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SHORT COMMUNICATION 

SETTLING TIME BOUNDS FOR M/G/1  QUEUES 
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Received 30 October 1989; revised 3 August 1990 

This paper addresses the question of how long it takes for an M/G~1 queue, starting 
empty, to approach steady state. A coupling technique is used to derive bounds on the 
variation distance between the distribution of number in the system at time t and its 
stationary disribution. The bounds are valid for all t. 
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1. Introduction and a basic result 

The z-transform solution for the number  in the system of an M / G ~ 1  queue 
has long been known [4,7]. We are interested in the question of settling times: 
how long does it take, for a queue starting empty, to approach steady state? One 
common approach to this problem is to consider the asymptotic behavior of the 
number  in the system as the time t ~ oo; this approach is frequently called the 
relaxation time approximation (see Cohen [2]). We use instead the coupling 
technique to relate the settling time to the time for a stationary queue to empty. 
This allows us to bound the variation distance between the distribution of 
number  in the system at time t and its stationary distributiort in terms of the 
arrival rate and the moments of the service time. The bounds obtained are valid 
for all t. 

Let Z be a Markov process on the state space S with the transition function 
P. Assume that Z has a unique stationary distribution ~r and let ~r t denote the 
distribution of Z at time t. We define a coupling for Z as a process (X, Y) on 
S • S with a random stopping time T, called the coupling time such that: 
(1) X is the Markov process with transition function P and initial distribution 

~r 0 . 

* This research was supported in part by a grant from the AT&T Foundation and NSF grant 
DCR-8351757. 

�9 J.C. Baltzer A.G. Scientific Publishing Company 



106 A. Merchant / Settling time bounds 

(2) Y is the Markov process with transition function P and initial distribution rr. 
(3) X~ = Yt for t >I T. 
No te  that X and Y need not be independent.  

The following theorem bounds the variation distance 11 rr t - 7r 11 between ~r t, the 
distribution of  Z at time t and the stationary distribution r in terms of the tail of 
the distribution of  the coupling time T. 

THEOREM 1 

(Coupling inequality) 

II ~r, - ~r [I = sup ] ~'t(A) - ~r(A) I 
Ac_S 

er[T> t]. 

Proof 
For  any t >I O, Pr [ X t ~ A, T <~ t ] = Pr [ Yt ~ A,  T <~ t ], therefore, 

[Pr[ X t ~ A ]  - Pr[Yt ~ A ] I  = [Pr[ X t ~ A ,  T >  t] - Pr[Yt ~ A ,  T >  t ] [  

~< m a x ( P r [ X  t ~ A ,  T >  t], Pr[ Yt ~ A ,  T >  t ] )  

<~Pr[T> t]. [] 

The above proof  is a slightly modified version of that given in Thorisson [8] for 
discrete time stochastic processes. 

Let Z t = ( Q ,  Lt) be  the state vector for an M / G ~ 1  queue, where Qt is the 
number  in the system at time t and L t is the service time already received by  the 
customer in service at t. Let Z 0 = (0, 0). The process Z = ( Zt: t >~ 0) is a Markov 
process. Let X be  the arrival rate for customers and ~ be the rate of service; for 
stability we assume X < #. Let the distribution of Z t be denoted ~r t and the 
stationary distribution be ~r. 

Define a coupling for Z t as follows: 
(1) X t = Z  t for t>~0. 
(2) Yt = (Q*,  L * )  is the state vector for the queue starting in the stationary 

distribution for X and with the same sequence of arrivals and service times as 
X. Clearly, Yt is a Markov process with the same transition probabil i ty  
function as X. 

(3) Let T = inf( t: Yt = (0, 0)}. Clearly Pr[T  < o~] = 1. 
Since Q~ >/Q0 = 0 and Y has the same sequence of  arrivals and service times 

as X, Q* >1 Qt for t >/0, which implies that X t = Yt for t >~ T. 
We may therefore apply the coupling inequality: 

[[ ~-, - ~r [[ ~ P r [ T >  t]. (1) 
] 

N o w  let V t - -  (Ot, Lt) be the state vector for the queue with V 0 = (Q~,  O) and 
the same arrivals and service times as Y including the service times for the 
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customers in the system at t = 0. Let T '  --- inf{ t: V t = (0, 0)}. A little reflection 
convinces us that T'>~ T, so that 

II 7r, - 7r I I - ~  Pr[T'> t]. (2) 

In the next section, we shall derive bounds  on the tail of the distribution of T ' .  

2. The distribution of T' 

In this section, we examine V t at the times of customer departures; since L~ = 0 
for these points, we shall simply denote the state by  Q~'. 

Let 

~'i = time for V to "move"  from i to i - 1 for i > O. 

Therefore, 

T '  = "r 1 + ~'2 + "'" + ~'er (3) 

Since "r 1, "r 2 . . . .  are clearly i.i.d., we may apply s tandard results for random sums. 
We already know the distribution of Q~', since this is the stationary distribution 
of number  in the system, so it only remains to find the distribution of ~-1. 
For  ~1 we  have 

�9 1 = s + + + . . .  + ( 4 )  

where S is the service time for a customer, N(S) is the number  of arrivals in this 
service time, and r~', r . . . .  are i.i.d, and distributed as r 1. 

Let ~ ( w ) = E [ e  -w ' ]  be the Laplace transform of the distribution of r]. 
Clearly, ~ ( w )  exists for Re(w) > 0. Then from eq. (4), we have 

~(w)=e[e-WS~(w) N(s)] 

=E[E[e-wS~(w)N(S)ls]] 

= E [e -ws e xs(e(w)-l)] since N(S) is Poisson with parameter  k S  

=E[e-S(~-Xe(w)+X)] 

=6*(w-X,(w)+X), (5) 
where G*(w) = E[e  -ws] is the Laplace transform of the service time distribution. 

While it is not  clear how to find ~ ( w )  from this equation, we may readily find 
the moments  of the distribution by  differentiating: 

E['T1] = --I~ jt (0) = (1 - ~kt~ t (0 ) )E  [ S] 

= ES/ (1-  ?tES), (6) 

E [  V ]  = ~ " ( 0 )  = (1 - ) t~ ' (0 ) )2E [ S 21 + Xqb"(0)E [ S] 

= E[  $ 2 ] / ( 1  - )kE[ S])  3. (7) 
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To make further calculation compact, we rewrite these in terms of 

p, = x ' E [ s ' ] ,  

so that 

1 0, (8) 
E[~,] = x "  1 - o, 

a2 = E[.rz] _ E[~. 12 = 1 .  0 2 -  02 + O 3 (9) 
" x 2 ( 1 -  ol) 3 

For the distribution of Q~' we have the Pollaczek-Khinchin z-transform equa- 
tion (see, for instance, Kleinrock [6]): 

G * ( X -  Xz)(1 - p,)(1 - z) (10) Q(z)= G * ( x - x z ) - ~  

The moments may be found, again, by differentiating: 

P2 (11) E[Q~] = Q ' ( 1 ) = p , +  2 ( 1 - 0 , ) '  

o ~  = Q"(1)  + Q'(1) - Q'(1) 2 

03 02 (2p, - 3)02 
- -  3 ( 1  - -  Ol) + 4(1 - 0 1 )  2 2(1 - p,) + 0,(1 - 01)- (12) 

From eqs. (3) and (8)-(12) and standard results for the mean and variance of 
random sums (see Karlin and Taylor [3]) we have, 

E[T'] = E [ , 1 ] - E [ Q $ ]  

_ 1  ( O ]  + P,Oz ) (13) 
- X "  1 - 0-----~ 2(1 - p , )  2 ' 

2 2 OT2,=E[TI] O0~, Jr E[Q~lo..r 2 

1 2 2 
= V "  {40](1 - 01)03 + 3(2 + 01)02 

+ 1201(1 - pl)(1 + o , -  o ] ) o z -  1204(1 - 0,)z}{12(1 - 0,)4} - ' .  (14) 

Armed with these moments, we may then apply Chebychev's inequality to 
bound the tail of the distribution of T': 

Pr[(r'- E [ T ' ] ) 2  > k2o2,] <~ 1/k z 

and for t > E[T'], 

II ~r, - 7r II < Pr[T" > tl < 4 , / ( t -  e [T ' l )  2. (15) 
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Example: M / M / 1  queue 
For an exponential service time distribution, the Laplace transform is 

t~ for Re(w) > -t~. (16) G*(w)= w+lx 

This gives us 

Pi = hiE[ s i ]  = i!( X/]s i-~" l i p  i 

in terms of the traffic intensity p = ~//~. Substituting in eqs. (13)-(14), 

and 

1 03(2+0)  
0"2' = ~ " (1  - -  p ) 4  ' 

which we may use in the Chebychev inequality. However, the 34/34/1 case can 
be made to yield better bounds, as we show in the next section. 

3. Exponential bounds 

When eq. (5) can be solved explicitly for ~(w), it is possible to find stronger 
bounds for the variation distance, as we shall see for the M/M/1  case. 

Substituting the Laplace transform for the service time distribution in eq. (5) 
we have 

~ ( w ) =  w - h ~ ( w ~ ) + X + / ~  Re(w)>O, Re(w-XrI,(w)+ X +~)>O. 

Solving the quadratic equation for ~b(w), and selecting the negative sign to make 
�9 (0) = 1, 

X + # + w -  ~/(X +/~ + w)2 - 4X/~ 
~ ( w ) =  2X Re(w) > 0. (17) 

~(w)  is analytic everywhere in the complex plane cut along the segment [%, w2], 
where w 1 and w 2 are the two (negative) roots of (2~ +/~ + w) 2 = 4X~. 

For the stationary queue length distribution, we have from eq. (10) 
/ ~ - ~  

Q ( z )  = xz" 

Let T*(w) = E[e -wr'] be the Laplace transform of the distribution of T'. Using 
eq. (3), 

= 2( /z -  X) (18) 
F - X -  w +  ~ ( X + ~ +  w)Z-4x /z  
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To bound the tail of the distribution, we show a Chernoff- type inequality [1]: 
oO 

Pr[T '  > t] = f OF(y) F is the c.d.f, of T" 
~y = t  

oo 

<~[ e -(y-t)w~ d F ( y )  for w 0 < 0  
~y = t  

<~eW~ for Wo<0.  

Since T*(w)  is analytic everywhere in the complex plane cut along the segment 
[w 1, WE], we may allow w 0 $ w 2 = - ( ~ -  - r yielding 

l i a r , -  ~r II ~ Pr[Z '  > t] ~< (e-(r  + AVrA/--~), (19) 

which gives us an exponentially decreasing bound  for II 7r, - ~r I1. 
In the case of  M / G / 1  queues, if G*(w) exists for some w < 0, then it can 

easily be shown that q~(w0), and therefore T*(wo) exists for some w 0 < 0 (see 
Kingman [5], lemma 3). Thus a Chernoff- type inequality holds in this case. 

For  the G/G~1 system, Cohen [2] shows that asymptotically, as t ~ m, various 
parameters such as the expected workload approach their limiting values ex- 
ponentially fast, assuming that the Laplace transforms of the inter-arrival time 
distributioias and the service time distribution are analytic in a complex half-plane 
which includes the axis R e ( w ) =  0 in its interior. This indicates that it might be 
possible to derive a Chernoff-type bound  in this case too. However,  while it is 
quite simple to set up a coupling for the G / G / 1  system similar to that in section 
1, it is not obvious how the distribution of  the coupling time may be found. 
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