Queueing Systems 8 (1991) 105-110 105

SHORT COMMUNICATION

SETTLING TIME BOUNDS FOR *M/G/1* **QUEUES**

Arif MERCHANT *

Department of Computer Science, Stanford University, Stanford, CA 94305, USA

Received 30 October 1989; revised 3 August 1990

This paper addresses the question of how long it takes for an $M/G/1$ queue, starting empty, to approach steady state. A coupling technique is used to derive bounds on the variation distance between the distribution of number in the system at time t and its stationary disribution. The bounds are valid for all t.

Keywords: Settling times, *M/G~1* queues, coupling, relaxation times.

1. Introduction and a basic result

The z-transform solution for the number in the system of an $M/G/1$ queue has long been known [4,7]. We are interested in the question of settling times: how long does it take, for a queue starting empty, to approach steady state? One common approach to this problem is to consider the asymptotic behavior of the number in the system as the time $t \to \infty$; this approach is frequently called the relaxation time approximation (see Cohen [2]). We use instead the *coupling* technique to relate the settling time to the time for a stationary queue to empty. This allows us to bound the variation distance between the distribution of number in the system at time t and its stationary distribution in terms of the arrival rate and the moments of the service time. The bounds obtained are valid for all t .

Let Z be a Markov process on the state space S with the transition function P. Assume that Z has a unique stationary distribution π and let π , denote the distribution of Z at time t. We define a coupling for Z as a process (X, Y) on $S \times S$ with a random stopping time T, called the *coupling time* such that:

⁽¹⁾ X is the Markov process with transition function P and initial distribution π ⁰.

^{*} This research was supported in part by a grant from the AT&T Foundation and NSF grant DCR-8351757.

⁹ J.C. Baltzer A.G. Scientific Publishing Company

(2) Y is the Markov process with transition function P and initial distribution π . (3) $X_t = Y_t$ for $t \geq T$.

Note that X and Y need not be independent.

The following theorem bounds the *variation distance* $\|\pi - \pi\|$ between π , the distribution of Z at time t and the stationary distribution π in terms of the tail of the distribution of the coupling time T.

THEOREM 1 *(Coupling inequality)*

$$
(\textit{Compning inequality})
$$

$$
\|\pi_t - \pi\| = \sup_{A \subseteq S} |\pi_t(A) - \pi(A)|
$$

$$
\leq Pr[T > t].
$$

Proof

For any
$$
t \ge 0
$$
, $Pr[X_t \in A, T \le t] = Pr[Y_t \in A, T \le t]$, therefore,
\n
$$
|Pr[X_t \in A] - Pr[Y_t \in A]| = |Pr[X_t \in A, T > t] - Pr[Y_t \in A, T > t]|
$$
\n
$$
\le \max(Pr[X_t \in A, T > t], Pr[Y_t \in A, T > t])
$$
\n
$$
\le Pr[T > t]. \square
$$

The above proof is a slightly modified version of that given in Thorisson [8] for discrete time stochastic processes.

Let $Z_t = (Q_t, L_t)$ be the state vector for an $M/G/1$ queue, where Q_t is the number in the system at time t and L_t is the service time already received by the customer in service at t. Let $Z_0 = (0, 0)$. The process $Z = \{Z_i : t \ge 0\}$ is a Markov process. Let λ be the arrival rate for customers and μ be the rate of service; for stability we assume $\lambda < \mu$. Let the distribution of Z_t be denoted π_t and the stationary distribution be π .

Define a coupling for Z_t , as follows:

- (1) $X_t = Z_t$ for $t \ge 0$.
- (2) $Y_t = (Q_t^*, L_t^*)$ is the state vector for the queue starting in the stationary distribution for X and with the same sequence of arrivals and service times as X. Clearly, Y_t is a Markov process with the same transition probability function as X.
- (3) Let $T = \inf\{t: Y_t = (0, 0)\}\)$. Clearly $Pr[T < \infty] = 1$.
- Since $Q_0^* \geq Q_0 = 0$ and Y has the same sequence of arrivals and service times as *X*, $Q_t^* \geq Q_t$ for $t \geq 0$, which implies that $X_t = Y_t$ for $t \geq T$.

We may therefore apply the coupling inequality:

$$
\|\pi_t - \pi\| \leqslant Pr\left[T > t\right].\tag{1}
$$

Now let $V_t = (Q'_t, L'_t)$ be the state vector for the queue with $V_0 = (Q_0^*, 0)$ and the same arrivals and service times as Y including the service times for the

customers in the system at $t = 0$. Let $T' = \inf\{t: V_t = (0, 0)\}\)$. A little reflection convinces us that $T' \geq T$, so that

$$
\|\pi_t - \pi\| \leqslant Pr\{T' > t\}.\tag{2}
$$

In the next section, we shall derive bounds on the tail of the distribution of T'.

2. The distribution of T'

In this section, we examine V_t at the times of customer departures; since $L'_t = 0$ for these points, we shall simply denote the state by Q'_t .

Let

 τ_i = time for V to "move" from i to $i - 1$ for $i > 0$.

Therefore,

$$
T' = \tau_1 + \tau_2 + \dots + \tau_{Q_0^*}.
$$
 (3)

Since τ_1 , τ_2 ,... are clearly i.i.d., we may apply standard results for random sums. We already know the distribution of Q_0^* , since this is the stationary distribution of number in the system, so it only remains to find the distribution of τ_1 . For τ_1 we have

$$
\tau_1 = S + \tau_1' + \tau_2' + \cdots + \tau_{N(S)}', \tag{4}
$$

where S is the service time for a customer, $N(S)$ is the number of arrivals in this service time, and τ'_1 , τ'_2 ,... are i.i.d. and distributed as τ_1 .

Let $\Phi(w) = E[e^{-w\tau}]$ be the Laplace transform of the distribution of τ_1 . Clearly, $\Phi(w)$ exists for Re(w) ≥ 0 . Then from eq. (4), we have

$$
\Phi(w) = E \left[e^{-wS} \Phi(w)^{N(S)} \right]
$$

\n
$$
= E \left[E \left[e^{-wS} \Phi(w)^{N(S)} | S \right] \right]
$$

\n
$$
= E \left[e^{-wS} e^{\lambda S(\Phi(w) - 1)} \right] \text{ since } N(S) \text{ is Poisson with parameter } \lambda S
$$

\n
$$
= E \left[e^{-S(w - \lambda \Phi(w) + \lambda)} \right]
$$

\n
$$
= G^*(w - \lambda \Phi(w) + \lambda), \qquad (5)
$$

where $G^*(w) = E[e^{-wS}]$ is the Laplace transform of the service time distribution. While it is not clear how to find $\Phi(w)$ from this equation, we may readily find the moments of the distribution by differentiating:

$$
E[\tau_1] = -\Phi'(0) = (1 - \lambda \Phi'(0))E[S]
$$

= ES/(1 - \lambda ES), (6)

$$
E[\tau_1^2] = \Phi''(0) = (1 - \lambda \Phi'(0))^2 E[S^2] + \lambda \Phi''(0)E[S]
$$

= E[S²]/(1 - \lambda E[S])³. (7)

108 *A. Merchant / Settling time bounds*

To make further calculation compact, we rewrite these in terms of
$$
\rho_i = \lambda^i E[S^i]
$$
,

so that

$$
E[\tau_1] = \frac{1}{\lambda} \cdot \frac{\rho_1}{1 - \rho_1} \tag{8}
$$

$$
\sigma_{\tau_1}^2 = E[\,\tau_1^2\,] - E[\,\tau_1\,]^2 = \frac{1}{\lambda^2} \cdot \frac{\rho_2 - \rho_1^2 + \rho_1^3}{\left(1 - \rho_1\right)^3} \,. \tag{9}
$$

For the distribution of Q_0^* we have the Pollaczek-Khinchin z-transform equation (see, for instance, Kleinrock [6]):

$$
Q(z) = \frac{G^*(\lambda - \lambda z)(1 - \rho_1)(1 - z)}{G^*(\lambda - \lambda z) - z}.
$$
\n(10)

The moments may be found, again, by differentiating:

$$
E[Q_0^*] = Q'(1) = \rho_1 + \frac{\rho_2}{2(1 - \rho_1)},
$$
\n(11)

$$
\sigma_{Q_0^*}^2 = Q''(1) + Q'(1) - Q'(1)^2
$$

=
$$
\frac{\rho_3}{3(1-\rho_1)} + \frac{\rho_2^2}{4(1-\rho_1)^2} - \frac{(2\rho_1 - 3)\rho_2}{2(1-\rho_1)} + \rho_1(1-\rho_1).
$$
 (12)

From eqs. (3) and (8)-(12) and standard results for the mean and variance of random sums (see Karlin and Taylor [3]) we have,

$$
E[T'] = E[\tau_1] \cdot E[Q_0^*]
$$

\n
$$
= \frac{1}{\lambda} \cdot \left(\frac{\rho_1^2}{1 - \rho_1} + \frac{\rho_1 \rho_2}{2(1 - \rho_1)^2} \right),
$$

\n
$$
\sigma_{T'}^2 = E[\tau_1]^2 \sigma_{Q_0^*}^2 + E[Q_0^*] \sigma_{\tau_1}^2
$$

\n
$$
= \frac{1}{\lambda^2} \cdot \left\{ 4\rho_1^2 (1 - \rho_1) \rho_3 + 3(2 + \rho_1^2) \rho_2^2 + 12\rho_1 (1 - \rho_1) (1 + \rho_1 - \rho_1^2) \rho_2 - 12\rho_1^4 (1 - \rho_1)^2 \right\} \left\{ 12(1 - \rho_1)^4 \right\}^{-1}.
$$
 (14)

Armed with these moments, we may then apply Chebychev's inequality to bound the tail of the distribution of *T':*

$$
Pr[(T'-E[T'])^2 > k^2 \sigma_{T'}^2] \le 1/k^2
$$

and for $t > E[T']$,

$$
\|\pi_t - \pi\| \le Pr[T' > t] \le \sigma_{T'}^2 / (t - E[T'])^2.
$$
 (15)

Example: M/M/1 queue

For an exponential service time distribution, the Laplace transform is

$$
G^*(w) = \frac{\mu}{w + \mu} \quad \text{for } \text{Re}(w) > -\mu. \tag{16}
$$

This gives us

$$
\rho_i = \lambda^i E\left[S^i\right] = i! \left(\lambda/\mu\right)^i = i! \rho^i
$$

in terms of the traffic intensity $\rho = \lambda / \mu$. Substituting in eqs. (13)-(14),

$$
E[T'] = \frac{1}{\lambda} \cdot \left(\frac{\rho}{1-\rho}\right)^2
$$

and

$$
\sigma_{T'}^2 = \frac{1}{\lambda^2} \cdot \frac{\rho^3 (2+\rho)}{(1-\rho)^4},
$$

which we may use in the Chebychev inequality. However, the $M/M/1$ case can be made to yield better bounds, as we show in the next section.

3. Exponential bounds

When eq. (5) can be solved explicitly for $\Phi(w)$, it is possible to find stronger bounds for the variation distance, as we shall see for the *M/M/1* case.

Substituting the Laplace transform for the service time distribution in eq. (5) we have

$$
\Phi(w) = \frac{\mu}{w - \lambda \Phi(w) + \lambda + \mu} \quad \text{Re}(w) \ge 0, \text{Re}(w - \lambda \Phi(w) + \lambda + \mu) > 0.
$$

Solving the quadratic equation for $\Phi(w)$, and selecting the negative sign to make $\Phi(0) = 1$,

$$
\Phi(w) = \frac{\lambda + \mu + w - \sqrt{(\lambda + \mu + w)^2 - 4\lambda\mu}}{2\lambda} \quad \text{Re}(w) \ge 0. \tag{17}
$$

 $\Phi(w)$ is analytic everywhere in the complex plane cut along the segment $[w_1, w_2]$, where w_1 and w_2 are the two (negative) roots of $(\lambda + \mu + w)^2 = 4\lambda\mu$.

For the stationary queue length distribution, we have from eq. (10)

$$
Q(z)=\frac{\mu-\lambda}{\mu-\lambda z}.
$$

Let $T^*(w) = E[e^{-wT'}]$ be the Laplace transform of the distribution of T'. Using eq. (3),

$$
T^*(w) = Q(\Phi(w))
$$

=
$$
\frac{2(\mu - \lambda)}{\mu - \lambda - w + \sqrt{(\lambda + \mu + w)^2 - 4\lambda\mu}}.
$$
 (18)

To bound the tail of the distribution, we show a Chernoff-type inequality [1]:

$$
Pr[T' > t] = \int_{y=t}^{\infty} dF(y) \quad F \text{ is the c.d.f. of } T'
$$

$$
\leq \int_{y=t}^{\infty} e^{-(y-t)w_0} dF(y) \quad \text{for } w_0 < 0
$$

$$
\leq e^{w_0 t} T^*(w_0) \quad \text{for } w_0 < 0.
$$

Since $T^*(w)$ is analytic everywhere in the complex plane cut along the segment $[w_1, w_2]$, we may allow $w_0 \downarrow w_2 = -(\sqrt{\mu} - \sqrt{\lambda})^2$, yielding

$$
\|\pi_t - \pi\| \le Pr\{T' > t\} \le (e^{-(\sqrt{\mu} - \sqrt{\lambda})^2 t})(1 + \sqrt{\lambda/\mu}),\tag{19}
$$

which gives us an exponentially decreasing bound for $|| \pi_r - \pi ||$.

In the case of $M/G/1$ queues, if $G^*(w)$ exists for some $w < 0$, then it can easily be shown that $\Phi(w_0)$, and therefore $T^*(w_0)$ exists for some $w_0 < 0$ (see Kingman [5], lemma 3). Thus a Chernoff-type inequality holds in this case.

For the $G/G/1$ system, Cohen [2] shows that asymptotically, as $t \to \infty$, various parameters such as the expected workload approach their limiting values exponentially fast, assuming that the Laplace transforms of the inter-arrival time distributions and the service time distribution are analytic in a complex half-plane which includes the axis $Re(w) = 0$ in its interior. This indicates that it might be possible to derive a Chernoff-type bound in this case too. However, while it is quite simple to set up a coupling for the $G/G/1$ system similar to that in section 1, it is not obvious how the distribution of the coupling time may be found.

Acknowledgement

We thank Anil Gangolli for introducing us to the subject of couplings, and for other help with this work.

References

- [1] H. Chernoff, A measure of asymptotic efficiency for tests based on the sum of observations, Ann. Math. Stat. 23 (1952) 493-509.
- [2] J.W. Cohen, *The Single Server Queue,* 2nd ed. (North~Holland, 1982).
- [3] S. Karlin and H.M. Taylor, *A First Course in Stochastic Processes* (Academic Press, 1975).
- [4] A.Y. Khinchin, Mathematical theory of stationary queues, Mat. Sbornik 39 (4) (1932) 73-84.
- [5] J.F.C. Kingman, On queues in which customers are served in random order, Proc. Cambridge Phil. Soc. 58 (1962) 79-91.
- [6] L. Kleinrock, *Queueing Systems,* vol. 1 (Wiley, 1975).
- [7] L. Takács, *Introduction to the Theory of Queues* (Oxford University Press, 1962).
- [8] H. Thorisson, On maximal and distributional coupling, Ann. Prob. 14 (1986) 873-876.