On the Linear Conservative Dynamical Systems.

By Aurer WINTNER (Baltimore).

Let n be the number of degrees of freedom of a linear dynamical system.
In the present note capital letters will denote real matrices with 2n rows
and 2n columns and greek letters real matrices with » rows and n columns

E:(s w)
W e

where E and ¢ are the unit matrices and o is fthe n-rowed zero matrix.
The letter G will be used for the matrix of the bilinear covariant (') which
is a skew-symmetric and orthogonal matrix:

so that, for instance,

£ W

(1) G:(‘”‘E), G=—6 @=0G"

The prime denotes the operation of the transposition whereas differentiations
with respect to the time ¢ will be marked by a dot. The point (g,,.... ¢n,
Piyee; Do) of the phase-space will be denoted by (x,,..;, @n, Tyiysees yn)
or simply by «. Finally, y = 42 designates the vector into which the vector =
is transformed by the matrix 4. This linear transformation and its matrix
are termed non-singular if det 4 5=0.

A system of 2n ordinary diffevential equations of the first order which
are homogeneous, linear and do mnot contain { explicitly clearly is a canonical
dynamical system if and only if there exists a symmefric matrix H such
that the differential equations may be written in the form Gx = Hz. In
fact, I7 is up fo the factor 2 simply the matrix of the 2n~ary quadratic form
which represents the Hamiltonian function. Since G—'—= — @G, one may write

2) # = — GHx where H=—H".

A non-singular matrix C which is independent of ¢ will be termed a
Homiltonian matrie if the transformation x = Cy sends every differential

(1) Cf. T. Lmvi-CiviTa and U. AMarpIi, Lezioni di wmeccanica razionale, Vol. 2, Part IT
(1927), pp. 308-3811.
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system of the form (2) into a differential system of the same form. It may
be shown without difficulty that these substitutions » = Cy constitate a
subgroup of the group of all contact transformations (*), viz. the subgroup
consisting of those contact transformations in which all transformation formulae
contain but linear forms which are independent of {. The dynamical impor-
tance of this subgroup seems fo warrant the presentation of an « elementary »,
i. e. purely algebraic, theory of these transformations, which is the object of
the present note. The results thus obtained are correspondingly more explicit
than if formulated in terms of the general analytical theory of Jacosr
and Lige. Incidentally, there proves to be a formal analogy with the transfor-
mation theory of the parameters of multiple theta series or of the periods
of Abelian integrals (*).
One may start with the remark that ftwo fixed non-singular matrices,
A and B, satisfy the symmetry relation (AHB) = AHB for every symmetric
matrix H = H' if and only if there exists a number s==0 such that A" =sB.
For on placing M' = A'B~*, the condition (AHB) = AHB is equivalent
to MH — HM' where H = H' is arbitrary and may therefore be chosen = E.
Hence M = M’'. Now MH = HM holds for every H==H' if and only if M
is of the form sE. This is easily seen by direct substitution if M is a
diagonal matrix. If it is not presaupposed that M is a diagonal matrix
then M = M’ may be transformed by means of an orthogonal mafrix R into
a diagonal matrix RME~' whercas R transforms the set of all matrices
H—= H' into itself. Hence the matrix RMRE~' which is a diagonal matrix is
by the previous remark = sE so that M = sE although it is nof presupposed
that M is a diagonal matrix. Finally, s==0 inasmuch as sE=M = M'=A4'B~*
is the product of two non-singular matrices. Thus 4'=sB, s==0, ¢. e. d.
On substituting « = Cy into (2) one obtains y = — GKy where
= — GC—'GHC inasmuch as G = — G~'. Hence Cis a Hamiltonian matrix
it and only if K in y= — GKy always is the matrix of a 2n-ary quadratic
form, i. e. if and only if K==K' whenever H= H'. Now K= K' may be
written in virtne of H— H' and &' = — G = G—! in the form (AHB)Y =AHB
by placing 4 = C—*G and B = CG so that () det 4 =0, det B==0. This is,

(® Cf. 1. Lmvi-Crvrra and U. AmaLpr, loe. cit., pp. 310-816 and 324-327.

(3) Cf. G. FrosENIUS, Usber die principale Transformation der Thetafunkiionen mehrerer
Variablen, « Journal fiiv reine und angewandte Mathematik », Vol. 95 (1883), pp. 264-296,
§ 1, ete. or C. JorDAN, Traité des substitutions, 1870, Chap. 11, § 8.

{4) On the other hand, det H may or may not vanish.
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as we saw, equivalent fo A'=—sB or, since A= C~'G, B = 0@, simply to

(3) C'GC=sG; |det Cl=|s|">0

if one writes s instead of — s—'. The matrix K = — GC—'GHC belonging to
the transformed Hamiltonian function takes in virtue of (3) and (1) the form
(3-a) K=s"'C'HC.

The necessary and sufficient condition (3) for a Hamiltonian matrix (
states that the bilinear form in cogredient variables which belongs to (1) is
a « relative invariant > of a non-singular linear substitution if and only if
the malrizc of this substitution is o Hamiltonian matric. The group of the
Hamiltonian matrices, in contrast with the rotation and reflexion group of
the euclidian or of a pseudo-euclidian space, cannot be characterized by the
absolute invariance of a bilinear form. This is clear from (2) where the unit
of the time is undetermined. In a more precise manner, C'GC= G need
not hold even if |[det C|==1. This is illustrated by the Hamiltonian matrix

0= (e o>>
©w —€
for which ¢"GC = — G == G although |det C|=|(—1)"|=1.

On choosing in this example n» =0 (mod2), it follows that det ¢ > 0
is compatible with s < 0. On the other hand, s> 0 s wnot compatible with
det << 0. In fact, since det (rG — @) ==det[(r 4+ 1)G| = (r 4- 1}** does not
vanish at » =1, it follows from a theorem of FROBENIUS (%) that if J is any
mafrix for which J'GJ =@ then det J>0. Hence s=1 implies det 0> 0.
Now the case s >0 may be reduced to the case s==1 so that s > 0 implies
det 0 >0, q.e. d.

A dynamical system (2) with 2 degrees of freedom will be termed redu-
cible if it may be sent by a non-singular transformation a = Ty into m > 1
systems of the form (2) each of which having a degree of freedom < #. In
the limiting case m =4 one may speak of complete reducibility. Since the
frequencies of (2) need not be (°) real or purely imaginary if #=>2 but are
always either real or purely imaginary if %=1, the completely reducible
case cannot be considered as the general case. A sufficient condition for

() G. Frowextus, Ueber die schiefe Invarianfe einer bilinearen oder quadratischen
Form, «Journal fiir reine und angewandte Mathematik », Vol. 86 (1876), pp. 44-71, more
particularly p. 48,

(6) Cf. Bir W. TroMsoN and P. G. Tarr, Treatise on Natural Philosophy. Vol. 1, Part I
(1879}, pp. 389-396.
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the complete reducibility of (2} is thai of WrIERsTRASS (") requiring that
the Hamiltonian function be separated into purely potential and purely
kinetic energies (¥},

s

(4) H:(Z (;)):H’ (@ == zero maftrix)
and that v=v" be a positive definite matrix (°). It may be noted that the
completely reduced form of (2) may then be obfained with the use of a
Hawmiltonion matrix T=—C in x = Ty. At the end of the present note there
will be given for the existence of this T'= C a direct proof which does not
presuppose the considerations of WEIERSTRASS.

The question regarding the reducibility of (2) is clearly related to the
existence of # > 1 conservative and homogeneous quadratic integrals which
may degenerate into the square of linear ones. To the bracket criterion of
PorssoN ('*) there corresponds the following rule: 4 real quadratic 2n-ary
form having the wmatric F==F" which is independent of { represents a first
integral of (2) if and only if HGF = FGH where G is defined by (1) and
H = H' belongs to the energy integral of the unseparated system (2). In
particular, there exist precisely as many (=0) real conservative linear in-
tegrals as linearly independent vectors a for which GHx is the zero vector.
Hence there exists no real linear integral independent of / if and only
if GH is non-singular, i. e. det H =£ 0. The verification of all these statemenis
requires but the substitution of (2) into the time-derivative of a quadratic or
linear form.

According to a result of AUTONNE ('), there exists for every non-singular
matrix 4 exactly one positive definite and therefore symmetric matrix P =P’

(" K. WaisrsTrASS, Mothematische Werke, Vol. 1 (1884), pp. 23 -256.

(8) This restriction excludes conservative « frictional » terms of the type of Coriolis
forces in the plane,

() This further restriction excludes mot omly the case det v=—=0 of a singular metric
but the indefinite case of a pseudo-euclidian non-singular metric as well.

(49 Cf. T. Ligvi-Civita and U. Amarpr, loc. cit, p. 333.

(*1) L. AuronNg, Sur I Hermitien, « Rendiconti del Circolo Matematico di Palermo »,
Vol. 16 (1902), pp. 104-128, more particularly pp. 123-125. The considerations of AUTONNE
concern the complex domain but are valid in the real domain also. The uniqueness of the
polar factorization is not pointed out by Avuroxne. He proves, however, (loe. eit., pp. 120-121)
that there exists but one positive definite matrix P— P’ such that 44'— P* Now A4 ==P?
is a consequence of A= PR. Hence P is completely determined by A. Consequently
R==P—14 also is unigue. This sitnation has been pointed out by the present author,
On Non-Singular Bounded Matrices, « American Journal of Mathematics », Vol. 54 (1932),
pp- 145-149.
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and exactly one orthogonal matrix B = R~' such that (*) 4= PR. The
possibility of this unigue factorization into « polar » factors is clearly the
multidimensional generalization of a well-known fact in the kinematics of
continua. We shall prove that both polar factors P, R of any Hamillonian
matriz C ore Hawiltonian wmatrices. First, on substituting ¢ = PR where
P=P', R == R~ into (3) one obtains R~'PGPR = s. Hence PR = P,R,
where

o) R =G, RB,=+RGR™'; P, =P, P,==*sR, PR,

and (**) Z=s==|s!. Now the orthogonal matrices form a group which con-
tains B by supposition and == ¢ in virtue of (1) so that R, and R, are
orthogonal matrices. On the other hand, P and P, are positive definite
matrices inasmuch as the reciprocal matrix of a positive definite matrix P
is positive definite and remains so on an orthogonal transformation and on
multiplication by a positive number Z=s=]s| Consequently R, = R, and
P, =P, in virtue of the uniqueness of the polar factorization of the non-
singular matrix P,R, = P,R,. Hence from ()

G=%RGR™', P===sGP'G~!

where B~'=R and P’'=P by definition. Accordingly (3} is satisfied by
C=R and by C==_P if one chooses in (3) the multiplier equal to ==1, =,
resp. Thus B and P are Hamiltonian matrices, q. e. d.

Since the product of two Hamiltonian matrices always is a Hamiltonian
matrix, it follows that it is sufficient to know those Hamiltonian matrices
which are positive definite or orthogonal, i. e. which represent dilatations
and rotations or reflections in a euclidian space the dimension of which is,
however, not n but 2n. The projection of an orthogonal transformation of
the 2n~dimensional phase-space on the n-dimensional space of the coordi-
nates need not be an orthogonal transformation of this n-dimensional space.
On writing a Hamiltonian matrix € in the form

o=(;3

so that «, B, y, & are n-rowed matrices and on substituting (1} and (6)
into (3) under the assumption C'= C—! of 2n-ary orthogonality, one obtains

{?) Since det P> 0, the determinant of 4 is of the same sign as det R==1.
{#?) In other words, we intend to use in (5) the upper or the lower sign according

as § is >0 or < 0.
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y=—08, 8=« if $§>0 and y=2§, 8= —a if §<0. Hence if (6) is a
Hamiltonian matrix then it is a 2nm-ary orthogonal matrix if and only if it
has either of the particular forms

21

(7-2) G:(“ 8 5) s=1; (7-b) 0:(;‘ _ﬁ), s=— 1.

The type (7-b) differs from the fype (7-a) only regarding the constant factor (1)
which is of the type (7-a). Not so easy is the characterization of those
Hamiltonian matrices which are positive definite. These Hamiltonian matrices
which represent 2n-ary dilatations do not form a group.

The above considerations may easily be extended from the Hamiltonian
to the Pfaffian dynamical systems. The latter have in our linear conser-
vative case the form (“) y=S—'Fy where F=F and S is non-singular
and = — 8’ but not necessarily = G so that y=S—'Fy is more general
than (2). It is, however, known that these Pfaffian systems may be reduced
to the Hamiltonian case (2). This may be proven in a simple way as follows.
If y== T where T is any non-singular matrix then y=S—'Fy clearly is
equivalent to o = (T'ST) " T"FT)r. Now on placing H = T'FT one has
H=—H' in virtue of F==F'. Furthermore, if S= — S’ and det S==0 then
there exists (!*) a non-singular matrix 7 such that 7'ST = G = — G~'. Hence
on using this 7 in y = T, one obtains precisely (2).

We shall now consider the integration of (2) from a point of view of Lik.

From (1) one obtains for every H = H' and for every integer m =0

G~ GH|"G™ ! == — GG(_ HGn—HG* = (— 1) HG)™
and
[(GH)m]r — (H/ G/)m — (_,, 1)9?3(};[@):7:.
Hence
Gl— GH)"G—* = [(GH)™].
Consequently
®) Glexp (— GH)G = [exp (GH)]

where exp A is defined for every 4 by means of the exponenfial series.
Since exp(— 4) = (exp 4)~!, it is clear from (8) that (3) is satisfied by
C =-exp(GH), s=1. Hence exp(GH) is for every H=H' a Hamiltonian
matrix of determinant + 1.

{1} G. D. Birgnorr, Dynamical Systems, 1927, Chap. 11, p. 89.
(%) Cf, e. g, H. Wuyr, The Theory of Groups anrd Quantum Mechanics (1931),
Appendix.
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On the other hand, any solution x==(!j of x — Bx where B is inde-
pendent of ¢ is related to the vector x(0) of the initial constants by the
linear transformation ax(f) = L{¢}x(0) where L(f) denotes the matrix exp (Bi).
On applying this to (2) where B ==— GIH, the result of the previous pa-
ragraph is applicable inasmuch as —{¢H is, like H, real and symmetric if
— oo < t << +oco. Henece the cyclic transformation group L(f) generated by
the infinitesimal i{ransformation (2) consists of Hamiltonian matrices and
det L{f) = +4-1 for every { (— oo <f{<C + oo). This is, of course, but an al-
gebraic paradigma of LiE's so-called Fundamental Theorems (**).

The group of all Hamiltonian matrices C contains an interesting sub-
group consisting of those C which either send coordinates into coordinates
and impulses into impulses only or coordinates into impulses and impulses
into coordinates only. These ( have either of the particular forms

o ® o
(Ba) oz(m 5); (8b) O:(‘}, 2)
The matrices (8-a) also form a group inasmuch as w is the zero matrix.
The type (8-b) may be obtained from the type (8-a) by multiplying (8-a) with
the fundamental matrix (1) which is of the type (8-b). On substituting (S-a),

(8-b) and (1) into (3) one obtains the usual condition of contragradiency
(9-a) o =887, s==0; (9-b) fre=—sy% 50

as necessary and sufficient for the Hamiltonian character of the « decom-
posed » matrices (8-a), (8b). In the still more special case « =3 or B=1y
where the ftransformation of the impulses is identical with the transfor-
mation of the coordinates ome has simply

(10-a) ao = 8¢ == @} (10-b) B = — se = o.

Since the quadratic form belonging to a symmetric matrix = of the type
m =1t clearly is nowhere negative, s is >0 in (10-a) and < 0 in (10-b) =0
that both matrices «, 3 represent in the euclidian space of the n coordi-
nates (¢,, q,,-, ¢.) but a rotation or reflection followed by a central stretch.
Hence these C have no dynamical significance.

On the other hand, the contragradiency test (9-a) for the more general
but still « decomposed » Hamiltonian matrix (8-a) contains a proof of the
fact that if in (4) at least one of the matrices p==y, v=1v, say v, is po-

(*%) CtL, e. g, L. P. BisBNHART, Confinuous Groups of Transformations (1933}, Chap. 1.
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sitive definite {'") then there exists a Hamiltonian matrix C transforming H
into a diagonal matrix (3-a), hence (2) into a system of # dynamical systems
each of which is of one degree of freedom. First, since v =1V is positive
definite, there exists (*} a non-singular matrix o=10d such that *=v.
Now opo is a symmetric matrix inasmuch as o =¢" and p = p'. Hence there
exists an orthogonal matrix o' ="' such that p~'opop is a diagonal matrix.

Consequently
p~tapap w
KZ( o) p o ve™! )
19

is a diagonal matrix. In fact, o~ 'vo='=¢ in virtue of v==0° so that
o tomlvoTlp is = p~'ep—=¢ which is a diagonal matrix. On placing

(11) o = op, &= G_ip,

the diagonal matrix K may be written in the form
_[dpr o

(12) K“(w MJ

inasmuch as p~'=1p and o=07, hence o~'=c"" ' It is clear from o'=0
and p =p~! that (9-a) is satisfied by (11) and by s= 1. Hence (8-a) is a
Hamiltonian matrix transforming H into the matrix s~'C’'HC = C'HC which
is according to (8-a) and (4) identical with the matrix (12) and is therefore
a diagonal matrix.

{t7) It both p, v are positive definite then so is H so that one has stability in the

sense of DIRICHLET.
(*8) Cf. L. Auroxxg, loc. cit., pp. 120-121. The symmetric matrix ¢ having a square =v
may be chosen as a positive definite matrix. This is, however, not needed in the above

proof,




