On the curvature of the tangent bundle.
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Summary. - The tangent dbundle is regarded as an almost product manifold. Connections
adapted to this structure are introduced. Use is made of the theory of submersions,

Introduction. - The relation between a manifold M and its tangent bundle
TM has been the subject of several papers since the appearance of SAasagr’s
paper [D] on the tangent bundle of a RIEMANNIAN manifold. Whereas SAsAKI
introduced a metric in T'M deftermined naturally by the metric in M, other
studies ([1], [6], [7]) have been concerned with the case in which M has a
connection V which can be used to determine various structures in TM.

Another point of view which has recently appeared is that of regarding
the tangent bundle and the frame bundle of a manifold as special cases of
almost product manifolds. Equafions generalizing the classical equations of
Gauss and CopAzzr have been used to relate the various sectional curvatures
of M and T'M ([2], [3]).

The object of this note is to show how certain special connections used
by WALKER ({8]) in his study of parallel diséributiors lead to some simple
expressions for the curvature tensor of TM.

2. -~ Almost product structures on a manifold.

Let M be a O~ manifold with an almost product structure defined on it
by a (1,1) tensor V which is a projection, i.e. for which V?=V. Let H =1~
— V so that H is also a projection and if L =2V — I we shall have L?=1
Associated with any two (1,1) tensors such as V and H is the well known
torsion tensor ([4], p. 37), which, for any two vector fields X and Y on M
has the expression

21)  Sur(X, Y)=[HX, VY|+[VX, HY |+ HV[X, Y]+ VH[X, Y]—
— H[X, VY| — H[VX, Y] V[X, HY]— V[HX, Y]

In the particular case in which V4 H =1, this can be reduced to a form
which is particularly convenient for our purpose:

2.2) Su X, Y)= — 2H[ VX, VY| —2V[HX, HY)

(*) Entrata in Redazione il 23 agosto 1968.
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We shall use V (or H) to denote the «vertical» (or «horizontals) distribu-
tion as well as the (1,1) tensors used to project, so that if X and Y are arbi-
trary vector fields defined on M, then VX, VY and HX, HY are respectively
their components in the vertical and horizontal distributions respectively.

It is immediately obvious from the form of the torsion tensor given in
{2.2) that if the vertical distribution is integrable, the bracket [ VX, VY] lies
in V, and hence the first term on the right hand side will vanish. Similarly
for the horizontal distribution, its integrability will imply that the second
term on the right hand side of (2.2} will vanish. The form (2.2) therefore
stresses the relation of the torsion tensor to the integrability of the almost
product structure.

In recent papers GRAY [2] and O’NEILL [3] have introduced two «confi-
guration tensors» defined by

TxY = HVyx(VY) 4 VVx(HY)
OxY = HVux(VY) + VVux(HY) writien 4xY in [3]
If we write
(2,3) AX, Y)=TxY + 0xY=HVx(VY) 4+ VVHY)
this tensor will be related to the configuration tensors by
(2.4) A(VX, Y)=TxY, AHX, YV)=0xY

In terms of this notation we can express certain facts which we shall need.
The distribution H is parallel with respect to the connection V if, for arbi-
trary vector fields X and Y, the VxHY} is in H, or if VVxHY) vanishes,
where in the last expression the V is a (1,1) tensor used to obtain the com-
pouent of the vector field in the distribution V.

We can therefore express these facts in terms of the tensor 4 by saying
that H is parallel with respect to V if

(2.5) AX, HY) (V)= VVxHY)=0

and V is parallel with respect to V if

(2.6) AX, VY) (V)= VVx(VY)=0.

Both H and V are parallel therefore with respect to V if
(2.7 AX, Y) (V)= AX, HY) (V) ++ A(X, VY) (V) =0

” g - . . :
Now let V be any symmetric connection in M (such as the torsion free con-
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nection determined by a metric g), and define V by

(2.8) ViY = ViY + D(X, V)

where D(X, Y} is a (1.2} tensor. If we now form A4(X, Y)(V), it can be expre-
ssed in terms of 4(X, Y) (%’) in the form

(2.9) AX, Y) (V) = A(X, Y) (V) + HD(X, VY)+ VD(X, HY)

so that if we take

(2.10) DX, V)= —A(X, Y) (V)

we immediately conclude that

(2.11) AX, Y)(V)=0

Hence we have proved that given any arbitrary symmetric connection, a new
connection can be constructed from it with respect to which both distributions

V and H are parallel. The new connection V will not of course be torsion-
free unless the distributions are integrable [8]

3. - Some special connections.

In the paper reforred to, Walker has proved that for any two complemen-

0
tary distributions V and H, there exisis globally a symmetric connection V
with respect to which V and H are (i) relatively parallel (ii) path parallel.
0

In the notation now used relative parallelism with respect to a connection V
for V and H ecan be expressed by

(3.1) (@) VOHY)=0 (b HVax(VY)=0

0
and path parallelism with respect to ¥V can be expressed by

(32) (a} V[GVHx(If Y} -+ %Hy(HX” =0 R
(b) H[%VX(VY) + VOVY{VX)] =0

[
It we assume given an arbitrary symmetric connection VV on M, a con-

¢
nection V satisfying the above two conditions is given by Walker in the form

(3.3) Vx¥ = VsY + BX, ¥) (V)
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where, in the present notation

(84)  2BX,Y)=— 24X, Y)+A(Y, X)] 4+ [AHX, HY) + A(HY, EX)] +
+[A(VX, VY) 4+ A(VY, VX)]

0
It is easily verifiable that (3.1) and (3.2) are satisfied by the ¥V connection so
constructed.
Now let us assume that, in addition to the conditions (3.1} and (38.2) we
have also the integrability of the vertical distribution, which, in view of the

0
fact that for a torsion-free connection such as V we have

§07me %yX: [X, Y]
gives the additional condition
(3.5) H[OVVX(VY) — \07rfy( VX)]=0
which, combined with (3.2,) gives
(8.6) H%VX(V Y)y=0

If we write the above conditions in terms of the A Tensor we have

(3.1 (a) A(VX,HY)(V)=0 (b A(HX,VY)(V)=0
(3.2) (8) AEX, HY) (V) + AHY, HX) V) = 0

0 0
(b} AVX, VY)(V)+ 4VY, VX)(V)=0
0 0
3.5 AVX, VY)(V)— A VY, VX) (V) =0
When these relations are satisfied, we can write

(3.7) BAX, Y) (V) = 24(HX, HY) (V)= V[HX, HY

4
so that the A4 tensor formed for the V connection is equal, to within a num-
erical factor, to the torsion tensor of the almost product structure and does

0
not depend on the connection V at all,
We can further remark that, from (3.1 b) and (3.6) we have

(3.8) A(X, VX) (V)= HVSVY) =0
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which expresses that the integrable distribution V is parallel with respect to
0
the symmetric connection V.

4. ~ Case where M is a tangent bundle.

We apply these results to the case of the tangent bundle 7M of a ma-

M
nifold M in which there is defined a symmetric connection V. The vertical
distribution V is then given by the fibres and the horizontal distribution H

is the complementary distribution which determines the connection g In this
context we quote a lemma due to DoMBROWSKI [1] used also by other authors
{[2), {7]) which states that if X is a vector field defined on M, and if X* and
X* denote respectively the horizontal and vertical lifts of X, then for two
such vector fields X and Y,

4.1 [X®, Y] =0,

4.2) [XP, Y*] = (V2 V)

(4.3) H[X Y] =X, Y],

(4.4) VXY Y4 = — R(X, Y) (V)= — R(X, Y)

As a particular case of a manifold in which two complementary distri-
butions are defined, one of which, V is integrable, we have the relations

¢
already proved which, for this case, and for the V connection, can be written

o
(4.5) VW YF=0

g
(4.6) HVY" =0

0 0
4.7 V[V ¥+ VXM =0,
8

(4.8) HVpY" =0

(4.1) and (4.8) will be consistent if we assume

8
(4.9) VU Y =0

Writting (4.4) in the form

(4] 0 M
(4.10) V[V Y* — VXM = — R(X, Y)
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and combining with (4.7} gives

M

0 g
(4.11) 2V Uy Yt = —2VVp Xt = — R(X, Y)

0

0 M
Combining (4.2) written in the form V[V Y'—VyXi]=(VxYp with (4.5
we deduce

0 M
(4.12) VVeYo=(VxY)

Similarly combining (4.2) written for the horizontal component

H{V Y — Uy X7 =0
with (4.6) we dedunce
(4.13) H%y” Xt=0
(4.3) will be satisfied by taking

0 M
(4.14) HV2Y = (Vx Y)

M
(Given a symmetric connection V in M therefore, the conditions (i) relative

parallelism (ii) path parallelism (iii) integrability of the fibres, enable us to
0
determine a global symmetric connection V in T'M. The only non vanishing

0 0 1]
components of the connection are HVxY* VVyY® and VVgYh

If we now define another connection (with torsion) V in TM related to
0
V by
[
(4.15) VY =Y — AX, Y) (V)

0
we immediately verify that components of V and of V coincide except for
0

VVy" Y* which vanishes for V. For the connection V therefore the only non
vanishing components are

(4.16) HYxY" and VV4Y"

5. - Expressions in local frames.

Let U be a coordinate neighbourhood of M and =n—*(U) the corresponding
2n-dimensional neighbourhood of TM with the 2n coordinates £{a =1, 2 ..., 2n)
of a point of TM satisfying & =o' {(for ¢ =1,2 ..., n) with «' as a system of
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coordinates in U and "t =E" =y with ' as the eomponents of a veetor at

the point o of U. If we write & = 3/2x" &-=203/dy" with V 20 = l"@k and
and Il = (F' oﬂl)J we can write, following DomBrowsKI [1], for the horizontal
and vertical lifts of the natural base vectors, the following

(5.1) (a,)h =g = d — F:”‘am*, (é‘i)” el (7P Rser 3,-*

and, on evalnating [e,, ;] = O/ e, we have, on letting the letter M over R
M
indicate the curvature tensor for V

(5.2) [el‘, 3]’] (R mOTC)y [
M

{5.3} [85, 6}*} = (gf] o‘ﬂ:)egﬁ*
(5.4} {ei$, ej*} =0
8o that

. M M
(5.5) Ot = — (R ot on)y", Ol = Ilom

0
and the ofther coefflcients U all vaunish. The coefficients of the connection ¥V,
obtained in the last section, can therefore be written, on taking X =23, Y=
=0j, a8
« ko a

(5.6) I‘ :1]‘k*_f oT, Zl‘ ““‘-—2[2}.:-—(3}:&0%)9“

and all the other coefficients vanish.
The correspouding coefficients of the V connection defined in equation
(4.15) would coincide with (5.6) except for I’]; which vanishes, and

(5.7) F‘ o= T _l’ oTt .

Ji*

The components of the curvature tensor of TM (with indices running from
1 to 2n) are

(5.8) By 4V) = eT%~ 1% D20 — T4 1s — O T

and of the torsion tensor

(5.9) Ty=1I;,—Ts —C;

¢
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The only non vanishing components of these tensors are, for the V connection

M

(5.10) R;i(V) = R; (V) = Ryjon

i il ikl

M
(6.11) it = -Gy ’*-“:(R;;;: OTC)M
0
For the V connection in TM the torsion temsor vanishes, and the curvature
tensor, in addition to the components which do not vanish for the ¥V connection,
has the following non-vanishing components:

) 0 M M . M M e

(5.12) 2R, (V) = 97 {Vi By — V, By i
0 0 M

(5.13) 2B (V)= — 2B (V) = Bylom

From these two sections we can therefore deduce

M
Tarorem 1. - If the manifold M has a torsion-free connection V, the

0
tangent bundle M has a torsion-free connection V with respect to which
the fibres are parallel. The horizontal distribution will only be parallel with

Q M
respect to V if (M, V) is flat. The tangent bundle has also a connection V
with respect to which both the fibres and the complementary horizontal dis-

M
tribution are parallel. The conneection V is torsion-free if and only if (3}, V)
is flat.
M
TueoreM 2, - If the manifold M with torsion-free connection V has pa-

M M
rallel curvature, i.e. V E=0, the tangent bundle 7M will have parallel car-

vature with respect to the connection V. It will have parallel curvature with

0 M
respect to the connection V if and only if (M, V) is flat.

6. - The tangent bundle of a Riemannian manifold.

1f the manifold in which two complementary distributions are defined is
Riemannian, and if X and Y are arbitrary vector fields tangent to the ma-
nifold, we can define a metric with respect to which ¥ and H are orthogonal
by putting

6.1 <X, Y>=<HX, HY > 4 < VX, VY >
in which case

(6.2) < HX, VY> =0
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Having introduced a Riemannian metric with respect to which the distributi-

g
ons V and H are orthogonal, the unique Riemannian connection V which is
torsion-free is given by the formula ({4], p. 160

(6.3) 0 7, VY > = X< Y, Z>+ 1Y <7 X>—Z<X, Y> +
+ <Y [Z, X]| >+ <Z,[X,Y]>—< XY, Z]>

A Riemannian metric together with a torsion tensor T(X, Y) also determines
a unique connection V by the formula

(6.4) 2< B, VxY>=X<Y,Z>+Y<Z, X>—Z<X, Y >+

Now let us pass to the consideration of the tangent manifold M of a

M
Riemannian manifold M with its unique Riemannian connection V. If X* X»
are again the lifts of vectors from M to T'M the metric in TM has been de-
fined in terms of the metric in M by SasAxI and others ({5}, 2], (3]} by sefting

{6.5) <X Yo = <X, Y > = <X, Y>> on

Applying the general formula (6.3) to a few particular cases, we obtain,
on using the DoMBROWSKI lemma, the following:

6.6) < Y > =< Y, 2 XN >
6.7) Qe 20, U Y > = — < Xo, [YH, Z4]>
(6.8) < IH VY > =0
(6.9) 2, U Y > = < 72, (X, YA >

g M
(6.10) < ZNY > = < Z,VxY > en
6.11) <7 e Yr> =0
(6.12) < T, O Yo > =0
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It the connection, instead of being the torsion-free Riemannian connection,
is a connection V with torsion, the general formula (6.4) would give, corres-
ponding to (6.6)

(6.13) 2 < 78, T Y > = < Y, [ZF X"+ T2 XM >

with corresponding expressions replacing (6.7) and (6.9). If we determine the
torsion temsor T by

(6.14) T(X* Y =— V[X*, Y#

then the corresponding components of the metric counection ¥V will vanish
and the only ron-vanishing components of the T connection will be < Z*,
Vi Yh> and <Z°, Tyt Y7 >,

g
It is to be remarked that the Riemannian {forsion~free) connection ¥V does
not make the distributions V and H relatively parallel, since that would de-

£ £
mand the vanishing of both < 7%, Ve Y*> and <« Z+ Vy"Y" >. A torsion-
0
free connection ¥V which does satisfy the condition of relative parallelism and
£
path parallelism ean be deduced from V by the formula given in (3.3), but
Y

g
since the V is the unique torsion-free conunection which is also metric, the V7
connection is not metrie.
For these different connections we can state

THEOREM 3. - Let there be given (i) a Riemannian space M with its uni-

M
que torsion-free cunnection V/, (ii) the tangent bundle TM with its metric (6.5)

8
and torsion-free connection W, (iii} the mefric connection ¥V whose forsion is
given by (6.14), then (a) the vertical distribution V (the fibres) is parallel with

respect to both V and %, (b) the distribution H is parallel with respect to V,
(¢) the paths of ¥V and of 6 coincide,

7. - Cuarvature of the tangent bundle.

If we use the above notation for the horizontal aud vertical lifts of vector
tields defined in M, the various sectional curvatures of TM will have such
expressions as <R(X" Y*}Y*, X* > where E may refer either to the ¥V or to

g
the ¥V connection. We now proceed to show that the non-vanishing compo-

nents of B(V) and of R(%) can be expressed in terms of the components of
M

R =E(V). For this purpose we refer to local frames as in {5.1). The components
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of the metric (6.5) will then be
(7.1) <&, > =<e@s, x> = <3¢, >on=zxgyon

and (6.2) takes the form <e;, ¢s+> ==0. The general formula corresponding to
(6.3) is now

£
{7.2) 21, = g eagsr + e g — €1 g) + Ot — g% (g Ot + 900 Cyf).

On proceeding as in (5.2)-(5.6) we now obtain

g, g " M .
(7.3 M=% = I‘;,k o
g S8, ) v o B
(7.4) 21";*32 = 21‘;}.* = — g™ Gy O, 2{‘;’; = C;

and the others vanish. If is to be noted that in (7.4) the g = gion and that
Cp* = (B omly™. The general formula corresponding to (6.4) is obtained by
replacing C-¢ in (7.2) by C,7 4 T';* and the particular choice corresponding
to (6.14) would be to take all the components of T vanishing except 1"
which is taken so that C;*+ T,”=0. With this choice the coefficients I' of
the connection V all vanish except

, e b
(7.5) L=l =TIon

=
and the components of the curvature and torsion are expressed in terms of
the R(VM) tensor as in (5.10) and (b.11).

For the %7 connection however the expressions for the different compo-
nents of the R(é) tensor are more complicated than the corresponding expres-

0
sions for R(V) in (5.12) and (5.13), a consequence of the fact that the comple-

&
mentary disributions are noi relatively parallel with respect to the V con-
nection.
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