is holomorphic along W. From (1) and
(2) we conclude that

(3) E, = EW,].

We have thus proved that every holowmorphic function along W, is the projec-
tion of atl least one holomorphic function along W. Hence the projection
tw, w, maps o*(W/V) onfo o*(W,/V). This mapping is clearly a ring homom-
orphism. On the other hand, the preceding proof shows also that if a holom-
orphic function along W, different from zero, is defined by certain uniformly
convergent sequences {®,, @, ..}, then these sequences could not possibly
converge to zero at all points of W,. It follows that the above homomor-
phism is actually an isomorphism, and this proves the essential identity of
the two rings o*(W;V) and o¥{(W,/V).
We now proceed to the proof of the main lemma.

3. Some properties of the local ring of a simple point.

Let P be a given point of the afine n-space 8. We denote by o and m
the local ring o(P/S) and the ideal m(P/S) respectively and by k(P) the field o/m.
This field is generated over k by the coordinates of the point P. For any
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integer v, the additive group of the ring m’/m*+!' can be regarded as a vector
space over k(P) (*). This vector space will be denoted by T, (P).

If we denote by n — o the dimension of the point P (i.e., the transcen-
dence degree of k(P) over k), then any minimal basis of m consists exactly
of r elements (SP, p. 15, 4.1), and the elements of any such basis are called
local uniformizing paramelers (Lu.p.) of S af P. The dimension of the vector
space N, (P) is equal to.». If ¢,, {,,.., ¢, are Lu.p. of § at P, then the cor-
responding vectors £, &, ..., ¢, in O, (P) form a basis of I, (P). M u,, u,, ..., uy
denote the distinet power products of the # s of a given degree v, then the
' s form a minimal basis of the ideal m” (in other words, the local ring o
is a regular ring; see SP, p. 19, 5.1), and hence (SP, p. 12, 8.3) the corres-
ponding vectors @, form a basis of the vector space ON(P).

Let now W be an irreducible variety containing the point P and let 4
be a general point of W. We denote by 0 and M, the ring o(4/S) and the
ideal m{A/S) respectively (0 and M, depend only on W and not on the choice
of the general point of W; O contains the ring o). We denote by » — s the
dimension of W/k (this is also the dimension of the point 4). If P is a
simple point of W, then the following is known:

a) There exist Lu.p. ¢, ¢4,,.., ¢, of S at P such that ¢, ¢,,.., {, are
La.p. of § at A.

b) It ¢, ¢,, ..., ¢, are chosen as in a), then
(4) M, No=o0-(¢, {,,.., &)

aud ¢, #,,.., {, form in fact a minimal basis of the ideal M, ] o.
¢) Conversely, everly minimal basis of M, [ o consists exactly of s
elements ¢,, £,,..., {;, these elements are Lu.p. of § at 4 and are such that
the set {£,, #,,... §,} can be extended to a set of Lu.p. of § at P.
All these assertions are either contained in, or are easy comsequences
of, SP, p. 13. Theorem 2. In that theorem the ideal M, [] o is referred to as
the local ideal of W at P. We shall denote this ideal by M:

() M=M, o
We shall now prove the following relations:
(6) Mrlo=MW,
] M 1 m¢ == Mm+—, w=>v, (m° = o).

We choose the Lu.p. of S at P as indicated in a), and we denote by v,, ¥y,
the various power products of ¢,, 4,,..., 4, of degree v. If % is an element
of M, then it follows from (4) and (5) that x can be expressed as a linear

(¢) Bee our paper The concept of a simple point of an abstract algebraic variety, « Trans-

Amer. Math. Soe.», vol. 62, 1947, p. 12, section 8. 8. This paper will be referred to in the
sequel as SP.
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form in the wv,, with coefficients in o. If x & M+, then these coefficients
are not all in M,, by (5), and hence x & M**+!, since the vectors in DI, (4)
which correspond to the v; form a basis. What we have proved is that if
xz MY, & M+ then & M+ If we replace in this result the integer v by
any integer less than v, we obtain (6).

To prove (4) it is sufficient to prove the inclusion M’ [1 mt M me—,
since MC m. We may also assume that p > v, since for p==v (7} is trivial.
We therefore have to prove the following assertion: 4f x eM'm°® and
x & Mme'! (620}, then x & mv+o+!, It 6 =0, the proof is as above, except
that now we use the fact that the veciors in 9IC,(P) which correspond to the
elements v, can be oxtended to a basis of, OI,(P) and hence are independent
(we are now dealing with a linear form in the ¢’ s, with coefficients in o
and not all in m). For o> 0 we shall use induction from ¢—1 to o. We
can express « as a form of degree v in ¢, £,,.., {,, with coefficients in m~,
and each of these coefficients can be expressed in its turn as a form of
degree o in ¢, t,,..,t., with coefficients in o. Hence w=19 (¢, {,, ..., t,},
where ¢ is a form of degree v -+ o, with coefficients in 0, and each term of ¢
is of degree =v in ¢, ¢, .., ;. 1f at least one of the coefficients of ¢ ic
not in m, then x & my+ot! and our assertion is proved. We shall therefore
assume that m contains the coefficients of all the terms of ¢ which are
exactly of degree v in #,, /,,.., {,. II we denote by w, the sum of these
latter terms, then we can write w=uw, + x,, where x, ¢ M'm°+! and », ¢ r+'m~—1
Since & M'm~+!, it follows that «, & M'm*'!, and hence a fortiori x, & M 'm°.
Since, on the other hand, x, € M**'me—1, it follows, from the induction hypo-
thesis, that z, & m**o*l, Since 2 & Mm* C m»*++, we conclude that
x = o, + o, & m+o+L This proves our assertion and completes the proof of (7).

We consider again the various power products v, v,,.. of ¢, &,, ..., ¢,
of degree v. It follows from (4) and (5) that the v; form a basis of the ideal M.
We know thai the vectors which correspond to the v, in 9T (4) or in SN(P)
are independent (in 9T,(A4) these vectors form even a basis). From either one
of these two facts it follows that the v, form a minimal basis of the ideal M».
Any other minimal basis of M’ is related to the basis v,, v,,... by a linear
homogeneous transformation with coefficients in o and with determinant not
in m. We conclude therefore that if u,, #,,... is any minimal basis of M,
then the vectors which correspond to the u; in 9L,(4) or in DI (P) are
independent, i.e.,, the following two properties hold:

8 «ZAm e, A;60» — call 4, ave in M.
9 «TAu,emtl A4,e0> — «all 4, are in m».
We point out the following consequences. By (7), we have
(10} My [} m¥ == S ombou,, w> v, (m’ = o},
and by (8)

(11) « % Aa e WL Ajeme s — « Ay M () me o,
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Suppose now that we have a relation of the form 2 Au; s m+t!, A4, me.
Then by (10) (where p is to be replaced by p+ 1) we can write : 3 Au; = 2 Bu,,
where the B, are in mr—+, From X {4, — Bju,=0 it follows, as a special
case of (11}, that 4, — B;e M [} m*—. Hence we have proved that

(12) «ZAuemrt Ajemt s — <« 4; e M [ mpy - mevt ) (p=v)

We shall denote by g,, and G,, the sets of vectors in O, (P) and DMT,(4)
respectively which correspond to the elements of MY [l m*, p=>v. Note that
9w is a subspace of O, (P), but that G,, is only a subgroup of the additive
group of 9NC,(4) (since M’ [} m* is not an O-module). These groups g,, and
G., will play an essensial role in the sequel. For the moment we make the
following remarks in the special case p—=v.

1) Gy, spans the entire space DI, (A). This follows from what has been
said about minimal bases of the ideal M.

2) There is a natural homomorphism < of G,, onto g,,, defined as follows:
it v is any vector in G,, and if v is any element of MY () m* to which v
corresponds, then vt is in the vector in g,, which corresponds to v. That =
is single-valued (and hence a homomorphism) follows from the fact that
M+ mH.

3) Linearly dependent vectors in G,, are mapped by < into linearly
dependent wvectors of g,,. For let v,, v,,..,, v, be elements of M’ such that
the corresponding vectors in 9W,(P) are linearly independent. Then the set
of ¢ elements v; can be extended to a minimal base of the ideal M», and
hence the vectors which correspond to the v, in 91(,(4) are also independent.

4. (W, v)-regular points of V.

We now consider a second irreducible variety V such that V contains W.
We denote by p the local ideal of V at the point P and we set

(13) Py =D N M [} mr.

In each of the two groups g,, and G, the ideal p,, determines a subgroup.
We shall denote these subgroups by h,, and H,, respectively. We consider
in particular the groups h,, and H,,. It is clear that %, = H,t, where t is
the homomorphism defined above [remark 2)). It follows by remark 3i of the
preceding section that the dimension of h,, is not greater that the dimension
of the space spanned by H,, in 9,(A4).

DeriNitioN. - The point P is said to be (W, v)-regular for V if P is a
simple point of W and if the dimension of the subspace h,, of O, (P) is the
same as the dimension of the subspace of DU A) spanned by H,,.

The concept of a (W, vij-regular point of V is the key to our proof of
the main lemma.

Anneli di Matemation, Serie IV, Temo XXIX. 25
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THEOREM 1. - If P is (W, v)-regular for V, then
(14 Pop == Pyl == Pupg, g f= v
Proof. Let p=dim&,,, c =dimg,, (¢ <o) and let u* u,% .., u,* be a

basis of g,, such that ¥ »,* ..., u,* is a basis of h,,. For each é=1,2,...,¢
we fix an element u, in M* whose m*!-residue is #,* and which belongs
to p if 1 <<¢ <p. Let x be any element of p,,. Since the ¢ elements u; form
a basis of the ideal M’ and since « belongs to the ideal MY [} m¥, we have
by (10): @ =2 Au,;, A,e m+—. Passing to the corresponding vectors =, 4,
and @; in NML,(4) [i.e., to the M+'-residues; see (6] we have
(15) =23 Am,.
Here the o vectors #; form a basis of 91, (4), since the ¢ elements u; form
a minimal bagis of - M’. Now let us assume that P is (W, v)-regular for V.
In that case p is also the dimension of the space spanned in OW,(4) by H,,.
Since the first p elements u; belong to p, the p independent vectors ,,
#y, ., @, belog to H,,. It follows that every vector in H,, is linearly dependent
on #,, W,, .., @,. Since Z belongs to H,,, we conclude that the last o —p
coefficients A, in (15) must be zero. Hence A;eM for p+-1ZiZa T we
now set ®, = XfAm,, x,= 21 Ay, then x ep,mi, x,€ Mo+ ) me,
and hence @, & P,41,,, Since x,=x —x, and ¥, 8py,. We have thus proved
that Py, C PoyM*™ -+ Puts g, and since the opposite inclusion is obvious, the
proof of the theorem is complete.

Te key result is the following

TuroreM 2. - If P is a (W, v)-regular point of V, then

(16) hvp ﬂ Gv41, o = hv%rl,p-

Proof. We may assume that p > v, for if p=yv then g,yy,, = By, = (0).
We use the notation of the proof of the preceding theorem. It is saffficient
to prove the inelusion %, (1 Gott,p & Pyt This is equivalent to proving that

P [ ) m¥) + mr ] Cp,yg, + mrL

In view of (14), we get an equivalent relation if we replace here p,, by
p,,m*—. Let then x be any element of the ideal

poyme— Q[ ) me) + met)l,

Since x & p,,mb—, we can write @ in the form X§.i dju;, 4;2m+, since, by
construction, the elements w,, u,,.,., &, form a basis (in fact a minimal basis)
of the ideal p,,. Since = also belongs to the ideal (M+! [} m¥) + metl it
follows by (7) and (8) that there exist element B,, B,,.., B in M [} m+—
such that w-— {4 Ba;emetl, We have, then, %6y Ay — i1 By; & meit
and this implies, by (12}, that 4;& M [} m#— 4 me—" L Since ;2 p,, & W T m?
for j==1, 2,.., p, it follows that 22 Por1, + wme! L aud this completes the

proof of the theorem.
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We shall say that aflmost all poinis of an irreducible variety W have a
given property o« if the points of W which do not have property « lie on
some proper algebraic subvariety of W (we do not mean to imply that the set
of points of W which do not have property « is itself an algebraic variety).

THEOREM 3. - For any given integer v alinost all points of W are (W, v)-reg-
ular for V.

Proof. Let X,, X,,..., X, be non-homogeneous ecotrdinates in our af-
fine space S, and let P be the prime ideal of V in the polynomial ring
HX,, X,,.., X,]. The polynomials in P[] M (i.e., the polynomials which
are zero on V and are zero to an order v at the general point 4 of W)
determine a set of vectors in 9T, (4). Let « be te dimension of the subspace
of O, (4) spanned by that set of vectors, and let {fiX),é=1,2,..., 2} be a
set of polynomials in P {] M,» which determine independent vectors in 9MNT,(4).
If o is the dimension of 9T, (4), we choose other ¢ — a polynomials' g,(X)
such that the ¢ polynomials fi(X) and g,(X) determine together a basis of
9N, (4). These o polynomials constitute then a minimal basis of the ideal M,
in the local ring 0 of the point 4.

Let A denote the polynomial ideal generated by the above ¢ polynomials.
It is clear that not only is P an isolated prime ideal of A, but also that P
will appear as a component in any normal decomposition of A into primary
components. Let P, P,,.. be the other prime ideals of A, both isolated or
cmbedded. Let L(f;, g;) denote the sum of the following proper subvarietes
of W: 1) the variety of singular points of W; 2) the intersection of W with
the variety of Py, g=1,2,... We claim that any point P of W, which is not
on Lifi, gj) is (W, v)-regular for V. The proof of this assertion will estabilish
our theorem.

It is clear that the « polynomials f; (X) form a basis of the ideal p,, .
Hence H,, spans in 91,(4) a subspace of dimension « (this is true for any point
P of M). On the otherjhand, it follows from our choice of the point P that
the ¢ polynomials f(X) and gj(X) form a basis of the ideal Mv, necessarily
& minimal basis, since we know that any /minimal basis of M* must have
exactily o elements [¢ = dim OI.(4)). But then the vectors which correspond
in OW'(P) to the polynomials f;, g; are also independent. Since the f,(X) are
in p,,, we conclude that dim h,, = «. It follows from remark 3) of section 3
that dim h,, = «, ie., P is (W, v)-regular for V, as asserted.

ComroLLARY 1. - For any given integer v, almost aill point of W are
(W, A-regular, A=1, 2, ..., v.

COROLLARY 2. - For any inleger v the set of poinis of W which are not
{W, vi~-regutar for V is an algebraic variety. We refer to the minimal basis
{ Uy, Wy, ..., Us} of M, introduced in the proof of Theorem 1. It is clear that
we may assume that the u; are polynomials. (£ we sot f(X) =wu;, ¢ =1,2,...,p,
gilX)=wu,j, j=1, 2, ..., 6—p, then the o polinomials f;(X) and g X) are of the
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type used in the preceding proof, and furthermore the point P does not be-
lonz to L(f;, g;. It follows that the sef of points of W which are not (W, vj-
regular for V is given by the intersection of all the varieties L{fi, g;) obtained
by choosing the polynomials f; and g; in all possible ways. Since this inter-
section Is an algebraic variety, our assertion follows,

5. Proof of the main lemma.

We have, by assumption, that W is the closure of the given set G. It
follows from Corollary 1 of Theorem 3 that the set of points of G which are
(W, Aj-regular for V, for A=1, 2, ..., v, also has the property that its closure
is W. Hence we may assume that oll the poinis of G are (W, A)-regulay for
V,h==1,2, ..., v.

The main lemma is obvious if v=1. Hence we shall proceed by indune-
tion from v to v + 1. Let, then, # be a rational function on V which van-
ishes to an order =>v -+ | at each point P of (. By induction hypothesis,

We bhave to prove that z s [m(d/V)]+

Let x,, @, ..., €, be the covrdinates of the general pnint of V such that
Ea,, ©,, ., ©,) 18 our fixed function field £ of V. We go back to the indep-
ondent variables X, X,, .., X,,, to the local ring O of the affine space &
at 4 and to the maximal ideal M, of 0. Every element of [m(4/V)} can be
written in the form ¢(x)/d(x), where ¢(X) and ¢(X) are polynomials, d(x)3=0
on W, and o(X)/¢(X)eM;». We fix one such reppresentation for our elem-
ent z: 2 == ¢(x)/d(x), and we set Z = ¢{X)/P{X).

Since ¢(X)==0on W, the points of W where U(X} is zerc form a proper
subvariety of W. Hence the set of points of G at which $(X) does not vanish
is still such that its closure is the entire variety W. We may therefore assume
that $(X)==0 af each point of @ Under this assumption, the element Z be-
longs to the local ring of S at P, for any point P of G.

We fix a point P in @ and we use the notation of the preceding sections.
We have, then, Zc M’ [see (6), section 3], Our assumption that # vanishes
to an order =>v -+ 1 at P is equivalent to assuming that Z belongs fo the
ideal p + mrt!, where p is the local ideal of V at P and m is the maximal
ideal of the local ring o of S at P. We can ther fore write: Z7=2, + Y,
where Z, e mvt! and Y e p. SinceZz M m*, Z delines a vector Z in O, P).
We have ngyv, since Z& M*. On the other hand, Z and Y determine the
same vector in O,(P} since Z — ¥ == Z, s m*L Since Yep [} m” and pCM,
in follows that Y& p,, and consequently Zehy. Hence Zehy N gys . Since
Goy D gy, We can write Z & (h,, [} gs' [) g.v, and applying Theorem 2 we obtain
Zeh,, N g, [since P is (W, 1)-regular for V]. This, again, we can write in
the form: Z = (h,, [ g,) 1 9, (since g,, Dg.), and applying again Theorem 2
we obtain: Z & h,, [} g [since P is (W, 2)-regular for V]. Ultimately we find
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in this fashion that Zah,, [} g.,, i.e., Z&h,,. We conclude that 7 belongs fo the
ideal P () MY +mv 1L, Since Z & M and since M* [} m* T = M*m [see (7), section 3],
we can now asserf that

(17) Zep (W + M'm.

Relation (i7) holds for each point P of G. Now let us fix a set of polyn-
omials fy(X) and g,(X) as in the proof of Theorem 3. Since these polynomials
form a base of the ideal M’ and since Z& M’, we have

(18) Z =2 Aifi+ Z Byg;,

where 4,, B;€0. It is clear that for almost all points P of W it is frue
that the elements 4, and B; belong to the local ring of § at P. Replacing,
if necessary, the set G by a subsef whose closure ist still the entire variety W,
we may therefore assume that the 4; and B; belong to o(P/S), for all points P in
G. A similar argument shows that we may assume, without loss of generality,
that no point of G belongs to the variety L(f;, g;) of points which we had
to avoid in the proof of Theorem 3. Because of this last assumption, we
may assert that if P is any point of @, then the f; form a basis of the ideal
P,,, and that the polynomials f; and g; form a basis of M». Hence, in view
of (17), Z can be expressed locally, at P, in the following form: z=23% Cif; +
-+ 2 Dyg;, where the C; and D; are in o(P/S) and the D; are in m(P/S). 1f we
compare this local expression of Z with that given by (1&) and if we recall
that the polynomials f;, g; form a minimal basis of M’ (see proof of Theorem 3),
we conelude, by (9), section 3, that all the B; are zero at P. Since this holds for
each poin P of G and since W is the closure of G, it follows that the B; are
zero on the entire variety W, i.e., the B; belong to the ideal ¥,. Therefore the
sum 2 Byg; belongs to M*+!, and since the sum 2 4,f; is zero on V, we con-
clude that the original element z of the fun. tion field of V belongs to
[m(4/V)p+t. This completes the proof of the main lemma.

6. Another application of the main lemma

Let R = Kx,, x,,..., ©,] be the non-homogeneous codrdinate ring of 7,
where the x; are the covrdinates of the general point of V. Let p be a prime
ideal in B and let W be the irreducible subvariety of V defined by p (we
are dealing with varieties in the affine space). As an application of the main
lemma, we shall prove that

(19) Ne=wlm(P, V)P (| RS pe.

were p,— oo as v —oco, In other words: if an element n of R vanishes fo a
high order at each point P of W, then z belongs to a high power of the
prime ideal p of W.

Proof. For the proof it will be sufficient to show that given any integer p,
there exists an integer v such that the left~hand member of (19) is contained
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in pr. Let pr=p® N q, N q .. 1 qx be a normal decomposition of pr into
primary components, where p® is the p-th symbolic power of p, and let p,,
P, ., Pn be the prime ideals of the primary components q,, ¢y, .., Gn-
t is known that p;Dp, i=1,2,..., k. Let v; be the exponent of ;.
fhen p&d i, Let v=max{g, v,, Vs, .., V)

Suppose now that an element z of B vanishes to an order =v at each
point P of W. The main lemma implies that if p° is any prime ideal in B
such that p Dp, then 2z belongs to the v-th symbolic power of p. We have,
therefore, in particular: z€p™C p® and also z& p” C ") C q:. Hene z8 pe,
and this establishes (19).

7. The case of a simple subvariety W of V.

The whole point of our proof of the main lemma is that it establishes
the lemma for arbitrary subvarieties W of V, hence also for singular sub-
varieties W. In the case of a simple subvariety a much shorter proof can
be given, as we shall now show.

Let 4 be a generval point of W. By assumption, 4 is a simple point of
V. Therefore the results of section 3 continue to hold if the affine space §
is replaced by V. Accordingly, we shall now mean by O and o the rings
o(4/V) and o(P/V) respectively. Actnally we shall only make use of (6) and
(9), section 3.

Let ¢, f,,.., {, be Lup. of V at 4, where p=dim V—dim W. We
proceed, as in section b, by induction from v to v-+ 1. We have then z2 M.,
where M, is the maximal ideal of O, and hence z=1g(t,, f,, .., §), where ¢
is a form of degree v, with coefficients in Q.

Weo may assume that the #s belong to the cobrdinate ring Az, , ,, ..., @]
of V. Let A be the ileal generated in this ring by the p elements t*. Let L(A)
denote the sum of the following proper subvarieties of W: 1) the singular
locus of W; 2) the intersection of W with the varieties (other than W) of
the prime ideals of A. It follows as in section 5 that it is permissible to
assume that n, point of the set G belongs to L(A). Under this assumption,
the 1u.p. ¢, ¢,..4, constitute a minimal base of the local ideal M of W at
P, where P is any point of G [M = m (4/V) [} m(P/V)], and the power products
of the f;, of degres v, constitute a minimal base of Mv. Since 22 [m(P/ V)Pt
it follows, by (9). that the coefficients of the form ¢ belong tom (P/V) (as in
section b, we may assume here that these coefficicnts all belong to o(P/V}, for
all points P of G)}. Since this holds for any point of G and since W is the
closure of G, it follows that the coefficients of the form ¢ belong to M,.

Hence zz M+, q.e.d.



