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1. The concept o f  a holomorphic  function.  

The contents of this article are in close connection with a theory of 
holomorphic functions in the large which we have developed for .~lgebraie varie- 
ties over arbi t rary ground fields (~). To give this article its proper background 
it will therefore be necessary to reproduce here and discuss briefly the 
concept of a holomorphic function in the large. 

Let V be an irreducible algebraic variety over a given ground field k, 
and let Y. be a fixed function field of V/k (this field is only defined to within 
an arbi t rary k-isomorphism). It P is a point of V, we denote by o{P/V) the 
local r ing of V at P, by m(P/V)the ideal of non-uni ts  in o(P/V) and by 
o*(P/V) the completion of o(P/V). Any element of the complete r ing o*(P/V) 
is called a holomorphic function on V, defined at P, or briefly : a holomorphic 
[unction at P. 

Start ing from this local, well known concept, we now consider an arbi trary 
set G of points on V and we denote by O*(G/V) the direct  product of the 
riHgs o*~P/V), Pe  G. If ~eO*(G/V) and P e  G, we denote by ~[P] the P-com- 
ponent of ~. Then ~[P] is a well defined holomorphic function at P, which 
we shall call the analytical element of ~ at P. 

An infinite sequence l x~ } of rational functions on V(x¢$ Z) converges 
at a point P if it is a CAuc~:¢ sequence in the local ring of V at P. If {x,} 
converges at P, then its limit at P is a well defined holomorphic function 
~* at P, and we write x* ~ l i m  ~ at P. 

(~) A brief summary of this unpublished work has appeared in the Abstracts of add~'esses 
givett at the Conference on Algebraic Geometry and Algebraic Number Theory, the Univers i ty  
of Chicago, the Department of Mathematics~ January,  1949. In  the abstract of our address 
(Theory and applications of holomorphic functions on algebraic varieties), given at that 
conference, we also present the principal application of the theory of holomorphic functions~ 
namely the derivation of the r principle of degeneration ~ in abstract algebraic geometry. 
Some of the ground work for this theory has been laid in the following papers of ours: 
(1) Generalized semi-local rings,, ~ Summa Brasiliensis Ma~hematieae ~, Vol. I~ fasc. 8, 19~6. 
(2) Analytical irreducibility of normal varieties~ ~ Ann. of ~1ath. ~, vol. 4,9, 19~8. (3) A simple 
analytical proof of a fundamental  property of birational transformations~ ~< Prec. ~at .  Acad. 
Sci. ~, eel. 35, 19~9. 
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h sequence { x~t of rai ioaal  h~netions on V converges on G if it converges 
et each point P of G. If  Ix;} converges on G, there is a well defined elem. 
ent ~ of O(G/V) such that ~[P] ~-~limx~ at _P, for all P in G. We say then 
that ~ is the limit of the sequence  I~cil on G. 

Uniform convergence is defined in the usual  fashions:  the sequence I x~l 
converges uniformly on G, if for any integer n there exists an integer N(n) 
such that x s - - x / s [ m ( P / V ) ]  '~ for all i , j ~ 5 7 ( n )  and for all points P of O. 

Prel iminary  to the concept of a holomorphic function is the following 
definition of a strongly holomorphic function: 

An element ~ of O*(G/V) is a strongly holomorphie function along G i f  it 
is the limit o / a  sequence of rcdional functions on V ,which converges uniformly 
on (3. 

If G' is a subset  of G, we denote by ZS, G, the natural  project ion of 
O*(G/V) onto O*(G'/V). The project ion into O*(G'/V) of any element ~ of O*(G/V) 
will be referred to as the @'-component of ~ and will  be denoted by ~[G']. 

To define holomorphic functions on V, with G as domain of definition, 
or briefly : holomorphic f~,~nctions cdong G, we use the topology of the variety V 
in which the closet sets are the algebraic subvariet ies  of V (.2). There is then 
an induced topology in G, and the terms << open set ~>, (( open covering )) in 
the following definition are in reference to this induced topology. 

DE~IT:[O~.  - An element ~ of 0*(G/V) is a holomorphic function along G 
i f  there exists a ,finite open covering t G~ I of G such that ~[G~] is strongly 
holomorphie on (3~ (all a). 

[t is not difficult  to see that the holomorphic functions along a given 
set G form a subring of O*(G/V). This subring will be denoted by o*(G/V). 

2. The main lemma and its appl icat ion to holomorphie  functions.  

We now come to the connection between the concept of holomorphic 
functions and the quest ion which we propose to treat in this paper. 

W e  first point out that in all that precedes we use the term << point,> 
iu its widest possible sense:  the coordinates of a point P are arbi t rary  
quanti t ies which are not necessari ly algebraic over k. In the preceding defin- 
ition the set G is arbitrary,  but  the case which is of interest  is the one in 
which G is a subvar ie ty  of V, say W. Let  W0 be the set of algebraic points 
of W. Unless  W is zero-dimensional,  }Vo is a proper subset  of If.  We  have, 
then, a priori two rings ~f holomorphie functions associated with W:  ,)*(I't~ V) 
and o*(Wo/V). In applications one is pr imari ly interested in algebraic points, 

(~) See our paper The compactness of the Riemann mani[ohl of an abstract of algebraic 
f~nctions, ~ Bull, Amer. Math. Soc. ,,, ~ol. 4:0. 1044. 
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and [or that reason one would really wish to study the second of these two 
rin~s. On the other hand, it is much .eas ie r  to s tudy the ring o*(W/V), since 
from the above definition we have many more data about the functions of 
this ring than of tile ring o*(Wo/V ). The difference becomes very clear if we 
assume, for the sake of simplicity, that IV is irreducible.  Any non-empty  
open subset  of IV is the complement  of a proper algebraic subvariety of W 
and hence contains all the general poiuts of )}~\ Hence  when we study the 
ring o*(W/V) we deal with sequences of rational functions on V which nec. 
essarily converge at the general point of W. This property of our sequences 
plays an essential role in the theory. It is not at all obvious that this same 
property belongs to all sequences which concierge uniformly on the set of 
algebraic points of W or of some open subset  of W (3). The main object of 
the present  paper is to prove a general result  (see main lemma below) from 
which it will follow that the bye rings o*(W/V) and o*(W0/V) are isomorphic, 
or, in less precise, but more descriptive terms:  every holomorphie function 
on V, which is defined along the set of all algebraic points  of a given subvariety 
W of V, can be extended to a holomorphic function defined along the set of  
all points of  W, and the extensio~.~ is unique. Hence  one may safely replace 
the ring o*(Wo/V) by the technically more manageable  ring o*(W/V}, without 
fear of losing touch with funct ion- theoret ic  realities. 

For  expository reasons we introduce the following terminology:  if P is 
a point of V and z is a rational function on V, we shall say that z vanishes 
to the order v at P if z ¢ [m(P/V)] ~, z ~  [m(P/V)]~+h 

MAI~ ~ LE~L(.  - Let W be an irreducible subvariety of  V and let G be a 
subset of W such that W is the closure of  G (i.e., W is the least algebraic 
variety containing G). I f  z is a rational ['unction on V and z vanishes to an 
order ~ v at each point P of G, then z also vanishes to an order >_ v at each 
general point of W. 

V~e now apply this lcmma to the question discussed above. For  the sake 
of simplicity, we shall only consider the case of an irreducible subvariety W. 
The extension to holomorphic functions on V which are defined along a 
reducible variety IV is straightforward. 

Let  ~0 be any element of o*(Wo/V). There will exist then a finite open 
covering t G,,o} of TWo such that ~0[G~0] is strongly holomorphic on G~o. For  
each G,,.o there is a subvariety I ~  of W such that G~o is the set of all algebraic 
points of W - - W ~ .  Since the G~,,o cover 1¥o, it follows that the intesection 
of the 1/V~ contains no algebraic points~ and is therefore empty (HILBERT' S 
Nullstellensatz). Ite~ce i f  we set G~--~ W ~ W~, then l Ga } is an open cover. 
ing of W. 

(3) That the sequences in question do have this proper~y, is proved below. 
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Let {x~,  x~ , . . .  } be a sequence of rational functions on V which con- 
verges uniformly on G~o to {0[G~o]. Then if n is a given integer, we will have 
that x~ i - -x~  i vanishes to an order ~ n  at each point of G~o, i .e,  at each 
algebraic point of G~, provided i, j ~ N ( n ) .  Now let P be an arbi t rary point 
of G~ and let U be the irreducible algebraic variety whose general  point is P. 
If U' is the closure of the set U ~ G~0, then the variety U' + VV~ contains 
all the algebraic points of U, since U ~  W. Hence U ~  U' q- l l~.  Since U is 
i rreducible and since Uct_- W~, it follows that U ~  U', and hence U :  U' 
since U' is the least variety containing the set U [J G~o. If in the main lcmma 
we now replace W by Ul] G~o, we conclude that x~i- -x~j  vanishes to an 
order ~ n  at t ,  for i, j > N(n). Hence the sequence {x~t, x ~ ,  ... { converges 
uniformly on G~. Let ~ be the limit of tt~is sequence on G~. It is clear that 

If  ~ =4: ~, then the sequence { x~ t - -  x~t, :v~ - -  x~2, ... I converges uniformly 
to zero on G~o f] G~o ( =  Wo--  W~ - W~). It follows by the same argument  as 
above that this sequence converges uniformly to zero also on G~ ~ G~. This 
signifies that any two of the functions ~ have the same analytical  element 
at each common point of definition. Hence there exists a well defined elem- 
ent ~ iu O*(W/V) such that 

(2) = =  all 

Since each ~ is strongly holomorphie along G~ and since { G~ } is a finite 
open covering of 1~ it follows that ~ is holomorphic along W. From (1) and 
(2} we conclude that 

We have thus proved that every holomorphie function along W0 is the projec- 
tion of at least one holomorphic function along W. Hence the projection 
xW, Wo maps o*(W/V) onto o*(Wo/V). This mapping is clearly a ring homom- 
orphism. On the other hand, the preceding proof shows also that if a holom- 
orphic function along W, different from zero, is defined by certain uniformly 
convergent sequences {x~l, x ~ ,  ... }, then these sequences could not possibly 
converge to zero at all points of Wo. It follows that the above homomor- 
phism is actual ly an isomorphism, and this proves the essential identity of 

the two rings o*(~/V) and o*(Wo/V). 
We now proceed to the proof of the main lemma. 

3. Some properties of the local ring of a simple point. 

Let  P be a given point of the aline n-space  S. We denote by o and m 
the local ring o(P/S) and the ideal m(P/S) respectively and by k(P) the field o/re. 
This field is generated over k by the coordinatcs of the point P. For any 
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integer v, the additive group of the ring m~/m ~+1 can be regarded as a vector 
space over k(P) (~). This vector sp~ce will be denoted by ~ y ( P ) .  

If  we denote by n - - r  the dimension of tile point P (i.e., the transcen- 
dence degree of k(P) over k), then any minimal basis of m consists exactly 
of r elements (SP, p. 15, 4.1), and the elements of a n y  such basis are called 
local uniformizing parameters (l.u.p.) of S at P. The dimension of the vector 
space orc,(P) is equal to:r .  If  t~, t2,... , t,. are l.u.p, of S at P, then the cor- 
responding vectors t~, t.~, ..., t,. in .e~VE~(P) form a basis of ~31~5,(P). If u~, u2, ..., uN 
denote the distinct power products of the t' s of a given degree v, then the 
u' s form a minimal  basis of the ideal m y (in other words, the local r ing o 
is a regular  r ing;  see SP, p. 19, 5.1), and hence (SP, p. 12, 3.3) the corres- 
ponding vectors ~-t~ form a basis of the vector space ~'C~(P). 

Let now W be an irreducible variety containing the point P and let A 
be a general  point of W. We denote by 0 and M~ the ring o(A/S) and the 
ideal m(A/S) respectively (0 and M~ depend only on W and not on the choice 
of the general  point of W;  0 contains the ring o). We denote by n - - s  the 
dimension of W/k (this is also the dimension of the point A i. If  P is a 
simple point of ~ then the following is known:  

a) There  exist 1.u.p. t~, t~,..., t,. of S at P such that t~, t2,... , t, are 
1.u.p. of S at A. 

b) If  t~, t~,..., t,. are chosen as in a), then 

(4) M, N o = o.( t , ,  

aud t~, t~,..., t, form in fact a minimal  basis of the ideal M~ N o. 
c) Conversely, everly minimal  basis of M, N o consists exactly of s 

elements t~, t~,..., t~, these elements are 1.u.p. of S at A and are such that 
t h e  set {t~, t~, .... t~ I can be extended to a set of 1.u.p. of S at P. 

All these assertions are either contained in, or are easy consequences 
of, SP, p. 13. Theorem 2. In that theorem the ideal }I~ N o is referred to as 
the local ideal of W at P. We shall denote this ideal by M: 

(5) M = ~ N o. 

We shall now prove the following relations:  

@ N o = My, 

(7) ~I ~ N m e  - -  M~m~ -~,  ~t > v, ( m  ° = o). 

We choose the 1.u.p. of S at P as indicated in a), and we denote by v~, v 2,... 
the various power products of t~, t~,..., t,, of degree v. If x is an element 
of M y, then it follows from (4} and (5) that x can be expressed as a l inear  

(4) See our paper  The concept of a simple point of an abstract algebraic variety, ~ Trans- 
Amer .  ~lath. See. % vol.  62, 1947, p. 12, section 3. 3. .This paper  wi l l  be r e fe r red  to in the 
sequel  as SP.  
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form in the v¢, wi th  coeff ic ients  in o. I f  x ~ M '+i,  t hen  these coeff ic ients  
are not all  in )I~, by (5), and hence  x ~ Mt '+~, since the vectors  in 91[~(A) 
which  cor respond to the vi form a basis. W h a t  we have proved is that  if 
x e ~I ~, ;c ~ M ,+i, then  x ~ M~ ~-1. I f  we replace  in this resul t  the in teger  v by 
any in teger  less than  v, we obtain (6). 

To prove (4) it is suf f ic ien t  to prove the inc lus ion  M '~ ~ n , l ' .~}I  mE~- 5 
since ]1C2 m. W e  m a y  also assume that  ~ ~ v, since for ~ ~ v  (7) is trivial.  
We therefore  have  to prove the fo l lowing a s s e r t i o n :  i f  x ~ M ' m  ~ and 
x $ M'~m - ' l  (~_~0), then x ~ m " + " L  I f  a = 0, the proof is as above, except  
that  now we use the fact  that  the vectors  in 9tL~(P) which  correspond to the 
e lements  v~ can be ex tended  to a basis eL 9]E.~(P) and hence  are independen t  
(we are now dea l ing  wi th  a l inea r  form in the v' s, wi th  coeff ic ients  in o 
and ~ot all in  m). For  ~ 0  we s h a l l  use induc t ion  from ( ~ 1  to ~. W e  
can express  ~c as a form of degree v in t~, t~ , . . . ,  t~, with  coeff ic ients  in n,5 
and each of these coeff ic ients  ca~n be expressed  in its tu rn  as a form of 
degree c; in tt ,  t~,.., t,., wi th  coeff ic ients  in o. Hence  ~c---¢p Its, t~, .... t,}, 
where  ¢p is a form of degree  v -+  z~ wi th  coeff ic ients  in o, and  each te rm of ¢p 
is of degree ~ v  in t , ,  ts, ..., t~. I f  at  least  one of the coeff ic ients  of ¢p is 
not  in m, then  x ~ m ~+~+1, and  our  asser t ion is proved.  W e  shal l  therefore  
a s sume  tha t  m con ta ins  the coeff ic ients  of all  the te rms  of ~p which  are 
exac t ly  of degree  v in t~, l~ . . . .  , t~. I f  we denote  by x~ the sum of these 
la t te r  terms, then  we can  wri te  ,x=x~-+  x~, where  x~ ~ £)I'~m ~-t~ and ~G e M~+~m "-i.  
Since x~ilI~m ~+1, it fol lows that  x~ ~ M~nv -~ l, and hence  a f o r t i o r i  x.~ ~ ) I  '~ ~ m  ~. 
Since, on the other  hand ,  x: ~ M~+im *-~, it follows, f rom the induc t ion  hypo- 
thesis,  tha t  ;~.~ ~ m ~+o+l. Since x ~ M~ni °-÷l ~ m '~+°+l, we conclude that  
x, = w~ + x~ ~ m ~+*+l. This  proves our  asser t ion  and completes  the proof of (7). 

W e  consider  aga in  the var ious  power  products  v , ,  v~,.., of t~, t z , . . . ,  t.~, 
of degree  v. I t  fol lows f rom (4) and (5) that  the v~ form a basis of the ideal  ]}I v. 
We know tha~ the vectors  wh ich  cor respond to the v~ in ~ ( A )  or in ~IL,(P) 
are i ndependen t  (in ~'C~(A) these vectors  form even a basis). F r o m  ei ther  one 
of these two facts  it fol lows tha t  the v~ form a ~dn imat  basis of the ideal }F. 
Any  other  min ima l  basis  of ~ is re la ted  to the basis v~, v : , . . ,  by a l inear  
homogeneous  t r ans fo rmat ion  wi th  coeff ic ients  in o and wi th  de t e rminan t  not 
i n  m. W e  conclude  therefore  tha t  if u~, u~,. . ,  is any  min imal  basis  of )I '~, 
then  the vectors  which  correspond to the u~ in !3V..,{A) or in O]E.,(P) are 
independent ,  i.e., the fo l lowing two proper t ies  ho ld :  

(8) ,, ~ A~u~ ~ ~'~+~, A~ e 0 ~> ~ ~ all A~ are in .M >~. 
(9) << X A J q  ~ m ~+l, A~ ~ 0 >> ~ <', all A, ~re in m >>. 

W e  point  out  the followiHg consequences .  By (7), we have  

( t 0 )  ;~['~ A m ~ = "~ "'~'-~u~, ,~ ~ v, ( m  ° = o), 

and by (8) 
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Suppose now that we have a relation of the form Y~ A~u~e m~+l, A~s m~ -~.  

Then by (t0) (where ~ is to be replaced t,y tx q- 1) we can wr i te :  ~A~ui-=EB~ui, 
where the B~ are in ml~-,~+l From E ( A t -  B~)u~--O it follows, as a special 
case of (11), that A ~ -  B~ ~) I  ['] m~ ~-~. Uence  we have proved that 

(12) << ~ A~ut s m~ +1, A~ ~ m~ -~ ~.> -~- (~ A~ e Ill N m ~-~ + m ~-~+1 ~), (~ >_ v). 

We  shall denote by g~e and G~e the sets of vectors in !~Y[5~(P) and ~ ( A )  
respectively which correspond to the elements of ill v ~ m~, I~ ~ v. Note that 
g~  is a subspaee of ~'5~(P), but that G~ is only a' subgroup of the additive 
group of ~'d~(A) (since M~ ~ mt ~ is not an O-module). These groups g~  and 
G~ will play an essensial role in the sequel. For the moment we make the 
following remarks in the special case ~t ~ v. 

1) G~ spans the entire space ~ ( A ) .  This follows from what has been 
said about minimal bases of the ideal M ~. 

2) There is a natural homomorphism z of G~ onto g~, defined as follows: 
if v is any vector in G~ and if v is any element of 11 ~ m~ to which v 
corresponds,  then vz is in the vector in g~,, which corresponds to v. That 
is s ingle-valued (and hence a homomorphism) follows from the fact that 
~ + 1  ~ m~+i. 

3) Linearly dependent vectors in G~,~ are mapped by x into linearly 
dependent vectors of g,~,. For  let %, %, ..,, v z be elements of ~ such that 
the corresponding vectors in ~ ( P )  are l inear ly  independent.  Then the set 
of q elements v~ can be extended to a minimal base of the ideal ])IL and 
hence the vectors which correspond to the v~ in ~ ( A )  are also independent.  

4:. (W, v)- regular  points o f  V. 

We now consider a second irreducible variety V such that V contains W.  
We denote by p the local ideal of V at the point P and we set 

03) P ~ = P ~ M  ~N m~. 

In each of the two groups g~  and G~ the ideal p~ determines a subgroup. 
We shall denote these subgroups by h~ and H ~  respect ive ly  We  consider 
in part icular  the groups h,~,~ and H~,~. It is clear that h~ =H,,,~% where x is 
the homomorphism defined above [r~lnark 2}]. It follows by remark 3t of the 
preceding section that the dimension of h,~,~ is not greater  that the dimension 
of the space spanned by H~,, in ~Y['~(A). 

DEFINITION. - The point P is said to be (W, ,~)-regular for V i f  P is a 
simple point of W and i f  the dimension of the subspace h,~ of !~IL~IP) is the 
same as the dimension of the subspaee of ~I~£1A) spanned by H,~,~. 

The concept of a (W, v)-regular point of V is the key to our proof of 
the main lemma. 

A~na l i  di  Ma~ere*at~*.t~. S o r i e  I V. T,~ma X . ~ I X .  25 
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TI-IEORE~[ I. - I f  P is (W, v)-regular  for V, then 

(14) p~ ~ p~,~m~-" -t- p~+l, i~, ~ ~ v. 

Proof .  Let ,a ~ dim hw , ~ -~ dim g,~,~ (o ~ ~) and let u~*, u~*, . . , u~* be a 
basis of gv~ such that u~*, u~*, ,.., u;* is a basis of h,~,~. For each i ~--1, 2, ..., 
we fix an element u~ in ][~ whose m'~-~-residue is u~* and which belongs 
to p if l ~ i ~ p .  Let~c be any element of p~!~. Since tile ~ elements u~ form 
a basis of the ideal ~I ~ and since ~ belongs to the ideal ~ ~ m~, we have 
by (10) : x----- ~, A~u~, A~ e m, ~-~. Passing to the corresponding vectors ~, Ji~ 
and ~-t~ in 01~(A) [i.e., to the Mv+~-residues; see (6)] we have 

(15) ~c == ~ A~u~. 

Here the o vectors iq form a basis of ~)I~,~(A), since the ~ elements u~ form 
a minimal  ba.sis of::M ~, Now let us assume that  P is (iV, v)-regnlar for V. 
In that case ~ is alsb the dimension of the space spanned in 9VC,(A) by H,,~. 
Since the first ~ elements u~ belong to p, the 2 independent  vectors u~, 
(t2, ..., ~-ep belog to H, , .  I t  fo l lows tha/ every ,vector in H~  is l inear ly  dependent  
on ~-t~, ~-t,,..., fte. Since 2 belongs to H~,, we conclude that the last ~ - - ~  
coefficients A, in (15) must be zero. Hence A ~ l ) l  for ~ ~-1_<_i_~o. If we 
now set x, ~ E~=l A~u~, x 2 _~, ~=~+~ A~u~, then x~ e p~mi~-~, x~ ~ ~"~-~ ~ m~, 
and hence x~ $P~+~,e, since x ,  ~ - x - - x ~  and x~ ~ t)~. We imve thus proved 
that p ~ p , . ~ m e - ~  ~ p,~+~,~, and since the opposite inclusion is obvious, the 

proof of the theorem is complete. 
Te key result  is the following 
TI~EORE~ 2. - [ f  P is a (W, v)-regular  po in t  o f  V, then 

06} h ~  [~ g,~+~, ~ --~ h,~ ¢ ~, ~. 

Proof.  We may assume that ? ~ v, for if ~ --- v then g~+~,~ ~ h,~_~, ~ --~ (0). 
We use the notation of the proof of the preceding theorem. It is suffficient 
to prove the inclusion h ~  ~ g~+~,~h~_~,,,e. This is equivalent to proving that 

p~ [] [0r,+~ ~ mr) + m~+~] ~ p~+~, ~ + m~ "~~. 

In  view of (14), we get an equivalent  relation if we replace here pv~ by 

p~m~ -~. Let then w be any element of the ideal 

p~m~ -~ [~[(ltI ~+l [7 m~)-F nr-i 1)]. 

Y~ Aj ~ m~ -~, since, by Since x ~ p~m~-~ we can write x in the form ~ :~ A~u~; 
construction, the elements u~, u.~ .,., u~ form a b~sis (in fact a minimal basis) 
of the ideal p,;,;. Since x also belongs to the ideal (M~t-~ [-] m,~}-~ m i ~  it 
follows by (7) and (8) that there exist element B~ B~,.. . ,  1~ in M A nll~-~ 
such thai x ~ .~=~ Biu~ ~ m~+L We have, then, ~ )  ~ A~t~ - -  Z~:~ B~u~ ~ m~ -I~, 
an4 this implies, by 021, that  A~ e M ~ m~ -~-~ + m~ .... ~ ~. Since u~ ~ p~,~ ~ -~I ~ ~ m '~ 
for j =  1~ 2, . . . ,  p, it follows that xep ,~ t ,~ , - t -m ~'tt, ,.nd this completes the 

proof of the theorem. 
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We shall say that almost all points of an irreducible variety W have a 
given property a if the points of W which do not have property ~ lie on 
some proper algebraic subvar ie ty  of W (we do not mean to imply that the set 
of points of W which do not have property a is itself an algebraic variety). 

TIZEOR]~ 3. - For any  given integer v almost all points of W are (W, v)-reg- 
ular  for V. 

Proof. Let X~, X~, ..., X,, be non-homogeneous  co6rdinates in our af- 
fine space S, and let P be the prime ideal of V in the polynomial  rino~ 
k[X~, X~, ..., X,] .  The polynomials in P n M~ ~ (i.e., the polynomials which 
are zero on V and are zero to an order ~ v  at the general point A of W) 
determine a set of vectors in ~ ( A ) .  Let  a be te dimension of the subspace 
of ~ ( A )  spanned by that set of vectors, and let {f~(X), i - - -1 ,  2, . . . ,  a t  be a 
set of polynomials  in P ~ M~ ~+ which determine independent  vectors in ~ ( A ) .  
If z is the dimension of ~ ( A ) ,  we choose other ~ - - ~  polynomials '  g~(X) 
such that the a polyzmmials fgX) and g~(X) determine together a basis of 
~ ( A ) .  These v polynomials  consti tute then a minimal basis of the ideal ~I~ ~ 
in the local r ing 0 of the point  A. 

Let /t denote the polynomial  ideal generated by the above ~ polynomials.  
It  is clear that not only is P an isolated prime ideal of A, but  also that P 
will appear  as a component  in any normal decomposit ion of A into pr imary 
components. Let P , ,  P~,... be the other prime ideals of A, both isolated or 
embedded. Let  L(f~, g~) denote the sum of the following proper subvarie tes  
of W: 1) the variety of s ingular  points of W;  2) the intersection of W with 
the variety of I)q, q ---~ l, 2 .... We claim that any point  P of W,  which is not 
on L(fi, gJi is (W, v)-regular for V. The proof of this assertion will estabilish 
our theorem. 

It is clear that the a polynomials f~ (X) form a basis of the ideal Pv~. 
Hence  H~ spans in ~,~(A) a subspace of dimension a (this is true for any point 
P of M). On the other.~hand, it follows from our choice of the point P that 
the v polynomials  f~(X)iland g/X)  form a basis of the ideal M v, necessar i ly  
a m in ima l  basis, since we know that any iminimal basis of M ~ must have 
exacti ly z elements [a == dim ~ ( A ) ] .  But  then the vectors which correspond 

~ p  in ~ (  ) to the polynomials  f~, gj are also independent.  Since the fi(X) are 
in p.,,~, we conclude that dim h~.~ :> ~. It follows from remark  3) of section 3 
that d i m h ~ - - a ,  i.e., P is (W~ v)-regular for V, as asserted. 

COROLI~AR¥ 1 . -  For any  given integer v, almost all  point  o f  W are 
(W, k)-regular, ~ ~ 1, 2, ..., ~. 

COROLL)~RY 2. - For any  integer "+ the set of  points  of  W which are not  
(W, v)-regular for V is art algebraic variety. We r e f e r  to the minimal basis 
{ u~, u~, . . . ,  u~t of M~ introduced in the proof of Theorem 1. It is clear that 
we may assume that the u~ are polynomials. If we s~t f~(X) ~ u~, i :- 1, 2, . . . ,  ~, 
g i ( X ~ u ~ + j ,  j - ~  1, 2, ..., z - - g ,  then the z polinomials f~(X} and g~(X) are of the 
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type used in the preceding proof, and fur thermore the point P does not be- 
ion:  to L(f~, g;~. It  follows that the set of po in t s  of W which are not (W, vj- 
r egu l , r  for V is given by the intersection of all the varieties L(fi, g)) obtained 
by choosing the polynomials f~ and gj in all possible ways. Siuce this inter- 
s~ction is an algebraic variety, our assertion follows. 

5. P r o o f  of  the main lemma. 

We have, by assumption, that W is the closure of the given set G. i t  
follows from Corollary ]L of Theorem 3 that the set of points of G which are 
(W, ;q-re~nl~r for V, for X = 1, 2, ..., v, also has the property that its closure 
is l~L Hence we may assume that all the points of G are (W,),)-regular for 
V, ). = 1, 2, ..., v. 

The main lemma is obvious if v - - 1 .  Hence  we shall proceed by induc- 
tion from v to v + 1. Let, then, z be a rational function on V which van- 
ishes to an order ~_ v + 1 at each poin~ P of G. By induction hypothesis,  
z vanishes to an order ~. v at the general point A of IV', ie. ,  z~[m(A/V)] ~. 
We have to prove that z ~ [m(A/V)]~+L 

Let ~c~, x~,..., x,, be  the coSrdinates of the general p~)int of V such that 
k(w~, x~, ..., ~c,,) is our f ixed function field ~ of V. We go back to the indep- 
endent variables  X~, X~, . . . ,  X . ,  to the local ring 0 of the affine space S 
at A and to the maximal  ideal M( of O. Every elenlent of [m(A/V)] v can be 
wri t ten in the form ~?(x)/~(x), where q~(X) and ~(X) are polynomials,  ~(x)~= 0 
on W, and ~(X)/~(X)~ M~ ~. We fix one such reppresentat ion for our elem- 

ent z: z--= ~(~c)/~(m), and we set Z := ¢~(X)/~{X). 
Since ~(X):~= 0 on W, the points of W where  ~(X) is zero form a proper  

subvar ie ty  of W. Hence  the set of points of G at which  ~(X) does not vanish 
is still such that its closure 
that ~(X} :~= 0 at each point 
longs ~o the local ring of S 

We fix a point P in G 
We have, then, Z s M  ~ [see 

is the entire variety W. W e  may therefore assume 
of G. Under  this assumption,  the element Z be- 
at P, /or any point P of G. 
and we use the notation of the preceding sections. 
(6), section 3]. Our assumption that z vanishes 

to an order ~ v  + 1 at P is equivalent  to assuming that Z belongs to the 
ideal p , - m  ~1, where  p is the local ideal of V at P and m is the maximal  
ideal of the local ring o of S at P. We  can ther , fore  wri te :  Z =  Z, + Y, 
where  Z~ ~ m ~+~ and Y 
We have Z e g ~ ,  since 
same vector  in ~ ( P i  
in follows that Y~ p,~, and consequent ly  Zeh l~ .  Hence Z~hl~, n g~'. Since 
g.~ ~ gv~, we can write 2 ~ (h: A g ~  N g,,~, and applying Theorem 2 we obtain 
Z~.h~,~ N g~ Is ince P is (W, 1)-regular for V]. This, again, we can write in 
the form:  2:~ (h~ ~ g3~) (7 g~ (since g~ ~ g ~ ) ,  and ai)plyiug agMn Theorem 2 
we obta in:  Zsh3~ [-] g~ [since P is (W~ 2)-regular  f~)r V]. Ultimately we find 

$ p. Since Z e I ' ~ m ~, Z defines a vector Z in ~qLvIP). 
Ze l t I  ~. On the other hand, Z and Y determine the 
since Z - -  ] 7 = = Z ~ e m  ~+t. Since Y s p  A n C a n d  p ~ M ,  
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in this fashion that Z $ h~v [7 g~, i.e., 2 ~ h~. We conclude that Z belongs to the 
ideal P [7 M ~ + m  ~+1. Since Z e M~ and since M ~ ~ m ~ ~1 _~_ M~m [see (7), section 3], 
we can now assert that 

(17) 
Relation (17) holds for each 
omials f,(X) and g~{X) as in 
form a base of the ideal M ~ 

(is) 

Z ~  p N M ~ + M~m. 

point P of G. Now let us fix a set of polyn- 
the proof of Theorem 3. Since these polynomials 
and since Z s M  ~, we have 

Z : Z Aif~-t- Z Big.j, 

where  A~, B ~ ¢ 0 .  It is clear that for almost all points P of W it is true 
that the elements A~ and Bj  belong to the local r ing Of S at P. Replacing, 
if necessary,  the set G by a subset  whose closure ist still the entire variety ~V, 
we may therefore assume that the A~ and B~ belong to o(P/S), for all points P in 
G. A similar argument  shows that we may assume, without toss of generality, 
that no point of G belongs to the variety L(f~, g~) of points which we had 
to avoid in the proof of Theorem 3. Because  of this last assumption, we 
may assert  that if P is any point of G, then the f~ form a basis of the ideal 
P~v~ and that the polynomials fl and gt form a basis of M ~. Hence, in view 
of (17), Z can be expressed local ly,  at P, in the following form:  z-~-Z Cif~ + 
~ Z D~gj, where  the C~ and Dj are in o(P/S~ and the Dj are in m(P/S). ]f we 

compare this local expression of Z with that given by (18) and if we recall  
that the polynomials  f~, g~ form a minimal  basis of ML (see proof of Theorem 3}, 
we conclude, by (9), section 3, that all the Bj are zero at P. Since this holds for 
each poin P of G and since W is the closure of G~ it follows that the Bj are 
zero on the entire variety W, i.e., the Bj belong to the ideal )I~. Therefore the 
sum ~, B~gy belongs to M v+l, and since the sum Z Aif~ is zero on V, we con- 
clude that the original element z of the f u n  tion field of V belongs to 
[m(A/V)] ~+1. This completes the proof of the main lemma. 

6. Another application of the main lemma 

Let  R : k[~v~ x2, ..., ~,~] be the non-homogeneous  co6rdinate ring of V, 
where the ~v~ are the cotirdinates of the general point of V. Let  p be a prime 
ideal in R and let W be the irreducible subvariety of V defined by p (we 
are dealing with varieties in the affine space). As an application of the main 
lemma, we shall prove that 

(19) NP~w[m(P ,  V)] '~ N R~p~'~. 

~vere ~ v - + ~  as v-~cx~. [n other  words :  i f  an element z of  R vanishes to a 
high order at each point P of W, then z belongs to a high power of the 
prime ideal p o f -W.  

Proof. For  the proof it will be sufficient to show that given any integer p, 
there exists an integer ,+ such that the le f t -hand member  of (19)is contained 
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in p~. Let pP ~--- p(e) ~ q, ~ q~ ~ ... ~ qt, b~, a normal decomposit ion of p.~ into 
pr imary components,  where p(P~ is the ,~-th symbolic power  of p, and let p~, 
P~,..., Ph be the prime ideals of the pr[mary components q~, q.~,..., qh. 

is known that p ~ p ,  i--~1, 2 .... , h. Let vi be the exponent  of ql .  
~hen p{~,.)~q~. Let  v--~max(~,  v~, v.2,..., vhl. 

Suppose now that an element z of R wtnishes to an order ~ v  at each 
point P of ~f. The main lemma impli(~s that if p' is any prime ideal in 17 
such that p ' ~ p ~  then z belongs to the v-th symbolic power of p'. We have, 
therefore, in par t icular  : z ~ p,tv)~ p(p~ and also z e p~(~) ~ p~%~ ~ q~. Hene  z ~ p~, 
and this establishes (19). 

7. The ease of  a simple subvar ie ty  W of  V. 

The whole point  of our pt'oof of the main lemma is that it establishes 
the [emma for arbi t rary subvariet ies  IV of V, hence also for singular sub- 
varieties H r. In the case of a simple s~lbvariety a much shorter proof can 
be given, as we shall now show. 

Let  A be a general  point of W. By assumption, A is a simple point of 
V. Therefore the results  of section 3 continue to hold if the affine space S 
is replaced by V. Accordingly, we shall now mean by 0 and o the rings 
o(A/V) and o{P/V) respectively.  Actually we shatl only make use of (6) and 

(9), section 3. 
Let  t~, t.~,..., tp be 1.u.p. of V at A, where p = d i m  V - - d i m  W. We 

proceed, as in section 5, by induction from v to v- t -1 .  We have then z e ~tI~ '~, 
where ill t i s / h e  maximal  ideal of O, and hence z----- ~(t~, t~, ..., tp), where 
is a form of degree v, with coefficients in 0. 

We may assume that the ti's belong to the coordinate ring k[x,, ~2, ..., x,] 
of V. Let A be the i~teal generated in this ring bs. the p elements t ~. Let  L(A} 
denote the sum of the following proper subvariet ies  of W:  1) the singular 
locus of W;  2).the intersection of W with the variet ies (other than W) of 
the prime ideals of A. It follows as in section 5 th,tt it is permissible to 
assume that n~ point  of the set G belongs to L(A). Under  this assumption,  
the 1 u.p. t~, t~,.., tp consti tute a minimal base of the local ideal 1tl of W at 
P, where  P is an~; point  of G [M ---~ m {A/V) n re(P~ V)], and the power  products  
of the t~, of degres v, consti tute a minimal base of M". Since z e[m(P/V)]  ~+~, 
it follows, by (9). that the coefficients of the form .'p belong to m {P/V} (as in 
section 5, we may assume here that these eoeff ic i ,n ts  ~ll belong to ~J(P/V), for 
all points i ° of G}]. Since this holds for any point of G and since W is the 
closure of G, it follows that the coefficients of the form q~ belong to Mi. 

Hence  z e }I, ~+1, q.e.d. 


