
On the Linear Conservative Dynamical Systems. 

By AU~EL ~VINTNER ( B a l t i m o r e ) .  

Let n be the number  of degrees of freedom of a l inear dynamical  system. 

In the present note capital letters will denote real matrices witk 2n rows 

and 2n columns and greek letters real matrices with n rows and n columns 

so that, for instance, 

where E and e are the unit  matrices and ~,~ is the n-rowed zero matrix. 

The letter G will be used for the matr ix  of the bilinear eovariant (1) which 

is a skew-symmetr ic  and orthogonal matr ix :  

(1) a = , = G ,  = 
to 

The prime denotes the operation of the transposition whereas differentiations 

with respect to the time t will be marked by a dot. The point (q~, .... q , ,  

p~,.. . ,  p . )  of the phase-space will be denoted by tx~,..., ~,,, x ,+~, . . . ,  x.2, ) 

or simply by x. Finally,  y ~ Ax  designates the vector into which the vector x 

is t ransformed by the matr ix  A. This l inear t ransformation and its matr ix  

are termed non-s ingular  if det A =~ 0. 

A system of 2n ordinary differential  equations of the first order which 

are homogeneous, l inear and do not contain t explicitly clearly is a canonical 

dynamical  system if and only if there exists a symmetric matrix H such 

that  the differential  equations may be wri t ten in the form Gx--=Hx.  In 

fact, H is up to the factor 2 simply the matr ix  of the 2n-ary quadratic form 

which represents the Hamil tonian  function. Since G -* ~ ~ G, one may write 

(2) ~ - - ~ - -  GHx where H--~ H'. 

A non-s ingular  matr ix C which is independent of t will be termed a 

Hamil tonian  matrix, if the transformation 'x~---Cy sends every differential  

(t) Cf. T. LEVI-CIV1TA and U. AMALDI, Lezioni di mvccanica razionale, Vol. 2, Part II  
(1927), pp. 308-311. 
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system of the form (2} into a differential  system of the same form. It may 

be shown without  difficulty that these substi tutions x = Cy constitute a 
subgroup of the group of all contact transformations (+), viz. the subgroup 

consisting of those contact transformations in which all t ransformation formulae 
contain but  l inear forms which are independent  of t. The dynamical  impor- 

tance of this subgroup seems to warrant  the presentat ion of an << elementary >>, 
i. e. purely  algebraic, theory of these transformations, which is the object of 

the present  note. The results thus obtained are correspondingly more explicit  

than if formulated in terms of the general analytical  theory of JACOBI 

and LIE. Inc iden ta l ly ,  there proves to be a formal analogy with the transfor- 

mation theory of the parameters  of multiple theta series or of the periods 

of Abelian integrals {3). 
One may start with the remark that two fixed non-s ingular  matrices, 

A and B, satisfy the symmetry relation IAHB}'== A H B  for every symmetric 

matr ix  H---~ H '  if and only if there exists a number  s ~ 0  such that A'==sB. 

For  on placing M ' - ~  A 'B  -~, the condition ( A H B ) ' - ~  A H B  is equivalent  
to M H - - H M '  where H ~ - H '  is arbi t rary and may therefore be chosen ~ E. 

Hence  M--~M' .  ;Now M H - ~ H M  holds for every H =  H'  if and only if M 
is of the form sE. This is easily seen by direct substi tution if M is a 

diagonal matrix. If  it is not presupposed that M is a diagonal matr ix 

then M - ~  M'  may be t ransformed by means of an orthogonal matrix R into 

a diagonal matrix R M R - '  whereas R transforms the set of all matrices 

H - ~ H '  into itself. Hence  the matr ix RMR:- '  which is a diagonal matr ix is 
by the previous remark  - - s E  so that M - - s E  although it is not presupposed 

that M is a diagonal matrix. Finally,  s =4= 0 inasmuch as sE ~ M ~ M' -~ A ' B -  

is the product  of two non-s ingular  matrices. Thus  A ' - - s B ,  s =~= O, q. e. d. 

On substi tut ing x ~ - C y  into (2) one obtains y--~ ~ - G K y  where 
K== - -  GC-~GHC inasmuch as G ~ - -  G -~. Hence  C is a Halnil tonian matr ix 

if and only if K in y ~ -  GKy always is the matr ix of a 2n-ary  quadrat ic  

form, i. e. if and only if K ~ K  ~ whenever  H : H ' .  ;Now K - - K '  may be 
wri t ten in virtue of H ~ H '  and G'-~---G---= G -~ in the form ( A H B ) ' ~ A H B  
by placing A - ~  C-~G and B--~ CG so that {~} det A 4= 0, det B=~: 0. This is, 

(e) Cf. T. LEW-GIVlTA and  U. 2~-MALDI~ 1oc. tit., pp. 310-316 and  324-327. 
(~) Cf. G. FROBENIUS, Ueber die principcde Transformation tier Tt~etaf~,nktionen mehrere,r 

Va~'iablen~ ~ J o u rn a l  ftir re ine  und  angewandte  M athemat ik  ,~, Vol. 95 (t883), pp. 264-296, 
§ 1~ etc. or C. JOI~DA~ Traitd des substitutions~ 1870~ Chap. I I ,  § 8. 

(4) On the other hand~ det H may  or m ay  not  vanish.  
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as we saw, equ iva len t  to A' = s B  or, s ince A - ~  C-~G, B---~ CG, s imply  to 

(3) C'OC=sG; tdet C l = l s ] " > O  
if one wri tes  s ins tead  of - - s - q  The ma t r ix  K ~ -  GC-~GttC belonging  to 

the t r ans fo rmed  H a m i I t o n i a n  func t ion  takes  in v i r tue  of (3) and (1) the form 

(3-a) K = s-~C'HC. 

The necessa ry  and suf f ic ien t  condi t ion  (3) for a H,~iniltonian m a t r i x  C 

states tha t  the bilinear form in cogredient variables which belongs to (1} is 

a << relative invariant  >> of a non-singular linear substitution i f  and only i f  

lhe matr ix  of this substitution is a Hamil tonian matrix. The group of the 

H a m i l t o n i a n  matr ices ,  in contras t  wi th  the ro ta t ion  and re f lex ion  group of 

the euc l id ian  or of a p s e u d o - e u c l i d i a n  space, cannot  be charac ter ized  by the 

absolute i nva r i anee  of a b i l inear  form. This  is c lear  f rom (2) where  the un i t  

of the t ime is unde te rmined .  In  a more precise  manner ,  C ' G C - - G  need 

not hold even if l det C I - - 1 .  This  is i l lus t ra ted  by the H a m i l t o n i a n  ma t r i x  

for which  C'GC = - -  G.-~ G a l though  I det  C I - -  t ( - -  1)"I = 1. 

On choosing in this example  n ~ 0 (mod 2}, it follows that  det C >  0 

is compatible with s < 0. On the other  hand,  s >  0 ~s not compatible with 

det C < 0. In  fact,  s ince det  ( r G - -  G') == det  [(r + 1)G] - -  (,r d- 1) TM does not 

van i sh  at r - -  1, it fol lows f rom a theorem of FUOBEI~IUS qs) that  if J is any  

m a t r i x  for which  J ' G J - - G  then  det J >  0. Hence  s ~ - 1  implies  det  C >  0. 

Now the case s > 0  may  be reduced  to the case s ~ l  so that  s > 0  implies  
det C > 0 ,  q . e . d .  

A d y n a m i c a l  sys tem (2) wi th  n degrees  of f reedom will be te rmed redu- 

cible if it may  be sent by a n o n - s i n g u l a r  t r ans fo rma t ion  x --= Ty into m > 1 

sys tems of the form (2} each  of which  hav ing  a degree of f reedom < n .  In  

the l imi t ing  case m = n  one m a y  speak of complete reducibi l i ty .  Since the 

f requenc ies  of (2) need not be (~) real  or pu re ly  imag ina ry  if n ~ 2  but  are 

a lways  e i ther  real  or pu re ly  i m a g i n a r y  if n-~-~ l,  the comple te ly  reducib le  

case cannot  be cons idered  as t:he genera l  ease. A suf f ic ien t  condi t ion for 

(5} G, ]~ROB[~]NIUS, YobeF die schiefe Invari¢~nte ei~er bilinearen oder quadratischen 
Form~ << Journal ftir reine und angewandte )fathematik % Vol. 86 (1876), pp. 4~-71, more 
particularly p. ~8. 

(~} Cf. Sir 1V. THOMSON and P. G. TAIT, Treatise on Natural Philosophy. Vol. 1., Part I 
(1879), pp. 389-396. 
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the  c o m p l e t e  r e d u c i b i l i t y  

the  H a m i l t o n i a n  f u n c t i o n  

k ine t i c  ene rg ie s  (~), 

(4) 

of {2) is tha t  of WEIERSTRASS (~) r e q u i r i n g  t ha t  

be  s e p a r a t e d  into p u r e l y  p o t e n t i a l  and  p u r e l y  

H = = H '  (co - -  zero ma t r i x )  
v 

and  tha t  v ~--=v' be a pos i t i ve  de f in i t e  m a t r i x  (gj. I t  m a y  be  no ted  tha t  the  

c o m p l e t e l y  r e d u c e d  f o r m  of (2) m a y  then  be ob t a ined  w i th  the  use  of a 

Hami l ton ian  m a t r i x  T ~-~ C in x--~ Ty. At the  end  of the p r e s e n t  note  the re  

wi l l  be  g iven  fo r  the  e x i s t e n c e  of th is  T = C a d i r ec t  p roof  w h i c h  does  not  

p r e s u p p o s e  the c o n s i d e r a t i o n s  of W~IERSTRASS. 

T h e  ques t i on  r e g a r d i n g  the r e d u c i b i l i t y  of (2) is c l e a r l y  r e l a t e d  to the 

e x i s t e n c e  of m > 1 c o n s e r v a t i v e  a n d  h o m o g e n e o u s  q u a d r a t i c  i n t e g r a l s  w h i c h  

m a y  d e g e n e r a t e  into the  s q u a r e  of l i n e a r  ones. To the  b r a c k e t  c r i t e r ion  of 

P o l s s o ~  (~ ' ) ) there  c o r r e s p o n d s  the  fo l lowing  r u l e :  A real quadratic 2n -ary  

form having the ma.lrix, F =-~ F'  which is independent  of  t represents a first 

integral of  (2) i f  and  onl:y i f  H G F z  F G H  w h e r e  G is de f i ned  by  (1) and  

H ~ H '  be longs  to the  e n e r g y  i n t e g r a l  of the  u n s e p a r a t e d  s y s t e m  {2). I n  

p a r t i c u l a r ,  the re  ex i s t  p r e c i s e l y  as m a n y  (=>0) rea l  c o n s e r v a t i v e  l i n e a r  in- 

t eg ra l s  as l i n e a r l y  i n d e p e n d e n t  vec to r s  x for  w h i c h  GHx is the zero vector .  

H e n c e  the re  ex i s t s  no rea l  l i n e a r  i n t eg ra l  i n d e p e n d e n t  of t if  and  only  

if GH is n o n - s i n g u l a r ,  i. e. de t  H=t= 0. T h e  ve r i f i c a t i on  of all  these  s t a t e m e n t s  

r e q u i r e s  bu t  the  s u b s t i t u t i o n  of (2) in to  the t i m e - d e r i v a t i v e  of a q u a d r a t i c  or  

l i n e a r  form.  
A c c o r d i n g  to a r e s u l t  of A u r o r a e  (t~), the re  ex i s t s  for  e v e r y  n o n - s i n g u l a r  

m a t r i x  A e x a c t l y  one pos i t ive  def in i t e  a n d  t h e r e f o r e  s y m m e t r i c  m a t r i x  P = = P '  

(7) K. ~TEIERSTRASS~ Mathematische We rke~ Vol. ~ (1894)~ pp. 233-256. 
(s) This restriction excludes conservative ~< frictional, terms of the type of Coriolis 

forces in the plane. 
(v) This further restriction excludes not only the case det v ~ 0  of a siuguIar metric 

but the indefinite case of a pseudo-euclidian non-singular metric as well. 
(10) Cf. T. LEVI-CIVITA and U. A~ALoI, loc. cir., p, 333. 
(~t) L. AUTO~E~ Su.r l'Hermitien, ~ ~endiconfi del Circolo Matema.tico di Palermo % 

Vol. 16 (1902), pp. 104-128, more particularly pp. 123-1_o5. The considerations of AUTO~'NE 
concern the complex domain but are valid in the real domain also. The uniqueness of the 
polar factorization is not pointed out by AUwO~N~. He proves, however, (loc. cir., pp. 120-121) 
that there exists but one positive definite matrix P = P '  such that AA"--P "~. 2gow AAr--=P ~ 
is a consequence of A ~ P R .  Hence P is completely determined by A. Consequently 
R==P--tA also is unique. This situation has been pointed out by the present author, 
On Non-Singular Bounded Matrices, ¢ American Journal of ~[athemaiics ~, Vol. 54 (1932)~ 
pp. 145-149. 
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and exactly one orthogonal matr ix R - ~ R  '-L such that ('-) A = P R .  The 

possibil i ty of this unique factorization into << polar >> factors is clearly the 
mult idimensional  generalization of a wel l -known fact in the kinematics of 

continua. W e  shall prove that both polar factors P, R of any  Hamil tonictn  

matr ix  C are Hami l ton ian  matrices. First,  on subst i tut ing C =  P R  where 

P - -  P ' ,  R'--~ R -~ into (3) one obtains R - ~ P G P R  = sG. Hence  P~Rj == P~R~ 

where  

(5) R~ = G, R~ = ! R G R - ~ ;  P,  = P, P,~ = -4- sR.~P-~R.~ -~ 

and (~3)±  s - - I s ! .  Now the orthogonal matrices form a group which con- 

tains R by supposit ion and ± G in virtue of (1) so that R, and R~ are 

orthogonal matrices. On the other hand, P,  and P~ are positive definite 

matrices inasmuch as the reciprocal  matr ix of a positive definite matrix P 
is positive definite and remains so on an orthogonal transformation and on 

mult ipl icat ion by a positive number  ___+s = ls I. Consequently R, --: R~ and 

P ,  ~=P~ in vir tue of the uniqueness  of the polar factorizatiou of the non-  
singular matr ix P~R~ = P~R~. Hence  from (5) 

G-~  =L- R G R  -~, P = - 4 -  s G P - ~ G  -~ 

where R -~ ---~R' and P ' = P  by definition. Accordingly (3) is satisfied by 

C--= R and by C == P if one chooses in (3) the :multiplier equal to ~ 1, ~ s, 

resp. Thus R and P are Hamil tonian matrices, q. e. d. 

Since the product  of two Hamil tonian matrices always is a Hamil tonian 

matrix~ it follows that it is sufficient to know those Hamit tonian matrices 

which are positive definite or orthogonal, i. e. which represent  dilatations 
and rotations or reflections in a euclidian space the dimension of which is, 

however,  not n but  2n. The project ion of an orthogonal t ransformation of 

the 2n-dimensional  phase-space  on the n-dimensional  space of the coordi- 

nates need not be an orthogonal t ransformation of this n-dimensional  space. 

On writ ing a Hamil tonian matr ix C in the form 

so that ~, ~, 7, 8 are n - rowed  matrices and on subst i tut ing (1) and (6) 
into (3) under  the assumption C'---~ C -~ of 2n-ary  orthogonMity, one obtains 

(t-z) S i n c e  d e t  P >  0, t h e  d e t e r m i n a n t  o f  A is of  t he  s a m e  s i g n  as  d e t  R = ~ 1. 
(~3) I n  e t h e r  w o r d s ,  w e  i n t e n d  to use i n  (5) t h e  u p p e r  or  t h e  l o w e r  s i g n  a c c o r d i n g  

as s i s  > 0  or < 0 .  
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y = - - ~ ,  8---~ if s ~ 0  and 7--~, 8 . ~ _ - - a  if s < 0 .  Hence if (6) is a 
t Iamil tonian matr ix  then it is a 2n-a ry  orthogonal matr ix  if and only if it 
has ei ther of the par t icular  forms 

The type (7-b) differs from the type (7-a) only regarding the constant factor (1) 

which is of the type (7-a). Not so easy is the characterization of those 
Hamil tonian matr ices  which are positive definite. These Hamil tonian matrices 

which represent  2n-a ry  dilatations do not form a group. 
The above considerations may easily be extended from the Hamil tonian 

to the Pfaff ian dynamical  systems. The latter have in our l inear conser- 

vative case the form (~) ?)-----S-iFy where F ~ - F '  and S is non-s ingular  

and -------S' but not necessari ly = G so that y--~-S-~Fy is more general  
than (2). It is~ however, known that these Pfaff ian systems may be reduced 
to the Hamit tonian case (2). This may be proven in a simple way as follows. 

If y--= T~c where T is any non-s ingular  matr ix  then y-----S-~Ey clearly is 

equivalent  to x ~---(T'ST)-qT'FT}x. Now on placing H m- T ' F T  one has 
H =  H '  in virtue of F==  F' .  Fur thermore ,  if S = -  S'  and det S:~: 0 then 
there exists (~) a non-s ingular  matr ix  T such that T ' S T =  G = - -  G-L Hence 
on using this T in y-----Tx, one obtains precisely (2). 

We shall now consider the integration of (2) from a point of view of LI]~. 

From (1) one obtains for every H =  H '  and for every integer m ~ 0  

G[- -  G H ] " G  -~ --= - -  GG(- -  H G ) " - . ' H G  -~ = ( - -  I ) " ( H G ) "  
and 

Hence  

Consequently 
(s) 

[(GH)"]' = (H'G') "~ ~- (--  1)"(HG)". 

G[- -  G/- / ] "  G -~ = [ (GH)" ] ' .  

where e x p A  is 
Since e x p ( - - A )  = ( e x p A )  -~, it is clear h'om {8) 
C - ~ e x p ( G H ) ,  s - - 1 .  Hence exp(GH) is for every 

matrix of determinant + 1. 

G[exp (--  GH)] G -++ = [exp (GH)]' 

defined for every A by means of the exponential  series. 
that (3} is satisfied by 
H - ~ H '  a t tamil tonian 

(~4) G. D. BIRKI:~OFF~ Dynamical SgsteTns~ 19~7, Chap. IfI~ p. 89. 
(~) Cf.~ e. g ,  I{. ~rEyL~ The Theory of Groups a~d Quantum Mechanics (1931)7 

Appendix. 
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On the other hand, any solution x~---x(t} of x , = B x  where B is inde- 
pendent  of t is related to the vector x(0) of the initial constants by the 

l inear t ransformation x(t)---L(t)x(O) where  L(t) denoues the matr ix exp (Bt). 
On applying this to (2) where B = : - - G H ,  the result  of the previous pa. 

ragraph is applicable inasmuch as - - t H  is, like H, real and symmetric if 

- - ~  ~ t < q - ~ .  Hence  the cyclic transformation group L(t) generated by 
the infinitesimal Ira nsformcttion (2) consists of Hamiltonian matrices and 
det L ( t ) = q - 1  for every t ( - - ~ t ~ q - ~ ) .  This is, of course, but  an al- 

gebraic paradigma of LIE'S so-cal led Fundamenta l  Theorems (~s). 

The group of all Hamil tonian  matr ices  C contains an interesting sub- 

group consisting of those C which either send coordinates into coordinates 
and impulses into impulses only or coordinates into impulses and impulses 
into coordinates only. These C have either of the part icular  forms 

The matrices (8-a) also form a group inasmuch as to is the zero matrix. 

The type (8-b) may be obtained from the type (8-a) by mult iplying (8-a} with 
the fundamental  matr ix  (1) which is of the type (8-b). On subst i tut ing (8-a}, 

(8.b) and (1) into (3) one obtains the usual  condition of contragradiency 

(9.a} £ = s 8  -~, s :#= 0; (9-b) ~ ' = = -  s7 -~, s=]=0 

as necessary and sufficient for the Hamil tonian  character  of the << decom- 

posed >> matrices (8-a), (8-b). In the still more special case ~ 5  or ~ ' ~ "  

where the t ransformation of the impulses is identical with the transfor. 
marion of the coordinates one has simply 

( lO-a) ~ '  = se ~= o~ ; ( lO-b) ~ '  = - -  s~ 4= ~. 

Since the quadrat ic  form belonging to a symmetric  matr ix u of the type 

~---":~' clearly is nowhere negative, s is :> 0 in (tO-a) and ~ 0 in (lO-b) so 

that both matrices ~, i3 represent  in the euclidian space of the n coordi- 

nates {q~, q~,..., q,,) but  a rotation or reflection followed by a central  stretch. 
t t ence  these C have no dynamical  significance. 

On the other hand, the contragradiency test (9-a) for the more general  
but  still , decomposed y, I-Iamiltonian matr ix  (8-a) contains a proof of the 
fact that if in (4) at least one of the matrices ~ ' ,  v ~ v ' ,  say v, is po- 

(i~) Of., e. g., L. P. EISnNHAR% Continuous C~'oups of Transformations (19331. Chap. I. 
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si t ive de f in i t e  (~) t h e n  the re  ex is t s  a Hami l t , )n i an  m a t r i x  C t r a n s f o r m i n g  H 

into a diagonal m a t r i x  (3.a), hence  (2) in to  a sys tem of n d y n a m i c a l  sys tems  

each  of which  is of one degree  of f reedom.  Firs t ,  s ince v - - ' v '  is pos i t ive  

def in i te ,  t he re  exis ts  (~*} a n o n - s i n g u l a r  m a t r i x  ~ - - ~ '  such  that  ~ v. 

Now ~ is a symmet r i c  m a t r i x  i n a s m u c h  as , - - z '  and  ~ ~ ~'. H e n c e  the re  

exis ts  an o r thogona l  m a t r i x  ,g~---~--~ such  tha t  ~ - ~ z ~ p  is a d iagona l  ma t r ix .  

Consequen t l y  

is a d iagona l  ma t r ix .  I n  fact ,  ~ - ~ v ~ - ~ = ~  in v i r t ue  of , + = ~  so that  

p - ~ e - ~ w - ~  is = ~-~p-~--s  wh ich  is a d iagona l  ma t r ix .  On p l ac ing  

the d iagona l  m a t r i x  K m a y  be wr i t t en  in the forra 

~'v~ 

~ c ' ,  hence  ~ - ~ a ' - i .  I t  is c lea r  f rom ~ ' - -  

sa t i s f ied  by  (11) and  by  s-~-1.  H e n c e  (8-a) is a 

i n a s m u c h  as ~ - ~  9' and  

and  9'~-~-~-~ tha t  (9-a) is 

H a m i l t o n i a n  m a t r i x  t r a n s f o r m i n g  H into the m a t r i x  s-IC'HC~-~ C'HC which  

is a cco rd ing  to (8.a} and  (4) iden t i ca l  wi th  the m a t r i x  (12) and  is t he re fo re  

a d iagona l  mat r ix .  

(iT) I f  both t~, v are positive definite then so is H so that one has stability in the 
sense of ~IRICHLET. 

(i8) Cf. L. AUT0~E, loe. eit., pp. 120-12L The symmet~'ic matrix ~ having a square ~ v  
may be chosen as a positive definite matrix. This is~ however, not needed in the above 
proof. 


