
An algor i thm on polynomials  in one inde te rmina te  with 

coefficients in a two dimensional  regular  local domain.  

:By SHREERAM SHANKAR A]3~rA~KAI~ (a Lafaye t te  USA.) (*) 

In  memory  of Guido Castelnuovo in the recurrence of the f i r s t  centenary  of his birth. 

Summary, - See the f i rs t  three p a r a g r a p h s  o f  the In troeluct ion.  

§ 1. - I n t r o d u c t i o n .  

We shall use the terminology of [10: § 1, 2.1, 2.2, and 3.1 to 3.5]. Also, 
for a nonzero polynomial  f (Z)--Zf~Z ~ in an indeterminate  Z with coefficients 

i 
fi in a regular  local domain R we define:  OrdRf(Z)--min(i-~-OrdRfi} where 
the minimum is taken over all i for which f~ ~ 0. 

Let  R be a two dimensional  regular  local domain with maximal  ideal M 
such that R/M is a lgebraical ly  closed. In  [10] we have given an algorithm 
dealing with a noneonstant  monie polynomial  f(Z) in Z with coefficients in 
R when the degree of f(Z) in Z is a power of the character is t ic  of R/M. In 
turn, using the resul ts  of [10], here we shall develop an algorithm dealing 
with an arbi t rary  nonconstant  polynomial  f(Z) in Z with coefficients in R. 
The main result  of this paper  can be stated thus :  

THEOREM 1.1 - Let R be a two dimensional regular local domain with 
maximal  ideal M such that R /M is algebraically closed. Let (x, y) be a basis 
of  M and let J be a coefficient set for R. For every nonnegative integer i let 
(Ri, xi, yi) be a canonical i th quadratic transform of  (R, x, y, J) such that 
Ri C Ri+l for all i. Let I be the set of all nonnegative integers i such that 
xi+l ~ xi , let I* be the set of  all nonnegative integers i such that xi+2 ~ xi+l - -  x , ,  
and let I' be the set of  all nonnegative integers i such that x~+~-  xi and 
xi/yi  E R~+I. Assume that i f  I* and I' are infinite sets and characteristic of  
R/M -~ p =4:0 --  characteristic of  R then R contains a primitive pth root of  1 and 
a ( p - - 1 )  th root of p. Let R* be the completion of  Ri. Let f(Z) be a monic 
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polynomial of  degree n ~ 0 in Z with coefficients in  R. I f  I is a finite set 
then let j be any given nonnegative integer such that i ~ I for all i ~ j ,  and 
for each i ~ j  let r~+~ be the unique element in J such that y~--x~(y~+~+r~+~) 

2 * and let y* ~ - - y ~ -  (r~+~x~-j-r~+~x~ + ...)~ R~ ; and i f  I is an infinite set then 
~et j be any given nonnegative integer and for each i ~ j  let y* - -  y~. Then 
there exists i ~ j such that either: Z'* is an R~-lranslate of  f~Z) for all k ~ i ; 
or: there exist nonnegative integers d and e and an R*-translale  F(Z) of  f(Z) 
such that upon letting g(Z)--~'(x~y~ )/( ~y~ ~ we have that g(Z)~R*[Z], 
0 ~ OrdR*g(Z)~ n, and i f  I is an infinite set and e :# 0 then M C yiR~. 

The significance of the conditions on I, I*, and / " i s  explained by the 
following lemma. 

LE~MA 1.2 - Let R be a two dimensional regular local domain with 
max imal  ideal M. Let (x, y) be a basis of  ]1 and let J be a coefficient set for 
R. Let w be a valuation of the quotient field of  R such that w dominates R 
and w is residually algebraic over R. Let Ri be the i th quadratic transform of  
1~ along w and let (x~, y~) be a basis of the maximal  ideal iil~ in Ri such that 
~o--x and yo-=y, and for all i ~ O  we have that: i f  w(x~)--w(y~) then ~i+~--x~ 
and y~+~ - -  (y~/x~) E R~; i f  w(x~) ~ w(y~) then xi+l - -  x~ and y~+l - -  yl/x~; and i f  
w(x~) ~ w(yi) then x~+~--xi/y~ and y~+l= Yi; (note that these conditions are 
satisfied in case RIM is algebraically closed and (Ri, x~, y~) is the canonical 
i th quadratic transform of (R, x, y, J) along w for all i ~ 0). Let I be the set 
of  all nonnegative iutegers i such that x~+~ =4= x~, let I* be the set of  all non- 
negative integers i such that  x~+2 ~= x~+~-~ x~, and let I' be the set of  all non. 
negative integers i such that x i + t -  x~ and x~/yi E R~+~. Then we have the 
following: (1) I f  I is a finite set then w is either discrete or nonreal. (2) I f  I 
is a finite set then I* is a finite set. (3) I f  I is an infinite set and I* is a 
finite set then w is nonreal and 1' is a finite set. (4) l* is a finite set i f  and 
only i f  w is either discrete or nonreal. (5) 1' is a finite set i f  and only i f  there 
exists a nonnegative integer j such that w(x~) ~ w(y~) for all i ~ j .  (6) I' is a 
finite set i f  and only i f  there exists a nonnegative integer j such that w(x~) 
and w(y~) are rationally independent for all i ~ j. (7) I f  w is irrational then 
there exists a nonnegative integer j such that (w(x~), w(y~)) is a free basis (as 
a module over the ring of integers) of  the value group of  w for all i ~ j .  (8) I* 
is an infinite set and I' is a finite set i f  and only i f  w is irrational. (9} I* is 
an infinite set and I' is an infinite set i f  and only i f  w is rational nondiscrete. 
(10) I f  I is an infinite set and I' is a finite set then there exists a positive 
integer j such that M C y~R~ for all i ~ j .  

PROOF. - To prove (1) assume that I is a f inite set; then there exists a 
nonnegative integer j such that for all i ~ j  we have that x i+ l - -x~  and 
hence w(x~)_~__w(yi); now for each i ~ O  we have that min(w(x~), w(y~))~w(z) 
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for all zEM~, and by [2: Lemma 12] we know that U M~--M,~; therefore 
i=j '  

0 ~ w ( x i ) ~ w ( z )  for all zEM~ and hence w is ei ther  discrete or nonreal,  
{2) is obvious. If  I is an infinite set and I* is a f inite set then there exists 
a nonnegative integer j such that x~ ~ xi+~--x~/y~ and y~+~--y~ for all i ~ j ,  
and hence w is nonreal  and 1' is a finite se t ;  this proves (3). If I* is a 
f ini te set then by (1) and (3) we get that w is e i ther  discrete or nonreal ;  
conversely assume that  w is e i ther  discrete or nonrea l ;  then by [2: Theorem 
1] there exists 0 ~ z'E M~ such that w(z ' )~  w(z) for all z EM~; by [2: Lemma 

12] we know that (J M~ ~ M,~ and hence there exists a nonnegative integer  

j such that z'E ]I~ for all i ~ j ;  now for each i ~_~ 0 we have that  min(w(x~}, 
w(y~))~w(z) for all z EM~, and hence min(w(~) ,  w ( y i ) ) : w ( z ' ) f o r  all i ~ j ;  
consequent ly  if w(x~)----w(z') for some i ~ j  then x~+~--x~ for all k ~ i  and 
hence I* is a f inite set;  and if w(x~)~ w(z') for all i~__j then x~+~ ~ x~ for 
all i ~ j  and hence again I* is a f inite se t ;  this proves (4). Clearly 1' is the 
set of all nonnegat ive integers  i such that w(x~) : w(y~), and hence we get (5) 
and (6). (7) follows from [10: Lemma 3.11]. (8) follows from (4), (6), and (7). 
(9) follows from (4) and (8). To prove (10) assume that I is an infinite set 
and I'  is a f inite set;  then  there exists a positive integer  j such that x] ~ xi_~ 
and w(x~)~ w(y~) for all i ~ j ;  it follows that  zci_~Ey~R~ and yi_~E y~R~ for all 
i____.j, and hence M C y~R~ for all i ~ ] .  

:Note that, using completions, a different  proof of a special case of 
Lemma  1.2(1) was given in [1: page 513], [6: (1.3)], and [7: (1.3)]. In  [2: 
Lemma  12] we have proved the following. 

L]~M~A 1.3 - Let R be a two dimensional regular local domain with quo- 
tient field K. For each nonnegative integer i lel Ri be a two dimensional 
regular local domain such that Ri is an i th quadratic transform Of R and 

OD 

R~ C R~+~ for all i ~ O. Then U R~ is the valuation ring of a valuation w of 
i ~ O  

K such that w dominates R~ and w is residually algebraic over R~ for all i. 
o o  

I f  w' is any valuation of  K such that w' dominates R~ for all i then (2 R~ --  R,¢. 

In  view of the above two lemmas, Theorem 1.1 reduces to the following. 

Tr[Eon~M 1.4 - Let 1~ be a two dimensional regular local domain with 
maximal  ideal M such that R/M is algebraically closed. Let (x, y) be a basis 
of  M, let J be a coefficient set for R, let w be a valuation of the quotient field 
of  R such that w dominates R and w is residually algebraic over R~ let (Ri, 
x~, y~) be the canonical i th quadratic transform of (R, x, y, J) along w, and 
let R* be the completion of  R~. Let f(Z) be a mouic polynomial of  degree n ~ 0 
in Z with coefficients in R. Then we have the following. 
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(1) Assume that w is rational nondiscrete. Also assume that i f  characte- 
ristic of  R/M --  p =#: 0 - -  characteristic of  R then R contains a primitive pth 
root of 1 and a ( p -  1) th root of  p. Then there exists a nonnegative integer i 
such that either: Z ~ is an R~-translate of f(Z) for all k ~_ i; or: there exist 
nonnegative integers d and e and an R*-translate  F(Z) of f~Z) such that upon 

F ~ ~ ~ . . . .  ~ ~)" ~R letting g(Z)-" (~v~y~)/ix~y~ we have that M C radRfl~ i, g(Z}EB*[Z], and 
0 < ordRTg{Z ~ < n. 

(2} Assume that w{xi)=4= w{y~) for all i ~ O .  Then either: Z ~ is an 
R~-translate  of  f(Z) for all k ~ 0; or: there exist nonnegative integers i, d, e 
and an R*-translate F(Z) of  f(Z} such that upon letting g ( Z ) -  F(x~y~Z)/x~y~)" 
we have that g(Z) e R*[Z] and 0 < ordR~g(Z) < n. 

(3} Assume that x~--x~ for all i ~ O .  For each i ~ O  let r~+~ be the 
unique element in  J such that Y i - - x ( y ~ + ~  ri+~). Then either: Z" is an 
R*-translate  of  f(Z) for all k ~ 0; or: there exist nonnegative integers i, d, e 
and an R*-translate  F(Z) of  f(Z) such that upon letting y*---y~--{r~+~x-{- 
-~ r~+2x ~ ~ ...) e R* and g(g) --  F(Xdy*eg)/(XdZ*e) ~ we have that g(Z} E R*[Z] and 
0 < ordR?g(Z) < n. 

In  Theorem 2.10(1} of § 2 we shall prove Theorem 1.4(1), and in Theo- 
rem 3.8 of §3  we shall prove Theorems 1.4(2) and 1.4(3): § 2 and § 3 are 
completely independent  of each other. Except  f0r a few definitions, § 3 does 
not depend on [10]. The proof of Theorems 1.4(2) and 1.4(3) given in § 3 is 
quite easy and, except for the fact that the use of derivatives is replaced by the 
use of the notion of nonspli t t ing polynomials, it is in the same general  line 
of thought as [1: § 1] and ZARISKI'S proof of uniformization Of nonrat ional  
valuations in zero character is t ic  given in his papers [13], [14], [15]. On the 
other hand, in § 2 the results of [10] play a major role. The technique used 
in § 2 to deduce Theorem 1.4{1) from the results of [10] was inspired by 
ZA~ISKI'S recent  theory of equis ingular i ty  in zero character is t ic  (see [16], [t7], 
[18], [19]}; I had the good for tune of a t tending the course on that theory 
given by ZA~ISKI at HARVARD in the fall of 1963; the considerations of § 2 
may  also throw some light on the yet undeveloped theory of equis ingular i ty  
in nonzero characterist ic .  In  the setup of ZARISKI'S recent  simple proof of 
resolut ion of singulari t ies of embedded surfaces in zero character is t ic  outl ined 
in [16], the case of a simple point of the discr iminant  locus is easier than 
the case of an ordinary double point of the discr iminant  locus;  it can be 
seen that the case of a simple point of the diser iminant  locus essentially 
corresponds to the ease of a rational valuation and the case of an ordinary 
double point of the diser iminant  locus essentially corresponds to the case of 
a nonrat ional  valuat ion;  so it is not surpr is ing that if in 6 2 we were to 
restr ict  our  a t tent ion to zero character is t ic  then the result ing proof would be 
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quite  similar  to ZAnISKI'S t reatment  of the case of a simple point of the 
discr iminant  locus outl ined in [16]; the diff icul ty in § 2 arises for nonzero 
characteris t ic  and that is where the resul ts  of [10] come into play. Thus  this 
paper  is inspired by both the older (for nonrat ional  valuations) and the newer  
(for rat ional  valuations) work of ZARISKI on singularit ies.  

I conclude this in t roduct ion by fondly expressing my perpetual  grat i tude 
to my guru Professor  OSCAR ZARIS~I. I do so by dedicat ing this paper  to 
my pa ramguru  (guru's guru) the late Professor  GuIDo CAS~:EL~UOVO on the 
occasion of the centenary  of his birth. 

§ 2. - R a t i o n a l  n o n d l s c r e t e  v a l u a t i o n s .  

DEFINITION 2.1 - Let  f(Z) be a monic polynomial  of degree n > 0 in Z 
with coefficients in a field K. Take elements  z~ ....  , z,~ in an overfield of K 
such that f ( Z ) " - ( Z -  zl)... ( Z -  z,), and let L - - K ( z ~ ,  ..., z,). /(Z) is said to be 
separable over K if L is separable  over K; note that this condit ion depends  
only on f (Z )and  K and not on the elements z~, ..., z,~; also note that this 
condition is equivalent  to saying that either K is of character is t ic  zero, or K 
is of character is t ic  p ~ 0 and ['(Z)~ K[ZP] for every nonconstant  monic irre- 
ducible  factor f'(Z) of f(Z) in K[Z]. Let y~, . . . ,  ym be the dist inct  elements 
amongst  the elements  z~, ...~ z~. W e  define 

D K ( f ( Z ) )  - -  ~ormL/K II ( Y i -  Yj) 
~4i 

where the product  is over r e (m- -1 )  terms (by convention the product  over 
an empty family is 1) and where for any x E L ,  as usual, NormL/KX denotes 
the norm of x relat ive to the field extension L of K. Note that:  ( 1 )0  =#= 

DKIf(Z)) E g ;  (2) DK(f(Z)) ---- II (y~ - -  yi) d where d - -  [L : El; (3) DK(f(Z)) depends  

only on K and f(Z) and not on zl, ..., zn; and (4) if R is any normal  domain 
with quot ient  field K such that f(Z)E R[Z] then DK(f(ZI)E/~. Let g(Z) be another  
monic polynomial  of posit ive degree in Z with coefficients in K. W e  define 

D(g(Z), f(Z)) --  IIg(z~). 

Note that :  (5} D(g(Z), f{Z))E K; (6) D(g(Z), ftZ}) depends only on g(Z) and /(Z) 
and not on K and zl, ..., z,~; and (7) if R is any subring of K such that 
g(Z) E R[Z] and f{Z} E R[Z] then D(g(Z)), ffZ)) E R. 

LEM~aA 2.2 - Let R be a normal quasilocal domain with quotient field K, 
let x E  R such that x R  is a prime ideal in R and S is a one dimensional 
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regular local domain where S --" R~R, let L be a finite normal  extension of K 
such that integral closure T of  S in  L is quasiloeal (by [20: § 7 and  § 8 it 
follows that T is then a one dimensional  regular local domain), let X ~ L ~uch 
that X q -  x where q is a positive integer, let L' be a subfield of  L containing 
K, let d - - [ L ' : K ] ,  let z ~ L '  such that z - - s X  ~ - s '  where b is a nonnegative 
integer, s ~  R such that s ~ x R ,  and  s'~ L such that s' is integral over R 
and o r d r s ' ~  OrdTX b, and  let y -  NormL,/Kz. Then we have the following: 
(1) bd~--O(q), o r d s y - - b d / q ,  y /x~/q~R,  and y / x~ /qqxB .  (2) s is a uni t  in R 
i f  and  only i f  y/~c ~d/q is a uni t  in R.  (3) y is an R-monomia l  in  x i f  and 
only i f  s is a uni t  in R. 

PROOF. - Clearly s is a uni t  in S and hence o r d T s - - 0 ;  since o r d T s ' ~  
ordTX b we get that  o r d ~ - z -  ord~-X b. Now y----Gl(z) ... Gd(z) where G1, ..., Gd 

are K-au tomorph i sms  of L;  for any K-au tomorph i sm G of L we clear ly  have 

G(T)-~ T and hence ord~G(u)----OrdTU for all u E L; in pa r t i cu la r  OrdTGi(z)---- 
- - o r d T z  for l ~ i _ ~ d  and hence ordTy ~ d ordTz-----d OrdTX b- -  (bd/q)OrdTX; 
since x and y are in K we therefore  get that o r d s y :  (bd/q)ordsx;  
since ordsx----1 we conclude that o r d s y - "  bd/q and hence bd ~ O(q). ~-ow z is 
in tegra l  over R and z ~ 0 ,  and hence O : # y E R .  Let  a be the greatest  in teger  
such that  y /xaER;  then y/w ~ x R  and hence y/x  ~ is a unit  in S; consequent ly  
o r d s y - - a  and hence a - - b d / q .  There fo re  y/x, bdlqER and y/~cb~/u~ X~R. Since 
ordsy = bd/q and y/xb~/q E R it follows that y is an R-monomia l  in ~ if and 
only if y/Xbd/q is a unit  in R. There fore  it now suffices to show that  
s is a uni t  in R if and only if y/xbg/q is a unit  in R. Let  m - - [ L ' L ' ] ,  
n --~ [L • K], and y' --" NormL/KZ. Then  n --  md  and y, _ y,n, and hence  
y'/xb~/q --- (y/xbd/q) m. Since Xq --  x and ordsx = 1 we get that  Z~ ~ x is 

the minimal  monic polynomial  of X over K; consequent ly  [ L ' K ( X ) ] - - n / q  
and ~ormK(X)/KX --  (-- 1)q+~X, and hence ~ormL/KX b ~-- ((~ormK(x)/KX)n/q) b ~-- 
--- (--1)(q+ 1) (b'/q)xb"/q. Let  t ~ s ' /X b and u --  NormL/~:(s ~ t). Then  s ~ t --  z /X  b 
and hence U--(NormL/KZ)/(NormLIKXb); consequent ly  u ~  (--  1)(q+~) (b~/q)(y/~cbalq)~ C R, 
and hence u is a uni t  in R if and only if y/xbd/q is a uni t  in R. There fore  
u E R ,  and it suffices to show that  u is a uni t  in R if and only if s is a 
uni t  in R. ~ow u - -  Ii[~(s-~-tl ... H~(s Zc t) where H~ , ..., H~ are K-au tomorph i sms  
of L. Since ordTSP~ ordTX b we get that t E Q where Q is the maximal  ideal 
in T. Since H~(Q)-~Q and s ~ R  we get that H ~ ( s - - ~ t ) - - s + H ~ ( t ) ~ s  mod Q 
for l ~ i ~ n .  Therefore  u - - s  ~ rood Q, i.e., u - - s  ~ Q .  Now u ~ R ,  s ~ R ,  
and Q ( ~ R - - - - ( Q N S ) ( ~ R - " ( x S ) Q R - - x R .  There fore  u - - s  ~ x R  and hence 
in par t icu la r  u - - s "  is a nonuni t  in R. Since R is quasilocal,  we conclude 
that  u is a uni t  in R if and only if s ~ is a unit  in R, i.e., if and only if s 

is a uni t  in R. 

LEh[MA 2.3 -- Let R be a normal  quasilocal domain wi th  max i ma l  ideal 
]t and  quotient field K, let x E R such that xR  is a pr ime ideal in 1~ and  S 
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is a one dimensional regular local domain where S -  R~R,  let L be a finite 
normal extension of  K such that the integral closure T of  S in  L is quasilocal 
(by [20: § 7 and § 8] it follows that T is then a one dimensional regular local 
domain}, let X E L such that Xq -~ x where q is a positive integer such that q 
is not divisible by the characteristic of  R/M and K contains a primit ive qth 
root W of  1, let g(Z) be a monte polynomial of  degree d ~ 1 in  Z with coeffi. 
cients in R such that g(Z) is irreducible in  K[Z] and DK(g(Z)) is an R-monomial  
in x, let f (Z) - -g(Z)  ~ where e is a positive integer, and let n : de. Assume 
that there exist elements z, r, s, s' in  L and a positive integer b such that 
f(z)--O, z - - r - - s X b - ~ s  ', rER,  sER,  s~xR ,  s' is integral over R, ordTs'>ordTX b, 
and b_=]~-0(q). Let a----bn/q. Then a is a positive integer with a=_leO(n), and 
for any r* E R with ordsr* ~_~ a/n we have that f(r-~-r*)/x ~ is a uni t  in  R. 

Pi/ooF.  - Now [K(z)*K] : d and  hence  by L e m m a  2.2(1) we get that  
bd ~--O(q) and hence  bn ~--0(q); since a -  bn/q and b-I~0(q) we conc lude  tha t  
a is a posi t ive in teger  and  a~i~_0(n). Upon le t t ing  h ( Z ) -  Z q - - x w e  get tha t  
h(Z) EK[Z] and h(X) - -  O- -  h(WX); since ordsx---- 1 we get tha t  h(Z) is 
i r reduc ib le  in K[Z]; therefore  there  exists  a K - a u t o m o r p h i s m  G of L such 
tha t  G(X)-" WX.  Let  z~ : G(z). Since g(zt----0 we get tha t  g(z~)~-O. Since  q 
is not  divis ible  by the charac te r i s t i c  o[ R/M and  b =l-0(q) we get tha t  1 - - W  b 
is a uni t  in R and  hence  ( 1 - - W b ) s E R  and i 1 - - W b ) s ~ x R ;  in p a r t i c u l a r  
(1--Wb)s is a un i t  in S and hence  OrdTX b -  OrdT(1--Wb)sX b. Clear ly  G(T) - -T  
and hence  ordTG(s') - -  OrdTS'; c o n s e q u e n t l y  ordT{s ' - -  G(s')) ~ ordTX b. Now 
z - -  z~ - -  (1 - -  Wb)sX ~ q- (S' - -  G(s'}) and  hence  OrdT(Z - -  z~) - -  OrdTX b. There fo re  
z :~z~.  Since  L is a no rmal  ex tens ion  of K, there  exist  d i s t inc t  e lements  
z ~ . . . , z , ~  in L such  tha t  d ~ - 0 ( m ) ,  z = 4 = z ~ z ~  for 2 ~ i ~ m ,  and g(Z)--~ 

((Z - -  z) (Z - -  z~) ... (Z--  Z,~))d/"~. Let  L' - -  K(z, z~, ..., z~). Le t  y --  NormL./K(z-- z~). 
L e t  y' - -  ~ormL, /KZ'  where  

z' = [ II (z - -  ~)] [ l I  (zi - -  z)] [ II II (zi - -  zi)]. 
i=2 i ~ i  i = l  l~_l~m, i:~:i 

Then  0 ~ y E R and  0 ~ y'  E R. Also yy' --  DK(g(Z)) and  hence  by a s sumpt ion  
there  exis ts  a nonnega t ive  in teger  c* such tha t  yy'/x ~* is a un i t  in  R. T h e n  
o r d s y y ' - - c * .  Le t  c and  c' be the grea tes t  in tegers  such  tha t  y /x~ER and  
y'/x~" E R.  Then  y /x~  ~ xR and  y ' /x¢  ~ xR .  There fo re  y / x  ~ and y'/x ~" 
are  un i t s  in S and hence  o r d s y = e  and  ordsy ' - -d .  There fo re  o r d s y y ' =  
- -  c q- c' and  hence  c -{- c' - -  c*. Consequen t ly  (y/x c) (y'/~'; = yy'/x~*; since 
y/x  ~ and y ' /x  ~' are in R and  yy'/x ~* is a un i t  in R, we conc lude  tha t  y/x  ~ and 
y'/x ~" are un i t s  in R and  hence  y and  y' are R - m o n o m i a l s  in x. Thus  
z - -  Z~--(1--Wb)sX ~ q- (S'~ G(s')), (1--W~)s E R, (1-- W~)s ~ xR, s ' --  G(s') is in tegra l  
over R, OrdT{S'-- G(s')) ~ OrdTX ~, y - -  ~NormL,/~z(z-- z~), and  y is an R - m o n o m i a l  
in x ;  there fore  by L e m m a  2.2(3) we get tha t  ( I - - W ~ ) s  is a un i t  in R; s ince 
1 - - W  ~ is a un i t  in R we conclude  tha t  s is a un i t  in R. Given any  r * E R  
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with ordzr* ~ a/n let y * -  NormK(z ) /K(z - - r -  r*). Since a_=t_e 0(n } we get that 
ordsr* > a/n --  (a/n) ordsx and hence ordTr* ~ {a/n) OrdTX = (a/n) (q/b) ordrX b-- 
- -  o rdzX b. Consequent ly  ord~.(s'-- r*} > OrdTX b and also s ' - -  r* is integral  
over R; since z - - r w r * - - ~ s X b q  - { s ' q r * )  and s is a uni t  in R, by Lemma 
2.2(2) we get that y*/xe~]~ is a unit  in R ;  since (--1)'~y*~/x~---(ql)'~{y*/xdb/~} ~ 
we conclude that (--l)ny*e/x ~ is a unit  in R. Let  g'(Z)--g{Z q - r  q-r*).  Then 
g'(Z) is the minimal  monic polynomial  of ~ - - r - - r *  over K a n d  hence 
y* - -  (--i)dg'(0). NOW f(r q- r*) - -  g(r --}- r*) ~ and g(r -1- r*) = g'(0). Therefore  
f(r q - r * ) -  (--1)~y *e and hence f(r q - r*) /x  ~ is a unit in R. 

LEM~A 2.4 - Let R be a normal local domain with max, imal ideal M and 
quotient field K, let p be the characteristic of R/M, let 0 =4= x E R such that xR  
is a prime ideal in  R, let S - -  RxR, let X be an element in an overfield of  K 
such that X q - - x  where q is a positive integer such that q =-I-0(p) and K con- 
tains a primitive qth root of  1, let K' --  K(X), let R' be the integral closure of  
R in K', and let S' be the integral closure of  S in K'. Then: S and S' are one 
dimensional regular local domains; XR'  is a prime ideal in R", S' - -  R'xR.," 
for any 0 ~ y E R i f  b is the greatest integer such that y /x  b E R then b --- ordsy ; 
for any 0 ~ y E i2' i f  b is the greatest integer such that y /X  b E R' then ords.y - -  b ; 
and i f  R/xl¢ is a regular local domain then so is R'/XR'. Furthermore we 
have the foUowing. 

(1) Let g(Z) be a monic polynomial of  degree d ~ l  in Z with coefficients 
in R such that g(Z) is irreducible in K[Z], g (z ) - -0  for some zEK', and DK(g(Z)) 
is an R-monomial  in x. Let f ( Z ) :  g(Z) ~ where e is a positive integer and 
let n -  de. Then there exists r E R and a positive integer a with a ~1--0(n} such 
that for any r*ER with o r d s r * ~ a / n  we have that f(r q-r*)/x  ~ is a unit in R. 

(2) Assume that p ~ O. Let L be a normal extension of K such that L 
is a p-extension of  K', let g(Z) be a monic polynomial of degree d ~ 0 in Z 
with coefficients in R such that g(Z) is irreducible in K[Z], and let f'(Z) be a 
monic polynomial of  degree m ~ 0 in Z with coefficients in R' such that f'(Z) 
is irreducible in K'[Z], f'(Z) divides g(Z) in K'[Z], and f ' ( z ) :  0 for some z E L. 
Then m is the highest power of  p which divides d, and i f  g(Z) ~. K[Z"] then 
f'(Z) =~= Z 'n q- f'(O). Let f(Z) ~ g(Z) ~ where e is a positive integer and let n "- de. 
Assume that m ~> 1, p E xR, S' is totally ramified in L, R/xR is a regular 
local domain, DK(g(Z)) i8 an R-n~onomial in  x, and there exist nonnegative 
integers a' and c' and r'E R' such that ords.f '{r')--a',  ordR,fxf(r '}/X~':  c', 
{a', c')-]~_0{m), and c ' ~  m/p. Then there exist nonnegative integers a and c 
and r E R  such that {a, c)~-]:~O(n) and c ~ n / p  and such that for any r * E R  
with ordsr* ~ s in  we have that ordsf(r + r*} - -  a and ordR/~f(r --}- r*)/x a --  c. 

PROOF. - Clearly S is a one dimensional  regular  local domain with 
maximal  ideal xS and hence xR is a minimal prime ideal in R; for any 
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0 ~ y E R  if b is the greatest  in teger  such that y / x b E R  then y/~cb~xR and 
hence y / x  b is a uni t  in S and hence o r d s y -  b. Since ordsa~ ~ 1, K ' - - K ( X ) ,  
X q -  x, q ~_l~:0(p), and K contains a primit ive qth root of 1, we deduce that 
[K': K] --  q, K' is a separable  normal extension of K, S' is a one dimensional  
regular  local domain with maximal  ideal XR',  and h ' ( S ' ) :  h'(S) where h' is 
the canonical  epimorphism of S' onto S'/XS'.  Since S' is a one dimensional  
regular  local domain with maximal  ideal XS'  upon lett ing P - - ( X S ' )  ('1 R' we 
get that  P is a minimal  pr ime ideal in R', S ' - - R ' p ,  P S ' - - X S ' ,  P (5 R - - x R ,  
and P is the only minimal  prime ideal in R' whose intersect ion with ~ is wR 
(for instance see [4: L e m m a  1.9 and 1.28]). If  P'  is any minimal  pr ime ideal 
in R' such that X E P' then ~ E P' ( ' /R and by [4: Proposi t ion 1.24B] we know 
that P ' O  R is a minimal prime a ideal in R; consequent ly  P ' ( ]  R " - x R  and 
hence P ' - - P .  Thus  P is the only minimal prime ideal in R' containing X;  
since X R ' ~ - - P R ' ~  and R' is a normal  noether ian domain, by [20: Theorem 
15 on page 223 and Theorem 14 on page 277] we conclude that X R ' - - P .  
Therefore  X R '  is a minimal  pr ime ideal  in R', ~ ' : R ' x ~ , ,  and ( X R ~ ) ~ R - - x R ;  
for any 0 ~ y E R' if b is the greatest  integer such that y / X  ~ E R' then y / X  ~ ~ XR '  
and hence y / X  ~ is a unit  in S' and hence ords,y---b.  In  par t icular  h'(S') is 
the quotient  field of h'(R') in h'(S'}, and h'(R') is integral  over h'(R). Let  h be the 
canonical epimorphism of R' onto R'/XR'.  Since h'(S')~-h'(S) and h'{S) is the 
quotient  field of h'~R) in h'(S) it follows that if R / x R  is normal  then h'(R'}--  
:h ' (R ) ,  i.e., h(R' ) :h(R) .  Therefore,  if R / x R  is a regular  local domain then h(R ' ) :h(R)  
and h(R'} is a regular  local domain. Since K' "- K(X) ,  X~ - -  x,  q - -  [K' : K], 
and q-_-I-= 0(p), by  [8: Theorem 7] we get that 1, X,  .... X q-~ is ~ free R-bas i s  
of R'. W e  shall now prove (1) and (2) separately.  

PROOF OF (1) - Now z E R' and z ~ K. Therefore  z = r ~- r l X +  ... + rq_iXq -~ 
where r, r l , . . . ,  rq_~ are elements in R such that r~:4:0 for some i. Let  b' 
the greatest  integer such that r~/xb'E R for 1 ~ i ~.~ q - - 1 .  Let  j be the smal- 
lest integer such that l < j ~ q - - 1  and r~/x b 'qxR .  Let s - - r ~ / w  b', s ' - ~ z - -  
- -  r ~ r~X~, and b - -  j ~- qb'. Then z ~ r - -  sXb ~- s ', s E R, s ~ ~R, s' E R', 
o r d z , s ' >  ordz,X b, and b is a posit ive integer  such thai b=_I-O(q ). Therefore  
upon lett ing a - - b n / q ,  by Lemma 2.3 we get that a is a posit ive integer 
with a=]~00~), and f ( r ~ r * ) / x  ~ is a unit in R for all r * E R  with ordzr*~__a/n. 

PROOF OF t2) - Since L is a p -ex tens ion  of K' we get that m is a power  
of p. Let  F~ be the coefficient of Z m-~ in f'(Z) for l ~ i ~ m .  Let  L'--K(F~,  ..., F,,~), 
[K' : E] "-- u, and [L' : K] - -  v. Since [K' : K] - -  q, K' - -  K(X},  X~ - -  x, q :_1~. O(p), 
and K contains a primit ive q~h root of I, we deduce that q - - u v ,  ords,y ~ 0 ( u )  
for all 0 :~ y E L', E - - K ( X ~ ' ) ,  K contains a primit ive v th root W of 1, L' is 
a separable  normal extension of K, and the group of all K-au tomorph i sms  
of L' is a cyclic group of order  v and it has a generator  G such that 
G ( X " ) -  WX% Now g(Z) and f'(Z) are the minimal  monte polynomials  of z 
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over K and L' respectively,  and hence g ( Z ) = f ' ( Z ) f * ( Z )  where f * ( Z ) =  Z d - ~ +  
* * L t" -~ F * Z d - ' ~ - ~ - ~  ... ~-F~_,~  with F*,  ..., F~_,~ in Upon applying G ~ to the coeffi- 

cients of g(Z), f '(Z), and f * ( Z ) w e  get that g{Z) - - f~ (Z ) f* (Z )  where f ~ ( Z ) : Z ' ~ - ~  
4:- G~(F~)Z " - ~  --}- ... 4~ G~(F,~) and f* (Z)  ~ Z d- '~ ~- G~tF*IZ d - ' - ~  --}- ... 4: G~(Fd*_,~). 
Hence  in par t icular  f~(Z) divides g(Z) in L'[Z]. Since f ' (Zi  is i r reducible in L'[Z] and 
L ' - -K(F~ ,  ..., F~)  we get that f~(Z} is i rreducible in L'[Z] for l ~ i ~ v ,  fv(Z}--f l{Z),  
and f~(Z) 4= f~.(Z) for 1 ~ i < i' ~ v. Therefore  upon lett ing if(Z} - -  f~(Z) ... h (Z )  we 
get that g'(Z) divides g(Z) in L'[Z] and g ' ( z ) - - O .  Let g~(Z) and f~(Z) be the 
polynomials  obtained by  applying G ~ to the coefficients of g'iZ) and f~(Z} 
respect ively;  then g~(Z) - - f ~ ( Z )  ... h~(Z); now f~(Z), ..., h~(Z) is a permuta t ion  of 
f~(Z), ..., f~(Z) and hence g~(Z} - -  g'(Z) ; this being so for 1 ~ k ~__ v we get that 
i f (Z)  ~ K[Z]. Therefore  g ( Z ) :  i f{Z);  hence d -  my ,  m is the highest power  of 
p which divides d, and if g(Z)~  K[Z "~] then f ' (Z)~= Z ~  - f'(0). Hencefor th  let 
the remaining assumptions  be in force. ~e t  T be the integral c losure  of S' 
in L. Then T is the integral  closure of S in L, and T is a one dimensional  
regular  local domain. :Now r' - -  r -}- r~X -]- ... -~ rq_~Xq -~ where r, r~, ..., rq_~ 
are elements  in R. If  r '4=:r  then let b' be the greatest  integer  such that 
r~/~ ~ ' ~ R  for l ~ i  ~ q - 1  and let j be the smallest  integer such that 
1 ~ j ~ q -  1 and r~/x~'~ xR .  We shall now divide the argument  into two eases. 

Case w h e n  r' ~ r a n d  OrdT(Z--r') ~ ordTX~+q ~'. Let  b =-j-}-  qb', s - -  r j /~  b', 
and s ' - - z -  r -  s X  b. Then b is a posit ive integer such that b-l=-O(q), s E R, 
s ~ xR ,  r' - -  r - -  s X  b E Xb+~R'~ s' E L~ s' is integral  over R, and z - -  r -~- s X  b -{- s'. 
Since s' = (z - -  r') -~- ( r ' - -  r - - s X b ) ,  OrdT(Z--r') ~ OrdTX b, and r ' - -  r - -  s X  b C Xb+IR ', 
we get that ordTS' ~ ordTX b. Therefore  upon taking a -  b n / q  and c -  0, by  
Lemma 2.3 we get that a and c are nonnegative integers such that (a, c)~l--O(n ) and 
e ~ n / p  and such that for any r * C R  with o r d s r * ~ a / n  we have that f ( r -~-r*) /x  ~ 
is a unit  in R and hence ords f ( r  + r * ) =  a and OrdR/~f(r-{-r*) /~c  ~ - -  e. 

Case w h e n  ei ther  r ' -  r, or r '=~ r a n d  OrdT(Z- r') ~ ordTX j+qb'. If  r ' - - r  
then let b" be any positive integer such that o r d w ( z - - r ' ) ~  o r d T X  b'', and if 
r ' : #  r then let b " - - j  47 qb'. Then in both the cases b" is a positive integer 
such that ordr(z - -  r') ~ ordTX b" and r ~ r' E X b " R  '. Let  A(Z} - -  f ' (Z  -}- r') - -  
- -  Z m ~ A1Z ~-~ ~ . .  -]- A , ,  with A1, ..., A,~ in K'. Then A(Z) is the minimal 
monie polynomial  of z-~-r ~ over K' and hence A ( O ) - - ( - - l } " ~ H l ( z -  r't ... H , , ( z m r ' )  
where H~, . . . ,H , ,  are K ' -automorphisms of L; now H ~ ( T ) - - T  and hence 
OrdTH~(z--r'} --  OrdT(z - -  r'} for 1 ~ i ___~ m; consequent ly  OrdTA(0) -- ord r(z--r')"~; 
s ince-A(0)  --  f '(r') and ords, f ' (r ' )  : a' - -  ords, X ~" we get that ord~,A(0) : a' 
and o rdT(z - -~" ) - - (a ' /m)  ordTX; since o r d T ( z - - r ' ) ~ o r d T X  b'' w e  get that 
b" ~ a ' /m  ; s ince r - -  r '  E X b " R  ' we conclude that : 1) r - -  r' E XbR ' where  b is 
the smallest  integer such that b ~ a ' / m .  Since A ( Z ) i s  the minimal monic 
polynomial  of z - - r '  over K', ords ,A(0)- -a ' ,  and S' is totally ramified in L, 
by  [10: Lemma 2.5] we get tha t :  2) o r d s , A , ~ i a ' / m  for l ~ i ~ m ,  and if 
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a' ~ 0 ( m )  then o rds ,A i>  ia ' /m for l _ ~ i  < m .  By 1) and 2) we get that 
ords,(A(r - -  r') - -  A(0)) > a ' ;  since A(r - -  r') - -  f'(r) and ords,A(O) - -  a' we get 
that ords,f'(r} - -  a' ; since f'(r) E U we conclude that a' --~ 0(u). Let  a ---- eva'/q 
and c ~ evd. Then a and c are nonnegative integers such that (a, c)~I=-0(n) 
and c ~ n / p .  Let  r* be any given element in R such that o r d s r * ~ a / n .  Then 
ordsr* ~_~ (a/n) ordsX~ and hence ords,r* ~ (a/n) ords,Xq : a'/m. Consequent ly 
by 1) we get that r +  r * - r ' E X b R  ' where b is the smallest  integer such that 
b ~ d / m .  Therefore  by 2) we get that ords, tA(r -t- r * - -  r'l - -  A(0)) ~ a'. Since 
A(r  -Jr- r * - -  r') "-- f '(r + r*) and A(0) = f'(r') we get that f '(r -~ r*) - -  f'(r') E X~'+IR '. 
Since ords , f ' ( r ' )=a'  we deduce that ords , f ' ( r+r* ) - -a '  and ordh(R,)htf'(r+r*)/X~') - 
- -  ord~(R,ff '(r ') /X ~'} - -  d. Let  t' - -  f ' (r  + r*)/X a'. Then t'E R' and ordh(R,)h(t') - -  d. 
Now. ['(r --~ r*) E L'; also a' ~- 0(u) and hence X~'E L'. Therefore  t'E L'. Since 
K' is a finite normal  extension of K there exists a K-au tomorphism G~ of K' 
such that G~(y)--Gi(y)  for all y E L'. Since h ( R ' ) =  h(R) there exists t E R such 
that t ' - -  t E XR' .  Now G~(t) = t and G~(XR'} - -  XR' .  Therefore  G~(t '} - -  t' 
- - G i ( t ' - - t ) - - ( t ' - - t ) E X R ' .  This being so for l ~ i < _ v  we get that t * - - t ' ~ E X R  ' 
where t*--G~(t')...G~(t'). Therefore  ordh(R,)h(t*)--vc'. ~ o w  t*~-NormLqKt'ER'OK---R, 
h(R') -~ h(R), and (XR'} 0 R - - x  R. Therefore  ordR/~t*-- Ordh(R,)h(t*) --" vc ' - -  c/e. 
:Now g(r + r*) - -  L ( r  + r*) . . ,  h ( r  + r*), fi(r -b r*)  - -  G~(f'(r --~ r*)) == G~(X~')Gi(t') 
for 1 ~ i ~ v ,  G~(X a') ... ( I ' (X ~'} - -  ( - -  1)(~'/u) (~+~)xa'% and a'v ~ aq/e. There- 
fore g(r  + r*) - -  ( - -  1)(~'/")(~+~)t*x~/~ and hence ordsg(r + r*) --- a/e and 
ordR]~g(r + r * } / x ~ / ~ -  c/e. Since f ( r - ~  r*)  - -  g(r  + r*) ~ we conclude that 
ordsf(r + r*) - -  a and  ordR/~f(r + r * ) / x  ~ = 0. 

LEMMA 2.5 - Let  R be a quasi local  d o m a i n  w i th  quotient  field K. Le t  
0 :# x E R such that  R / x R  is a regu lar  local d o m a i n  a n d  S is a one d imens iona l  
regu lar  local d o m a i n  where  S ~ R~1¢ (note that for a n y  0 ~ y E R i f  b is the 
greatest  integer such that y / x )  E R then o r d s y - - b ) .  Le t  L be a f inite n o r m a l  
extension o f  K such that  S does not spl i t  in  L. Le t  v be a posi t ive  integer 
a n d  for  i - - 1 ,  ..., v let g~(Z) be a monic  p o l y n o m i a l  o f  degree d(i) > 1 in  Z 
wi th  coefficients i n  R such  that  gi(Z) is  irreducible in  K[Z] a n d  g~(z~)--0 for  
some z~ E L, let f~(Z) = g~(Z)~(~! where e(i) is a posi t ive  integer, a n d  let n(i) - -  d(i)e(i). 
Le t  f(Z)--f~(Z). . ,  f~(Z) a n d  n----n(1)-]-...-]-n(v). A s s u m e  that  for i - -1 ,  ..., v there 
exist  nonnegat ive  integers a(i) a n d  c{i) a n d  ri E R such that (a(i), c(i))=_1=~ O(n(i)) 
a n d  cff) ~ n(i) a n d  such that  for  a n y  r*E R w i t h  ordzr~* ~ a(i)/n(i) we  have  
that  ordsf(r~ + r*) - -  a(i) a n d  ordR/~f(r~ -~ r* ) / x  ~(~) = c(i). Also a s sume  that  
D(g~(Z), g~(Z)) is a n  R - m o n o m i a l  in  x whenever  l ~ i ~ v ,  l ~ v ,  a n d  i=~=]. 
T h e n  there exis ts  r E I~ such  that  upon  letting F(Z) = f (Z --~ r) - -  Z ~ Jr F~Z "~-~ 
+ ... + F~ w i th  F~, ..., F~ in  R we have that  either : (1) there exis ts  a n  integer 
u such that  0 ~ u ~ n, F~ is a n  R - m o n o m i a l  in  x, ordsF~ ~ [j/u) ordsF~, for  
1 ~___j~u,  a n d  ordsF~ > (j/u) ordsF,, for u ~ j ~ n ;  or: (2) there exist  nonne.  
gative integers a a n d  c such that  (a, c~-~l-:-O(n), c ~_ 0 ( l ) +  ... + c(v), ordzFn-----a, 
ord~/~F,,/x ~ - -  c, a n d  ord~.F~ ~ ]a/n for i ~_ j  ~ n. 
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P ~ o o ~ . -  Upon replacing 1, ..., v by a sui table permuta t ion  of 1, ..., v 
we may assume that a(1) /n(1)~a( i ) /n ( i )  for 1 ~ i ~ v .  Let  r - - r ~  and F ( Z ) - -  
- - [ ( Z + r ) : Z  È + F 1 Z  ~ - I - { - . . . + F ~  with F~, . . . ,F ,~  in R. For  l ~ i ~ V  let 
~Z g,( ) = gi(Z + r) , f~(Z) - -  g'~(Z) ~(~), y~ - -  zl - -  r, s~ - -  r, - -  r, and b(i) - -  ordsf~(0) 

Then F(Z) - -  f~(Z) ... f~(Z), and for 1 ~ i ~ v we have that g~(Z) is a monic poly- 
' Z  hernial of degree d(i) in Z with coefficients in R, g~( ) is i r reducible  in K[Z], 

y~ ~ L, g~(Yi) : O, st ~ B, and:  1) ordsl~(sl + s*) : a(i) and ord~l~f~(si + s *) /x  ~(~) : c(i) 
for all s * ~ R  with ordss* ~ a ( i ) / n ( i ) .  In par t icular  s l - ' 0  and hence:  2) 
ordsf((0) - -  a(1) --  b(1). For  1 < i ~  v we have that D([~(Z), f;(Z)) --  D(]~(Z), f~[Z)) -  
--(n(gi(Z) ,  gx(Z))) ~(~)~") and hence D(/~(Z), f~(Z)) is an R-monomia l  in x. Let  T 
be the integral  closure of S in L. Then T is a one dimensional  regular  local 
domain and for any K-au tomorphism G of L we have that G ( T ) - - T  and 
hence ordsG(y )=  ordsy for all y ~ L. Since L is a finite normal extension of 
K there exist K-au tomorph i sms  Gii of L such that upon letting y# : G~i(y~ ) 
we have that g~(Z) - -  (Z ~ y~) ... (Z - -  yia(~)) for 1 ~ i ~__ v. ]Now ordsy~i - -  ordsy~ 
for l ~ i ~ v  and t ~ j ~ d ( i ) ,  and 

d ( i )  ,~(1) 

['~(z~ = ]I ( z  - -  y ~ ) ~ )  = z"(~) + ~ f ' i z " ( ' ) - "  

where f i~ER for 1 ~ i ~ v  and 1 ~ _ j ~ _ n ( i ) .  Therefere :  3) OrdTy#--  ordTy~---- 
- -  (b(i)/n(i))ordrzc for 1 ~ i ~ v and 1 ~ j  ~ d(i), and:  4) ordsf[i ~jb( i ) /n ( i )  
for l ~ i _ _ ~ v  and l ~ j ~ n ( i ) .  

Let  i be any integer such that 1 ~ i ~ v and bii)/n(i) ~ a(1)/n(1). Then 
by 2) and 3) we get that b(1)--" a(1), i ~ 1, b(i ) /n( i )< b(1)/n(l}, and OrdTy~j--- 

' 0  --  (b(1)/n(1))OrdT~ for 1 ~ j  ~ d(1); since ordsf~( ) --  b(i) and 

~(~) 
t ~ n ( i )  ~et ~ n ( i ) - - k  [~(Ylj) = ylj + Z t~ky~i for 1 ~ j  ~ d(1), 

by 4) we get that  ordTf~(ylj)--OrdT/~(0)- OrdTX b~) and ordT(f~(yl~)--f~(O))> ord~x b(i) 
for 1 ~ j  ~ d(i). Therefore  f~(y~ji/~c b(~) E T, f~(O)/x b(~) E T, and f~(yl))/w b(i) ~ f~(O)/x b(~) 
rood Q for 1 ~ j  ~ d(1) where Q is the maximal  ideal in T, and hence 

Now 

d(~)  

II (fi(ylj)/x)(O)e(1) ~_ (fi(O)/~b<~))'(1) rood O. 

n f~(ylj)~< 1) - -  D(/~(Z), f i(Z)) - -  t x  b" 

where t is a unit  in R and b' is a nonnegative integer, and hence 
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Since t~b'--b(~)"~) and (f~(O)/~v~(~)) "(~) are in K and K ~ Q - - x S  we get that 

5) txv-~+"~ ~) - -  (fi(0)/~+)"(~) E ~S. 

Since f~(0) E R and mdsf~(0) --  b(i) we get that f~(O)/~c b(~) E R and. f~(O)/ac b(1) is a 
unit  in S; consequent ly  by 5) we get that tx b'-b(~)'<~) is a unit in S; since t 

i s  a unit  in R we must  the have b'--b( i )n(1)--O and hence by 5 ) w e  get 
that t--(f~(O)/~cb(*))"(~)E(xS)AR--xR; since t is a unit  in R we conclude that 
f~(O)/xb(O is a unit  in R. Thus we have shown that :  6) if i is any integer such 
that 1 ~ i  __~v and b(i)/n(i)~ a(1)/n(1} then f~(O)/x)¢O is a uni t  in R. 

Next, let i be any i n t e g e r  such that l ~ _ i ~ v  and b(i)/n(i)~ a(1)/n(1). 
Since a(i)/n(1)~a(i)/n(i)  we get that b( i )~a( i )  and hence by 4) we get 

r r , that o dsf i i~ja( i ) /n( i )  for 1 ~ j ~ n ( i ) ;  upon taking s, - - 0  in 1) we get that 
ords/~(si) ~ a(i); now 

n(i) 

ti(s~) = s~+ + Y, As"+ -~  

and hence we must  have o r d s s ~ a ( i ) / n ( i ) ;  therefore upon taking s * - - -  si 
in 1) we get that ordzf~(0) --  a(i) and ordR/J'(0)/x~'(~ ") - -  c(i); since b(i)/n(i) 
~a(1)/n(1) ~a(i) /n(i)  and b(i)--ordzf~(O):a(i) we also get that a(i)/n(i):a(D/n(1}. 
Thus  we have shown tha t :  7) if i is any integer  such that l ~ i ~ v  and 
b(i)/n(i)~a(1)/n(1) then ordsfi(O)--a(i}, ordR/~t~(O)/x ~0 = c(i), b(i)--a(i) ,  and 
a(i)/n(i)-- a(1)/n(1). 

We shall show that if b(i)/n(i)< a(1)/n(1) for some i with l ~ i ~ v  then 
condition (1) holds, and if b(i)/n(i) ~ a(1)/n(1) for all i with 1 ~ i  ~ v then 
condition (2) holds, and this will complete  the proof. 

F i rs t  suppose that b(i) /n( i)~ a(1)/n{1) for some i with l ~ i ~ v .  Let  
a ' -  min(b(1)/n(1), ..., b(v)/n(v)), let V be a set of all integers i such that 
l ~ i ~ v  and b(i)/n(i)--a',  and let V be the set of all integers i such that 
l ~ i ~ v  and i ~ V .  Then V @ O  and by 2) we also have that 1 E V  and 
hence V':~= O. Let  

u ~  Z n(i) and a - -  Z b(i). 
i~  v i~  v 

Then 0 ~ u ~ n  and a---ua' .  Let  

A(Z) = n f'(Z) = Z~ + ~ A / . - J ,  

B(Z) = n f~(Z) = Z "-'~ + ~ B~Z"-"-J 
iE W ~=i  
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with A~, ..., Au~ B~, ..., Bn-u in R. Now 

A ~ , -  A ( 0 ) :  II f~(0) and u a ' - -  E b(i) 
i~  V i~  V 

and by 6) we know that f~(O)/xb(i) is a unit  in R for all i ~ V ,  and hence :  
8) o r d s A u - - u a '  and A J x  ua" is a unit  in R. Since b(i ) /n( i ) - -a '  for i ~ V  
and b(i) /nf f )> a' for i ~ V', by 3} we get that OrdTy~i--a '  OrdTX for i ~ V and 
l ~ j ~ _ _ d ( i ) ,  and ord~y~/~  a' ordTX for i ~ V '  and l ~ j ~ _ d ( i ) ;  since 

d(i) d(i) 
A ( Z ) :  II g (Z~y~)~(i) and B ( Z ) =  tI H (Z - -  y~i)~(~) 

i~  V ]=1  i~  V' ~=J_ 

we deduce that : 9) ordsA~ ~ j a '  for 1 1-,. - -  ---3 - -  u, and ordsBj > j a '  for 1 ~ _ j ~ n -  u. 
Now F ( Z ) -  A(Z)B(Z) and hence upon letting Ao = 1 we get that 

10) F~ = 

mi]l(~, ~--u) 
Aj -t- E B~AI_k for l ~ j ~ u  

k~---1 

rain(u, n--I)  
Z B~-~+kA~-1~ for u < j  ~<= n. 

k=O 

By 8), 9), and 10) we deduce that o r d s F , - - u a ' ,  F J x  ~'a" is a unit  in R, 
ordsFj ~ (j/u) ordsF,  for 1 ~ j  ~ u, and ordsFt ~ (j/u) ordsF~, for u < j  ~ n. 

F ina l ly~suppose  that b(i)/n(i) ~_a(1}/n(1) for 1 ~ i ~ _  v. Then by 7) we 
d ' get that  or slY(O) --  a(i), OrdR/~f~(O)/x ~(i) - -  c(i), and b(il/n(i} = a(i)/n{i) - -  a(1)/n(1) 

for l ~ i _ _ ~ v .  Let  a = a ( 1 ) ~ - . . . ~ - a ( v )  and c - - c ( 1 ) ~ . . . - ~ c ( v ) .  Since F , - -  
= F(0) - -  f~(0) ... g(0) we get that ordsF~ --  a and ordR/~F,/x ~ - -  c. Clearly 
b( i ) /n ( i ) - -a( i i /n ( i ) - -a /n  for l ~ i ~ v  and hence by 3) we get that ord~yii--  
--(a/n)  ordrx  for 1 ~ i ~ v and 1 ~ j  ~_ d(i); since 

v d(i) 
F(z) = II II ( z -  y~j)~(~) 

i=i i=i 

we deduce that o r d s F ~ j a / n  for l ~ j ~ n .  Since c ( i )~n ( i )  for l ~ _ ~ i ~ v  
we get that c ~ n .  If  c ~ 0  then d e a r l y  (a, c)zt-=0(n); if c = 0  then c ( 1 } = 0  
and hence a(1)zl=__O(n(1)) , and hence a=-I=sO(n ) because  a / n - - a ( 1 ) / n ( 1 ) .  Thus 
in both the cases (a, c)z I- 0(n). 

LEMMA 2.6 - Let R be a two dimensional regular local domain with 
quotient field K and max ima l  ideal M such that R / M  is algebraically closed. 
Let (x, y) be a basis o f  M and  let J be a coefficient set for R. Let  w be a real 
valuation o f  K such that w dominates R and  w is residually algebraic over B. 
Let  (Rk, xk, y~:) be the canonical k th quadratic  transform of (R, x, y, J) along w. 
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Let  F(Z) be a monic  p o l y n o m i a l  o f  degree n ~ 0 in  Z faith coefficients i n  R. 
A s s u m e  that  F(Z) is o f  p renonsp l i t t i ng - t ype  relative to ord:e  a n d  there exis t  
nonnegat ive  integers a a n d  c such that  ord:RFt0 ) - - -a ,  ordR]:F(O)/~ca= c, 
(a, c)=_I= O(n), a n d  e ~ n / 2 .  The~  there exis t  nonnegat ive  integers k. d, e a n d  

d e  d e  n a n  R~- t rans la te  F'(Z) o f  F(Z) such that  upon  let t ing f ( Z } - - F  (x~y~Z) /(x~y~} 
we have that  k ~ n / 2 ,  M C radR~y+kR~, f(Z} ~ R~[Z], a n d  0 ~ OrdRJ(Z) ( n. 

PROOF. - Let  d' be the greatest  integer such that n d ' ~ a  and let 
a ' - - a -  +~d'. Since (a, c)-!~ 0{n) we get that (a', c)-~t-= 0(n) and n > 1. 

We claim the following: (1) Let  t be any nonnegat ive integer such that 
w{y+,) ~ w(x++) for 0 ~ u < t; then either:  (It) there exist nonnegative integers 
k and e such that upon let t ing f~Z}--F{xd'y~Z) " x  d" ~'" / ( ~ y k )  we have that O ~ k ~ t ,  
k _~ n / 2 ,  M C radRky~, f(Z) E R~[Z], and 0 < O r d R J l Z l ~ n ;  or: (2t) t ~ ( n / 2 ) - - l ,  
a ' ~  0, and there exist  nonnegat ive integers e' and c' such that upon lett ing 

d t e+ d r e r n  • 
g(Z) -"  F(xt Yt Z) / (x t  Yt ) we have that c' __~ e - -  t, M C radR~y~, g(g) E Rt[Z], 

a + 

ord~tRtg(O ) - -  a', ordRj~g(O)/xt  - -  c', ordR~g(Z) ~ n, and g(Z) is of prenonsplit-  

t ing- type  relative to ord~tR t. We  shall prove this by induct ion on t. Firs t  

suppose that t - -  0 and let flZ) = F{xa'Z}/x'~a'; then f(Z) E R[Z], ord.~Rf(0) : a', 
OrdR/~f(O)/x a ' - -  c, and f(Z) is of preuonspl i t t ing- type  relat ive to ordx~; since 
(a', c)zI=_O(n ) and ordRf(0}/x~'--c < n we get that ordRf(Z~ > 0, and if o r d n f ( g ) ~ n  
then a ' >  0; ~herefore if ordRf(Z)~ n then (lo) holds, and if ordRf(Z t ~ n  then (20) 
holds. Now suppose that t ~ 0 and assume that (1) is true for all values of t smaller  
than the given one. If  {lt-~) holds then clearly (lt) holds. So now suppose 
that (lt_~) does not hold. Then by the induction hypothesis  (2t_~) holds. Let  
e --  1 -t- d' -t'- e' and f(Z) -" F{xtd'ytZ)/e . d" e,+~ Now ixt Yt~ • f(Z) : g(ytZ) /y t ,  Yt-~ -" Yt, 
xt-1 "-" xtyt, ordyts t =- ordRt_ ~, and ord~tR --" o r d ~ _ ~ t _  ~. Therefore  M C radR~y~, 
f(Z} E Rt[Z], [(Z) is of prenonspl i t t ing- type relat ive to ord~tRt, and OrdRtf(O )_~ 
~__ ord~tRtf(O ) : - a ' >  O. Hence  if ordRtf(Z } < n then (lt) holds. So now assume 

that ordRtf(Z } ~ n. Since ord~t_ist_ig(O ) - -  a' and ordR~_j~s_~g(O)/x~'_ ~ = c' we 
¢~• ¢t 

get that g ( O ) / x t - ~ - - s x t - ~ s ' y t - ~  where s ~ R t _ ~  and s' is a unit  in 

Rt-~. Since o rdRt_~g(0)~n  we get that c' ~ ordRt_tg(O)/x~'__ ~ ~ n - -  a' ; 
consequent ly  a'-+- c ' ~ n  and ordR~_s ~ n - -  1 - -  a', and hence s" ~ R t 

where s" ,~-~-a" 0 x a" ~-"" s"x s' c,, = s /y t  . Now f(O)lx~" -" g( )/( t-~y~ ) = t @ Yt where 
c " :  a' -{-- e '--  n, and hence ordR/~f(O)/x~" ~ c". Since a ' ~  n and c ' ~  e - -  ( t - -  1) 

we get that d'__~ c - -  t. Now a' ={= c" ~ OrdRf!0} ~ n and hence c" ~ [. Since 
l ~ c " ~ c - - t  and c_~_n/2 we get that  t ~ ( n / 2 ) - - l .  Therefore  (2t) holds. 
This completes  the induction. 

W e  shall now prove the assert ion of the lemma. Since +v is real, there 
exists a nonnegat ive integer t such that w(y~+)~ +v(x~+) for 0~-~u ~; t and 
w(yt) ~ w(xt). I f  (lt) holds then we have nothing to show. So now assume that 
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(lt) does not hold. Then by (1) we know that (2t) holds. Let  k----t-{-1. Then 
k ~ n / 2 ,  x t = x ~ ,  and y ~ : - - ( y t / x t ) - - s *  with s * ~ J .  Let  y ' - ~ y t - - s * x t .  Then 
y' "---x~y~: and (xt, y')Rt-----M' where 21/' is the maximal  ideal in Rt. Let  e----e' 

d and V----1 if s*---=0, and e - - 0  and V --  (y~ -{- s*) ~" if s* ~ 0. Then M C ra R~Yk, 

and V is a unit  in R~. Let  i f ( Z ) - - g ( ~ Z } / x ~ .  Since O r d R t g ( Z ) ~ n  we get 
that g'(Z) ~ R~[Z]. Now g(Z) - -  Z'* ~- g~Z ~-~ -~ ... ~ g,~ with g~, ..., g ,  in Rt. 
Since ord~tg(Z ) ~ n we get that 

g~ - -  Z g~c~-iy '.~ with g~i ~ Rt for 1 ~ i ~ n, 0 ~ j  ~ i. 
~ o  

Since Rt/M' is algebraical ly closed, there exists r ~ Rt such that r ' ~ ] / '  where 

r ~ - -  r" -~ ~ glor n-i.  

d er~" Let  d - -  1 + d' -{- e' and F'(Z) - -  F(Z + vxkyk  ~ Then F'(Z) is an R~-translate 

"-" F (wkykZ}/ Then flg) -" V'g'((Z / V} 4- r) ; consequent ly  of F(Z}. Let  f(Z} ' ~ ~ ~ ~ ~'" lxkyk~ • 

f(Z} ~ R~[Z], and f(0) = Vng'(r)--V~g(rx~)/x~, and hence ordR/(0) --" ord~g(rx~)/x~. 
~ o w  

g(rx~) g(rxt) - -  r xt -~ Z E -" -" " 

where 
n 

r" - -  E E g~jr"-iy~. 
i~l ]=I 

Since r 'EM'  we get that ordRkr '>  0; also clearly ordRkr ' '>  0; therefore 

ordRkg(rxt:) /x~'>O and hence O r d R / ( 0 ) > 0 .  Since ord~tR~g(O)--a'  and 

0 a '  OrdRt/~g( )/Xt ~ d, we get that 

CJ 
g~O)/x~t - -  hxt -~ h'y '~" where h ERt ,  h' E Rt,  h' ~ M'. 

Let  i be any integer  such that l ~ i ~ n ;  since g(Z) is of prenonspl i t t ing- type  

relat ive to ordxtR ~ we get that o r d ~ t ~ t g ~ i a ' / n  and hence ord~ tR tg~r ' -4x~ -~  
(n - -  i) + (ia'/n); since a ' ~  n and i ~ n we get that (n - -  i} ( t - -  (a'/n)) ~ 0 

and hence n - - i  ~ a ' - -  ( ia ' /n};  consequent ly  (n - -  i) -~ (ia'/n) ~ a' and hence 
• n - - i  n - - ~  Obr r 1 n - - i  n - - i  O~t ord~tRtg,r xt ~ Thus o a.t. tg~r t > for l ~ i ~ n ;  also o r d ~ t . t r ' x 7 ~  

n ~ a ' ;  now 

girxt) - -  g(O) - -  r'~x '~t ~ E g~r~-~xt'~-~ 
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and hence h ~ R~ where h"-~ (g(rx~)--g(O)}/x~ ; consequent ly  

g(rx~) / ~ '  --  (h -{- h")x~ ~ h'y '~', h -t- h" ~ B~, h' ~ R~, h' ~ M'. 

Cb ~ Therefore  ord~tRtg(rxt) - -  a' ~nd ordRt/~tg(rxt)/xt --- d. Consequent ly g(rxt) =4= 0 

and upon letting m - -  ordntg(rwt }/x ' f  we get that m ~ c ' ~ . c - -  t ~ ( n / 2 }  ~ t ~ n / 2 .  

Since ordRtg(rxt)/~ct - - -m we can write 

g( xt)/~t - -  Z Gixt y ~ + Z ~j~t y" 
t=o i=o 

where G i ERt ,  G i C J, and G t =~ 0 for some j .  Let  b be the smallest  integer such 
that Gb :4:0 and let 

m m - - ~ l  

G - -  Z Gjy i-b and G ' - -  Z G~yik. 
i=b i=o 

_ _  _ _  r a "  m r b Then O ~ b ~ m ,  G'ER~, G is a unit  in Rx, and g( xk)/x,~ --  xk(Gxk -~Gyk).  
a t  • 

Consequently ord~kRkg(rxk)--m-pa' and OrdR~g(rxk)/Xk'ff + ~ OrdRk/%g(rx D/X'ff + ~ -  

"-- b ~ m and hence OrdRkg(rxD/x~ ~ 2m "k" a ' - -  n. Since a ' ~  n and m ~ n / 2  

we conclude that ordR~g(rxk),/x~ ~ n  and hence o r d R f f ( 0 ) ~ n .  Therefore  
0 ~ ordRj(Z) < n. 

LEMM~ 2 . 7 -  Let  R be a two dimensional  regular local domain  with  
max ima l  ideal M and  let (x, y) be a basis o f  M. Let  F(Z)--Zn-I-F~Z"-~--p...-pF~ 
with n ~ 0 and  F~, ..., F,, in  R. Assume that there exists an integer u with 
0 ~ u ~ n such that F,, is an R-monomial  in x, ord~RFi ~ ( j / u ) o r d ~ F , ,  for 
1 ~ j  ~ u~ and  ord~RFj ~ ( j /u)  ord~RF,, for u ~ ]  ~__ n. Let d be the greatest 
integer such that du ~ ord~RF~, and  let f(Z) --  f(xaZ)/x, '~a. Then f(Z) E R[Z] 
and  0 ~ ordM(Z) ~ n. 

P~too~'. - Obvious. 

L E ~  2.8 - Let w be a valuat ion o f  a field K such that R~o/M~ is alge- 
braically closed and  let p be the characteristic o f  R~/M~.  Let  L be a finite 
normal e~tension o f  K such that w does not split  in  L. I f  p - - O  then let p ' - - l ,  
and  i f  p :4:0 then let p' be the highest power of p which divides [ L ' K ] .  Let  
q ~ [L 'K] /p ' .  Then there exists a unique subfield K' of  L such that K C K '  
and  [K': K J - - q .  Furthermore K' is a separable normal  extension o f  K and  
the group of all K-automorphisms  of  K' is abelian. I f  w is rat ional  then the 
group of  all  K-automorphisms  of  K' is cyclic. 

PRoo~. - Let  L' be the maximal  separable  extension of K in L and let 
G be the group of all K-au tomorphisms  of L'. Since R,~/M~o is a lgebraical ly 
closed ~nd w does not split  in L', by a result  of KRULI, (see [11] or [21: § 12 

Anna~t  di  M a t e m a t i c a  6 
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of Chapter VI]) there exists a normal  subgroup G' of G such that the order 
of G' is p' and G/G' is isomorphic to a factor group of the value group of 
w' where  w' is the valuation of L' such that R,,. is the integral  closure of 
R,~ in L' (in [21], G' is called the large ramif icat ion group of w' over w). 
Our assert ion follows by taking K' to be the f ixed field of G' and noting t h e  
following: l) if p 4=0 and H' is a normal  subgroup of a finite group H such 
that the order of H' is the highest  power p~ of p which divides the order of 
H then H' is the only subgroup of H of order p~ (for instance see [22: 
Theorem 3 on page 106]); 2) any finite factor group of any subgroup of the 
additive group of all rational numbers  is cyclic (for instance see [3: Propo. 
sition 1] ). 

TttEORE]~ 2 . 9 -  Let R be a two dimensional regular local domain with 
maximal  ideal M and quotient field K such that RIM is algebraically closed. 
Let p be the characteristic of  R/M.  Assume that i f  p ~ 0 -- characteristic of  R 
then K contains a primit ive pth root of 1 and a (19 - -  1) th root of 19. Let (x, y) 
be a basis of  M and let J be a coefficient set for R. Let w be a rational non. 
discrete valuation of K dominating R (by [2: Theorem 1] we know that w is 
then residually algebraic over R). Let (Rk, xk,  YD be the canonical k tk quadratic 
transform of  (R, x, y, J} along w, and let Sk be the quotient ring of  R~ with 
respect to xkRk. Let I be the set of  all positive integers k for which there 
exists an integer j with 0 ~ j  ~ k such that w(xj)--w(y~} and w(x~) ~ w(y d 
whenever j ~ i ~ k {note that I is then an infinite set). For any t C I let l(t) 
be the set of all k E I such that k ~ t (note that for any t E I and any integer 
k ~__t we have that xt is an Rk-monomial in xk i f  and only i f  k E I). Let L 
be a finite normal extension of  K such that w does not split in L. I f  p - - 0  
then let 19'-- l, and i f  p ~ 0 then let 19' be the highest power of p which divides 
[L :K] .  Let q -  [L : K]/19'. Assume that K contains a primit ive qth root of  1. 
Then we have the following. 

(1) There exists t EI  such that Sk is totally ramified in L for all k EI(t). 

(2} Let K' be as in Lemma 2.8, and let R' k and S~: be the integral clo. 
sures of  Rk and Sk in K' respectively. Then the integral closure of  R~ in K' 
is the valuation ring R~. of  a rational nondiscrete valuation w' of  K', and 
for all k ~ 0 we have that R'~ is a two dimensional local domain, J is a eoeffi. 

! " ° n  f cient set for R' R'k/M~ is algebraically closed where M~ ~s the maximal  ideal ~ Rk, k ~  

w' dominates R'k, and w' is residually algebraic over R'~. Furthermore there 
exists t e l  and elements Xk,  xk', y'k in R'k for all kEI(t)  such that x ~ - - X t  
and y~ - -Y t  and such that for all kEI( t )  we have the following: p EXkRk, 
K'--K(Xk),  Xq~/xk is a uni t  in Rk, X'k/Xk is a unit  in R'k, R'k is regular, 

~ ~ , , X ~  l:g ~ (x~ , yk)R~' ' = Mk --  (X~ , y~)R~ , S~ is the quotient ring of Rk with respect to .k k, 
S~ and S'~ are totally ramified in L, (R'k, x'~, y'~) is a canonical quadratic 
transform of  R . . . . .  a x ' .  ( t, xt, yt, J) along w', and Xt is an R~-monom~ l in 
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(3) Let g(Z) be a monic polynomial  of  degree d ~  1 in  Z wi th  coefficients in  R 
such that g(Z) is irreducible in  K[Z] and  g(z)--O for some zEL. Let f(Z)--g(Z) ~ where e 
is a positive integer and  let n :  de. Then d ~ 0 ( p )  i f  and  only i f  p ~ O  and  z~K' where 
K' is as in  L e m m a  2.8. Assume that either R is a spot over a pseudogeometric 
domain,  or d =_!=_ 0(p), or the following condition holds: 0 ~ p --  characteristic o f  
R, d ~- O(p), and  g(Z) ~ K[Z "~] where m is the highest power of  p which divides d. 
Then there exists t'E I such that for each k E I(t') there e~ists r~:E Rk and  
nonnegative integers a(k) and cik) such that (ct(k), c(k))-I=_O(n), c(k)--O i f  d=_lzO{p) , 
c(k) ~ n / p  i f  d ~- O(p), and  ord sJ(rk -~ r~ ) : a(k) and  ordRk/~l,f(r~ + r~) ] x~ (k)-- c(k) 

$ 
for all r~ E Rk wi th  ords~r~ ~_~ a(k)/m 

(4) Let  f(Z) be a monic polynomial  o f  degree n ~ 0 in Z wi th  coef[ieients 
in R such that f ( Z ) -  (Z ~ z~)... (Z ~ z~) for some z~, ..., z,~ in L. Assume that 
either R is a spot over a pseudogeometric domain, or p -  O, or the following 
condition holds: O ~ p - :  characteristic of  R and  i f  g(Z) is any  nonconstant 
monic irreducible factor of  f(Z) in  K[Z] s u c h  that the degree d of  g(Z) is divi- 
sible by p then g(Z) ~ K[Z m] where m is the highest power of  p which divides 
d (note this condition is satisfied i f  0 ~ p -  characteristic of  R and f ( Z ) i s  
separable over K). Then either: 1) Z ~ is an R- translate  of  f(Z); or: 2) there 
exists t' E I, an Rt,-translate F(Z) ~- Z ~ -~ F~Z ~-~ ~- ... Jr F ,  of  f(Z) wi th  F~, ..., F ,  
in  Rt,, and  an integer u with 0 ~ u ~ n such that for all  kE I(t') we have 
that F~ is an Rk-monomial  in xk,  ord~k~F j_~  ( j /u)  ord~kRkF~ for 1 ~ j  ~ u, 
and  ord~kRT~ ~ ( j / u  ) ord~kRkF, for u ~ j  ~ n ;  or: 3) the re  exists t 'E I  such 
that for each k E I(t') there exists an  R~-translate F(k)(Z) of  f(Z) and  nonnega. 
tire integers a(k) and  c(k) such that F(k)(Z) is of  ~prenonsplitting-type relative 
to ord~kRl~ , ord~k,kF(k)(0 ) ~ a(k), ordRkt~kF!~)(O)/x~ (k) --- c(k), (a(k), c(k))-]--O(n), 

c(k) - -  0 i f  the degree o f  every nonconstant  monie irreducible factor o f  f(Z) in  
K[Z] is nondivisible by p, and  c ( k ) ~  n / p  i f  the degree of  some nonconstant 
monic irreducible factor o f  f(Z) in  K[Z] is divisible by p (note that in  both the 
cases c(k) ~__ n /2 ) .  l~urthermore, i f  Z ~ is not an  R-translate  o f  f(Z) then: 4) 
there exist nonnegative integers i, d, e and  an R~-translate F(Z) o f  f(Z) such 
that upon letting f'(Z)--F(x~dy~Z)/~ (x~y~) ~ ~ we have that M C rad,iy~R~ , ~  f'iZ) E R~[Z], 
and  0 < ordRf (Z)  ~ n. 

PRooF O:F (1) A ~ D  (2)  - Let  K' be as in L e m m a  2.8 and let R~ and S~ 
be the in tegral  c losures  of R~ and S~ in K' respectively.  By L e m m a  2.8, K' 
is a separable  normal  extens ion  of K, [ K ' : K ] - - q ,  and  the group of all 
K-au tomorph i sms  of K' is cyclic. Since RIM is algebraical ly closed und w 
does not split  in L, we get that  the integral  closure of R,, in K' is the 
va luat ion  r ing R~, of a rat ional  nondisere te  va lua t ion  w' o~ K' and h(R,~,)-- 
--h(R~) where h is the canonical  ep imorph i sm of R~, onto R~,/M,~,, and for 
all k ~ 0  we have that  R~ is a two d imensional  local domain,  J is a coeffi- 
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i R !  ! ~/g! 1 cient set for Rk, k/~u~ is algebraical ly closed where M~ is the maximal  
ideal in R~, w' dominates  R~, and w' is residual ly algebraic over R' k. Since 
K contains a primitive qth root Of 1, we can find O ~ X E K '  such that K'--K(X) 
and XqER. By [10: Lemmas  3.7 and 3.12] there exists u E I  such that for 

all k EI(u) we have that pEx~Rk and ~ / x k  is a unit  in R~ for some 
nonnegat ive integer  d(k); upon lett ing Yk "-Xq/e(k)/X~(k)/e(~)where e(k)is the 

~eTe( k ) greatest  common divisor of q and d(k) we get that Y~:E L and . ~  is a unit  
in R,~; now e(k)~t:~O(p ) and hence by [8: Proposi t ion 22] we deduce that 
YkEK; since [K':K]--q,  K '=K(X) ,  and XqEK, we must have e ( k ) - - l ;  
therefore there exist integers re(k) and m'(k) such that m(k)d(k)~ m' (k)q-  1; 

~(~)~'(~) K' K(Xk) and X~/xk is a unit  in upon lett ing X ~ - - ~ .  ~k we get that - -  
' 'R' M' R~ and hence by [8: Theorem 6] we get that Rk is regular  and (X~, Yk) ~-- k; 

since X~/xk is a unit  in R~ we deduce that S~ is totally ramified in K' and 
S~ is the quotient  ring of R~ with respect  to XkR~. Let  (R~', x~', y~')be the 
canonical  i ~h quadrat ic  t ransform of (R'~, X~, y~, J) along w'. By [2: Theorem 3], 
for each k E Iiu ) there exists a nonnegative integer i(k) such that R"~(k) = R~' 
for all kEI(u), and i(k)~i(k')  for all k and k' in I(u) with k ~ k ' .  By [10: 
Theorem 4.23] there exists  a nonnegative integer i* such that S~' is totally 
ramified in L for all i ~ i *  where S~' is the quot ient  r ing of R7 with respect  
to ~v'~'R~'. W e  can take t EI(u) such that i ( t )~i*.  Then S~(~) is totally ramified 

in L for all kEI(t). :Now X~/x~ is a unit  in R~, Xt/x~ a unit  in Rt, and x~. 

is an /~t-monomial in xt; consequent ly  X~ is an R~-monomial in Xt and hence 
X~,/X~ is a uni t  in R~ for some pos i t ive  integer  c; since (Rt, x~(~), y~(~)) is a canonical  
quadrat ic  t ransform of (R'u~ Xu, Yu, J), there exists a positive integer a and a non- 

negative integer b such that X,/(x~(t)y~(v) is a unit  in R~; therefore Xt/x~(t) must  be a 
uni t  in Rt: For each kEI(t) there exists a unique basis (w~, y~) of M'~ such that 
(R~, x~, y~) is a canonical  quadrat ic  t ransform of (R~, Xt, yt, J}; note that 

then x~--Xt  and y~ = Yr. Let  k be any element in I(t); now Xq~/xt is a unit  
in Rt, X~/x~ is a unit  in R~, and xt is an R~:-monomial in x~; consequent ly  

X~ is an R~-monomial  in X~ and hence ~_~/~ is a unit  in R~ for some 
posit ive integer  c(k); since (R~, x~, y~) is a canonical  quadrat ic  t ransform 
of (R~, Xt, y~, J) ,  there exists a positive integer a(k) and a nonnegative 

integer  b(k) such that ~ t ~  y~ ~ is a unit  in R~, it follows that b(k)--O, 
X~- is an R~-monomial  in x~, and x~/X~ is a unit  in R~; now (R~, x~(~:), y~)) 
is a canonical  quadrat ic  t ransform of (R~, x~(~), y~('~), J) and hence there exists  

a posit ive integer  a'(k) and a nonnegat ive integer  b'(k) such that ~(~)~ ~ )  y~(~) 
I ~  ~ k ~  i(k) i s  a is a uni t  in R~; since X~/ ~(~) is a unit  in R~ we conclude that w' ~x" 

uni t  in R~; since x'~/w" .~(~) and x~/X~ are units  in R~ we get that S~'('~)"-S~-- 

the quotient  r ing of R~ with respect  to x'~R'k. Since S~ and S~)  are totally 
ramified in K' and L respectively,  we conclude that Sk and S~ are totally 

ramified in L. 
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PROOF OF (3) - Let  K', R'k, S'k, w', t, X~,  x'k, y'~ be as in (2). By [10: 
Lemma 3.7] there exists t"E I(t) such that DK(g(Z)) is an Rk-monomial  in xk 
for all k E I(l"}. Let m -  [L'K'(z)] and let f'{Z) be the minimal  monte poly- 
nomial  of z over K'. Fi rs t  suppose that r e = l ;  then zCK'  and hence d-I_--0(p}; 
upon taking t'-=t", by Lemma 2.4{1) we get that for each k C I ( t ' ) t h e r e  exists 
r~ E Rk and a positive integer a(k) with a(k) zI=_ O(n) such that for all r~ E R~ 

with ordskr~' > a(k) /n  we have that f(rk-4-r~')/x~ (k) is a unit  in Rk and hence 

=,~, ~(k) c(k) where c(k) 0. So now ordsJ(rk -k r~) ----- a(k) and OrdR~/~f(rk -b ,~ ~/~k --  
assume that m > 1 .  Then p =4= O, z ~  K', f'(Z) is a monte polynomial  of degree 
m in Z with coefficients in R'o, f'(Z} divides g{Z) in K'[Z], and by the first 
par t  of Lemma 2.4(2) we get that m is the highest  power  of p which divides 
d, and if g(Z)~. K[Z "~] then f ' ( Z ) ~  Z '~-b  f'(O). Hence  by assumption,  e i ther:  R 
is a spot over a pseudogeometr ic  domain, or:  R is of character is t ic  p and 
f'(Z} =4= Z "~ -b f'(O). Therefore  upon taking K', w', fl(Z), R~, xl, y~, ( Xt } respecti- 
vely for K, w, f(Z}, R, x, y, X in [10: Theorem 5.5] we can find t'EI(t") such 
that for each k E I(t') there exists r~ E R~ and nonnegative a'(k), b'(k), c'(k) such 
that ords,J'(r'k) = a'(k), ord~,kR,f'(r~ ) > b'(k), ordR,kl~,J'(r'D/ tX'k~'(k)y'k b'(~)) --  C'(k), 
(a'(k), b'(k) "4" c'(k))=_]--O(m), c'(k) ~ m / p ,  and XtE radR,ky~b'(k); now Xt is an 

R~-monomial  in x~: and hence we must have b'(k)= 0; therefore by Lemma 
2.4(2) there exists r~ E Rt: and nonnegative integers a(k) and c ( k ) such  that 

(a(k), c(k)) =_i = _ O(n) and c(k) ~ n / p ,  and ordsJ(rk "-b r~) = a{k) and OrdRk[xkf(rk --~ 
-k r*)/oc~ (k) --  c(k) for all r~ C Rz with ords r~' ~> a(k)/n.  

PROOF o1~ (4) - By Lemmas 2.6 and 2.7 it follows that if ei ther  2) or 3) 
holds then 4) holds. Therefore  it suffices to show that ei ther 1) or 2) or 3) 
holds. Let  g~(Z), ..., g~(Z) be the dist inct  nonconstant  monte irreducible factors 
of f(Z) in K[Z]. Then g~(Z), ..., g+(Z) are in R[Z] and there exist positive 
integers e(1), ..., ely) such that f(g) --  f~(g} ... £(Zt where fi(Z) := g~(g) +(1) for 
i ~__i~__v. Let  d(i) be the degree of gi(Zj in Z and let n(i)---d(i)e(i)'for 1 . ~ i ~ v .  
Then n - -n (1 ) -} - . . . - } -n (v ) .  W e  can relabel  the elements  z~, ..., zn so that 
g~(z d - - O  for l ~ i ~ v .  For  a moment  suppose that d ( i ) - - 1  for some i ;  let 
F(Z) --- f lZ  -t" z~); then F(ZJ is an R- t rans la te  of f(ZJ and F(Z) --  Z" ~ F~Z '~-~ -q- 
--I- ... -[- F ,  where F~, ..., Fn are elements in R such that F , , : 0 ;  let V be 
the set of all integers j with l : - ~ j ~ n  such that F ~ : ~ 0 ;  if V is empty 

then F ( Z ) - - Z  '~ and we h~ve nothing to show; so now suppose that V is 

nonempty ;  by [10: Lemma 3.7] there exists t ' ~ I  such that F~ is an 

Rt.-monomial in xt, for all j ~ V ;  let u be the greatest  integer in V such that 

( l /u)  ordst,F ~ = min(1/ j j  ordst,F~; then 0 < u <  n and for all k~I( t ' )  we have 

that F~ is an Rg-monomial  in x~, o r d s F ¢ > { j / u )  ordsy~  for 1 ~ j ~ _ _ u ,  and 

o r d s y l  > ( j / u )  ordsF~, for u < j ~ n .  So henceforth we may assume that 
d(i} > 1 for 1 _~ i ~ v. Now 0 # D(gi(Z), g3(Z)) ~ R whenever  1 ~.~ i <~ v, 1 ~ j  ~ v, 
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and i ~ j ,  and hence by [10: Lemma 3.7] there exists t "EI  such that Dtgt(Z), 
gj(Z)) is an Rk-monomial  in xk whenever  k E I(t"), 1 ~ i ~ v, I ~ j  ~ v, and 
i :4:j. By (1) there exists tEI(t") such that Sk is totally ramified in L for all 
k EI(t). For 1 ~ i ~ v ,  by (3) there exists tie I such that for each k EI(t~) 
there exists rik E Rk and nonnegat ive integers a(i, k) and e(i, k) such that:  
{a(i, k), c(i, k)) -l:- O(n(i)), c(i, k) - -  0 if d(i) -I = _ O(.p), c(i, k) ~ n(i)/p if d(i) ~ O(p), 
and ordsj~(rik + r£) ~ a(i, k) and ordRk/%fi(rik -{- ,~k~/~k --  c(i, k) for all 

ri~E Rk with o r d s k r ~ a ( i  , k)/n(i).  First  suppose that there exists T EI,  an 
RT-translate F(Z) --  Z n + F~Z n-~ + ... + F~ of f(Z) with F~, ..., F~ in RT, and 
an integer  u with 0 ~  u ~ n  such that Fu is an RT-monomial  in xr ,  
o r d s ~ F t ~ ( j / u  ) ordsrF~ for l ~ j ~ u ,  and o r d s ~ F t ~ ( j / u  ) ords~F~, for 

u ~ j ~ n ;  then for all kEI(T)  we have that F~ is an Rk-monomial  in xk, 
o r d s y j  ~ ( j /u)  ordskF~ for 1 ~__j ~__ u, and ordsT~ > {j /u)  o rdsy~  for u < j _ ~  n;  
and hence it suffices to take t ' - - T .  So hencefor th  we may also assume that 
if k is any element  in I, F(Z) --  Z ~ + F~Z "-~ + ... + F ,  is any Rk-translate 
of f(Z) with F~, ..., F,~ in Rk, and u is any integer with 0 ~ u  ~ n  such that 
F~, is an R~-monomial  in x~: and o r d s y j  ~ ( j / u ) o r d s  F ,  for 1 ~ j _ _ ~ u ,  then 
o r d s k F j ~ ( j / u  ) ordsF~, for some j with u ~ j ~ _ n .  Let  t ' : m a x ( t , t ~ , . . . ,  t~}. 
For  any k E I(t'), by Lemma 2.5 there exists an R~-translate F(~)(Z)of f(Z) 
and nonnegat ive integers a(k) and c(k) such that F(~)(Z) is of prenonspl i t t ing-  
type relat ive to ords~, (a(k), c(k)):_[-O(n), c(k}~c(1, k) + . . . +  c(v, k), ordsy(~)(O)--a(k), 

and ord~j~y(~)(O)/x~(~)--c(k); it follows that c(k)--O if d(i)~l-O(p ) for 1 ~ i ~ v ,  
i.e., if the degree of every noneonstant  monic i r reducible  factor of f(Z) in K[Z] 
is nondivisible by p, and c ( k ) ~ n / p  if d(i)~--O(p) for some i, i.e., if the degree 
of some nonconstant  monic irreducible factor of f(Z) in K[Z] is divisible by p. 

THEOREM 2.10 - Let R be a two dimensional  regular local domain with  
max ima l  ideal M such that R /  M is algebraically closed. Let p be the characte- 
ristic of R/M. Assume that i f  p ~ 0 --  characteristic of 1~ then R contains a 
primit ive pta root of  1 and a i p - - 1 )  ~h root o f  p. Let  (x ,y)  be a basis of  M 
and  let J be a coefficient set for R. Let w be a rat ional  nondiscrete valucdion 
of  K dominat ing R (by [2: Theorem 1] we know that w is then residually 
algebraic over R}. Let (Ri, xi, yi) be the canonical i ~h quadratic transform of  
(R, x, y, J) along w. Let  R* be the completion R~. Let  f(Z~ be a m onic poly. 
nomial  o f  degree n ~ 0 in  Z wi th  coefficients in  R. Then we have the following. 

(1) There exists a nonnegative integer i such that either: Z ~ is an  
R~- trans la te  of f(Z) for all k ~ i; or: there exist nonnegative integers d and 

~ X  d e , . , x d  e~n e and  an R*- t rans la te  F(Z) of  f(Z} such that upon letting g(Z) : ( ~y~)/( '~y# 
we have that M C radRfl~ ~,  g(Z) E R*[Z], and 0 ~ ord~g(Z} ~ n. 

(2) Let  I be the set of  all positive integers k for which there exists an  
integer j wi th  0 ~ j  < k such that w ( x ~ ) -  w(y~) and  w ( x i ) ~  W(y~) whenever 
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j ~ i ~ k (note that I is then an infinite set). For any  tEI  let I(t) be the set 
of  all  k E I such that k ~ t (note that for any  t E I and  any  integer k ~ t we 
have that xt is an R~:-monomial in xk i f  and  only i f  k E I). Then either: 1) 
there exists a nonnegative integer i such that Z ~ is an  R~- t rans la te  of  f(Z) 
for all  k ~ i ;  or: 2)there exists t E I  and  an integer u with O ~  u ~ n such that 
for each k E I( t) there exists an  R~- trans la te  F(k)(Z)--Z'~ + F~)Z~-~+... + F~  ) of f(Z) 

F ~  ) in  R* ~(~) R~-monomia l  in  xk,  ord~kRkF i with F(~ ~:), ..., t: such that is an  ,-(k),,_ 

~__ {j /u)  ord~kR~F~) for 1 ~ j  ~ u, and  ord:kR;F~) > ( j /u )  ord:kR~F~) for 
u ~ j ~ n; or : 3) there exists t E I such that for each k E I(t} there exists an  
R~- trans la le  F<~)(Z) of  f(Z) and  nonnegative integers a(k) and  v(k) such that 
F(~)(Z} is o f  prenonspl i t t ing-type relative to o r d : ~ ,  ord:~F(~)(0) - -  a(k), 

ord~/~ F(~)iO)/x~ (~) - -  c(k), (a(k), c(k)) -]~: O(n), c(k) -" 0 i f  p = O, and  c(k) ~ n / p  
i f  p ~ 0 (note that in  both the cases c(k) ~ n /2 ) .  

PROOF.-  Let  R"----R* and let K" be the quotient  field of R". By [5: 
Proposition 1], for each nonnegat ive integer i there  exists a unique two 
dimensional  regular  local domain R;' such that R~' is an i th quadrat ic  t ransform 
of R" and K ('1 R~' - -Ri .  For each i ~ 0 let M~ and M~' be the maximal  ideals 
in R~ and R7 respectively, and let RT* be the completion of R~'. Then by [5: 
Proposit ion 1], for each i ~ 0  we have that R~ CR~'+I, " " K A M~ --M~, M~R~'--MT, 
and there exists an isomorphism h7 of R~'* onto R :  such that h~'(s)-  s for 

oo 

all sE Ri. By Lemma 1.3, U R7 is the valuation r ing R+,, of a valuation w" 
i ~ 0  

of K" such that w" dominates  R7 and +v" is residual ly algebraic over R7 for 
all i ~ 0 .  It follows that (RT, xi ,  y~) is the canonical  i th quadrat ic  t ransform 
of (R", x, y, J) along w" for all i ~ 0 .  Since w is rational nondiscrete,  by 
Lemma 1.2{9} we deduce that w" is rat ional  nondiscrete.  We can take a 
finite normal  extension L of K" such that f ( Z ) - - ( Z -  zl)... ( Z -  z N) for some 
zl, ..., z~ in L. Let  L' be the maximal  separable extension of K" in L. We 
can take a valuation W of L' such that K " N  R w  = R,~,,. Let K' be the split- 
ring field of W over w". Then  K'N R w  is the valuat ion ring R,+, of a rat ional  
nondiserete  valuation w' of K' such that K" (5R~¢= R,+-. By [4: Proposit ion 1.46] 
we get that w' does not split in L'. Since L is a purely  inseparable exension 
of L' we deduce that w' does not split in L. By [9: Lemma 14] 
there exists a nonuegat ive integer  b such that  :upon lett ing T ' - - t h e  integral  
closure of R~' in L', P ' =  Mw ('1 T', and Q - - T ~ ,  we have that K' is the split- 
ting field of Q over R~'. Therefore  upon lett ing T = the integral  closure of 
R~' in K', P = M~,N T, R ' - -  Tp, and M ' =  PR', by [ 4 : § 3  and Theorem 1.47] 
we get that R' is a two dimensional  local domain with quotient  field K', M' 
is the maximal  ideal in R', R'/M' is algebraical ly closed, w' domina tes  R', w' 
is residually algebraic over R', R' dominates  Rg, M~R'---M', and H ( R ' } -  H(R'~) 
where H is the canonical  epimorphism of R' onto R'/M'. In  par t icular  
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(xb, yb)R'--M'  and hence R' is regular.  For each i_~_b let R~ be the ( i - -b )  th 
quadrat ic  t ransform of R' along w', let M~ be the maximal  ideal in R~, and 
let R~* be the completion of R~. Since K " N R ~ , :  R~,., it follows that (R~, x~, y~) 
is the canonical  ( i - - b )  th quadrat ic  t ransform of (R', ~cb, Yb, J) along w' for 
all i ~ b .  Now R~ is the quotient  r ing of R~_~[x~, yi] with respect  to (R~-l[wi, y,]}AM~. 
for all i > b ;  therefore R~ is the quotient r ing of R'[xb+l, Yb+~, ..., x i ,  y~] 
with respect  to (R'[xb+~, y~+l, ... ,  x ~ , y i ] ) ( ~ ] i ~ ,  for all i > b ;  clearly 
R'[xb+~, Yb+~, ..., x~, y~] - -  R'[x~, yi] and hence R~ is the quotient  r ing  of R'[x~, y~] 
with respect  to (R'[x~, y~])AM~, for all i >  b. Similar ly  R7 is the quotient  
r ing of R~'[x~, y~] with respect  to (R'b'[x~, y~])(SM~., for all i ~ b .  ~'~ow 
M ~ , , -  K"(~ M~.. and hence we deduce that R~ dominates R}' for all by i ~ b .  
Also then for each i~b__ we clearly have that ]I~ 'R~-  M~' and H~(B~) --  tt~--~R "~ ! 
where Hi is the canonical  epimorphism of R; onto R~/M~. Therefore  for each 

' ~"* such i ~ b ,  ° by [5: Lemma 2] there exists an isomorphism hi of /t~* onto ~ 
' " h " h  . . . .  that h~(s ) -  s for all s E R~. Thus for each i ~ b, upon let t ing h~(s)-- ~( ~(s)i 

for all s~R~*, we get an isomorphism h~ of R~* onto R~ such that h~(s ) - - s  
for all s~R~. If Z ~ is an R'- t ranslate  of f(Z) then Z ~ :  f(Z + r'} for some 
r '~ R', and hence for each k ~ b we get that f(Z ~-h~(r')) is an R~- t rans la te  
of f(Z) and Z ~ ' -  f l Z - ~  h~(r% Therefore we have nothing to show if Z ~ is an 
R'- t ranslate  of f(Z). Hencefor th  assume that Z ~ is not an R'- t ranslate  
of [(Z). Since R" is complete and R"/M" is an algebraically closed field of 
character is t ic  p where M" is the maximal  ideal in R", for any positive integer 
q with q el_--0(p); by HE,SEa'S lemma we get that Z q -  1 - - ( Z -  s~)... ( Z -  sq) 
with s~, ..., sq in R"; consequent ly R" contains a primitive qth root of 1 and 
hence so does R'. Ao~ain since R" is complete, by [12: (32.1)] we know that 
R" is pseudogeometric.  Clearly R' is a spot over R". Therefore  by Theorem 
2.9(4) there exist nonnegative integers i, d, e with i ~  b and an element r 

f(x~y~Z + r~/ (x~y~ we have that in R~ such that upon letting f ' ( Z ) =  a ~ , ,  a ~i~ 
M'C radR'~y~B'~, f'(z)eRi[z], and 0 ~ OrdRif'(Z ) ~ n;  let F(Z) - -  f(Z -~ h~(r)) and 

g(Z) --F(x~y~Z)/(x~y~) ~ d e ~ then M C rad~y~R~,e F(Z) is an R*- t rans la te  of f(Z), 

g{Z)~R*[Z], and 0 < ord~*g(Z)~ n. This completes the proof of (t). To prove 

(2) let 1' be the set of all integers k ~  b for which there exists an integer  
j with b__~j < k such that w'(w~) - -  w'(y~) and w'{x~) ~ w'(y~) whenever  j < i < k. 
I t  follows that I~CI ,  and if t and k are any integers such that t ~ I  ~ and 
k ~I(t) then k ~ l ' .  Therefore  by Theorem 2.9(4) we get that :  ei ther  2'} there 
exists t ~ I  with t ~ b  and an integer  u with 0 < u  ~ n  such that  for each 

k ~ I(t) there exists r~ ~ R~ such that upon lett ing F'(~)(Z) - -  f (Z + rk) - -  Z ~ ~- 
+ F~(~)Z'-~-{-.. .-{-F',,  (~) with F~(~), ..., F'n(~) in R~ we have that F', (k) is an 
R~-monomial in x~, ord~s~F~(~)~( j /u )  ord~iF~(~)  for l ~ j ~ u ,  and 
ord~R,~F~(~)~( j /u)  o r d ~ F ~ ( ~ )  for u < j ~ _ n ;  or 3'} there exists t ~ I  with 

t ~ b such that for each k ~ I(t) there exists r~ ~ R~ and nonnegative integers 



S. S. ABHYANKAR: A~ algorithm on polynomials i~ one~ etc. 49 

a(k) and c(k} such that upon lett ing F' (k ) (Z ) - - f (Z -~rk )  we have that 
F'(k)(Z) is of prenonspl i t t ing- type relative to ord~kR,k, ord~kR,kF'(~)(0 ) --" a(k), 

ordR,k/~kF'(k)(O~/x~ (~) --  c(k), (a(k), c(k))eleO(n), c(k):O if p --  0, and c ( k ) ~ n / p  if 

p:4:0. If  2'} holds then upon let t ing F(k)(Z)--fIZ+h~:(r~)}"-Z~-~F~k)Z'~-~+...+F~ ) 
with F i  ~), ..., F ~  ) in R~ we get that F(~)(Zt is an R~- t rans la te  of f(Z), F ~  ) 

is an R~-monomia l  in x~, o r d ~ k , ~ F ~ ) ~ { j / u )  o r d ~ , ~ F ~  ) for 1 ~ j ~  u, and 

ord~n~F~) ~ ( j /u)  o r d ~ F ~  ~) for u < : j ~  n. If  3') holds then upon lett ing 

/~(~)(Z)--f(Z + h~(r~)) we get that F(~)(Z) is an R~- t rans la te  of f(Z), F(~)(Z) 
is of prenonspl i t t ing- type  relative to ord%n~, ord~*F(~)(O)--=a(k), and 

ord~*~/~F(~)(O)/x~ ~ ) - "  c(k). This completes the proof of (2). 

§ 3 - N o n r a t i o n a l  v a l u a t i o n s .  

DEFINITION 3 . 1 -  By N we denote the set of all nonnegat ive integers,  
and by N~ we denote the set of all q- tuples b : (b(1), ..., b(q)) of nonnegat ive 
integers. Let  R be a q dimensional  regular  local domain, let IX1, ..., Xq) be 
a basis of the maximal  ideal in R, let J be a coefficient  set for R, and let  
y E R ;  then there exists a unique y(b) E J for all b E N'~ such that 

y = Zy(b)X~ (1)... X~! q) in the completion of R where the sum is over N~; the 
expression Zy(b)X~ (1)... X~ Iq) is called the expansion of y in J[[X1, ..., Xq]]. 

LEPTA 3.2 - Let el, ..., eq be a finite number of positive elements in an 
ordered abelian group G. Let v be the map of Nq into G given by taking 
v(b) --  b(1)e~ ~ ... ~ b(ff)eq for all b E N~. Then we have the following. 

(1) Let V be any  nonempty subset o~ Nq. Then there exists a E V such 
that v(a) ~ v(b) for all b E V; (note that i f  el, ..., eq are rationally independent 
then a is uniquely determined by V, and moreover v(a) ~ v(b} for all bE V 
with b :4: a). 

(2) Assume that v(Nq) is an infinite set, and for l ~ j ~ q  and l ~ k ~ q  
there exists a positive integer re(j, k) such that re{j, klek ~ e j .  Then there 
exists a unique one-to-one order-preserving map of 1V onto vINq). 

(3) Assume that e~, ..., eq are rationally independent, and for 1 ~ j  ~ q 
and 1 ~ k ~ q there exists a positive integer re(j, k) such that m~j. k)ek ~ ej. 
Then there exists a unique one-to-one map u of N onto Nq such that 
v(u(j)) ~ v(u(k)) for all j and k in £7 with j < k. 

PROOF OF (1) - We make induct ion on q. The assertion being trivial 
for q - - i ,  let q ~ 1  and assume that the assert ion is true for all values of q 
smaller  than the given one. Relabel e~, ..., eq so that e ~ e q  for l ~ i ~ q .  

A n n a l i  eli M a t e m a t i c a  
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Fix  d E V  and let n - - d ( 1 ) ~ . . . ~ d ( q ) .  Let  V' be the set of all b E V  such 
that v(b)<v(d}. For  every nonnegat ive integer j let Vj be the set of all bEV' 
such that b tq ) - - j .  Let  W be the set of all nonnegative integers j such that 
j ~_~ n and V~ is nonempty.  Then W is a finite nonempty set and V ' :  U V~. 

2ew 
For  each j E W ,  by the induct ion hypothesis,  there exists a~EVj such that 
a~(1)e~ 4:- ... ~ %{q -- t)ea_~ ~ b(1)el -~ ... ~ b(q - -  t)eq_l for all b E Vj. For  each 
j E W ,  we then have that v(a~)~v{b) for all bEVy. Clearly there exists k E W  
such that v(aD~v{a~) for all jEW.  Let  a - - a k .  Then a E V  and v(a)<<v(b) 
for all bE]]', and hence v(a)~v(b) for all bEV. 

P~ooF oF (2) - The uniqueness  follows from the fact that the identity 
map of N onto itself is the only one- to-one  order -preserv ing  map of N onto 
itself. To prove the existence, relabel  e~, ..., eq so that e~ ~ e~ ~ eq for 1 ~ i ~___ q. 
By assumption there exists a positive integer m such that %_<me~. For  any 
a and b in 2~q with r i b ) ~  v(a) we have that el(b{1)-{-... ~ b{q}}<v{b)~ v (a )~  

%(a(1) -~ ... + a(q)) ~ me~(a(1) + . . .  + a(q)) and hence b(1) + . . .  -{- b(q) 
~ m t a ( 1  )... + a(q)). Consequently,  for any a ENq upon let t ing M~ be the 
set of all b ENq with v(b) < v(a} we get that Ma is a finite set. Therefore,  
for any a'Ev(Nq) upon lett ing M'~, be the set of all b'Ev(2~q)with b ' <  a' 
we get that tl/~, is a finite set;  let p(a') be the number  of elements in Ma,. 
Then p is a one- to-one  order -preserv ing  map of v(2~q) onto ~\  Therefore  
p-~ is a one- to -one  order -preserv ing  map of N onto v(Nq). 

P~OOF oF (3) - 5~ow v(a)--4=v(b) fo r  all a and b in N~ with a:4=b, and 
hence our assert ion follows from (2). 

LEPTA 3.3 - Let w be a valuation of  a field K and let X~, . . . ,  Xq be a 
finite number of nonzero elements in M~. Then we have the following. 

(1) Given any nonempty subset V of  l u  there exists a E V such that 

w(X? (~)... X ~)) wtX~ ~) X~ ~)) ~ ... for all b E V; (note that i f  w(X~),..., w(Xq) are 
rationally independent then a is uniquely determined by V~ and moreover 

w(X~ ~) ... X~ (q)) < w(X~ (~) ... X~q ~q)) for all b E V with b ~ a). 

(2) Let V be the set of  all elements v in the value group of w such that 
v ~ w(X~ (~) ... X~ ¢q)) for some b E ivy. Assume that V is an infinite set, and for 
l ~ j  ~ q  and l ~ k  ~_q there exists a positive integer re(j, k) such that 
w(X~'(~'k))~w{X~). Then there ex, ists a unique one-to-one order-preserving 
map of N onto V. 

(3) Let V be the set of all X E K  such that X--X~(~)... X~ (~) for some 
b~Nq. Assume that w(X~), ..., w(X~) are rationally independent, and for 
1 ~ j ~ q  and 1 ~ k ~ _ _ q  there exists a positive integer re{j, k) such that 
w(X'~ 'i'~¢)) ~ w(X~). Then there exists a unique one-to-one map H of  IV onto 
V such that w(Htj}) < w(H(k)) for all j and k in  IV with j < k. 
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PROOf. - ~ollows from Lemma 3.2 by taking e~ --  w(X~), ..., eq = w(X ). 

L E ; ~ i  3.4 - Let  R be a local domain such that the completion R* of R 
is a domain. Let X~, ..., Xq be a finite number of  nonzero nonuni ts  in R. Let 
w be a valuation of  the quotient field K of  R such that w dominales R and 
w(X~), ..., w(Xq) are rat ionally  independent. Let  yE R, let V be a nonempty 
subset o f  Nq, and  for each b E V let  ylb) be a uni t  in  R such that 
y - - E  y(b}X~(~)...X~ (~) in  R*.  Let a ~ V  be as in  Lemma 3.3(1). Then 

b~V 
w(y) --" w(X~ (~) ... X~/q>). 

PROOF. - We make induct ion on q. If q - - 1  then y / X ~  I~) is a unit  in 

R and hence wty):w(X~(~)) .  Now let q ~1  and assume that the assert ion 
is true for all values of q smaller  than  the given one. By [1: Lemma 13] 
there exists a valuation w* of the quotient field of R* such that w* dominates 
R* and R~, - -  K-N R~,. Then w*(X~), ..., w*(Xq) are rat ional ly independent .  
Relabel X~, .. . ,Xq so that w * ( X ~ ) ~ w * ( X u ) f o r  l ~ i ~ q .  Let n:ail)-]-...-4-a(q). 
For every nonnegat ive integer j let Vj be the set of all b EV such that 
b(q} : j .  Let W be the set of all nonnegat ive integers j such that j ~ n  and 
V~ is nonempty.  Then  W is a finite nonempty set. For  each j E W, by Lemma 
3.3(l) there exists a unique ajEVj  such that w*(X?(~)...X~J(~))<w*(X~(~)...X~(q)} 
for all bEVj with b~=aj .  Clearly there exists a unique k E W  such that 
a - - a k .  For  each jEW,  upon let t ing 

--- ... -~b(q) ~ 1~ *, yj Z y(blX~ ~) ~ 
beVj  

by the induction hypothesis we get that w * ( y j ) =  w*(X~Y(1)...X~S(q)}. Conse. 

quent ly  w*(yk) --  w*(X~(1)... X~ (q)) ~ w*(yi) for all j EW with j ~ k. Therefore  

upon let t ing y ' - - i ewy  t E  ER* we get that w*(y')--w*(X~(~)...X~q(q)). Clearly 

(y - -  y') /X~+I E R * and hence w*(y --y') > w*(Xq) ~ w*(X~ (~)... X~(q)). Therefore  
w*(y) ~ w*(X~ (~)... X~ (q)) and hence w[y) --  w(X a(~)... Xq(q)) . 

L~M~i  3.5 - Let  R be a q dimensional  regular local domain  wi th  
max imal  ideal M, let (X1, ..., Xq) be a basis o f  M, let J be a coefficient set 
for R, and  let w be a valuation o f  the quotient field K of R such that w 
dominates R and w(X~}, ..., w(Xq) are rat ional ly  independent. For any  0 ~ y E R 
let Ey(b)X~(1)... "'-qYb(q) be the expansion o f  y in  J[[X1, ..., Xq]] , let V be the set 
o f  all  bE Nq such that y(b):4:0, and  let a E V be as in Lemma  3.3(1); then 
w(yi--w(X~(i). . .X~(q)).  ~loreover, w is residual ly  rat ional  over R and  
(w(X~), ..., w(Xq)) is a free basis (as a module over the r ing o f  integers) o f  the 
value group of  w. 
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PROOF. - By Lemma 3.4 we get that w ( y ) -  ~v(X a(1) ... x~(q)). Given any 
0 ~ x E K  there exist nonzero elements y' and y" in R such that x - - y ' / y " .  

gb(q) be the expansions of y' and y" in Let Ey'(b)X~ (1) ... ~qvb(q) and Zy"(b)X~ (~) ... ~,.q 
J[[X1, ..., Xq]] respectively. ]By Lemma 3.3(1) there exist unique elements a'  

• . .  b ( q )  and a" in l q  such that y'(a') --4:0 q= y"(a"), w(X~ "(~) ... X~ "(q)) < w:X~ (~) Xq ) for 

all b E Nq with y'(b) ~ 0 and b :4: a; and w(X~ "'(~) ... X~ ''(q)) < w(X~ (~) ... Xqb(~>) for all 

bE Nq with y"(b)~ 0 and b 4=-a". By Lemma 3.4 we get that w{y')--w(X~'<~)... X~ '(q)) 

and wiy") = wiX~ ''°) ... X~"(~)). Therefore w(x) "- w(X~ '<~)-a''(~) ... X~'(q)-~"(a)). This 
shows that (w(X~), ..., w(Xq)) is a free basis of the value group of w. Now 

• Y ~ ' ( 1 )  . X ~  "(q), suppose that  x is a uni t  in R,~ Then a " = a ' .  Let z = ~,~ .. 
z' = y ' - -  y'(a')z, and z" - -  y" - -  y"(a'iz. Then w(y") = wiz) and by Lemma 3.4 
we get that  w(z ' )>w(z )<w(z" } .  Now y'(a'}/y"(a') is a unit  in R;  also 
x - -  (y'(a'~ /y"(a')) = (y"(a') z ' - -  y'(a'} z")/(y"(a') Y"t and hence w(x - -  (y'(a') / y"(a'))} > O. 
This show that w is res idual ly  rat ional  over R. 

LE~Mi  3.6 - Let R be a q dimensional regular local domain with 
maximal  ideal M such that R / M  is algebraically closed. Let (X,, ..., Xq) be a 
basis of M, let J be a coefficient set for R, and let w be a valuation of  the 
quotient field K of  R such that w dominates R and w(X,) , . . . ,  wlXq) are ratio- 
nally independent. Let f(Z) be a monic polynomial of degree n > 0 in Z with 
coefficients in R. Then we have the following. 

(1) Assume that f(Z) is of  prenonsplitling-type relative to w and let 
0 ~ X E K  such that w(f(0})~w(X"). Then there exists r E J  such that 
w(f(rX)) > w(X~). Furthermore, i f  w(f{O)) = w(X ~) thel~ r ~ O. 

(2) Assume that w is real, every R-translate of  f(ZI is of  prenonsplit. 
ring-type relative to w, and for each r ER we have that either f ( r ) - - 0  or 

w(f(r)) - -  w((X~ (~)... X~<q)) ") for some a E Nq. Then f(Zj = (Z - -  z)" for some zER* 
where R* is the completion of R. 

(3} Assume that R is complete, every R-translate of f(Z) is of prenonsplit- 
t ing-type relative to w, and for each r ER  we have that either f i r ) =  0 or 

w ( f ( r ) ) -  w((X~ (~) ... X~<~)) *~)~ for some aE2iq. Then f~z ) - -0  for some zER.  

(4) Assume that R is complete, Z" is not an R-translate  of  f(Z), and 
every R-translate  of f(Zj is of  prenonsplitt ing-lype relative to w. "Then n > 1 ,  

f(z) q:: 0 for all zE R, and there exists an R-translate F(Z) of  f(Z) such that 

w(FtO)) = w(X~ (~) ... X~ (~)) for some a E ~q with a =_I~ O(n). 

PRoo]v oF (1) - Let  g ( Z ) -  f ( X Z J / X ' .  Then g(Z) is a monte polynomial  

of degree n in Z with coefficients in R,,. By Lemma 3.5, w is residual ly 
rat ional  over R and hence R~/M,,~ is algebraically closed and J is a coefficient 

set for R,~. Therefore there exists r E J such that  g(r) E M,,. Since f ( rX) /X '~-g(r)  
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we get that w(f(rX)) > w(X~). If w(f(O)) = w(X"I then g(0) ----- f(O)/X ~ E M~v and 
hence r @ O. 

PROOF OF ( 2 1  - Let V be the set of all monomials X~ (1) ~zb(q) with 
bEN~. Since w is real, by Lemma 3.3(3) there exists a unique one - to -one  
map H of N onto V such that w(H(jt) ~ w(H(k)) for all j and k in N with 
j % k .  Since R / M  is a lgebraical ly closed there exists roEJ such that 
flro) EM;  by assumption either f ( r o ) = 0  or w(f (ro) )=w(X' )  for some 
X E V ;  since f(ro)EM and HI0} = i we get that w(f(roH(O)))~w(H(1)~). 
For  k E N  with k @ O  suppose we have defined r~EJ for 0 < j ~ k  such 
that w(f(roH(O) -t- ... @ rjHlj))) ~__ w(H(j  + 1)'~ for 0 < j  < k;  let F (Z)  = 
= f(Z + roll(O) + ... + rk_iH(k -- 1}); then F(0) --  f(roH(O) + ... + rk_~H(k - -  1)) 
and hence w(F(O))~v(H(k) ' ) ;  since F(Z) is an R- t rans la te  of f(Z), by 
assumption we know that /r(Z) is of prenonspl i t t ing- type  relative to w and 
hence by (1) there exists r k E J  such that ~v[F(rkH(k)))> w(H(k)'*); 
then w(f(roH{O) + . . .  + rkH(k))) > w(H(k)'), and by assumption either 
f(roH(O) + ... + rkH(k)) = 0 or w(f(roH(O) +.. .  + rk H(k)))=w(X'") for some X '  E V ; 
therefore we must have  w(roH(O) + ... + rkH{k))) ~ w(H(k + 1)'). Thus  by 
induct ion we have defined r k E J  for all k E N  such that upon let t ing 
z~ - -  roll(O) + ... + rkH(k) we have that w(f(zk)) ~ w(H(k + 1)') for all kEN.  
For  each u E N  there exists v(u)EN such that H(k)EM *u for all k E N  with 
k~2v(u)  where M* is the maximal  ideal in R*. Therefore  there exists a 
unique z E R* such that z - - z k E M  *u for all k and u in N with k ' ~ v ( u ) .  
By [1: Lemma  13] there exists a valuat ion w* of the quotient  field of R* 
such that w* dominates R* and R,~ ' -KfSR, , , .  Since R~.r:KNR~v, we get that 
w*(f(z~))~w*(H(k-~l)') for all kEN,  and hence ~v*(f(zk)}~_~w*~H(k))for all kEN.  
Since w is real and R~, = K N R~,,, :[or each j E N  there exists p(j}E N such 
that w*(y )~w*(H( j } )  for all yEM*P(i); hence for each j E N  there exists 
c{j)EN such that rv*(z - -~k)~w*(Hf j ) )  for all k E h  T with k ~ c t j } .  Now f ( z ) -  
--f(zk) E ( z - - zDR*  for all k E N, and hence w*lf(z)- - f lzk))~w*(H(j))  for all k 
and j in N with k ~_>,.c(j}. Also note that w*(X~) .. . .  , w*(X~) are rat ionally 
independent .  Suppose  if possible fiz} @ O. Then by Lemma 3.5 there exists t E N 
such that w*(f(z)) = w*(HM) .  Let ct ~ 1 + t z r- c(t n t- 1). Then ~v*(f(z) - -  
--f(z,))~w*(H(l-l-1)} and w*(f(z~t)~__w*(H(t@ l)), and hence w*(f(z))_~Jv*(Hil-l-1)). 
This is a contradict ion because  w*(f{z})= w*(H(t)). Therefore f ( z ) - -0 .  Let  

g(Z} --  f(Z + z) = Z ~ -t-g~Z"-~ ~- ... + g,  with g~E R*. Then g ~ = g ( O l =  f(z)=O. 
Suppose if possible that g~ @ 0 for some i, and let e be the smallest integer 
such that g~:4:0; by Lemma 3.5 there exists t"E_hT such that w*(g~}--w*(H(t")); 
let t' be the element  in ,c¥ such that H(t')--X~H(t"} '~ and let d -  c(t'i; then 

rV*(Z--Zd) ~ w*(g'~); let G(Z) "-f(Z+Zd)----Z" ~- G~Z "-~ + . . . ~  G~ with GiER; 
then G(Z) is an R- t rans la te  of f(Z) and hence G(Z} is of prenonspl i t t ing- type  

n relat ive to w; consequent ly  v(G~} ~w(G~)  for all i and hence in par t icu la r  



54 S. S. A B ~ : A a :  An algorithm on polynomials in one, etc. 

w ( ~ ) ~ w  (Gn); now G(Z)--g(Z-~-Zd z} and hence G ~ - - g ~ - t * ( z d - - Z )  ~ 
, < = with t* E R*" consequent ly  w (G~} -- w*(z - -  za}; also G~ --- G(O) 

= g ( z a - - z )  E ( z d - - z ) R *  and hence w*(G~}>~w*(G,~}~w*(za--z);  thus 
$ e w*(G~} < w (G,~t which is a contradiction.  Therefoi 'e g i - - 0  for all i, i .e . ,  

f (z)  = ( z -  

PROOF O F  ( 3 )  - There exist integer~ 0 - -  d(0t < d(1) ~ ... ~ d(e) = q such 
that upon relabell ing X~, ..., Xq suitably, for 1 ~ i ~ e and d(i --1) < j  ~ d(i) 
we have that for d ( i - - 1 ) < k ~ d ( i } :  w(X~(i 'k))~w(Xj)  for some positive 
integer re(j, k}, and for d(i) < k ~ q : w(X~} >~ w(X~) for every positive integer m. 

- ~ b ( ~ )  ~-b(d(i)--d(i--1)) For  0 < i ~ e let V~ be the set of all monomiats  ~a(~-~)+~... ~(~) with 
b E ~  r~(~)-a~-~), and let V o - - l l } .  For  O ~ i < e  let W~ be the set of all 

monomials  ~d,i)+~vb(~) ... Xbq (q-a¢i)) with bENq -a(~), and let We = {1}. By induct ion 
on i we shall show that for any integer i with O ~ i ~ e  we have the following: 
(3i) given any s E R  and YEW~ such that w(f(s))>~w[Y~}, there exists z E B  
such that w ( f ( s ~ - z Y } } ~ w ( T " Y  ~} for all TEV~. To prove (30} let s E R  and 
YEWo be given such that ~v(f~s))>_ w(Y'~) ; upon lett ing F(Z)--f(Z~-s) we get that 
w(F(0)) ~ w ( P ) ;  since FIZ} is an R- t rans la te  of f(Z), by assumption we know 
that F(Z} is of prenonspl i t t ing- type  relat ive to w and hence by (1) there 
exists z E R  such that w(FizY~ ) > w(Y'*); clearly then w(f(s ÷ zY)} > w(T~Y ") 
for all TEVo. Now let O < i ~ e  and assume that (3~_~) holds. To prove (3~} 
let sER  and YEWi be given such that w(f ls ) )~w(Y% By Lemma 3.3(3) there 
exists  a unique one- to -one  map H of N onto V~ such that w(H{j]) < w(H(k)) 
for a l l j  and k in N w i t h j < k ;  note that H ( 0 ) - - I .  For  k E N  suppose we 
have defined r~E R for 0 ___~j < k such that w(f(s ~- (r0H(0} + ... + r~H(j})Y))~ 
~ w ( H t j  -~ 1)~Y "} for 0 ~ j  < k; then Htk)YE W~_~ and w(f(s + (roll(O} + ... + 
~- r~_~H(k - -  1)) Y}) ~ w(H(k) ~ Y~), and hence by (3~_~) there exists r~: E R such 
that wtf(s + (roll(0} + ... + r~H(k))Y)} > w(T'~H(k)~Y ~} for all T'EV~_~ ; we 
claim that w(f(s + troll(O} -b ... + raH(k)iYt) ~ rv(H(k ~- I)"Y~); this being 
obvious in case f(s 4- (roll(O) -[- ... + rzH(k))Y] -- O, now suppose that 
f(s~-(roH(O)-~-...-~rkH(k)~Y}:#O; then by assumption there exists  X'EWo 
such that w(f(s -b (roll(O) ~- ... -[- r~H(k~)Y)) -- w(X"~); then w(X') > w(T'H(k)Y} 
for all T'EV~_~ and hence we must have w(X')>__w(Hfk A-1)Y); consequent ly  
wif(s + (roll(O) Jr ... A- r~H(k))Y}) ~ w(H(k 4- I)~Y~). Thus by induction we have 
defined r~ER for all k E N  such that upon lett ing z~---roHtO) A-...-~r~H(k)we 
have that wif(s +z~ Y))~w(H(k + 1)~ Y') for all k E.N. Let  M':(Xa(~_~)+~, ..., Xdii))R. 
Then for each u E N  there exists v(u)EN such that H(k}EM ''~ for all k E N  
with k ~ v ( u ) .  Consequent ly there exists a unique z E R  such that z - - z z E M  '~ 
for all k and u in N with k~___v(u). Clearly for each j E N  there exists p(j tEN 
such that w[y)~w(Hij~ ~) for all yEM'p(i). Therefore  for each j E N  there 
exists c{j}EN such that w ( z - - z ~ ) ~ w t H t j ) ' )  for all kE2/  with k ~ c ( j ~ .  Let  
f'(Z) -- f(Z-{- s). Then w(f'{O)) ~ . w ( Y ' ) ;  since f'(Z} is an R- t rans la te  of f(Z), 
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by assumption we know that f ' tZ} is of prenonspl i t t ing- type  relat ive to w 
and hence upon letting g(ZJ ~ f ' ( Y Z ) / Y "  we get that gtZ) is a monic polynomial  
of degree n in Z with coefficients in R~v. Now g~z)--g(zk)E (z--zk)R,~ for all 
kEN,  and hence wtg ( z ) - -g ( z k ) )~w(Hi j ) ' t  for all k and j in N with k ~ c { j j .  
Also g(zk) = f(s + z k Y ) / Y "  and wills + zkYi) ~__wtH(k + 1)'*Y •) for all kE2¢, 
and hence w(g(zk))~w(H(j~')  for all k and j in 5/ with k ~ j .  Therefore  
w(g(z) i ~_~ w(Hij) •) for all j E N. h'ow f(s + z Y) / Y~ :g ( z l  and hen ce w(f(s --~ z Y} 
~_w(H(j)"Y ' )  for all j E N ,  i .e . ,  w ( f ( s + z Y I ) ~ w ( T ' ~ Y  ") for all TEVI.  This 
completes  the induction on i and hence in par t icular  (3e)is established. Upon 
taking s : O  and Y - - l ,  by (3e) we find z E R  such that w( f ( z ) )~w(T" )  for 
all TEVe. Suppose  if possible that f(z):4: 0; then by assumption there exists  
X* E Wo such that w(f(z})--w(X*~); then w(X*} ~ w t T }  for all TE Ve which is 
a contradiction. Therefore f(z) =- O. 

Pl~oo:~ ~ oF (4) - Since Z" is not an R- t rans la te  of f(Z) we get that n ~ l .  
Suppose  if possible that f ( z ) - - 0  for some z E R  and let g { Z ) " - - f ( Z + z ) ;  then 
g(Z) is an R- t rans la te  of f(Z) and hence g(Z} :~: Zn; since g(Z) is a monic 
polynomial  of degree n in Z with coefficients in R, n ~ l ,  g (Ol- -0 ,  and 
g(Z) ~ Z ~, we get that g(Z) is not of prenonspl i t t ing- type  relat ive to w;  this 
is a contradict ion.  Therefore f(z):~: 0 for all z ER.  Consequently by (3) there 
exists r E R  such that for all aE_Nq with a ~ O ( n )  we have that w(f(r))=~: 
=~ w(X~ (~) ... X~(q)}. Let  F(Z) ~ f(Z + r). Then F(Z) is an R- t r ans l a t e  of f(Z}, 
F iO)- - f ( r )  ~ O, and by Lemma 3.5 there exists a ENq such that w(F(O))-- 
"- w(X~ (~) ... Xq(q)). It  follows that a ~1- O(n). 

LE~MA 3 . 7 -  Let  R be a two dimensional  regular local domain wi th  
max ima l  ideal M. Let (x, y) be a basis of  M and let J be a coefficient set 
for R. Let w be a valuat ion of  the quotient field K of  t~ such that w dominates 
R, and  w(x) and wly) are rat ional ly  independent;  {by L e m m a  3.5 we know 
that w is then residually rat ional  over R). Let Ri be the i th quadratic  t ransform 
of  R along w and  let M~ be the max imal  ideal in Ri .  Let  x o - - x  and  Yo- -Y .  
Since w(xo) and  w(yo) are rat ionally  independent, there exists a unique basis 
(x~, yi) o f  Mi for all i ~ 0 such that w(x~) and  wty~) are rat ional ly  independent  
for all i ~ O, and  such that for all  i ~ 0 we have that : i f  w(xi_~) ~ w(y~_~) then 
x~ --  x~_~ and  Yi "- yi-~/x~_t, and  i f  w(xi_~) ~ w(y~_~) then x~ --- x~_~/y~_~ and  
y~--y~_~. (Note that i f  R / M  is algebraically closed then tR~, x~, y~} is the 
canonical i m quadratic  transform of (R, x, y, J) along w for all i ~ 0). We 
have the following. 

(i) Given (a, b)E N ~ let (a(0}, b(0)) --  (a, b) and define (a(i)}, b(i))E ~ for 
all i ~  0 by the following recurrence equations: i f  w(x~_~) ~ w(y~_~) then 
a(i) - -  a ( i - - 1 )  + b( i - -1)  and  b(i) : b( i - -1) ,  and  i f  w(xi_z) > w(yi_~) then 
a(i) - -  a(i - -  1) and  b(i) - -  a ( i - -  1) + b(i - -  1). Then xay ~ -- xa(~)y~ (i) for all  i ~ 0; 



56 S. S. ABHYA%KAR: An algorithm on polynomials in one, etc. 

and i f  v is a positive integer such that (a, b):_t~ O(v) then (a(i}, b(i))=__(~O(v) for 
all i > O. Given any positive integer u let a'(i), a"(i), b'(i), b"(i) be the unique 
nonnegative integers such that a(i) -~ a'(i) + ua"(i), a1(i) < u, b(i) ~- b'(i) + ub"(i), 
and b'(i} < u; then given any nonnegative integer j there exists an integer i 
such that j ~ i ~ j + u and a'(i) + b'(i) < u. 

(2) Given any finite number of  nonzero elements G1,..., G~ in Rw there 
exists a nonnegative integer j such that G~ . . . .  , G, are t~i-monomials in 
(x~, y~) for all i >~j. 

(3} Let F(Z) be a monic polynomial of degree n > 0 in Z with coefficients 
in R such that F~Z) ~ Z ~ and £'(Z} is not of  prenonspli t t ing-type relative to w. Then 
n >  1 and there exist nonnegative integers i, d, e such that for g(Z}-"  

de  a d e n  - -  F(x,  yiZ)/( ~y~) we have that g(Z)E Ri[Z] and 0 < ordRfl(Z) < n. 

(4) Let F(Z} be a monie polynomial of  degree n > 0 in  Z such that 
F(Z) is of  prenonsplit t ing-type relative to w and w(F(O)) - -  w(vcay b) for some 
(a, b) E ~V "~ with (a, b) -l:-- O(n). Then n > 1 and there exist nonnegative integers 
i, d, e s~uch that for g(Z)-~ F(x~y~Z}/(x~y~) ~ we have that gtZiE R~[Z] and 
0 < ordRfl(Z) < n .  

(5) Assume that R is complete and R / M  is algebraically closed. Let 
ftZ) be a monic polynomial of degree n > 0 in Z with coefficients in R such 
that Z ~ is not an R-translate of f(Z). Then n > 1 and there exist nonnegative 

g ( Z ) =  F(x~ y~Z)/(x~ Yd integers i, d, e and an R-translate F(Z ~ o f / (Z)  such that for ~ ~ ~ e ,~ 
we have that g(Z) E R~[Z] and 0 < ordRfl(Z) < n. 

PROOF OF (1) - B y  induc t ion  on i it fo l lows that  x~yb--x~(~)y~ (i) for  all  i>_~O, 
and if v is a pos i t ive  i11teger such  thai  (a> b)-zl_--_0(v ) then (a(i), b(i))-tz0(v} 
for  all i ~ > 0 .  Fo r  any  i > 0  for  wh ich  a'{i--1) -{- b'(i - -1)  >___ u we get  t h a t :  
if w(x~_~) < w(yv--~) then a'(i) - -  a'(i - -  1) -}- b'(i - -  1) - -  u and  b'(i) -- b'~i - -1 )  and  
hence  a'(i) + b'(i) < a'(i - 1~ + b'(i -- 1), and if w(x~_x) > w(yi-~) then a'(i}-- a'(i--1} 
and  b'(i)-----a'ti - -1)  + b'(i--1) - -  u and hence  aga in  a'(i) + b'(it < a'(i--  1) + b'(i--1). 
There fo re  g iven  any  nonnega t iva  in teger  j there  exis ts  an in teger  i such  
that  j <_~ i ~ j + u and  a'(i} + b'(i} < u.  

]?ROOF OF (2) - In  v iew of L e m m a  1.3 it suf f ices  to show that  g iven 
0 # GE R there  ex is t s  a nonnega t ive  in t ege r  j such  that  G is an  R~-monomial  
in (x~, Yd for  all  i>~ j .  B y  L e m m a  3.5 there  ex is t s  {a, b ) E N  ~ such  that  
G/(xay ~} is a un i t  in R+:. By  L e m m a  1.3 there  exis ts  a nonnega t ive  in teger  

such  that  G/(x:y ~) is a un i t  in R+ for  all  i~___j. By  (1) we k n o w  that  a~9 ~ 
is au  R~-monomial  in (xi, y~} for  all  i >~ 0, and hence  G is an  R~-monomial  
in (x~, y~) for all  i>~ j .  

P~ool+ o1+ (3) - ~ o w  n > l ,  F ( Z ) ~ Z ~ + F ~ Z ~ - ~ + . . . + F + ,  with /7'1, ..., F,, 
in R, and  w(F~)<w(F~)  for  some k with l ~ k < n .  Le t  u be  the  g rea tes t  
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integer such that w(F~ '/~*)~w(F n']'~) for all m with 1 ~ m ~ n .  Then 

l ~ u ~ n ,  F , ~ 0 ,  and F ~ / F ' ~ E R ~  for l ~ m ~ n .  By Lemma 3.5 there 
exists  {a, b) EN2 such that Fu/(way b) is a uni t  in R~. Then F~/(x~ayb)'~ER~ 
for l ~ m ~ n. Let  a(i~, b(i), a'(i), a"(i), b'(i), b"ti) be as in (1). By  Lemma 1.3 
there exists a nonnegat ive  integer  j such that for all i ~ j  we have that 
F~/(~c~y b) is a uni t  in R~ and F~/{x~yb)~E R~ for 1 ~ m ~ n .  By (1) there 
exists an integer i with j ~ i ~ j  + u such that a'(i) + b'(i) ~ u. Let  d --a"(i)  
and e --  b"(i). Then x.ay b d e~u,_~'(~), b'(O, d ~ u -- '(~y~J ~ i  yi ) and hence F~/(x~y~} E R~ and 

d e u  d e m u  ordRiF,/(x~y~) ~ u .  Also, for 1 ~m~___n we get that (F~/(x~y~)) E R~ and 

,~/{x~y~) EK;  since R~ is normal  we deduce that ~m/(w~y~ ERi for l ~ . m ~ n .  
d e  d e n  Therefore  for g(Z) "- F(x~yiZ)/(x~y~) we have that g(Z}E Ri[Z] and 

0 < ord~fl(Z) ~ n .  

Pt~oo~ o~ (4) - Since {a, b)=_]~_ 0(n) we get that n :>1. Take  u - - - n  and 
let a(i), b(i), a'(i), a"(i), b'(i), b"(i} be the nonnegat ive integers defined in (1); 
then by taking v - - n  in (1) we get that  (a'(i), b'(i)}:=l-O(n) for all i ~ 0  and 
hence a'(i) + b'{i) ~ 0 for all i ~ 0. Now F(Z) --  Z ~ + F~Z n-~ --~ ... --~ F~ where 
F~, ..., Fn are elements  in R such that F~/(~cay ~) is a uni t  in R,~ and 

F~/(~y~)mER,~ for 1 ~ m ~ n .  By Lemma 1.3 there exists a nonnegat ive 
integer j such that for all i ~ j  we have that F,/ (x~y ~) is a unit  in Ri and 

n a b m  F ~ / ( ~  y ) E R~ for l ~ _ m ~ n .  By (1) there exists an integer i w i t h j ~ i ~ j + n  
such that a'(i)+b'(i)<n. Let  d-~a"(i) and e--b"(i). Then ~ g - ~ ( ~ y i ,  ~ s~ , 

d e n  d e n  and hence FJ(x~y~) E R~ and 0 ~ OrdRFJ(x~y~) ~ n .  Also, for 1 ~ m  ~ n 
d e m n  x d  e m  we get that  (F,J(x~y~}) E R~ and F~/ ( iY~)  E K; since R~ is normal we deduce 

d e m  d ¢ d e n  that  F,,/(x~y~) ER~ for 1 ~ m ~ n .  Therefore  for g(Z) --  F(x~y~Z)/(x~y~) we 

have that g(Z) E R~[Z] and 0 < ord~fl(Z) < n .  

P~oo~ o~ (5) - Follows from (3), (4), and Lemma 3.6(4). 

THEORE~ 3.8 - Let R be a two dimensional regular local domain with 
max imal  ideal M such that R / M  is algebraically closed. Let (x, y) be a basis 
of M and let J be a coefficient set for R. Let w be a valuation of the quotient 
field K of R such that w dominates R and w is residually algebraic over R. 
Let (R~, x~, Yd be the canonical i th quadratic transform of (R, x, y, J) along w. 
Let R* be the completion of R~. Let F(Z) be a monic polynomial of  degree 
n ~ 0 in Z with coefficients in R. Then we have the following. 

(1) Assume that w(x~)~w(y~) for all i ~ O .  Then either: Z '~ is an 
R~-translate of f(Z) for all k~_~O; or: there exist nonnegative integers i, d, e 

d e d e )~  and an R*-translate  F{Z} of f(Z) such that upon letting g(Z)--F(~v~y~Z)/(x~y~ 
we have that g(Z) E R*[Z] and 0 < ord~?g(Z) ~ n .  

(2) Assume that x~-" x for all i ~ O .  For each i ~ O  let r~+~ be the 
unique element in J such that y ~ -  x(y~+~ + r~+~). Then either: Z '~ is an 

A n n a l t  eli M a t e m a t i v a  8 
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R~-translate of f(Z} for all k >_~ 0; or: there exist nonnegative integers i, d, e 
and an R*-translate  F(Z) of  /(Z) such that upon letting y* - - Y i -  (rt+lx + 
+ r~+~x 2 + ...) E R* and g(Z) "-- F(xdy*~Zj/(xdy*e) ~ we have that g(Z) E R*[Z] 
and 0 < ordR*g(Z) ~ n .  

PROOF. -  By [5: Proposi t ion 1], for each i ~ 0  there exists a unique 
two dimensional  regular  local domain R~ such. that R~ is an i th quadrat ic  
t ransform of Ro ~ and K (5 R ' - - R i .  For  each i__~0 let R '~ be the completion 
of R~, and let ~li, M'i, M~, M~ ~ be the maximal  ideals in Ri, R~, R*,  R~ ~ 
respectively.  Then for each 4>___0, by [5: Proposi t ion 1] we get that R~C R~+I, 

f ~  t t t K Mi-'M~, M~Ri'-'M~, and there exists an isomorphism h~ of R~* onto R* such 
O~ 

that h~(s)= s for all s ERi.  By Lemma 1.3, U R~ is the valuat ion r ing R,,. 

of a valuat ion w' of the quotient  field of R* such that w' dominates R~ and 
w' is residual ly  algebraic over R~ for all i ~ 0 .  It  follows that (R', x~, y~) is 
the canonical ita quadrat ic  t ransform of (R*, x, y, J) along w' for all i ~ 0 .  

If  Z ~ is an Ro*-translate of f(Z) then Z ~--- f ( Z +  r) for some r E R* and 

hence for each k >~0 we get that f(Z-{-hk(r)) is an R~- t rans la te  of f{Z) and 
Z"---f(Z-4-hk(r)) .  So hencefor th  we may assume that Z n is not an R0*-tran- 

slate of f(Z). 

To prove (1) assume that w(x~)::~w(y~) for all i~>0 .  Then for each i~>0  

we have that ei ther  x~+l --  xl and y~+~ --y~/x~,  or x~+~ --  oe~/yi and Yi+~ = Y i .  
Therefore  w'(x) and w'{y) are rat ional ly independent  and hence by Lemma 
3.7(5) there exists s ERo* a~nd nonnegative integers i, d, e such that upon 

t d e  d e n  t letting F'(Z) --  F(Z + s) and if(Z) --  F (xiyiZ)/(w~y~) we have that g'(Z)E R~[Z] 
d e  d e n  

and 0 <~ ord~g'(Z) < n .  Let  F(Z} --  F(Z  + hds)) and g(Z) - -  F(xiyiZ)/(x~y~) . 

Then F(Z) is an R*- t rans la te  of f(Z), g(Z)E R*[Z], and 0 < o r d ~ g ( Z j < n .  

To prove (2) assume that x ~ - ' x  for all i ~ 0 ,  and for each i~_~0 let r~+~ 

be the unique element in J such that y~ = x(yi+~+ ri+Q. Let  y * -  y~- -  

- -  (r~+~x + r~+~x ~ + ...) E R ' f o r  all i ~ _ 0 .  Then * * * y~ )Ri for i M~ --  (x, all _ _ 0 .  

~ o w  y~xJ = y - -  (r~m + r=x ~ + ... + r~x~) for all j ~ 0. Consequently y*x  ~ = y - -  

- - ( r x x + r ~ w  ~ + . . . ) E R *  for all i > ~ 0  and hence ~d~w ~ - y ~ x  ~EM*~ for all 
• ' 1  ' i  i ~ 0  and j__~0. In  par t icular  y * - - y j x ~ E M  *~ for all j ~ 0 ;  also Mo c M ~  C 

CM~ *~ -" ~i (~rz~ , and hdy~x~} "- y jx  j for all i..~_0 and j ~ 0 ;  consequent ly  
h , ( y * ) - - y ~ x J E M  *i for all i_~>0 and j ~ > 0 ,  and hence h d y * ) - - y * x  ~ for all 

i ~ 0. Therefore y*x  -~ E Ri and * - i  * ' hi(yox ) - - Y l  for all i ~ 0 .  It  follows that 

w(x) and w(y*) are rat ionally independent  and (Ri, x, Yo w j is the canonical  
i th quadrat ic  t ransform of (R*, x, y*, J} along w' for all i ~ 0 .  Therefore  by 
Lemma 3.7(5) there exists s ER* and nonnegat ive integers i, d, e such that 

upon lett ing F ' ( Z ) = F ( Z + s )  and if(Z)= F'(xe(y*x-qcZ)/(x~(y*x-i)9" we have 
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that g'(Z) ~ R~[Z] and 0 < OrdR~g'(Z) < n.  Let  y* = y3, F(Z) = F(Z + h~(s)), 
and g(Z)--F(xay*eZ)/(wdy*~) ~. Then  F(Z) is an R~*-translate of f(Z),  
g(Z) e R*[Z], 0 < o dR (Z} < n.  
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