An algorithm on polynomials in one indeterminate with
coefficients in a two dimensional regular local domain.

By SeEREERAM SHANKAR ABHYANKAR (a Lafayette USA) (%)

In memory of Guido Castelnuovo in the recurrence of the first cemtenary of his birth.

Summary. - See the first three paragraphs of the Introduction.

§ 1. - Introduction.

We shall use the terminology of [10: § 1, 2.1, 2.2, and 3.1 to 3.5]. Also,
for a nonzero polynomial f(Z) =2f;Z* in an indeterminate Z with coefficients

fi in a regular local domain R we define: ordgf(Z) = min (¢ 4+ ordgfi) where
the minimum is taken over all ¢ for which f; = 0.

Let B be a two dimensional regular local domain with maximal ideal M
such that BR/M is algebraically closed. In [10] we have given an algorithm
dealing with a nonconstant monic polynomial f(Z) in Z with coefficients in
E when the degree of f(Z) in Z is a power of the characteristic of B/M. In
turn, using the results of [10], here we shall develop an algorithm dealing
with an arbitrary nonconstant polynomial f(Z) in Z with coefficients in R.
The main result of this paper can be stated thus:

TrroREM 1.1 - Let R be a two dimensional regular local domain with
maximal ideal M such that R/M is algebraically closed. Let (x, y) be a basis
of M and let J be a coefficient set for R. For every nonnegative integer i let
(Bi, ;, y;) be a canonical @ quadratic transform of (B, x, y, J) such that
B; CRiyy for all i. Lel I be the set of all nonnegative inlegers ¢ such that
Xip1 =25, let I* be the set of all nonnegative integers ¢ such that xiy, == %, = x;,
and let I' be the set of all nonnegative integers ¢ such thot x4, = x; and
%i/4i € Ripq. Assume that if I* and I' are infinite sels and characteristic of
B/M = p == 0= characteristic of R then R contains a primitive p'* root of 1 and
a (p— 1" root of p. Let R be the completion of R;. Let f(Z) be a monic
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polynomial of degree n >0 in Z with coefficients in B. If I is o finile set
then let § be any given wnonnegative infeger such that i¢1 for all i =4, and
for each i=j let riy;, be the unique element in J such that y;= Xiyiys-+ rips)
and let y! = yi — (ripa i 4+ ripewi + ) ERS; and if I is an infinite set then
let j be any given nonnegative integer and for each i=j§ let yi = y;. Then
there exisis i =j such that either: Z" is an Ri-iranslate of fiZ) for all k=i;
or: there exist nonnegative integers d and e and an R; -translate F(Z) of f(Z)
such that upon letting g¢(Z) = Flaiy}°Z))(xiy})" we have that g(Z)€ R} [Z],
0 < ordrrg(Z) < n, and if I is an infinite set and e 4= 0 then M C yiR;.

The significance of the conditions on I, I*, and I' is explained by the
following lemma.

LemMMA 1.2 - Let B be a ltwo dimensional regular local domain with
maximal ideal M. Let (x, y) be o basis of M and let J be a coefficient sel for
R. Let w be a valuation of the quotient field of B such that w dominates B
and w is residually algebraic over R. Let R; be the i* quadratic transform of
E along w and let (x;, yi) be a basis of the maximal ideal M; in R; such that
xo==1x and Y,=y, and for all i=0 we have that: if wiw;)=wly;) then x;i,=wx;
and Y. — (Yi/2:) € Ri; if wla) < w(ys) then xip=x; and yip. = yi/x;; and if
w(x;) > wly) then wiy, = xi/y; and Y = yi; (note thal these conditions are
satisfied in case R |M is algebraically closed and (R;, x;, yi) is the canonical
it* quadratic transform of (R, x, y, J) along w for all i==0). Let I be the set
of all nonnegative tutegers ¢ such that x;y, 4= x;, let I* be the set of all non-
negative integers i such that xiy, == wiy, = xi, and let I' be the set of all non-
negative integers i such that x, = x; and xi/y; € Biy,. Then we have the
following: (1) If 1 is a finite set then w is either discrete or nonreal. (2) If 1
is a finite set then I* is a finite sel. (3) If I is an infinite set and I* is a
finite set then w is nonreal and 1' is a finite sel. (4) I* is a finite set if and
only if w is either discrete or nonreal. (5) I' is a finile set if and only if there
exists a nonnegative integer § such that ww:) == w(y:) for all i=j4. (6) I' is o
finite set if and only if there exists a monnegative integer j such that w(x;)
and wly;) are rationally independent for all i =4. (7) If w is irrational then
there exists a nommegative integer j such that (wix;), w(y:)) is -a free basis (as
o module over the ring of integers) of the value group of w for all i=j. (8) I*
is an infinite set and I' is a finite set if and only if w is irrational. (9) I* s
an infinite set and I’ is an infinile set if and only if wis rational nondiscrele.
(10) If I is an infinite set and I' is a finite sel then there exisls o positive
integer j such that M C yiR; for all i =j.

Proo¥r. - To prove (1) assume that I is a finite set; then there exists a
nonnegative integer j such that for all é=4 we have that w;y, =; and
hence w(x;) <2 w(y;); now for each ¢=0 we have that min (w(x;), w(y)) < w(?)
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[e0)
for all #€M;, and by [2: Lemma 12] we know that U M; = M,; therefore

0 < wlxj) <<wlz) for all #€M, and hence w is eith;r] discrete or nonreal,
(2) is obvious. If I is an infinite set and I* is a finite set then there exists
a nonnegative integer j such that w; == @iy, =wi/y; and yiq, = y; for all i=j,
and hence w is mnonreal and I' is a finite set; this proves (3). If I* is a
finite set then by (1) and (3) we get that w is eifher discrete or nonreal;
conversely assume that w is either discrete or nonreal; then by [2: Theorem
1] there exists 0 3= 2'€ M,, such that w(¢') << w(z) for all 2€M,,; by [2: Lemma

0
12] we know that U M;= M,, and hence there exists a nonnegative integer

i=¢
j such that ¢ € M; for all i=>4; now for each ¢ =0 we have that min (w(x;),
w(y:)) << wle) for all 2 € M;, and hence min(w(x;), w(y)) = w(@) for all i=>j;
consequently if w(x;) = w(¢') for some =4 then xxy, = 2 for all k=4 and
hence I* is a finite set; and if w(x;) &= w(?’) for all i=j then x;(, == x; for
all ¢>>j and hence again I* is a finite set; this proves (4). Clearly I' is the
set of all nonnegative integers ¢ such that w(x;) = w(y;), and hence we get (5)
and (6). (7) follows from [10: Lemma 3.11]. (8) follows from (4), (6), and (7).
(9) follows from (4) and (8). To prove (10) assume that I is an infinite set
and I' is a finite set; then there exists a positive integer j such that x;=Fw;
and wix;) == w(y;) for all iZ=j; it follows that x; €yR; and y,_, € y;RB; for all
i =4, and hence M C#;R; for all ¢ >7.

Note that, using completions, a different proof of a special case of
Lemma 1.2(1} was given in [1: page 513], [6: (1.3)], and [7: (1.3)]. In [2:
Lemma 12] we have proved the following.

LeMMA 1.3 - Let B be a two dimensional regular local domain with quo-
tient field K. For each mnonnegative integer i let B; be a two diMensional
regular local domain such that R; is an i" quadratic transform of E and

s}
Bi CRiys for all ¢=0. Then U R; is the valuation ring of a valuation w of

=0

K such that w dominates B; and w is residually algebroic over R; for all i.

oo
If w' és any valuation of K such that w' dominales B; for all ¢ then _U Ri=R,.

=0

In view of the above two lemmas, Theorem 1.1 reduces to the following.

THEOREM 1.4 - Lel R be a iwo dimensional regular local domain with
wmaxiinal ideal M such that R/M is algebraically closed. Let (x, y) be a basis
of M, let J be a coefficient set for R, let w be a valuation of the quotient field
of R such that w dominates R and w is residually algebraic over R, let (R;,
x;, yi) be the canonical i'" quadratic transform of (R, x, y, J) along w, and
let R} be the completion of R;. Let f(Z) be a monic polynomial of degree n>>0
in Z with coefficients in R. Then we have the following.
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(1) Assume that w is rational nondiscrete. Also assume that if characte-
ristic of R/M = p &= 0 = characteristic of B then R contains a primitive p*
root of 1 and a (p — 1)* root of p. Then there exisis a nonnegative integer ¢
such that either: Z» is am Ri-translate of f(Z) for all k=1; or: there exist
nonunegative integers d and e and an R ~translate F(Z) of [\Z) such that wpon
letting g(Z) = FlaiyiZ)/(alyl)" we have that M CradpyiRi, 9% € R} [Z), and
0 < ordpsg(Z) < m.

(2) Assume that wx;) == w(y;) for all ¢=0. Then either: Z* is an
Ri-translate of f(Z) for all k=0; or: there exist nonnegative iniegers i, d, e
and an R -translate F(Z) of f(Z) such that upon lelting g(Z) = F(aiyiZ)jaiy)"
we have that g(Z) € B}{Z] and 0 < ordgg(Z) < n.

(3) Assume that x;=x for all i=0. For each i=0 lel ri, be the
unique element in J such that Y; = ®(Yirs+ viv). Then either: Z* is an
Ri -translate of f(Z) for all k=0; or: there exist nonnegative infegers i, d, e
and an R-translate F(Z) of f(Z) such that upon lelting y* = y; — (riy,x +
+ 73,2+ ) ERT and g(Z) = Flxty*eZ)/(xie*e)" we have that g(Z) € B[Z) and
0 < ordreg(Z) < n.

In Theorem 2.10(1) of §2 we shall prove Theorem 1.4(1), and in Theo-
rem 3.8 of §3 we shall prove Theorems 1.4(2) and 1.4(3). §2 and §3 are
completely independent of each other. Except fdr a few definitions, §3 does
not depend on [10]. The proof of Theorems 1.4(2) and 1.4(3) given in §3 is
quite easy and, except for the fact that the use of derivatives is replaced by the
use of the notion of nonsplitting polynomials, it is in the same general line
of thought as [1: §1] and ZARISKI'S proof of uniformization of nonrational
valuations in zero characteristic given in his papers [13], {14], [15]. On the
other hand, in §2 the results of [10] play a major role. The technique used
in §2 to deduce Theorem 1.4(1) from the results of [10] was inspired by
ZARISKI'S recent theory of equisingularity in zero characteristic (see [16], [17],
[18], [19]); I had the good fortune of atfending the course on that theory
given by ZARISKI at HARVARD in the fall of 1963; the considerations of §2
may also throw some light on the yet undeveloped theory of equisingularity
in nonzero characteristic. In the setup of ZARISKI'S recent simple proof of
resolution of singularities of embedded surfaces in zero characteristic outlined
in [16], the case of a simple point of the discriminant locus is easier fthan
the case of ap ordinary double point of the discriminant locus; it can be
seen that the case of a simple point of the disecriminant locus essentially
corresponds to the case of a rational valuation and the case of an ordinary
double point of the discriminant locus essentially corresponds to the case of
a nonrational valuation; so it is not surprising that if in §2 we were to
restrict our attention to zero characteristic then the resulting proof would be
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quite similar to ZARISkI'S treatment of the case of a simple point of the
discriminant locus outlined in [16]; the difficulty in § 2 arises for nonzero
characteristic and that is where the results of [10] come into play. Thus this
paper is inspired by both the older (for nonrational valuations) and the newer
(for rational valuations) work of ZARISKI on singularities.

I conclude this introduction by fondly expressing my perpetual gratitude
to my guru Professor OscAR ZARISKI. I do so by dedicating this paper to
my paramguru (gurw’s guru) the late Professor GUIDO CASTELNUOVO on the
occasion of the centenary of his birth.

§ 2. - Rational nondiscrete valuations.

DerixiTION 2.1 - Let f(Z) be a monic polynomial of degree >0 in Z
with coefficients in a field K. Take elements 2, ..., 2, in an overfield of K
such that f(Z) =(Z — 2,) ... (Z — 2.), and let L = K(, ..., 2u). f(Z) is said to be
separable over K if L is separable over K; note that this condition depends
only on f(Z) and K and not on the elements 2, ..., 2,; also note that this
condition is equivalent to saying that either K is of characteristic zero, or K
is of characteristic p == 0 and f'(Z) ¢ K[Z?] for every nonconstant monic irre-
ducible factor f(Z) of fiZ) in K[Z]. Let ., ..., 4y be the distinct elements
amongst the elements 2, ..., 2,. We define

Dk(fiZ)) = NOI‘mL/K'E (Y — y3)
i
where the product is over m(m —1) terms (by convention the product over
an empty family is 1) and where for any x € L, as usual, Normpxx denotes
the norm of x relative to the field extension L of K. Note that: (1) O ==
+ DxlfiZ) € K; (2) Dx(fi2)) = 1 (yi—y;)® where d=[L: K]; (3) Dx(f|Z)) depends
only on X and f{Z) and not ojn Z1, «, 2; and (4) if R is any normal domain
with qonotient field K such that fiZ)€ B[Z] then Dg(fiZ))€R. Let g{Z) be another
monic polynomial of positive degree in Z with coefficients in K. We define

Dig(2), fi2) =11 gle).
Note that: (5) D{g(Z), fiZ)) € K; (6) D(g(Z), [1Z)}) depends only on g(Z) and f(Z)
and not on K and 2, ..,%,; and (7) if R is any subring of K such that
917) € R[Z) and f1Z) € RZ] then Dg(2)), f(Z)) € E.

Lemma 2.2 - Let R be a normal quasilocal domain with quotient field K,
let x€R such that xR is a prime ideal in R and S is a one dimensional
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regular local domain where 8 — Bug, let L be a finite normal extension of K
such that integral closure T of 8 in L is quasilocal (by [20: §7 and §8 it
follows that T is then a one dimensional regular local domain), let X €L such
that X1 = x where q is a positive integer, let I' be a subfield of L conlaining
K, let d =[L': K], let 2z€ L' such that z = sX®*+ s where b is a nonnegative
integer, s€ R such that s¢ xR, and §€L such that § is integral over R
and ordrs > ordrpX? and let y = Normy xz. Then we have the following:
(1) bd = 0O(q), ordsy = bd/q, y/x*¥1€ R, and yjx*¥1¢ xR. (2) s is o unit in B
if and only if y/x*¥ is a unit in R. (3) y is an B-monomial in « if and
only if 8 is o unit in R.

Proor. - Clearly s is a unit in § and hence ordrs =0; since ordrs’ >
> ordrX?® we get that ordzz = ordzX? Now y = Gi(2) ... Gg(2) where G4, ..., Gq
are K-automorphisms of I; for any K-antomorphism G of L we clearly have
G(T) =T and hence ordrG{u) = ordru for all u € L; in particular ordrGi(z) =
= ordrz for 1<<é=-d and hence ordyy = d ordrz =d ordsX® = (bd/q)ordrx;
since ®* and y are in K we therefore get that ordsy — (bd/q) ordsx;
since ordsx =1 we conclude that ordsy == bd/g and hence bd =0(g). Now z is
integral over R and #==0, and hence 0==y€R. Let a be the greatest integer
such that y/x*€R; then y/x*¢ xR and hence y/x® is a unit in §; consequently
ordsy = a and hence a = bd/q. Therefore y/a*¥1€ R and y/ax*¥1¢ xR. Since
ordsy = bd/q and y/xb¥1 € R it follows that y is an R-monomial in « if and
only if y/xb¥e is a unit in R. Therefore it now suffices fto show that
s is a unit in B if and only if y/a®¥ is a wunit in B. Let m = [L:L],
n=[L:K], and y = Normpxz. Then n=md and y =gy~ and hence
Y /aPe = (y/xb¥ym, Since X?=o and ordsx =1 we get that Z¢—uax is
the minimal monic polynomial of X over K; comsequently [L:K(X)]=n/q
and NormgxxX = (—1)2t, and hence NormpxX®= (Normgxyx X)Me)P =
= (—1)atv Gwiagbnia, Let { = §'/X* and u = Normyx(s + {). Then s 4 ¢ =2/X°
and hence u==(Normyz,x#)/(NormpxX?); consequently n=(—1)a+ ¢r/o(y/abdlemE R,
and hence # is a unit in R if and only if y/a*¥? is a unit in E. Therefore
w €R, and it suffices to show that w is a unit in B if and only if s is a
unit in RB. Now u=H,{s +#) ... Hu(s + t) where H,, ..., H, are K-automorphisms
of L. Since ordps > ordrX® we get that {€ @ where @ is the maximal ideal
in 7. Since Hi(Q) = @ and s€R we get that Hs 4 ) = s+ Hyf) = s mod @
for 1 < i< n. Therefore u = s" mod @, ie., u—s"€Q. Now u€R, s€E,
and QNR=(QNY NE=@S) N R=uxR. Therefore u —s"€xR and hence
in particular 4 — s” is a nonunit in R. Since R is quasilocal, we conclude
that # is a unit in R if and only if s* is a unit in B, ie., if and only if s
is a unit in R.

LeuMa 2.3 - Let R be a normal quasilocal domain with maximal ideal
M and gquotient field K, let x € R such that xR is a prime ideal in R and 8
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is a one dimensional regular local domain where 8 = R,p, let L be a finile
normal extension of K such that the integral closure T of 8 in L is quasilocal
(by [20: §7 and §8] it follows that T is then a one dimensional regular local
domain), let X € L such that X1 =—x where q is a posifive integer such that q
i8 not divisible by the characteristic of R/M and K conlains a primitive ¢t
root W of 1, let g(Z) be a monic polynomial of degree d >1 in Z with coeffi-
cients in R such that g(Z) is irreducible in K[Z] and Dx(g(Z)) is an R-monomial
in x, let flZ) = glZ)* where e is a positive infeger, and let n = de. Assume
that there exist elemenis z, v, s, § in L and o posilive integer b such that
fle)=0, z—r=sXb+¢, r€R, s€R, s¢xR, § is integral over R, ordrs>ordrX?,
and b=z0(q). Let a =bn/q. Then a is a positive inleger with a=|=0(n), and
for any r* €R with ordsr* = a/n we have that fir + r*)/x® is a unit in R.

Proor. - Now [K(2): K] =d and hence by Lemma 2.2(1) we get that
bd = O(q) and hence bn = 0|q); since a = bn/g and b==0(q) we conclude that
o is a positive integer and @ ==0(n). Upon letting h(Z) = Z2 — x we get that
WZ)€K[Z] and WX)=0=n(WX); since ordsx =1 we get that Ah(Z) is
irreducible in K[Z]; therefore there exists a K-automorphism @ of L such
that G(X) = WX. Let 2, == ((2). Since g(z) = 0 we get that g(z;)=0. Since ¢
is not divisible by the characteristic of B/M and b==0(q) we get that 1—J®
is a unit in B and hence (1— W?%s€R and (1— Wbs¢xR; in particular
{(L—W?s is a unit in § and hence ordsX® = ordr(l— W?%sX?. Clearly G(T)=T
and hence ordyG(s’)= ordrs’; consequently ordr(s’ — G(¢') > ordrX?. Now
2 — 2 = (1 — W¥sX? 4 (8 — G{s')) and hence ordr(z — 2,) = ordpX?, Therefore
# 4= #.. Since L is a normal extension of K, there exist distinct elements
%3y .y #m in L such that d=0(m), s =232 for 2<i<m, and g(Z)=
=(Z—2)(Z—2) ... (Z—zn))¥™. Let L' = K(z, 2, ..., 2m). Lety= Normpx(z— 2).
Let y' — Normyx# where

d=[HE—a)[H—2) [0 T (5—2).
i=2 fsl =1 1=fsm, {4

Then 0=y €R and 0=y €R. Also yy = Dx(g(Z)) and hence by assumption
there exists a nonnegative integer c¢* such that yy'/x® is a unit in R. Then
ordsyy = c¢*. Let ¢ and ¢ be the greatest integers such that y/x°€ R and
y/x €R. Then y/a*¢ xR and y[x“¢ xR. Therefore yj/x* and ¢/x”
are units in 8 and hence ordsy=c¢ and ordsy =c¢. Therefore ordsyy =
=c¢ ¢ and hence ¢ ¢ =c*. Consequently (y/x)(y'/x*)= yy'/x**; since
y/x® and y'/x* are in B and yy'/x** is a unit in R, we conclude that y/x° and
Y /x® are units in R and hence y and y are R-monomials in x. Thus
2 — 2, =(1—W?sX® 4 (s'— Q(5)), (L—WYsER, (1—W?)s¢xR, s'— G(s') is integral
over R, ordr(s’'— G(s)) > ordrX®, y=Normpy k(#—=), and y is an R-monomial
in o; therefore by Lemma 2.2(3) we get that (I — W?)s is a unit in R; since
1—W? is a unit in B we conclude that s is a unit in R. Given any r*€R
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with ordsr* =a/n let y*¥ = Normgg)x(z —r — r*). Since azj=0(n) we get that
ordgr*> a/n = (a/n) ordsx and hence ords+* > {(a/n) ordre = (a/n) (g/b) ordrXb=
= ordzyX®. Consequently ordrp{s’— r*} > ordrX® and also & — r* is integral
over R; since # — ¢ — ¢* = §X?- (¢ —r*) and s is a unit in B, by Lemma
2.2(2) we get that y*/x®/7 is a unit in B; since (—1)"y*e/a® = (—1)(y* /a®lee
we conclude that (—1)*y*¢/x® is a unit in R. Let ¢'(Z) = g(Z + r + r*). Then
¢(Z) is the minimal monic polynomial of # —r —r* over K and hence
y* = (—1)%g'(0). Now flir + r*)=glr + r*)* and g(r 4 »*) = ¢/(0). Therefore
flr 4 r*) = (—1)"y*¢ and hence f{r 4 r*)/x* is a unit in R.

Levmua 2.4 ~ Let B be a normal local domain with maximal ideal M and
quotient field K, let p be the characleristic of R/M, let 0 == € R such that xR
ts a prime ideal in R, let 8 = R,p, let X be an element in an overfield of K
such that X1 =a where q is a positive integer such that q=]=0(p) and K con-
tains a primitive ¢t* root of 1, let K' = K(X), let R’ be the integral closure of
R in K, and let § be the integral closure of S in K'. Then: 8 and 8 are one
dimensional regular local domains; XE' is a prime ideal in R'; 8 = Rxp;
for any O0==y€R if b is the greatest integer such that y/a®C R then b= ordgy;
for any O=yER if b is the grealest integer such that y/X*€R' then ordgy ="5;
and if R/xR is a regular local domain lhen so is R/XR. Furthermore we
have the following.

(1) Let g(Z) be a monic polynomial of degree d >1 in Z with coefficients
in R such that g(Z) is irreducible in K[Z], g{z) =0 for some z€K', and Dx(g(Z})
is an R-monomial in wx. Let flZ) = g(Z)® where e is a posilive integer and
let n = de. Then there exists r € B and a positive integer a with a==0(n) such
that for any r*<R with ordsr* = a/n we have that flr 4 r*)/a* is o unil in R.

(2) Assume that p &= 0. Let L be a normal extension of K such that L
is a p-extension of K', let g(Z) be a momnic polynomial of degree d >0 in Z
with coefficients in R such that g(Z) is irreducible in K(Z], and let f(Z) be a
monic polynomial of degree m >0 in Z with coefficients in R such that f'(Z)
is irreducible in K'[Z), [(Z) divides g(Z) in K'|Z], and f'(z) =0 for some z € L.
Then m is the highest power of p which divides d, and if g(Z)¢ K[Z™] then
fZ) == Z™ + f{0). Let fiZ)=g(Z)® where ¢ is a positive integer and lel n = de.
Assume that m >1, p€xR, 8 is tolally ramified in L, R/xR is a regular
local domain, Dg(g(Z)) is an R-monomial in x, and there exist nonnegative
integers o' and ¢ and v €R such that ordsf'(r') =, ordpxf(r)/X* =,
(o, ¢)==0(m), and ¢ <<mfp. Then there exist nonnegative inlegers a and ¢
and r € R such that (@, ¢)==0(n) and ¢ <n/p and such that for any r*€R
with ordgr* = ajn we have that ordsf(r + r*) = a and ordgflr + r*)/x* = c.

Proor. - Clearly § is a one dimensional regular local domain with
maximal ideal xS and hence xR is a minimal prime ideal in B; for any
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O=Fy€R if b is the greatest integer such that y/x*?€ R then y/x*¢ #R and
hence y/a? is a unit in § and hence ordgy = 6. Since ordgx =1, K = K(X},
X1=uw, g==0(p), and K contains a primitive ¢* root of 1, we deduce that
[E': K] =g, K’ is a separable normal extension of K, § is a one dimensional
regular local domain with maximal ideal XR', and A/(8') = #'(S) where &' is
the canonical epimorphism of 8 onto §/X8. Since § is a one dimensional
regular local domain with maximal ideal X8 upon letting P = (X8) N R’ we
get that P is a minimal prime ideal in R, § = R'p, P8 = X8, PN R = xR,
and P is the only minimal prime ideal in R’ whose intersection with B is xR
(for instance see [4: Lemma 1.9 and 1.28]). If P’ is any minimal prime ideal
in B’ such that X € P’ then € PPN R and by [4: Proposition 1.24B] we know
that PN R is a minimal prime a ideal in R; consequently PPN E = xR and
hence P’ = P. Thus P is the only minimal prime ideal in R’ containing X;
since XR'p=PR'p and R is a normal noetherian domain, by [20: Theorem
15 on page 223 and Theorem 14 on page 277] we conclude that XR' = P.
Therefore XR' is a minimal prime ideal in R/, 8=R'xp, and (XR)NR=«R;
for any O=y€R it b is the greatest integer such that y/X*€ R’ then y/X?¢ XR'
and hence y/X® is a unit in § and hence ordgy = b. In particular R(S) is
the quotient field of A'(R’) in R'(§'), and A'(R’) is integral over h'(R). Let % be the
canonical epimorphism of B’ onto R/XR'. Since R(§)=H(S8) and #(S) is the
quotient field of A'(E) in A/(8) it follows that if R/xR is normal then A'(R) =
=h/(R),i.e., h(R')=Mh(R). Therefore, if R/xR is aregularlocal domain then h(R')=h(R)
and A(R') is a regular local domain. Since K' = K(X), X¢ =, ¢ =[K : K],
and ¢=[=0(p), by [8: Theorem 7] we get that 1, X, ..., X4 is a free R-basis
of . We shall now prove (1) and (2) separately.

Proor oF (1) - Now 2€R and #¢ K. Therefore 2 =r 4 nX + ... 4 r, X9
where 7, 7, .., 74—, are elements in R such that »;==0 for some 4. Let b’
the greatest integer such that ri/x”€R for 1<<i<<g—1. Let j be the smal-
lest integer such that 1<=j<tq—1 and r/a> ¢ xR. Let s =r,/a", & =2 —
—r—rX), and b=j+4qgb. Then 2z—r=sX"}¢, s€R, s¢aR, §E€R,
ordgs’ > ords X and b is a positive integer such that b=]=0(q). Therefore
upon letting @ =bn/q, by Lemma 2.3 we get that a is a positive integer
with a=z0(w), and f(r +r*)/x* is a unit in R for all »*€R with ordsr*>=a/n.

Proor OF (2) - Since L is a p-extension of K we get that m is a power
of p. Let F; be the coefficient of Z"—# in f'(Z) for 1<<i<<m. Let L'=K(F,, ..., F.),
[K':L')=wu, and [L': K] = v. Since [K':K]=g¢, K = K(X), X?2=1, q==0(p),
and K contains a primitive ¢'* root of 1, we deduce that ¢ = uv, ordsy = O(u)
for all 0=y€ L/, I' = K(X*), K contains a primitive v root W of 1, I’ is
a separable normal extension of K, and the group of all K-automorphisms
of I/ is a cyclic group of order v and it has a generator G such that
G X"y = WX*. Now g(Z) and f'(Z) are the minimal monic polynomials of 2

Annali di Matematica 5
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over K and I/ respectlvely, and hence g(Z) = f'(Z)f*(Z) where f[*(Z)=Z3m+
+ Frzdm— L Fi ., with FY, ..., Fi_, in I'. Upon applying & to the coeffi-
cients of g(Z), f'(Z), and f*(Z) we get that g(Z) =fi(Z )fz( ) where fi(Z)=27Z" 4
+ G(P)Zm + ... + GiF,) and [(Z) = 24" - GUF]) 20" b 4 GHPF)-
Hence in particular f;(Z) divides g(Z) in L'[Z). Since f'(Z) is irreducible in L'[Z] and
L'=K(F,, ..., F.,) we get that f{Z) is irreducible in L[Z] for 1<<éi<<w, f,(Z)=['(2),
and fi(Z) == fy|Z) for 1 << i <<i' <<v. Therefore upon letting g'(Z) = fi(Z) ... f(Z) we
get that g¢'(Z) divides g(Z) in L[Z] and g'(z) = 0. Let gx(Z) and fix(Z) be the
polynomials obtained by applying G* to the coefficients of ¢'(Z) and fi{(Z)
respectively; then gi(Z) = fur(Z) ... fox(Z); now firl(Z), ..., fox{Z) is a permutation of
filZ), ..., folZ) and bence gx(Z) = g'{Z); this being so for 1<k << v we get that
g(Z)€ K[Z]. Therefore g(Z) = ¢/(Z); hence d = mv, m is the highest power of
p which divides d, and if g(Z) ¢ K[Z™] then f'(Z) 5= Z™ + f'(0). Henceforth let
the remaining assumptions be in forece. ket 7' be the integral closure of &
in L. Then T is the integral closure of § in Z, and 7 is a one dimensional
regular local domain. Now #' =# + rnX + ... + v, X9 where 7, 7y, ..., g
are elements in R. If # 5=r then let & be the greatest integer such that
rife” € R for 1<<i<q—1 and let § be the smallest integer such that
1<j<<q—1 and r;/x¥ ¢ xR. We shall now divide the argument into two cases.

Case when v =r and ordp(z—r) > ordr X9, Let b=j+ qt/, s = r;/a”,
and s =# —r — sX® Then b is a positive integer such that 5==0(¢), s€E,
s¢ xR, r'—r-—sXP€ X*HR', §€ L, ¢ is integral over B, and 2 — v = sX?-}-§.
Since &' =(z—7r') + (r' —r—sX?), orde(z—1r)>ordrX?, and +'—r —sXP€XPHIR’,
we get that ordps’ > ordrX®. Therefore upon taking @ = bn/g and ¢ =0, by
Lemma 2.3 we get that o and ¢ are nonnegative integers such that (a, ¢)==0(n) and
c=n/p and such that for any r*€R with order*=a/n we have that f(r—;—r*)/x“
is a onit in B and hence ordsf{(r 4+ r*) = a and ordgf{r + r*)/x* =c.

Case when either v = r, or v =7 and ordr{z — ¢} << ord,p X+, If ¢/ =«
then let b” be any positive integer such that ordr(z — ') << ordrX*”, and if
' ==+ then let 8" =j 4 gb’. Then in both the cases b” is a positive integer
such that ordr(z — ') << ordsX? and r — €X' R. Let A{Z)=[f{Z+r)=
= 7"+ 4, 2"+ ..+ A, with 4,,.., 4, in K. Then A(Z) is the minimal
monic polynomial of 2—# over K’ and hence A(0)=(—1j"H.\(z —7')... Hul(z—7')
where H,, .., H, are K'-automorphisms of L; mnow H;T)=17 and hence
ordrHi(z—#)=ordrp(z —1') for 1<<i<"m; consequently ordrA(0)=ordr(z—r)";
since- A(0) = f/(r) and ordgf(r)=a = ordgX* we get that ordsA4(0)=
and ordr(z —#) = (@'/m) ordrX; since ordp(z —7)=CordrX® we get that
V' =a'/m; since r — '€ X¥"R’ we conclude that: 1) » — ¢ € X°R’ where b is
the smallest integer such that b = a'/m. Since A(Z)-is the minimal monic
polynomial of 2 —+" over K', ordgA(0) = o/, and § is totally ramified in L,
by [10: Lemma 2.5] we get that: 2) ordsgd;=da'/m for 1 ="i<"m, and if
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o = O(m) then ordgd;>da'/m for 1<<i<<m. By 1) and 2) we get that
ordg(A(r — vy — A(0)) > o’; since A(r —r')=f'(r) and ordgA(0)=a" we get
that ordsf'(r) = a'; since f'(r)€ L' we conclude that o' = O(u). Let a = eva'/q
and ¢ = evc¢’. Then a and ¢ are nonnegative integers such that (a, ¢)==0(xn)
and c<<n/p. Let r* be any given element in R such that ordgr*=a/n. Then
ordsr* = (a/n) ordsX? and hence ordsr* == (a/n) ordgX? = a'/m. Consequently
by 1) we get that r - r* — ' € X®R’ where b is the smallest integer such that
b = a//m. Therefore by 2} we get that ordg(A{r 4 r*— ¢} — 4{0)}) > &'. Since
Alr +r*—v)=f'(r +r¥) and A(0)=f'(r') we get that f'(r + r*)— f'(r') € XV 'R
Since ordsf'(r')=a’ we dedunce that ordgs [ (r--r*)=a’' and ordag hif (r+7r*)/X%)=
= ordug () X*) = ¢. Let ¢ =f{r + r*)/X%. Then ¢ €R and ordugh({)=c
Now. ffr 4-r*)€L’; also o' =0(u) and hence X% € L/. Therefore {/€ L. Since
K’ is a finite normal extension of K there exists a K-automorphism G; of K’
such that Gi(y) = Gi(y) for all y € I'. Since WR')= h(R) there exists {€ R such
that ¢ —{€XR. Nowd@(f)j=1¢ and GiXR)= XR. Therefore G{')— ¥ =
=Gt — ) — (' — )€ XR'. This being so for 1<<i<<v we get that {*—{*€XFR
where t*=@G(¥)...G*(). Therefore ordpgr h(t*)=vc. Now t*=Norm '€ R NK=R,
hE) = W(E), and (XE) N\ R =« B. Therefore ordgt*= ordprh{t*) = vc' = c/e.
Now glr + %) = fulr + 1%) o folr + %), filr 4 7%) = Gi(fr + %)) = G(X) G¥(¢)
for 1<<i<<v, @YX¥).. @PXY)=(—1)M @+1xe" and a'v = aq/e. There-
fore g(r 4 r*) = (— 1)@’ o+ifspale  and hence ordsg(r -+ r*) = aje and
ordpyg(r + r*)/x** = c/e. Since f(r +4 r*)=g{r + r*)* we conclude that
ordsf(r + r*} =a and ordgu,fir + r*)/x* =c.

Lemma 2.5 - Let R be a quasilocal domain with quotient field K. Let
0= €R such that B/xR is a regular local domain and S is a one dimensional
regular local domain where 8 = R,r (note that for any 0=y €R if b is the
greatest integer such that y/x® € R then ordsy = b). Let L be a [inite normal
extension of K such that S does not split in L. Let v be a positive infeger
and for i=1,..,v let gi{Z} be a monic polynomial of degree dé)>1 in Z
with coefficients in R such that ¢i(Z) is irreducible in K[Z] and giz) =0 for
some 2, €L, let fiZ)= gi(Z)*® where e(i) is a positive integer, and let n(i) = d(i)e(i).
Let {Z)=fuZ) ... fZ) and n=n(l) 4-...4+ n(v). Assume that for i=1, .., v there
exist nonnegative inlegers a(i) and c(i) and r; € B such that {(oi), c(i))==0(n()
and ofi) < nli) and such that for any ri€ R with ordsry = a(i)/n(i) we have
that ordsf(r; + ri') = a(i) and ordgflri + r)/x*® = c(i). Also assume that
D(gdZ), 9,(Z)) is an B-monomial in x whenever 1 <<i<v, 1<<j=<Cw, and i==j.
Then there exisis r € R such that wupon letting F(Z) = f(Z + r) = Z* + F. 2"
+ o 4 Fy with F,, ..., F, in B we have that either: (1) there exists an integer
u such that 0 < u <wn, F, is an R-monomial in x, ordsF; = (j/u) ordsF, for
1<<j<wu, and ordsF;> (j/u) ordsF, for u <<j<-n; or: (2) there exist nonne-
gative integers a and ¢ such that (a, ¢)==0(n), ¢ << c(1) + ... 4 c(v), ordsF, =a,
ord g Fn/x® = ¢, and ordsF; =ja/n for 1 <<j<mn.
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Proor. - Upon replacing 1,..,v by a suitable permutation of 1, ..,»
we may assume that a{l)/n(l) = ali)/n{é) for 1 <i<<v. Let ¥ =r, and F(Z) =
=flZ +r=2"+ F 2" + ..+ F, with F,, ..., F, in B. For 1<<i<<w let
9iZ)=gilZ + 1), [iZ)=giZ)®, yi=2i—r, si=r;—r, and b(¢) = ordgfi{0).
Then F(Z)= fi(Z)... [{%), and for 1<Ci<<v we have that gj(Z) is a monic poly-
nomial of degree d(é) in Z with coefficients in R, gi(Z) is irreducible in K[Z],
€L, gily) =0, s;€R, and: 1) ordsfi(s; + s) = a(é) and ordr.fils; + si)/x*) = c(i)
for all sf€R with ordgs;® = a(i)/n(i). In particular s, =0 and hence: 2)
ordsfi(0) = a(l) =b(1). For 1<<i<<v we have that D(fi(Z), f.(Z)) = DIfi(Z), [.lZ2))=
= (D(gdZ), g.(Z)))* and hence D(fi(Z), fi(Z)) is an R-monomial in x. Let T
be the integral closure of 8 in L. Then T is a one dimensional regular local
domain and for any K-automorphism G of L we have that G(T) =T and
hence ordsG(y) = ordsy for all y € L. Since L is a finite normal extension of
K there exist K-automorphisms G;; of L such that upon letting y;; = Gij(y:)
we have that gi{Z) = (Z — yi) ... (Z — yiaw) for 1 <<é<<v. Now ordsy;; = ordsy;
for 1 =é<<w and 1<j<d), and

i) ) G o
filz) = W (Z — yiy)® = Z"®) 4 X f;Zn0—1
== =1
where fi;€R for 1 <i="v and 1< j<<n(i). Therefere: 3) ordry;; = ordry; =
= (B(@)/n(@)jordre for 1<<i=<<v and 1<<j=<Cd(@), and: 4) ordsfi; = jb(i)/n(})
for 1 <di<<v and 1=<j=<n(i).

Let ¢ be any integer such that 1=<"é¢<<v and b(i)/n(é) < a(l)/n(l). Then
by 2) and 3) we get that b(1) = a(1), ¢ = 1, b(é)/n(@) < b(1)/n(1), and ordry,; =
= (b(1)/n(1)jordzex for 1 =Cj<<d(1); since ordsfi(0) = b(¢) and

; n{E)—k

. La®
fims) = 9" + = fliy” ™" for 1<j < d(l),

by 4) we get that ordzfi(y,;)=ord7/i{0) = ordra®® and ord r(fi(y:;)—1i{0)) > ordza>®
for 1 <<j << d(1). Therefore fiy,))/a*DET, fi{0)/aDET, and fi(yy,)/a>® == fi(0)/a>®
mod @ for 1 <j < d{1) where @ is the maximal ideal in T, and hence

d(1) . )

1L (Fi(yy) P D)) = (£3(0) /> @) mod Q.

=1
Now
d(l) "/ "/, Y 4
11 filgn)® = D(fi2), f(2)) = ta®
f=1
where { is a unit in B and ¥ is a nonnegative integer, and hence

Lot —bEm() = (fg(())jgcb“)}""(l) mod Q.
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Since b —d@»() and (f3{0)/x*®)**) are in K and KN ¢ = xS we get that
5) fob o) — (£10) /@)D € 8.

Since fi(0)€ R and ordgfi(0) = b(i) we get that fi(0)/a*® € B and- f;{0)/xb® is a
unit in §; consequently by 5) we get that fx®—b@n) jg a unit in §; since ¢
'is a unit in B we must the have b — b(é)n(l) =0 and hence by b) we get
that ¢ — (£i(0)/xb®)"®) € (®8) N R = xR; since ¢ is a unit in B we conclude that
fi(0)/x®® is a unit in R. Thus we have shown that: 6) if ¢ is any integer such
that 1 <<4<<wv and b(é)/n(é) < a(l)/n(l) then fi(0)/x*? is a unit in R.

Next, let ¢ be any integer such that 1<=¢<"v and b(i)/n({) = a(l)/n(1).
Since a(l)/n(l) = a(é)/n(?) we get that b(¢) = a(éd) and hence by 4) we get
that ordgsf); = ja(i)/n(i) for 1 <<j << n(é); upon taking s; =0 in 1) we get that
ordsfi(si) = ali); now

n(t)

fz(sg) = 8 n(é) -—|- 2 f gM(H—]

and hence we must have ordgss; = a(é)/n(é); therefore upon taking s’ = —s;
in 1) we get that ordsf{0) = a(é) and ordg,f (0)/x* = c(i); since b{g)/n(i) =
=a(l)/n(1) = a(é)/nié) and bE)=ordsfi(0)=a(i) we also get that a(é)/n(i)=a(l)/n(1).
Thus we have shown that: 7) if ¢ is any integer such that 1=Cé<<v and
b(¢)/n(i) = a(l)/n(l) then ordsfi{0) = a(d), ordg.fi0)/x*H = c(i), b(i) = a(é), and
a(é)/n(é) = a(1)/n(1).
We shall show that if b(é)/n(é) < a(1)/n(1) for some ¢ with 1<<i<"o then
condition (1) holds, and if &(s)/n(é) = a(1)/n(1) for all ¢ with 1=Cé=Cv then
condition (2) holds, and this will complete the proof.

First suppose that b(i)/n(i) < a(l)/n(l) for some ¢ with 1=Cé="v. Let
a' = min(b(1)/n(1), .., b{v)/n(v)), let V be a set of all integers ¢ such that
1<i<<wv and b(#)/n(i)=a’, and let V' be the set of all integers i such that
l<<i<<v and ¢¢V. Then V=0 and by 2) we also have that 1€V’ and
hence V' 4= 0. Let

w= X n@E and o= X b().
iev eV

Then O << u < n and o = wua'. Let
AZ)= 1L fiiZ) =2+ T Az,
eV =1

B(Z)= 1l fi#) = Z"—v + = Bzm—w—
eV =1
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with A,, ..., Ay, Bi, «., Bpy in BE. Now

Ay = A(0)= I fi0) and ua' = T bf4)
iev iev
and by 6) we know that fj(0)/«*® is a unit in R for all 4€V, and hence:
8) ordsd, = ua’ and A,/x% is a unit in R. Since b(@)/n(i) =a’ for ¢€V
and b(é)/n(é) > o for i€V, by 3) we get that ordeys; = o' ordpx for §€V and
1 =<<j=<d(i), and ordry;; > o' ordrx for i€V’ and 1<=j<d(é); since

a(i) d(é)
AZ)=1 1 (Z—yyp® and BZ) = 1 Il (Z — y;)o®
i€V j=1 eV j=1

we deduce that: 9) ordsd;=ja’ for 1 <j<u, and ordsB; > jo' for 1 <<j<<n—u.
Now F(Z) = A(Z)B(Z) and hence upon letting 4, =1 we get that

min(j, n—u)
Aj + _,2___1 BkAj._k fOI' 1 gj U
10) Fj = min(u, n—j)
Bj_u_f_kAu——k for u <j =< n.

k=p

By 8), 9), and 10) we deduce that ordsF, = ua/, F,/x** is a unit in R,
ordsF; = (j/u) ordsF, for 1 <j<<u, and ordsF; > (j/u) ordsF, for u <j<n.

Finally, suppose that b(¢)/n(é) = a(l)/n(l) for 1<<i=<v. Then by 7) we
get that ordsfi{0) = a(i), ordg,fi(0)/a*® = c(é), and b{i)/n(i) = aléi)/nii) = a(1)/n(1)
for 1=<é¢<<wv. Let a=a(l)+ ..+ afv) and ¢ =c(l) 4+ ... + ¢(v). Since F, =
= F(0) = f{0) ... fo{0) we get that ords#F, =a and ordg,F,./x*=c Clearly
b(é)/n(i)=a(i)/n(E)=a/n for 1<—i<v and hence by 3] we get that ord,y; =
=(a/n) ordrx for 1 <<i<<v and 1=<Cj<Cd(); since

v d{i)
FiZ) =1 I (Z — y;,Je®

f=1 j==1

we deduce that ordsF;=ja/n for 1=Cj<mn. Since c(i) < n(i) for 1 =<<i<<v
we get that ¢ << n. If ¢ == 0 then clearly {(a, ¢)==0(n); if ¢ =10 then ¢(1)=0
and hence a(1)=z0(n(1)), and hence a==z0(n) because a/n = a(l)/n(1). Thus
in both the cases (a, ¢} == 0(n).

Levmma 2.6 - Let B be a fwo dimensional regular local domain with
quotient fleld K and mawximal ideal M such thal B/M is algebraically closed.
Let (x, y) be a basis of M and let J be a coefficient set for R. Let w be a real
valuation of K such that w dominates B and w is residually algebraic over R.
Let (Bx, ox, yx) be the canonical k" quadratic transform of (R, x, y, J) along w.



S. 8. AmvanNrar: An algorithm om polynomials in one, efc. 39

Let F(Z) be o monic polynomial of degree n> 0 in Z wilth coefficients in R.
Assume that F{Z) is of prenonsplitting-lype relative fo ord.r and there exist
nonnegative integers a and c¢ such that ord,gF(0) = a, ordg.F(0)/x*=rc,
(@, ¢)==0(n), and ¢ <<n /2. Then there exist nonnegative integers k, d, e and
an By-translate F'(Z) of F(Z) such that upon letting fZ) = F'(xiyiZ) |(xys)”
we have that k< /|2, M C radpyiBx, fiZ) € BilZ], and 0 < ordg flZ) < n.

Proor. - Let d be the greatest integer such that nd <<a and let
o = a — nd. Since (a, ¢)==0(n} we get that (o, ¢)==0(n) and » > 1.

We claim the following: (1) Let { be any nonnegative integer such that

W(Yu) < w(wu) for 0 << u < ¢; then either: ( 1) there exist nonnegative integers

E and e such that upon letting fiZ) = F(x}y32) /{wg'y?c)” we have that O <<k <7,
k< m/2, MCradeyk, f\Z) € By[Z], and O <ordgflZ)<n; or: (2Z) {<<(n/2)—1,
o' > 0, and there exist nonnegative integers ¢ and ¢’ such that upon letting
9(2) = Pl yi 7) | yf)* we have that o <c—1{, MCradgy, g(%)€ EiZ),
ordy,z,9(0) = &', ordg,m gl (0)/xf = ¢, ordg [V )=mn, and g(Z} is of prenonsplit-
ting-type relative to ordmtR We shall prove this by induction on ¢ First
suppose that £ =0 and let fiZ) = F(x¥Z) /x"¥; then f(Z)€ R[Z), ord.zf(0)=d,
ordgf{0)/x* = ¢, and f|Z) is of prenonsplitting-type relative to ord,z; since
(@, ¢)==0(n) and ordgf(0) /x*=c < n we get that ordgf(Z) > 0, and if ordgf(Z) =n
then a’ > 0; therefore if ordzf(Z) < n then (1,) holds, and if ordgf(Z)=n then (2,)
holds. Now suppose that £ > 0 and assume that (1) is true for all values of ¢ smaller
than the given ome. If (1;-,) holds then clearly (1) holds. So now suppose
that (1;—,) does not hold. Then by the induction hypothesis (2¢—) holds. Let
e=1+d+¢ and fi2)=Fiyiz) @ yiy. Now f(Z)=gu2)/y}, Y=,
Xpy = T4t ordytgtzordgiﬂ, and ordy p,= or&;nf__igt_i. Therefore ¥ Cradgtyﬁ,
f(Z)€ R{Z], f(Z) is of prenonsplitting-type relative to ordy g, and ordg f(0) =
= ordy g fi0) = &’ > 0. Hence if ordgfiZ) < n then (1;) holds. So now assume
that ordg f(Z) =n. Since ord,, ‘gt 90) =a’ and ordgf_i;wéﬂg{(}} Jat = ¢ we
get that g(0)/af 1= sw_,+ syi, where S€R,, and s is a unit in
B;. Since ordg_ gl0)=n we get that ¢' = ordg,_g(0 ) /x>0 — o ;
consequently o -4 ¢ =>=n and ordgi_is =n —1—a, and hence s €BE,
where &' = s/t "%, Now f(0)/xf = g(0)/ (i 9 ) = s"x; + s'yf  where
¢'=a 4 ¢—mn, and hence ordR me)/oc?'wc” Since a’'<n and ¢'<<¢— (t—1)
we get that ¢’<<¢ — 4. Now a 4 ¢ =ordgp fQO = n and henee ¢’ == 1. Since
l<<cd"==c¢—1{ and c=<<n/2 we get that i<{n/2}—1 Therefore (2;) holds.
This completes the induction.

We shall now prove the assertion of the lemma. Since = is real, there
exists a nonnegative integer ¢ such that w(y.) < wlx,) for O<=wu < { and
w(ye) = w(a;). 1f (1;) holds then we have nothing to show. So now assume that
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(1;) does not hold. Then by (1) we know that (2;) holds. Liet £ = ¢4 1. Then
kE<mn/2 o= axr, and yxr = (ys/2)) — 8* with s*€J. Let ¢ = y; — s*a:. Then
Y = xryr and (x;, ¥ )Ry = M’ where M’ is the maximal ideal in R;. Let e=¢
and V=1 if $*=0, and e=0 and V = (yx -+ s*) if s* 3= 0. Then M Cradgyk,
and V is a unit in Bx. Let ¢'(Z) = glwxZ)/xk. Since ordpg(Z) =n we get
that g¢'(Z) € Bi[Z]. Now gZ) = 2"+ g.Z**+ ... + g Wwith ¢, ..., g» in R:.
Since ordrg(Z)=mn we get that

i
gi = Z gioei 'y? with gi;€R for l<<i<mn, 0<<j<i.
=0
Since B;/M' is algebraically closed, there exists » € B; such that +'¢ M where

r=r+4 > Gio™ "
i=1
Let d=1+d +¢ and F(Z) = F|Z + Vawysr). Then F'(Z) is an Ry-translate
of F(Z). Let fiZ) = F’(mk JkZ)/(wkyk Then fiZ) = V"g((Z ]|V}~ r); consequently

f(Z)ER[Z], and f(0) g (v)=V"glraz)] «r, and hence ordg fl0) = ordg kg(rwk)/wk

Now
w4

glree) = glra) = rma; + 3 gyr—ial Ty’ = i’ + 1)

fe=1 _f=0
where

n i

=X 2 gyriyk.

i=1 j=1
Since +' €M’ we get that ordgzs’ > 0; also clearly ordpr” > 0; therefore
ordg glrer)| ok > 0 and hence ordgfl0) > 0. Since ordyrg(0)=a" and
ordg j.,9(0)/ xf = ¢, we get that

g0/ a = ha, + Wy'® where hE€R;, WER;, W¢ M.

Let ¢ be any integer such that 1<C¢ <<u; since g(Z) is of prenonsplitting-type
relative fo Ord“’tﬂ’z we get that Ordwégtgg2’&.&’/% and hence ord, (B JiT gl
= (n — i) + (ia’/ n); since a’<<n and ¢{ <n we get that (n— z)( (@' /n)) >0
and hence w —i > a'— (ia’/ n); consequently (» — é) 4 (ia’/n) > o' and hence
ordwtgtg,-r“—"ml“"i > o. Thus ordxthg,r" et > o for 1=<i<<n; also ordtht'r"w?z
=n>da; now

g(?‘xt} —_— g(O) = rnw? _*_E gi”'n_iaf?—i
i=1
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and hence k'€ R; where h” = (g(rx) — g(0))/x: ™" ; consequently
glray jof = (b 4 1) + W'y'®, b+ B € Ry, WER,, W ¢ M.

Therefore ords g g(ra) = o' and ordgtmtg(rmt)/m?': ¢. Consequently g(rxy) =0
and upon letting m = ordg g(ra:) 2t we get that m<c'=c¢—t=(n/2)—i<n/2.
Since ordg,g(raz)/wi = m we can write

wm . w1 .
glray/at = T Guey YT - B Gy Ty
je==0 j=0
where G;€R:, G;¢J, and @;==0 for some j. Let b be the smallest integer such

that G &= 0 and let

m i m+1 .
G=32Gy;" and @ = T Gjyk.
j=b

=0

Then 0<<b<m, G'€Re, G is a unit in Ry, and glrez) /oy = xo(Gax + o).
Consequently ord,, r glrax)=m-+a’ and ordg glray) Jaep T < ordg, sz g(rax) et =
= b << m and hence ordeg(rmk)/wZ < 2m -+ @ — n. Since a’'<n and m<<n/2
we conclude that ordg, g(rex)/ xr <n and hence orde fl0) < n. Therefore

0 < ordp fiZ) <.

LemMa 27 —~ Let B be a two dimensional regular local domain with
maximal ideal M and let (x, y) be a basis of M. Let F\Z)=Z"+F,Z* ' +...+F,
with n >0 and F., ..., F, in B. Assume that there exislts an infeger u with
0 <u <mn such that F, is an B-monomial in x, ord,pzF;=(j/u) ord,grF, for
l=j=<u, and ord,gF;> (j/u)ord.zF, for u <j<n. Let d be the greatest
integer such that du << ord.pF., and let fiZ) = fle®Z)/x"d. Then f(Z)€ R[Z]
and 0 < ordpf(Z) < n.

Proor. - Obvious.

LevMma 2.8 ~ Let w be a valuation of o field K such that R./M, is alge-
braically closed and let p be the characteristic of R./M.. Let L be a (finite
normal exiension of K such that w does not split in L. If p=0 then let p'=1,
and if p==0 then let p’ be the highest power of p which divides [L:K]. Lel
q=[L:K]/p. Then there exists a unique subfield K of L such that K C K’
and [K';:K|=gq. Furthermore K' is a separable normal extension of K and
the group of all K-automorphisms of K' is abelian. If w is rational then the
group of ali K-automorphisms of K is cyclic.

Proor. - Let L' be the maximal separable extension of K in L and let
G be the group of all K-automorphisms of . Since R,/M,, is algebraically
closed and w does not split in L/, by a result of KRULL (see [11] or [21: § 12

Annali di Matemalica 6
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of Chapter VI]) there exists a normal subgroup & of G such that the order
of @ is p’ and G /@ is isomorphic to a factor group of the value group of
w' where w' is the valuation of I’ such that R, is the integral closure of
R, in I’ (in [21], G is called the large ramification group of »' over w).
Our assertion follows by taking K’ to be the fixed field of @& and noting the.
following: 1) if p4=0 and H’ is a normal subgroup of a finite group H such
that the order of H' is the highest power p® of p which divides the order of
H then H' is the only subgroup of H of order p°¢ (for instance see [22:
Theorem 3 on page 106]); 2) any finite factor group of any subgroup of the
additive group of all rational numbers is cyclic (for instance see [3: Propo-
sition 1]).

THEOREM 2.9 - Lel R be a two dimensional regular local domain with
maximal ideal M and quotient field K such that E|M is algebraically closed.
Let p be the characteristic of R/M. Assume that if p =0 = characteristic of R
then K contains a primitive p'* root of 1 and a (p —1)* root of p. Let (x, y)
be a basis of M and let J be a coefficient set for R. Let w be a rational non-
discrete valuation of K dominating R (by [2: Theorem 1] we know that w is
‘then residually algebraic over R). Let (R, xi, Yx) be the canonical k* quadratic
transform of (B, x, y, J) along w, and let Si be the quotient ring of Rp with
respect to xxR;. Let I be the set of all positive integers k for which there
exists an integer § with 0<<j <k such that w(x,) = w(y;) and wlx) << w(y;)
whenever j < i <<k (nole that I is then an infinite set). For any t€1I let Iff)
be the set of all k€1 such that k=1 (nole that for any t€1 and any integer
k=1t we have that x; is an Rr-monomial in xi if and ownly if k<€I). Let L
be a finite normal extension of K such that w does not split in L. If p=20
then let p'=1, and if p+0 then let p’ be the highest power of p which divides
[L:K). Let q=[L:K}|p. Assume that K contains o primitive ¢* root of 1.
Then we have the following.

(1) There exists t€1 such that Sy is totally ramified in L for all k€I{f).

(2) Let K be as in Lemma 2.8, and let R and Sy be the integral clo-
sures of By and Sy in K respectively. Then the inlegral closure of R, in K’
is the valuation ring R, of a rational nondiscrete valuation w' of K, and
for all k=0 we have that B is a two dimensional local domain, J is a coeffi-
cient set for Ry, Ri/M% is algebraically closed where MY is the maximal ideal in R,
w' dominates By, and w' is residually algebraic over Rj. Furthermore there
exists t€1 and elements Xp, ®x, yr n Ri for all k€ I(t) such that x = X,
and yi=1y: and such that for all E<I{t) we have the following: p € xxRx,
K'=K(Xy), X%/xr is a unit in Ry, xz/Xr 48 @ unit in Ry, Ri is regular,
(%, )R = M = (X«, yx)Bx, Sk is the quotient ring of Ri with respect to xiEf,
Sk and S; are totally ramified in L, (R, xx, Yx) 48 a canonical quadratic
transform of (Ri, xi, yi, J) along w', and X; is an Ri-monomial in x.
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(3) Let g(Z) be a monic polynomial of degree d>1 in Z with coefficients in R
such that g(Z) is irreducible in K[Z] and g(z)=0 for some 2€L. Let f{Z)=g(Z)° where e
is a positive integer and let n=de. Then d=0(p) if and only if p==0 and 2¢K’ where
K’ is as in Lemma 2-8. Assume that either R is a spot over a pseudogeomelric
domain, or d=]=0(p), or the following condition holds: 0==p = characteristic of
R, d=0(pj, ond g(Z)¢ K[Z™] where m is the highest power of p which divides d.
Then there exisis t'€1 such that for each k<€I(f') there ewxists rir € Ry and
nonnegative integers a(k) and ck) such that {da{k), c(k)}==0(n), ck}=0 if d==0(p),
ok)y<<n/p if d=0(p), and ords flri+ri)=a(k) and ordg s frs+ri) a2 =ck)
for all r¢€ By with ordsri = a(k)/n.

(4) Let f(Z) be a monic polynomial of degree n> 0 in Z with coefficients
in B such that flZ) = (Z — 2,) ... (Z — z,) for some 2., ..., 2, in L. Assume that
either R is a spot over a pseudogeomelric domain, or p =0, or the following
condition holds: 0 == p = characteristic of R and if g\Z) is any nonconstant
monic irreducible factor of f(Z) in K[Z] such-that the degree d of g(7) is divi-
sible by p then g(Z) ¢ K[Z™) where m is the highest power of p which divides
a (note this condition is satisfied if O == p = characteristic of R and f(Z) is
separable over K). Then either: 1) Z* is an R-translate of f(Z); or: 2) there
exists I’ €I, an Ry-translate F(Z) =Z"+ F.Z* "+ ...+ F, of f(Z) with Fy, ..., F,
in By, and an integer w with 0 < u <<n such that for all k€ I({l') we have
that Fy is an Ex-monomiol in wx, ordy g F; = (j/u) orde g Fu for 1<<j=<wu,
and ordkaij > (j/u) ordmkgklf’u for uw<j<<m; or: 3) there exists I €I such
that for each k€ I(t) there exists an Ry-translate F*(Z) of fiZ) and nonnega-
tive integers a(k) and ck) such that F*(Z) is of prenonsplitting-type relative
to ordy g, , ord, g F*(0)= a(k), orde/mka’c)(O)/w%(k) =clk), (alk), clk))==0(n),
clk) =0 if the degree of every nonconstant mownic irreducible factor of fiZ) in
K[Z] is nondivisible by p, and ok)<<n|p if the degree of some nonconstant
monic irreducible factor of fiZ) in K(Z)] is divisible by p (note that in both the
cases c(k)<<n/2). Furthermore, if Z" is mnot an R-tromslate of f(Z) then: 4)
there exist nonnegative inlegers i, d, e and an Ri-translate F(Z) of f(Z) such
that upon letting f(Z)=F(wiyiZ)/ (xlys" we have that M C radgy yiR;, f(Z)ER{Z],
and 0 < ordg f'(2) < n. 3

Proor oF (1) AND (2) - Let K’ be as in Lemma 2.8 and let Rx and 8%
be the integral closures of R; and S in K’ respectively. By Lemma 2.8, K
is a separable normal extension of K, [K':K]=g¢, and the group of all
K-automorphisms of K’ is cyclic. Since R /M is algebraically closed and w
does mnot split in L, we get that the integral closmure of R, in K’ is the
valuation ring B, of a rational nondiscrete valuation #' of K’ and A(R,) =
= h(R,) where h is the canonical epimorphism of B,  onto R, /M, , and for
all k=0 we have that Ry is a two dimensional local domain, J is a coeffi-
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cient set for Ry, Ri/My is algebraically closed where M3 is the maximal
ideal in Rp, #' dominates Ry, and w' is residually algebraic over Rj;. Since
K contains a primitive ¢'* root of 1, we can find 0= X €K’ such that K'=K(X)
and X9€ R. By [10: Lemmas 3.7 and 3.12] there exists # €1 such that for
all k€I(u) we have that p€mweRr and X¢/x7" is a unit in Re for some
nonnegative integer d{k); upon letting ¥ = X‘”e(k}/wﬁ(k)"e(k) where e(k) is the
greatest common divisor of ¢ and d(k) we get that ¥, €L and Y5 is a unit
in R,; pow e(k)==0(p) and hence by [8: Proposition 22] we deduce that
Yr€K; since [K:K]=¢q, K = K(X}, and X¢€K, we must have elk)=1;
therefore there exist integers m(k) and m'(k) such that m(k)d(k) 4 w'(k)g =1;
upon letting Xy = X"®up’™ we get that K'= K(Xz) and X%/ax is a unit in
Ry and hence by [8: Theorem 6] we get that Rz is regular and (X, yx)Ri=Mk;
since X%/ is a unit in RB; we deduce that S is totally ramified in K’ and
8% is the quotient ring of Ri with respect to XR;. Let (R{, x{, yi) be the
canonical #* quadratic transform of (Rs, Xu, yu, J) along #'. By [2: Theorem 3],
for each k € Iu) there exists a nonnegative integer i(k) such that Rjjx) = Rx
tor all Z€I(u), and ik) < i) for all & and %' in I(u) with k < k. By [10:
Theorem 4.23] there exists a nonnegative infeger ¢* such that §; is totally
ramified in L for all ¢=>¢* where 8} is the quofient ring of R{ with respect
to x/R{. We can take /€ I(u) such that i(f)=¢*. Then Sjf, is totally ramified
in L for all k€I(f). Now Xg/x, is a unit in R,, X#/w; a unit in R;, and x,
is an Re-monomial in x;; consequently X, is an Ri-monomial in X; and hence
X,/ X{ is a unit in R{ for some positive integer ¢; since (R, xiy), ¥iy) is a canonical
quadratic transform of (Ry, Xy, yu, J), there exists a positive integer ¢ and a non-
negative integer b such that X, J(xidyiy) is a unit in Ri; therefore X, /uity must be a
unit in RB;. For each k€I(f) there exists a unique basis (%, y%) of M; such that
(R%, xk, yx) is a canonical quadratic transform of (B, X;, g, J); note that
then o, = X; and i = ;. Let k be any element in I({); now X#/a; is a unit
in B;, X%/ is a unit in R, and u; is an Rr-monomial in ax; consequently
X¢ is an Rp-monomial in X, and hence Xt/X?c(k) is a unit in Rr for some
positive integer c(k); since (R, @k, yx) is a canonical quadratic transform
of (Bi, Xi, %, J), there exists a positive integer a(k) and a nonnegative
integer b(k) such that X,/(wx™y<™) is a unit in Ri; it follows that b(k) =0,
X; is an Rj-monomial in x%, and x%/Xx is a unit in Ri; now (B, k), Yix)
is a canonical quadratic transform of (Rf, xi(, #i», /) and hence there exists
a positive integer a(k) and a nonnegative integer b'(k) such that i,/ (w}?‘;‘;fk)y;g}(k))
is a unit in Rf; since X;/xiy is a unit in R we conclude that ay/aifk) is a
unit in RBi; since «k/xix) and xk/ Xr are units in Rz we get that Sixy =8k =
the quotient ring of R} with respect to xzRz. Since Si and Sjx) are totally
ramified in K’ and L respectively, we conclude that Sx and Si are totally
ramified in L.
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Proor orF (3) - Let K', Ry, 8i, #/, t, X, xk, yx be as in (2). By [10:
Lemma 3.7] there exists {”€I{t) such that Dx(g(Z)) is an Ri-monomial in ax
for all k€ I(t"). Let m = [L: K'(?)] and let f'(Z) be the minimal monic poly-
nomial of z over K'. First suppose that m —=1; then 2€K’ and hence d==0(p);
upon taking ¥=1¢", by Lemma 2.4(1) we get that for each k€I(f) there exists
7 € R and a positive integer a(k) with a(k)==0(n) such that for all ¥ € Ry
with ords e = alk) /n we have that flry -+ rk)/oc“(k) is a unit in Br and hence
ords, flry + re) = a(k) and ordg,» frx + ) 08 = c(k) where c(k) =0. So now
assume that m >1. Then p == 0, 2¢ K, f'(Z) is a monic polynomial of degree
m in Z with coefficients in ER,, f(Z) divides g(Z) in K'[Z], and by the first
part of Lemma 2.4(2) we get that m is the highest power of p which divides
d, and if g(Z) ¢ K[Z™] then ['(Z) &= Z™ -} f'(0). Hence by assumption, either: R
is a spot over a pseudogeometric domain, or: R is of characteristic p and
f'(Z) == Z» + f'{0). Therefore upon taking K', w', f(Z), Rt, xf, yi, { X;} respecti-
vely for K, w, f(Z), B, «, y, X in [10: Theorem 5.5] we can find #€I(") such
that for each k€ I(') there exists 7% € Ry and nonnegative a'(k), t'(k), ¢'(k) such
that ordy f’( x) = a'(k), ordy R f’(r}c)>b’(k) ordp- e f{m) oy By ®)) = ¢(k),
(o' (E), ()+c (%)) == O(m ()<:’m/p, and X;€radpyi"®; now X, is an
Rr-monomial in xf and hence we must have b'(k)= 0; therefore by Lemma
2.4(2) there exists 7; € Bx and nonnegative integers a(k) and c(k) such that
{a(k} ¢(k))==0(n) and ok) <n/p, and ordsflre + i) = alk) and ordg o flre +

rie) (k™ = ofk) for all rf € Ry with ordsr¥ = a(k)/n.

Proor or (4) - By Lemmas 2.6 and 2.7 it follows that if either 2) or 3)
holds then 4) holds. Therefore it suffices to show that either 1) or 2) or 3)
holds. Let g.(Z), ..., g.(Z) be the distinct nonconstant monic irreducible factors
of fiZ) in K{Z]. Then g(Z), ..., g,%) are in R[Z] and there exist positive
integers e(1), ..., e(v) such that 1Z) = filZ) ... fZ) where [iZ)= g{Z)*® for
1<i<<v. Let d(¢) be the degree of ¢i(Z) in Z and let n(é)=d(ie(s) for 1<<i<w.
Then # =wn(l) 4 ... +n(v). We can relabel the elements z,,..,#, so that
gz =0 for 1 <<é<<wv. For a moment suppose that d(i) =1 for some ¢; let
F(Z)=flZ + #); then F(Z) is an R-translate of f(Z) and F(Z)=Z"+ F. 2"}
+ ..+ F, where F,, .., F, are elements in B such that F,=0; let V be
the set of all integers j with 1<<j<<% such that F;==0; if V is empty
then F(Z) = Z* and we have nothing to show; so now suppose that V is
nonempty; by [10: Lemma 3.7] there exists #€I such that F, is an
Ry-monomial in o for all j€V; let u be the greatest integer in V such that
(1/u) ords F, = I}éi;l{l /j) ords Fy; then O <<u<<n and for all k€ I(') we have
that 7, is an R,:—monomia,l in g, ordsijz{ j/u) ordSkFu for 1<<j<u, and
ords F; > (j/u) ordsF. for u < j=<<n. So henceforth we may assume that
d(g) >1 for 1=i<<v. Now 0==D(giZ), g,(%)€R whenever 1 <<i<"w, 1<"j=<v,
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and ¢ =£j, and hence by [10: Lemma 3.7] there exists /"€ such that D{gi(Z),
g,Z)) is an Rz-monomial in a; whenever EE€I({"), 1<<i<wv, 1<<j<<v, and
i 4. By (1) there exists {€I({”) such that Sy is totally ramified in L for all
k€It). For 1 <i<wv, by (3) there exists #;¢I such that for each k€I
there exists rix € B and nonnegative integers a(4, k) and c(¢, k) such that:
(ali, k), ofi, k) ==0(n(@)), o, k) = 0 if d(5)==0p), ofé, k) < n(@)/p it d(i) = O(p),
and ords ﬁ{m -4 nk) = alt, k) and orde;m fidrie + mc) /;ra(’ F) — =cfi, k) for all
7% € Ry Wlth ordsk'mkz a(é, k) /n(@). First suppose that there exists T¢I, an
Ry~translate F(Z) = Z* + FZ* ' 4 ...+ F, of f(Z) with F,, ..., F, in Br, and
an integer # with 0 <# <#n such that F, is an Ry-monomial in a7,
ords, F; = (j/u) ords, F, for l="j<<wu, and ords F;>(j/u) ords,F, for
#<j<n; then for all k€ I(T) we have that F, is an Rp-monomial in axz,
ords F; = (j/u) ords Fy for 1 <<j<<u, and ords F;> (j /u) ords Fy, for u <j<mn;
and hence it suffices to take # = T. So henceforth we may also assume that
if & is any element in I, F(Z) = Z" 4 F,Z** + ...+ P, is any REy-translate
of f(Z) with F., ..., F, in Ry, and u is any integer with 0 <u <m such that
F, is an Rp-monomial in «; and ordgklf’j =1{f/u) 'ordskFu for 1=<<j="u, then
ordng,g{j/ %) ordngﬁ for some j with u <j<<n. Let {'=max({t, i, ..., lo}.
For any k€ I(f), by Lemma 2.5 there exists an Ex-translate F*)(Z) of f(Z)
and nonnegative integers a(k) and ¢(k) such that F*)(Z) is of prenonsplitting~
type relative to ords,, (a(k), ¢(k))==0(n), c(k)<c(1, k) +...+ ¢(v, k), ordSkFU‘)(O):a(k),
and ordg,j. F*10)/xx “(k) clk); it follows that c(k)=0 if d(@)==0(p) for 1 <i<w,
i.e., if the degree of every nonconstant monic irreducible factor of f{Z} in K[Z]
is nondivisible by p, and clk)<<n/p it d{i)=0(p) for some i, i.e., if the degree
of some nonconstant monic irreducible factor of f(Z) in K[Z] is divisible by p.

THEOREM 2.10 - Let B be a two dimensional regular local domain with
maximal ideal M such that R|M is algebraically closed. Let p be the characte-
ristic of R/M. Assume that if p == 0 = characteristic of R then E conlains a
primitive ptt root of 1 and a (p—1)" root of p. Let (x, y) be a basis of M
and let J be a coefficient set for R. Let w be a rational nondiscrete valuation
of K dominating B (by [2: Theorem 1] we know that w is then residually
algebraic. over R). Let (Ri, wi, yi) be the canonical #* quadratic transform of
(R, x, y, J) along w. Let R} be the completion R;. Let f(Z) be a monic poly-
nomial of degree w>0 in Z with coefficients in R. Then we have the following.

(1) There exists a nonnegative infeger i such that either: Z" is an
Ry -tramslate of f(Z) for all k=1i; or: there exist nonnegalive iniegers d and
e and an R} —translate F\Z) of (%) such that wpon letting g(Z) = F(aiys) ] (xiyd)"
we have that M C radp YR, 9(2)€ B [Z], and 0 < ordg:g(Z) <n

(2) Let I be the set of all positive inlegers k for which there exists an
integer §j with 0<<j <k such that w(x;) = wly,;) and wx) < w(y;) whenever



S. S. ABHYANKAR: An algorithm on polynomials in one, ete. 47

j<i<k (note that I is then an infinite set). For any tCI let I{f) be the sel
of all k€I such that k=1t (note that for any {€1 and any integer k=1 we
have that x; is an Ri-monomial in xr if and only if kK €I). Then either: 1)
there exisis a nonnegative integer i such that Z* is anm Ri-tramslale of f(Z)
for all k=i; or: 2) there exists t€1 and an infeger u with 0 <<u <n such that
for each k€ I(§) there exisis an Ri -translate FONZ)=z7+FP 7" 4.+ FF of f(7)
with FF .., FF in RE such that FY is an Ri-monomial in xx, ord, RtF( )
=(j/u) ord, RkF{ ) for 1<j<u, and ord, &}:F( ) > (j/u) ord, RkF( ) for
#<j==mn; or: 3) there exists t€1 such thal fm‘ each E€I{ty there exisis an
Ri~translale F®(Z) of f|Z) and nonnegative integers alk) and c(k) such that
F®z) is of prenowsp&éttmg—type relative to ords gy, ords,rtF™*}0) = a(k),
ord gy FEN0) o™ = ofk), (a(k), ck))==0(m), ck) =0 if p=0, and dk)<n/p
if p=£0 (note that in both the cases ¢ )gn/?).

Proor. - Let R"=R, and let K’ be the quotient field of R". By [5:
Proposition 1], for each nonnegative integer ¢ there exists a unique fwo
dimensional regular local domain R{ such that R is an " quadratic transform
of " and KN Ry = R;. For each ¢>>0 let M; and M; be the maximal ideals
in B; and R respectively, and let Ri* be the completion of Ri. Then by [5:
Proposition 1], for each 4=0 we have that Ry C R{y,, KNM{=M;, M;R{ =M/,
and there exists an ISO]IlOI‘phlSm ki of R{* onto Ry such that hj(s) =s for

all s€ R;. By Lemma 1.3, U R{ is the valuation ring R,~ of a valuation w"

of K" such that %" dominates R{ and »" is residually algebraic over R; for
all ¢=0. It follows that (R{, x;, ;) is the canonical ¢#* quadratic transform
of (R", =, y, J) along w"” for all ¢==0. Since w is rational nondiscrete, by
Lemma 1.2(9) we deduce that w” is rational nondiscrete. We can take a
finite normal extension L of K” such that f(Z) =(Z —=#.)...(Z — 2,) for some
1, ., 24 in L. Let L' be the maximal separable extension of K” in L. We
can take a valuation W of L' such that KN Ry == R.~. Let K’ be the split-
ting field of W over w". Then K'N Ry is the valuation ring R, of a rational
nondiscrete valuation »' of K’ such that K"NR,y == R,~. By [4: Proposition 1.46]
we get that »' does not split in L. Since L is a purely inseparable exension
of I' we deduce that w' does mnot split in L. By [9: Lemma 14]
there exists a nonnegative integer b such that upon letting 7'= the integral
closare of Ry in I/, P = MwN T, and @ = Tp» we have that K’ is the split-
ting field of @ over Ry. Therefore upon letting 7 = the integral closure of
By in K, P=MyNT, RR=1Tp, and M = PR, by [4: §3 and Theorem 1.47]
we get that B’ is a two dimensional local domain with quotient field K, M’
is the maximal ideal in R, R'/M is algebraically closed, »' dominates R, w
is residually algebraic over E', R' dominates Rj, MyR'=M', and H(R') = H(R})
where H is the canonical epimorphism of R onto E/M. In particular
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(s, yo)R'=M' and hence R’ is regular. For each ¢=0 let R; be the (i — b)""
quadratic transform of R’ along w', let M; be the maximal ideal in R;, and
let Ri* be the completion of R}. Since K'NR, = R.~, it follows that (R, x, %:)
is the canonical (i — b)'* quadratic transform of (R, @, %, J) along w' for
all i=b. Now R; is the quotient ring of Ri_,[x;, ¢} with respect to (Ri_i[w;, y.}) My
for all ¢>b; therefore R; is the quotient ring of R[isir, ¥oiu, «e\ iy ¥il
with respect t0 (B[®s41, Yogpas vy Xi, Y] VM, for all é>0; clearly
R [®pass Yopa, o5 Xiy Yi] = R2i, ;] and hence Rj is the quotient ring of R'a;, yi]
with respect to (R, #:]) N M, for all ¢ > b. Similarly R{ is the gquotient
ring of Rplws, ;) with respect to (Bp[w:, wi]) N My for all i>b. Now
M,» = K"N M,» and hence we deduce that R; dominates B for all by ¢=b.
Also then for each ¢==b we clearly have that M{Ri= M; and HRj = H{R{)
where H; is the canonical epimorphism of R; onto Ri/M;. Therefore for each
i=b; by [6: Lemma 2] there exists an isomorphism %; of R;* onto Ri* such
that hi(s) = s for all s€ R{. Thus for each ¢ =0, upon letting hi(s) = hi'(hi(s))
for all s€R*, we get an isomorphism 7%; of Ri* onto R such that his) =s
for all s€R;. If Z* is an R-translate of f{Z) then Z» = fiZ + ) for some
r' € R/, and hence for each k=0 we get that f(Z 4 hx{r')) is an Rf-translate
of f(Z) and Z* = f(Z + hi(r')). Therefore we have nothing to show if Z* is an
R'-translate of f(Z). Henceforth assume that Z* is not an RE'-translate
of f(Z). Since R’ is complete and E'/M" is an algebraically closed field of
characteristic p where M” is the maximal ideal in R”, for any positive integer
g with ¢=]=0(p); by HENSEL’S lemma we get that Z¢ —1=1(Z — 8})...(Z — sy)
with s, ..., 8; in R”; consequently R’ contains a primitive ¢'* root of 1 and
hence so does R'. Again since R’ is complete, by [12: (32.1)] we know that
R" is pseudogeometric. Clearly R’ is a spot over R’. Therefore by Theorem
2.9(4) there exist nonnegative integers i, d, e with 4>6 and an element #
in R; such that upon letting f'(Z)= f&lyiZ + r)] (aiy})* we have that
M'C radgyiRi, [\Z)€R{Z], and 0 < ordgf(Z)<n; let P(Z) = [f(Z + hi(r)) and
9(Z) = FlaiyiZ)] (xiy?)"; then M CradpyiRi, F(Z) is an R -translate of f(Z),
9(Z)€R}[Z], and 0 < ordpg(Z) < n. This completes the proof of (1). To prove
(2) let I’ be the set of all integers & > b for which there exists an integer
§ with b=_j < k such that #'(x,) = n'(y,) and w'(x)<w'(y:) whenever j<i<k.
It follows that I'C I, and if { and k are any integers such that (¢l and
k €I{t) then K€I. Therefore by Theorem 2.9(4) we get that: either 2') there
exists £€1 with {=>5 and an integer # with 0 <u <% such that for each
k€ I(#) there exists #x € By such that upon letting F'®)(Z) = f(Z + ri) = 2" +
4+ piogs-t 4L B with BB, . F,® in Ri we have that F,*) is an
Ep-monomial in e, ords g Fi® =(j/u) ordy g, Fu®) for 1=<j=<u, and
ord, 7 Fi® > (j/u) ordy g P,/ for u <<j=<<n; or 3} there exists {€1 with
t =5 such that for each k€ I{#) there exists rx € B; and nonnegative inftegers
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a(k) and c(k) such that upon letting F'®)Z)=f(Z + rx) we have fthat
F'*XZ) is of prenonsplitting-type relative to ordsa,, ordy e F'™(0) = a(k),
ordR/k,mkF’(’”(O)/wZ(k) = c(k), (alk), clk))==z0(n), c(k)=0 if p=0, and olk)<<n/p if
p=0. If 2') holds then upon letting F(Z)=AZ+huri)|=2"+F 2" 4.+ FP
with F{®, s F in RY we get that F(*)(Z) is an Rj-transiate of f(Z), FP
is an Bj-monomial in a, ordkangk)z(j/u) ordka;F;k) for 1<<j<wu, and
ardkaZF?‘:) > (j/u) ordmkR;Fif) for u < j<<mn. If 3') holds then upon letfing
FONZ) = fiZ + hi(re)) we get that F*)(Z) is an Rj-translate of f(Z), F*)(Z)
is of prenonsplitfing-type relative to ords g, ordw&R;F(’”(O) = afk), and
ordR;,mkF(k’(O)/wz(k} = ¢{k). This completes the proof of (2).

§ 3 - Nonrational valuations.

Derinition 3.1 - By N we denote the set of all nonnegative integers,
and by N? we denote the sef of all g-tuples b = (b(1), ..., b(g)) of nonnegative
integers. Liet K be a q dimensional regular local domain, let (X, ..., Xg) be
a basis of the maximal ideal in R, let J be a coefficient set for R, and let
y€R; then there exists a wunique gbj€J for all b€ N7 such that
Y = Ey(b)Xfm...XZ,(q} in the completion of E where the sum is over N¢; the
expression Zy(b)X " ... XX? is called the expansion of ¢ in J[[X;, ..., X1

LemMMA 3.2 - Let ey, .., eq be a finite number of positive elements in an
ordered abelian group G. Let v be the map of N info G given by taking
v(b) = b(l)e, + ... + blgleq for all b € Nv. Then we have the following.

(1) Let V be ony nonemply subsel of N4 Then there exists a€ V such
that v(a) < v(b) for all bEV; (note that if e, ..., eq are rationally independent
then a is uniquely delermined by V, and moreover v(a) < wvb) for all beV
with b == a).

(2) Assume that v(N9) is an infinite sel, and for 1<<j<<q and 1l<<k<q
there exists a positive integer m(f, k) such that wm(j, klex ==e;. Then there
exists a unique one-to-one order—preserving map of N onto »{N9.

(8) Assume that ey, ..., eq are rationally independent, and for 1 <<j<q
and 1 <<k < q there exists a positive integer m(j, k) such that mij, klex = e;.
Then there exists a unique one-to-ome map u of N onto N9 such that
v(u(f)) < v(u(k)) for all j and k in N with j < k.

Proor oF (1) - We make induction on g. The assertion being trivial
for g=1, let ¢ >1 and assume that the assertion is true for all values of ¢
smaller than the given one. Relabel e, ..., e, so that e;<<e, for 1=Ci<Cgq.

Annali di Matematica 7
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Fix d¢V and let n =d(1)+ ...+ d(g). Let V' be the set of all b€V such
that v(b) << v(d). For every nonnegative integer j let V, be the set of all b€V’
such that b(g) = 4. Let W be the set of all nonnegative integers j such that
j<<mn and V; is nonempty. Then W is a finite nonempty set and V' = U V,.

For each j€W, by the induction hypothesis, there exists a,;€ 7V, sucylfvzhat
ae, + ... + a,{qg — eg_, << b{l)e; + ... + blg — 1)e,, for all b€ V;. For each
j €W, we then have that v(a,) << v(b) for all b€V,. Clearly there exists LW
such that v(ax) << v(a;) for all j€W. Let a = ar. Then a €V and v{a) << v(b)
for all b€V’ and hence v{a) =< v(b) for all beV.

ProOF OF (2) - The uniqueness follows from the fact that the identity
map of N onto itself is the only one-to-one order-preserving map of N onfo
itself. To prove the existence, relabel e,, ..., ¢, so that e,<e;<Ce, for 1 <Ci=C"q.
By assumption there exists a positive integer m such that e,<Cwme,. For any
a and b in N? with o(b) << v(a) we have that e(b(1) + ... + blg)) << v(b) << v(a) <<
< eg(afl) + .. + a(q)) < mef(a(l) 4+ ... + afg)) and hence b(l)+...+blg) <
< mj{a(l).. 4 alg)). Consequently, for any @€ N? upon letting M, be the
set of all b€ N? with (b)) < wv(a) we get that M, is a finite set. Therefore,
for any o' €v(N9 wupon letting Mg be the set of all b'€w(N9) with b'<< o
we get that M, is a finite set; let p{a/) be the number of elements in Mg .
Then p is a one~to-one order-preserving map of v{N9 onto N. Therefore
p~*! is a one-to-one order-preserving map of N onfo v(NY).

Proor oF (3) - Now o(a) == v(d) for all ¢ and b in N? with a =6, and
hence our assertion follows from (2).

LemMA 3.3 - Let w be a valuation of a field K and let X, .., X, be a
finite number of nonzero elements in M,. Then we have lhe following.

(1) Given any nonempty subset V of N there exists a€V such that
WX ... X2 < w( X2V ... XY} for all bEV; (note that if w(X.), ..., w(X,) are
rationally independent thew a is umniquely defermined by V, and moreover
WX .. X2 < WXV .. Xy for all BEV with b= a).

(2) Let V be the set of all elements v in the value group of w such that
v = (X' ... XX?) for some b € Ne. Assume that V is an infinite sel, and for
1l=j=<gq and 1 <<k<"q there exisis a positive inleger m(j, k) such that
w( X5 k)}gw(Xj). Then there exists a unique one-to-one order-preserving
wmap of N onfo V.

(3) Let V be the set of all XEK such that X = X:V... X;@ for some
bENe. Assume that w(Xi), .., wiXy are rationally independent, and for
1<j<q and 1<<k<=q there exisls a positive inleger m(j, k) such that
w(Xp ") =mw(X,). Then there exisis a unique one-lo-one map H of N onfo
V such that w(H{j)) < w{H(k)) for all j and & in N with j <k.
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Proor, - Follows from Lemma 3.2 by taking e, = w(X,), ..., eg = w(X }.

Levma 3.4 - Let R be a local domain such that the completion E* of R
is a domain. Let X,, ..., X, be a finile number of nonzero nonunits in K. Let
w be a valuation of the quotient field K of R such that w dominates E and
w(Xy), ..., w(X,) are rationally independent. Let y€ R, let V be a nonempty
subset of N1, and for each b€V let yb) be a unit in B such that
yzbZVy(b)Xi’m .Xb(‘” in R*. Lel acV be as in Lemma 3.3(1}). Then

€

w(y) = w(X:Y ... X§).

ProoF. - We make induction on ¢. If ¢ =1 then y/X{" is a unit in
R and hence wiy) = w(X{"). Now let ¢ >1 and assume that the assertion
is trae for all values of ¢ smaller than the given one. By [1: Lemma 13]
there exists a valuation w* of the quotient field of R* such that w* dominates
E* and R,= KN By«. Then w*(X,), ..., w*(X,) are rationally independent.
Relabel X, ..., X; so that w*(X;)<<w*(Xy) for 1<<i<<q. Let n=qa(l)+...4-0a(q).
For every nonnegative integer j let V;, be the set of all 6 €V such that
b(q) =j. Let W be the set of all nonnegative integers j such that j << and
V; is nonempty. Then W is a finite nonempty set. For each j €W, by Lemma
3.3(1) there exists a unique a; €V, such that w*(X7™... X/'?) < w*(X2M... X212
for all 6¢V, with b4=a,. Clearly there exists a unique k€W such that
@ = ai. For each j€W, upon letfing

yi= % ybXi¥.. X)? e R,
bevV,

J

by the induction hypothesis we get that w*(y,):w*(Xff(l)...XZﬂ'(Q)). Conse-
quently w*(yi) = w*(X7™... Xg9) < w*(y;) for all j €W with j == k. Therefore
upon lefting y_ E y,GR* we get that w*(y)= w*(X;" ... X3¥). Clearly

(y—y)/ Xy € R and hence w*(y —y) > w*(Xg) =nw*(Xi™ ... X§'?). Therefore
w(y) = w* (X7 ... X5'¥) and hence w(y) = w(XI™ ... X4?).,

Leuma 35 - Let R be a q dimensional regular local domain with
maximal ideal M, let (X, ..., X,) be a basis of M, let J be a coefficient set
for R, and let w be a valuation of the quotient field K of R such that w
dominates B and w(X), ..., w(X,) are rationally independent. For any 0 ==y€cR
let ZyB)X:™ ... Xg? be the expamsion of y in J[[Xi, .., X,)], let V be the set
of all b& N¢ such that yb) =0, and let a€V be as in Lemma 3.3(1); then
w(y) = w( XY, X§?). Moreover, w is residually rational over R and
(W(Xs), ..., w(Xy)) is a free basis (as a module over the ring of integers) of the
value group of w.
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PRoOF. - By Lemma 3.4 we get that wiy) = w(X"... X3@). Given any
0 &= € K there exist nonzero elements ¢ and ' in B such that x =y'/y".
Let Ey’(b)X’l’(l)...Xg(Q) and Zy'(b) X2 ...XZ“Z) be the expansions of g and y” in
J[[ Xy, ., Xq]] respectively. By Lemma 3.3(1) there exist unique elements o
and o” in N¢ such that g(a) =0 ==y"(a"), (X V.. X5?) <w XV ... X}¥) for
all b€ N¢ with /(b)) =0 and b=a/, and WXL V... X2'?) < w(X;M... XJ'?) for all
bE N with #'(b) &= 0 and b == a”. By Lemma 3.4 we get that w(y)=nw(X7 *... Xj @)
and w(y") = w(XT D ... X2 P), Therefore wix) =mn(XT M™% ® | X307 @) This
shows that (w(X,), ..., w(Xy)) is a free basis of the value group of w. Now
suppose that « is a unit in R,. Then a"=a' Let z= . X;’(Q):
¢ =y —yla), and 2" =y —y'(@')z. Then w(y") = wiz) and by Lemma 3.4
we get that w(¥) > wig) < w(z"). Now #(a')/y"(a@’) is a unit in BE; also
x—(y(@) [y'1&) =" ()7 —y (@)} (y"(a)y") and hence wix—y(@)/y" (@) > 0.
This show that w is residually rational over R.

LevMMA 3.6 - Let R be a q dimensional regular local domain with
maximal ideal M such that R)M is algebraically closed. Let (X, ..., X,) be a
basis of M, let J be a coefficient set for R, and let w be a valuation of the
quotient field K of R such that w dominates B and w(X,), ..., w(X,) are ratio-
nally independent. Let f(Z) be o monic polynomial of degree n >0 in Z wilh
coefficients in B. Then we have the following.

(1) Assume that f(Z) is of prenonsplitling-type relative to w and let
04+ XecK such that w(f(0) =w(X"). Then there exists r€J such that
w(firX)) > w(X". Furthermore, if w(fl0)) = w(X") then r == 0.

(2) Assume that w is real, every R-tramslate of f(Z) is of prenonsplit-
ting-type relative to w, and for each r€R we have that either f(r)=0 or
w(fir)) = w(X¥ ... X59)") for some a € N4. Then fiZ)=(Z—2)" for some z€R*
where E* is the complelion of E.

(3) Assume that R is complete, every R-translate of f(Z) is of prenonsplit-
ting-type relative to w, and for each r€ R we have that either flry=0 or
wif(r)) = w(X ... X5 for some a€ Nt Then fiz) =0 for some 2€R.

(4) Assume that R is complete, Z* is not an R-translate of f(Z), and
every R-translate of f(Z) is of prenonsplitting-type relative to w. Then n>1,
fiz) &= 0 for all 2€ B, and there exists an R-translate F\Z) of flZ) such that
w(F0) = w( X7 ... X¥D) for some a€ N2 with a =z0(n).

Proor oF (1) - Let g(Z) = f(XZ)/ X". Then g{Z) is a monic polynomial
of degree m in Z with coefficients in R,,. By Lemma 3.5, w is residually
rational over R and hence R, /M, is algebraically closed and .J is a coefficient
set for K, . Therefore there exists r €J such that g(r)€ M,,. Since f(rX)/X»=gr)
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we get that w{f(rX)) > w(X?). If w(fl0)) = w(X*) then g(0)=f0)/X"¢ M,, and
hence r == 0.

PRrOOF OF (2) - Let V be the set of all monomials X:®..X"Y? with
be N1. Since w is real, by L.emma 3.3(3) there exists a unique one-to-one
map H of N onto V such that w(H{j)) < w(H(k)) for all j and k in N with
j<k. Since R/M is algebraically closed there exists »,€J such that
flro) € M; by assumption either f(ro) =0 or w(f(r)) = w(X?) for some
X€V; since flro)€M and HO)=1 we get that w(f(r,H(0))=w(H(1)*).
For k€N with k<=0 suppose we have defined r,€J for 0 < j <k such
that w(f(rH{O) + ... +rH()) =w(H{j+ 1 for 0<j<k; let F(Z)=
= flZ + r H0) + ... + reH(k —1)); then F(0)= flroH(0) + ... 4+ ri— H{k — 1))
and hence w(F(0)) =w(H(k)"); since F|Z) is an R-translate of f(Z), by
assumption we know that F(Z) is of prenounsplitting-type relative to = and
bence by (1) there exists rx€J such that w(FriH(k)) > w(HE)");
then w(f(roH(0) + ... + rH{(Ek))) > w(H(Ek)"), and by assumption -either
froH Q) + ... +reH(E) =0 or w(f(roH(0) +...+ riH{k))=w(X™) for some X'€V;
therefore we must have wir,H(0) 4 ... + rH(k)) = w(H({k + 1)*). Thus by
induction we have defined r,€J for all k€N such that upon letting
2r =1,H(0) + ... + rH{k) we have that w(flex)) = w(H{k 4+ 1)") for all EEN.
For each u€N there exists v(u)€N such that H(k)e M*» for all k€ N with
k==v(u) where M* is the maximal ideal in E*. Therefore there exists a
unique z € B* such that 2 — g€ M*» for all £ and w in N with k= v(u).
By [1: Lemma 13] there exists a valuation w* of the quotient field of R*
such that w* dominates B* and R,=KNR,+. Since R,=KNR,» we get that
w(fler))=w*(H(k+1)") for all €N, and hence w*(f(zx))=w*(H|k)) for all k€ N.
Since w is real and B, = K N R,», for each j€N there exists p(j)€ N such
that w*(y) =w*(H(j)) for all y€ M*r®; hence for each §€ N there exists
o{§)€N such that w*(z— zx)=w*(H(j)) for all k€N with k=c(f). Now fiz) —
— flex) € (2 —2x)B* for all k € N, and hence w*(f(z) — flzx)) = w*(H(j)) tor all k
and j in N with kZ=c(j). Also note that w*(X,), ..., w*(X,) are rationally
independent. Suppose if possible fiz)==0. Then by Lemma 3.5 there exists t€ N
such that w*(f(z)) = w*(H(f). Let a=1-4+{¢<+c¢(t+1). Then w*(flz) —
—~[za))=w*(H(t41)) and w*(f(z.))=w*(H({+1)), and hence w*(fiz))=w*(H{{-++1)).
This is a contradiction because w*(f(z)) = w*(H(})). Therefore f(z) = 0. Let
9 Z)=fZ 4 &) = Z" + g. 7"+ ... + gn With g;€ R*. Then g,=g(0) = f(z) = 0.
Suppose if possible that g; &= 0 for some ¢, and let ¢ be the smallest integer
such that g,==0; by Lemma 3.5 there exists {’€ N such that w*(g.)=wn*(H(t"));
let ¢ be the element in N such that H({) = X,H(I")* and let d = c(); then
w*(z — 2a) > wi(gy); let G(Z) = fiZ + 2a) = Z" + G, 4 ...+ G, with G;CR;
then G(Z) is an R-translate of f(Z) and hence G(Z) is of prenonsplitting-type
relative to w; consequently #(G})=w(G,) for all ¢ and hence in particular
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w*(Gy) = w*(Gy); now G(Z)=g(Z 424 — 2 and hence G, =g, + t*(zg — #)°
with ¢*€ B*; consequently w*(G7) = w*(gs) < w*(z — #a); also G, = G(0) =
= gleqa —2) € (gg — 2} B* and hence w*(Gy) = w*(G,) = w* (23 — 2); thus
w*{(G) < w*(G@,) which is a contradiction. Therefore g; =0 for all 4, i.e.,
112) = 17 — o

Proor oF (3) - There exist integers 0 = d(0} < d(1) < ... < d(e) = ¢ such
that upon relabelling X;, ..., X, suitably, for 1 <<i<<e and d{f —1) <j << d(j)
we have that for dii —1)<k<=<d(i): w(Xr?")=mw(X, for some positive
integer m(f, k}, and for d(é) <k=Cq: w(Xe)=w(X]') tor every positive integer m.
For 0 <i=Ce let V; be the set of all monomials Xg((?_l)+1 X&E‘;’;""d“—”) with
bE N*I—di—1 = and let Vo ={1}. For O0<<i<<e let W; be the set of all
monomials X534, ... Xo@ % with b€ Ne-d, and let W, = {1}. By induction
on % we shall show that for any integer ¢ with 0<<¢=Ce we have the following:
(3) given any s€ R and Y €W, such that w(f(s) =w(Y"), there exists z€R
such that w(fis +2Y)) > w(T*Y") for all T€V;. To prove (3,) let s€ R and
YEW, be given such that sv(fis)) = w(Y"); upon letting F\Z)= flZ-}s) we get that
w(F(0)) = w(Y"); since F|Z) is an R-translate of f(Z), by assumption we know
that F(Z) is of prenonsplitting-type relative to # and hence by (1) there
exists 2€ R such that w(FzY)) > w|Y"); clearly then w(f(s + 2Y)} > w(T"Y")
for all T€V,. Now let 0 < i< e and assume that (3;_,) holds. To prove (3
let s€ R and YEW,; be given such that w(fis)) =w(Y"). By Lemma 3.3(3) there
exists a unique one-to-one map H of N onto V; such that w(H{j)) < w(H(k))
for all j and %k in N with § <k; note that H({0) =1. For k¢ N suppose we
have defined r;€ B for 0 <j <k such that w(f(s + (o H(0) + ... + r,H{j) Y )} =
= w(H(j 4+ 1)*Y") for 0=<<j < k; then HE)YEW;:, and w(f(s 4 (rH(O) + ... +
+ reH(k — 1) Y)) = w(Hk)"Y"*), and hence by (3,_,) there exists 7€ E such
that wif(s + (1H(O) 4 ... + rH(E)Y)) > w(THE»Y" for all T"€Vi,; we
claim that w(f(s 4~ (r.H(0) 4 ... + re H(#))Y)) = w(H{k 4 1)*Y"*); this being
obvious in case f(s + (reH(0) + ... + rH(k))Y) = 0, now suppose that
fis + (roH(0) + ... + rHE)Y) == 0; then by assumption there exists X'eW,
such that w(fis + (r H(0) + ... + e HE)Y)) = w(X'™); then w(X') > w(T'H{k)Y)
for all 7€ V;_, and hence we must have w{X') =w(Hk + 1)Y); consequently
w(f(s + (1 H(O) + ... + 7 H(E)Y)) = w(H(k + 1)*Y*). Thus by induction we have
defined 7€ R for all k€N such that upon letting zz = r Hi0) +...4 riH(k) we
have that w(fls+2: Y )\ =w(H{k+1)*Y") for all kEN. Let M =(Xgi-1)t1, s Xai)B-
Then for each uw€ N there exists v(u)€N such that H{k)c M™ for all k€N
with %= v(u). Consequently there exists a unique 2€ I? such that & —zp €M™
for all & and » in N with Z==wv(u). Clearly for each j €N there exists p(j)€ N
such that w(y)=w(H(jj®) for all y€M'Pi>. Therefore for each j€ N there
exists ¢(f) €N such that w(e — zx) = w(H{j)*} for all k€N with k=c(j). Let
f'(Z) = fiZ 4 s). Then w(f'(0)) =w(Y"); since f(Z) is an RE-translate of fiZ),
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by assumption we know that f(Z) is of prenonsplitting-type relative to w
and hence upon letting g(Z) = f(YZ)/Y"* we get that g(Z) is a monic polynomial
of degree » in Z with coefficients in R,,. Now gig) — g(zx) € (# — 2x)E,, for all
k€N, and hence wig(z) — g(zx)) = w(H{(j)") for all k and j in N with k= c(j).
Also glzx) = fls + 2 Y)/Y" and wifis + 2 Y)) =w(H(k 4+ 1)*Y") for all k€N,
and hence w(g(zx)) =w{H(jj") for all £ and j in N with k=j4. Therefore
w(g(z)) =w(H(j)") for all j€N. Now f(s-+2Y)/ Y*=g(z) and hence w(f(s+2Y)=
=w(H(j)*Y") for all jEN, i.e., wifls + 2Y)) =w(T"Y") for all T€V;. This
completes the induction on ¢ and hence in particular (3,) is established. Upon
taking s =0 and Y =1, by (3, we i’ind zGR such that w(fiz)) = w(T") for
all T'¢V,. Suppose if possible that fiz) then by assumption there exists
X* €W, such that w(f(z)) = w(X*¢); then w(X*}>w(T} for all T€V, which is
a contradiction. Therefore f{z) = O.

Proor or (4) - Since Z* is not an R-translate of f{Z) we get that n>1.
Suppose if possible that f(2) = O for some 2€ R and let ¢(Z) = fiZ - 2}; then
g(Z) is an R-translate of f(Z) and hence g(Z) == Z*; since ¢(Z) is a monic
polynomial of degree n in Z with coefficients in R, » >1, g0 =0, and
glZ) = Z», we get that g(Z) is not of prenonsplitting-type relative to w; this
is a contradiction. Therefore f(z) 3= 0 for all 2¢€ E. Consequently by (3} there
exists r€R such that for all a€N? with a = 0(n) we have that wi{fir)) =
:4: w(XiW ... “"q)) Let F\Z} = f(Z 4 r). Then F(Z) is an R-translate of fiZ),

Hi0) = f() and by Lemma 3.5 there exists a€ NY such that w(F(0) =
= w(XM ... XZ(Q)). It follows that a == O(n)

LemMMA 3.7 - Let B be a two dimensional regular local domain with
maximal ideal M. Let (x,y) be a basis of M and let J be a coefficient set
for R. Let w be a valuation of the quolient field K of R such that w dominates
R, and wix) and wly) are rationally independent; (by Lemma 3.5 we know
that w is then residually rational over R). Let R; be the i'* quadratic transform
of B along w and let M; be the maximal ideal in R;. Let xo=x and y,=y.
Since w(w,) and w(y,) are rationally independent, there exists a uwnique basis
(s, ) of M; for all i> 0 such that w(e) and w(y:) are rationally independent
for all ¢> 0, and such that for all i >0 we have that: if wir;.,) < w(y;_,) then
®; = ®i—1 and Y; = Yi_y [Ti, and if wlei,) > wlyi) then x; = xi /Y and
#i = Y. (Note that if R/M is algebraically closed then (R;, x;, y;) is the
canonical i'* quadratic transform of (R, x,y, J) along w for all i=0). We
have the following.

(1) Given (a,b)e N* let (a(0), b0)) = (a, b) and define (a(i)), b(é) € N* for
all i >0 by the following recurrence equations: if w(xi_,) < w(yi_,) then
a(i) =a(i —1)+ bt —1) and b)) =bE— 1), and if wiri—) > wlyi_,) then
ali) = afi — 1) and b(i)= a(i—1) + bli —1). Then xsy® = xiP4!? for all i=0;



56 8. 8. Apuvankar: An algorithm on polynomials in one, efc.

and if v is a positive integer such that (a, b)=j=0{v) then (af), b(@))==0(v) for
all 1 =0. Given any positive infeger u let o'(i), a”(d), b'(Q), b"(i) be the unique
nonnegative integers such that ali) = a'(i) + ua”(é), &'(i) < u, b(i) = b'(8) 4 ub"(é),
and b'(i) < u; then given any nonnegative integer j there ewists an integer i
such that j<<i < j+ u and a'(i) + b'{i) < u.

(2) Given any finite number of nonzero elements G, ..., G, in R, there
exisis o mnonnegative integer j§ such that G, .., G, are Ei-monomials in
(i, vi) for all i=7.

(3) Let F(Z) be a monic polynomial of degree n>0 in Z with coefficients
in R such that F\Z)==Z" and F(Z) is not of prenonsplitting-type relative to w. Then
n>1 and there exist nonwegalive inlegers i, d, e such that for g(Z)=
= F(x{yiZ)/(xiys)" we have that g(Z)€ Ri[Z] and 0 < ordgg(Z) < n.

(4) Let F(Z) be a wmonic polynomial of degree n>0 in Z such that
F(Z) is of prenonsplitting-type relative to w and w(F(0)) = wlx*y®) for some
(a, b) € N* with (a, b)==0(n). Then n > 1 and there exist nonnegative integers
i, d, e such that for g(Z)= F(xiyiZ)/(uiy})" we have that g{Z)€ Ri{Z] and
0 <ordpg(Z) <m.

(5) Assume that R is complete and R/M is algebraically closed. Lel
f\Z) be a monic polynomial of degree n >0 in Z with coefficients in R such
that Z* is not an R-translate of f(Z). Then n > 1 and there exist nonnegative
integers i, d, e and an R-translate F\Z) of {(Z) such that for g(Z)=TF\aiyiZ)/ (aiyi)"
we have that g(Z)€ Ri[Z] and 0 < ordgg(Z) < n.

Proor oF (1) - By induction on ¢ it follows that wryp =t Pyt® for all i=>0,
and if v is a positive integer such that (a, b)==0(v) then (a(é), b)) ==0(v)
for all 4=0. For any ¢ >0 for which a(é —1) b —1)=u we get that:
if wixi,) < wlyi—y) then a'(d) =a'(i — 1)+ V(¢ —1) —u and b4 = b'({ —1) and
hence a'(d) +b(E)<a'(i - 1)+ (i —1), and if w(wiy)>w(y;—,) then d())=a'(i—1)
and b'())=a'(i —1)<4-¥(—1)—u and hence again a'(§)+b'(¢) <a'(¢—1)4-b(E—1).
Therefore given any nonnegative integer j there exists an infeger ¢ such
that j <<i<j+ u and a'(3) + V() < u.

ProoFr oF (2) - In view of Lemma 1.3 it suffices to show that given
0= G€ R there exists a nonnegative integer j such that G is an R;-monomial
in (x;, y;) for all ¢é=j. By Lemma 3.0 there exists (@, b)€ N° such that
G/(x*y®) is a unit in R,. By Lemma 1.3 there exists a nonnegative integer
j such that G/(x*y?) is a unit in R; for all i=>j. By (1) we know that %’
is an R;-monomial in (x;, %) for all ¢ =0, and hence G is an R;-monomial
in (x;, ;) for all ¢=j.

Proor oF (3) - Now n>1, F(Z)=Z*+ F,Z"* + ... + F, with F, ..., F,
in R, and w(Fx) < w{Fﬁ) for some k with 1<tk <n. Let u be the greatest
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integer such that w(Fu™)<w(Fn™) for all m with 1<=m=n. Then
l=u<n, Fy,+0, and F,/F,L€R, for 1l<<m=n. By Lemma 3.5 there
exists (a, b)€ N* such that F,/(x*y’) is a unit in R,. Then F.,/(x*y*)"€R,
for 1 <—m << n. Let a($), b(é), a'(d), a”(d), (), b"(?) be as in (1). By Lemma 1.3
there exists a nonnegative integer j such that for all ¢=j we have that
F./(x*y?) is a unit in R; and F,./(x*y’)"€R; for 1 <<m <n. By (1) there
exists an integer ¢ with j << ¢ < j -+ u such that a'(§) + b'(§) < u. Let d=a’(f)
and e=20"(G). Then w9 = (wiyd)"@i Py} ™) and hence F./(xiyii*€ R; and
ordg Fu/(aiyd* <u. Also, for 1<<m=<m we get that (F,/(x{y)")"€ R and
F,./(alyiy» € K; since R; is normal we deduce that F,/(xfyi/™ € R; for l<m=ln.
Therefore for g(Z)= F(m?ny)/(wgyf)" we have that ¢(Z)€ R;[Z] and
0 <ordrg(Z) <m.

Proor oF (4) - Since (o, bl==0(n) we get that n >1. Take w=mn and
let a(?), bé), a'(d), a"(¢), b’() b’(%) be the nonnegative integers defined in (1);
then by taking v == in (1) we get that (a/(¢), ¥(é))==0(n) for all i=0 and
hence a'(é) 4+ (i) > O for all ¢ =0. Now F(Z) = Z" 4 F.Z» '+ ..+ F, where
F,, .., F, are elements in R such that F,/(x%y® is a unit in R, and
Fo/(xvy?)m€R,y for 1 <m <mn. By Lemma 1.3 there exists a nonnegative
integer j such that for all i >3 we have that F,/(x%y®) is a unit in R; and
F,./(xeytym € R; for 1<<m <n. By (1) there exists an integer ¢ with j<<i<<j+n
such that a/(§)+ () <n. Let d=a’(i) and e="0"(3). Then z*y>=(xiyd) @ Vys®)
and hence F,/(xfy{)"€ R; and 0 < ordg F,/(xiyi)" <n. Also, for l<m<n
we get that (F,./(xfy)™)" € R; and F,/(xiy})" € K; since R;is normal we deduce
that F,,/(xlyd™€ R; for 1< m < n. Therefore for g(Z) = F(axlyiZ)/(xiy)" we
have that g(Z) € Ri[Z] and 0 < ordrg(Z) <.

Proor or (5) - Follows from (3), (4), and Lemma 3.6(4).

THEOREM 3.8 ~ Lef R be a Iwo dimensional regular local domain with
maximal ideal M- such that R/M is algebraically closed. Let (x, y) be a basis
of M and let J be a coefficient sel for R. Let w be a valualion of the quotient
field K of R such that w dominales R and w is residually algebraic over R.
Let (Ri, xi, yi) be the canonical " quadratic transform of (R, x, y, J) along w.
Let RY be the completion of R;. Let F(Z) be a monic polynomial of degree
n >0 in Z with coefficients in R. Then we have the following.

(1) Assume that wix;) = wiy) for all ¢ =0. Then either: Z* is an
R -translate of fiZ) for all k==0; or: there exist nonnegative integers i, d, e
and an R} -translate F(Z) of fiZ) such that wpon letting g(Z)=FlxiyiZ)/(xiyi"
we have that g(Z)€ Ri[Z] and 0 < ordpsg(Z) < n.

(2) Assume that x; =« for all i=0. For each i =0 let riy, be the
unique element in J such thot y; = 2y + rip). Then either: Z" is an
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Ri -translate of f(Z) for all k==0; or: there exist nonnegative iniegers i, d, e
and an R -translate F(Z) of f(Z) such that upon lelting y* = y; — (rip® +
+ ripa® ) ERS and g(Z) = Flady*eZ)/(x?y*9* we have thal g(Z)€ Ri[Z)
and 0 < ordpg(Z) < mn.

Proor. - By [b: Proposition 1}, for each ¢=>0 there exists a unique
two dimensional regular local domain R} such that R} is an #* quadratic
transform of Ry and KN R;=R;. For each i >0 let R;* be the completion
of Ri, and let M;, M;, M, M;* be the maximal ideals in R;, R;, Rf, R
respectively. Then for each ¢==0, by [5: Proposition 1] we get that R; C Riy.,
KNMi=M;, M;R;=Mj, and there exists an isomorphism %; of R;* onto R such

that hi(s) = s for all s€ R;. By Lemma 1.3, 8 R; is the valuation ring R,

=0

of a valuation #' of the quotient field of Ry such that »' dominates R; and
w' is residually algebraic over R; for all ¢=0. It follows that (R, »:, ;) is
the canonical #* quadratic transform of (R, =, y, J) along #' for all ¢ =0.
It Z» is an RF-translate of f|Z) then Z* = f(Z 4-r) for some r € Ry and
hence for each k=0 we get that fiZ - ki(r)) is an Rg-translate of f(Z) and
Z" = f(Z 4 hlr)). So henceforth we may assume that Z" is not an Rg~-tran-
slate of f(Z).

To prove (1) assume that w(w;) 3= wiy) for all ¢ =0. Then for each i=0
we have that either w;y, = x; and yiy, = yi/2i, OF ®iy, = i/y; and Yy, = ;.
Therefore #'(x) and #'(y) are rationally independent and hence by Lemma
3.7(5) there exists s€ Ry and nonnegative integers 4, d, e such that upon
letting F'(Z) = F\Z + s) and ¢(Z) = F'{wiyiZ)/(«iy])" we have that g(Z)€ R{Z]
and 0 <ordgg(Z) <n. Let F(Z)=F(Z + hs)) and g(Z)=F(xiyiZ)/(wiyi)".
Then F(Z) is an Rj-translate of f(Z), g(Z) € Ri[Z], and 0 <ordmg(Z)<n.

To prove (2) assume that x; =« for all i=0, and for each ¢==0 let 7,
be the unique element in J such that g = @Y + 7ip). Let yf =y —
— (Figa® + Pipod® + ) € R for all §=>0. Then M= (x, )RS for all i=0.
Now yf =y — (1@ 4 r2® + ... 4 r;@/) for all j =0. Consequently y'ai=y—
— (e 4 r® .)€ RF for all =0 and hence #fxi— Yyl € M} for all
i>=0 and j=0. In particular y; —yx’€ My for all j=0; also MHcM!cC
C M;* = 7' (M}') and hiye?) = yf for all =0 and j =0; consequently
Riyd) — g, € M¥T for all 4=>0 and j =0, and hence hiy}) = yia’ for all
i=0. Therefore y, x ¢ R} and hilyla"') = y! for all i=0. It follows that
w(x) and w(y;) are rationally independent and (R, @, yo x~%) is the canonical
i* quadratic transform of (R;, @, ys, J) along w' for all §=0. Therefore by
Lemma 3.7(D) there exists s € Ry and nonnegative integers 4, d, e such that

apon letting F'(Z) = F(Z+ s) and ¢'(Z) = F'(xyse—*1°Z)/ (2 (ysx—)°)" we have
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that ¢'(Z) € Ri[Z] and O <ordgg'(Z) <n. Let y*=yl, F|Z)= F(Z + hs)),
and ¢(Z) = F(x%*°Z)/(x%**). Then F(Z) is an R{-translate of f(Z),
gZ) e R} Z], and 0 < ordpg(Z) < n.
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