
Queueing Systems 8 (1991) 59-80 59 

A NUMERICALLY STABLE A L G O R I T H M  FOR TWO SERVER 
QUEUE M O D E L S  

Yiqiang Z H A O  

Department of Mathematics, University of Saskatchewan, S7N OFVO Canada 

Winfried K. GRASSMANN 

Department of Computational Science, University of Saskatchewan, S7N 01410 Canada 

Received 12 June 1989; revised 26 December 1989 

In this paper, we consider a queueing system in which there are two exponential servers, 
each having his own queue, and arriving customers will join the shorter queue. Based on the 
results given in Flatto and McKean, we rewrite the formula for the probability that there are 
exactly k customers in each queue, where k = 0, 1 ..... This enables us to present an algorithm 
for ~omputing these probabilities and then to find the joint distribution of the queue lengths 
in the system. A program and numerical examples are given. 

Keywords: Queues in parallel, generating functions, two-dimensional Markov chains. 

1. Introduction 

We consider the system with two parallel queues, in which arrivals join the 
shorter queue. We assume that: (a) the arrivals form a Poisson process with the 
arrival rate 2,; (b) there are two servers each having his own queue; (c) the service 
times are mutual ly independent exponential random variables with the same rate 
#; (d) the service times are independent of the arrivals; (e) no jockeying between 
the two queues is permitted; (f) the traffic intensity p = ),/(2/.t) is less than one. 
Let A and B denote the two queues. If the two queue-lengths are equal, we 
assume that the system satisfies either (g) an arrival will join either of the two 
queues with the same probability or ( g ' ) a n  arrival will join queue A with 
probability one. The system which satisfies (a)-(g) is called the symmetric shorter 
queue model; and the system which satisfies (a)-(f) and (g ' )  is called the 
non-symmetric shorter queue model. 

Several authors studied shorter queue models. The shorter queue problem was 
proposed by Haight [7] who also successfully analysed the symmetric case when 
jockeying between two queues is permitted. For the symmetric case, Kingman [9] 

�9 J.C. Baltzer A.G. Scientific Publishing Company 



60 Y. Zhao, W.K. Grassmann / Algorithm for two server queue models 

and Flatto and McKean [2] obtained, by using the generating function method, 
some expressions for the generating function of the steady state queue-length 
distributions and the asymptotic steady state probabilities for large number of 
customers in each queue. Gertsbakh [4] and Rao and Posner [12] performed an 
algorithmic analysis, for the symmetric case and non-symmetric case respectively, 
by using the matrix-geometric technique developed by Neuts [11]. In order to get 
numerical results. Grassmann [5], Conolly [1] and Rao and Posner [12] truncated 
one queue or both queues to finite size N. An iterative method was used by 
Schassberger [13] in order to get numerical results for the symmetric case. Halfin 
[8] derived the bounds of the total number in the system and the probabilities 
that there are n (n >/0), customers in the system. The effect of jockeying in the 
non-symmetric shorter queue model was discussed by Koenigsberg [10]. 

Among the approaches used by the above authors, the generating function 
approach is a difficult one. The result for the generating function of the joint 
distribution of the queue-lengths in equilibrium obtained by K.ingman [9] is 
incomplete as pointed out by Flatto and McKean [2], who obtained the complete 
expression and also obtained closed form expressions for the probabilities of the 
queue-lengths in equilibrium. However, a substantial effort is still required to 
convert the formulae into a numerically convenient form. For this reason, we 
rewrite the solution for the diagonal probabilities of the queues in equilibrium, 
from which we obtain the joint distribution of the both queues. 

2. Some results of Flatto and MeKean 

We first consider the symmetric shorter queue model and review some results 
obtained by Flatto and McKean [2,3]. Denote by X(t)  and Y(t) the respective 
lengths of queue A and queue B at the time t. Then {(X(t), Y(t)), t>~0} 
describes a continuous time Markov chain on the state space {0, 1, 2, . . .  }2. Let 
P be the given probability measure, and 

P i j ( t ) = P { X ( t ) = i , Y ( t ) = j } ,  i, j = 0 , 1 , 2  . . . . .  

The chain is stable iff p = ~/(2#)  < 1. Then the equilibrium probabilities Po = 
lim t_~opij(t) exist and satisfy the equations 

- h p 0  0 + 2~p01 = 0, (1) 

 poo - +  )pol + po2 + i, p l l  = o,  (2)  

- (X +/~)Poj + ~tPoj+l +/~Plj = O, j >/2, (3) 

2~kPii+ 1 -- ( X  q- 2~)Pi+x i+ 1 + 2l.tPi+li+ 2 -~ O, i >i O, (4) 

~,Pii+2 + ~Pi+li+X - (~ + 2/~)Pi+u+2 + I~Pi+li+3 + I~Pi+2i+2 = O, i >/O, 
(5) 

XPii+ j -- (~ + 2tz)Pi+x~+j + txpi+l~+j+l + Ixp~+2i+j = O, i >/O, j >/3. (6) 



Y. Zhao, W.K. Grassmann / Algorithm for two server queue models 61 

Because of the symmetry of the system Pij = Pji for all i and j.  Let 

P(x,  y ) =  E pijxiy j-a, Ixl ~<1, ly l  
o~i<~j  

oo 

P(x,  O) = Y'. p,jx', Ixl ~ 1 
i = 0  

(7) 

and (8) 
oo 

P(O, y ) =  Y~ PojY j, lYl ~ 1. 
j=0 

From Flatto and McKean [2] and [3] we find that 
J~J(x,  y) and K - K ( x ,  y) are given by 

J =  x[2px + 1 -  (1+  p ) y -  py2]P(x,  O) + y ( y -  x)P(O, y) 

and 

P(x, y) = J /K ,  where 

(9) 

(1) P(x(u),  y(u)) is analytic inside Ix(u)  I < 1, l y(u)  I < 1; 
(2) x(u) = x(1/u); 
(3) u(y) = y(1/'yu), where 

l + p - r  2 
l '  = ( 1 4 )  

l+p+{l+k 
Flatto and McKean used these relations to obtain an explicit determination of 
P(x(u),  0) and P(0, (u)), and therefore a determination of P(x(u),  y(u)) in u. 
The key results in Flatto and McKean [2] are the following. 

It turns out that 

K= x(2px + 1) - 2(1 + p)xy + y2. (10) 

The generating function P(x, y) is analytic when Ix I < 1 and I Y [ < 1, which 
means that the denominator K and the numerator d have common zeros in this 
region. To deal with these common zeros we denote 

4( x = x ( u )  = u + + 2 '  11) 

y = y ( u )  = � 8 8  �88 b) 1 + 2 '  (12) 

following Flatto and McKean [2,3]. Here u is in the region: ] x ( u ) [ < l ,  
[y(u)  [ < 1, and 

1 1 1 + p (13) 
a =  - -  b =  - -  c =  - -  

I + P  2 '  ~ ' l + p 2 "  



62 Y. Zhao, W.K. Grassmann / Algorithm for two server queue models 

THEOREM 1 (Flatto and McKean) 
If 

FI.>~2(1+ ~ ' "u) ( l+  ~ )  
~ ( 

I-l.~o 1 - ~ u  1 -  

and 

then 

(15) 

and (17) 

1 D(u) 
P(x(u), O)= 1 + 2p D(uo) 

P(O, y(u))=C(u)P(x(u),  0), 
where 

2 2 f f  1 
~ =  I + ~T + -~ 1 + 0 2 ,  

(is) 
1 u 0 = 2 p  2 1 +  1_!__+ 1+  = , 

2p2 y2~/ 

and ~, is given in (14). [] 

THEOREM 2 (Flatto and McKean) 
The poles of P(x(u), 0) are located at u = ~//y", u = ~,"/7/, n >i 0. The residue 

R,  at u = ~//~," is given by 

with 

R.= Ro[rn f l e (  71.1] 
[ j = l  \'ffIJ 

Ro= 

and 
~(u-n)(u+~) 

e ( u ) =  (1 - v ]u)(1 +.y~,,,)" 

-1 

(19) 

8~(1 + p~)(2- p)(p- 1) 
(7/2_ 1)p2(2 + p) 

[] 

(20) 

[1-# l~-~](U-rl)(u+ y) 
c(u)= 4(,+-~) (16) 



Y. Zhao, W.K. Grassmann / Algorithm for two server queue models 63 

Theorem 2 leads to the determinations of the residues R, at the poles 
x,, = ( a/4)(*//'y" + 7"/*/) + a/2, n >1 O, of P(x,  0), which are given in theorem 
4.1 in Flatto and McKean [3]. Specifically, 

2 ( 2 -  p ) ( p -  1) (21) 
R 0 = p2(2 + p) 

and for n >t 1, 

R = ( _ 1 ) . 2 ( 2 - p ) ( p - 1 ) ( * / 2 - . t 2 " )  
02(2 + 0)(*/2- 1) (V*/)" 1--I j = l  

( 1 + y j-27/ 1 */2 

(1__ yj)(1 + y j ;1 )  

(22) 

Let 

c -  b 71 c + b "r'~ c 
= - -  + n > O,  ( 2 3 )  Y" 4 ~" + 4 77 -2' 

Flatto and McKean ([3], theorem 4.2 and theorem 4.3) gave the expression of the 
generating function P(x,  y) as a meromorphic function as follows: 

1 l + p  y2) 
R , x ,  x,  + 2p 2p y + -2- 

P(x ,  y)  = 2p • ( x -  x , ) ( y - y , ) ( y - y , + l )  ' (24) 
n=0 

and gave formulae for Pij (i, j >/0) via the decomposition of the meromorphic 
function P(x,  y)  into partial fractions. In particular, the formula for Pi; is 

oo R, ( l + 2 p x , ) (  1 1 )  i>~0. (25) 
Pii = 2p 2 (Y.+I--Yn) 2px~ Yn+l Y. ' 

n=O 

The expected number of customers in the system given by (Flatto and McKean 
[21) 

80(1+p2) Uo E ,  E =  20 + , (26) 
1 - 4p 2 2P - 1 u 2 - 1 

with 

E ' =  ~ l + ~ n u o  Uo(Uo+'~") + . . . .  " ,,=2 . = o  ~ - "Y"u~ Uo(Uo*/-  "r") 

(27) 



64 Y. Zhao, I, K K. Grassmann / Algorithm for two server queue models 

3. Some preliminary results 

We now rewrite (25) into a preferable form for numerical purposes. A 
comparison between them will be given later. 

THEOREM 3 
For i >1 0, the diagonal joint probabilities p.  of the queue-lengths are given by 

- 7 "  [4(__~l+_P2_))y_m.~] ', 

where 

a 0 ~-- 

D0=I ,  

and 

(1+ 72~/)(1+ 73~)(1 - ~  1 

1 7 (1+ 2p)(1 + ~)(1 + ~ ) ( 1 -  7) 

( 
Ora = --  72Tl 1 7112 1 -]- 7] 

(1 - 7 m) 1 + n 

(29) 

Din_,, (m>~ 1). (30) 

Proof 
Essentially, we need to show that for any i >/0 and m >1 0, 

2pym+a - Ym 2pX'im Ym+ l Ym 

~1 - 7m ) [ 4(1 +_ P_2)._C ] 
?JTTm 7j(1+ ~Tjm)2 I 

The details of the proof are elementary and cumbersome, and they are omitted. 
[] 

A direct consequence of theorem 3 is an explicit formula of the expected 
number of customers in the queues, which has a preferable form for numerical 
purposes. A comparison between (31) and (26) Will also be given later. 

COROLLARY 1 
The expected total number of customers in the system is 

E =  1 - ( 1 +  ~ -7 ' ] /  ~' 
(1 i=o 7/+7 ' ]  (1---~o,)2 , 

(31) 



Y. Zhao, W.K. Grassmann / Algorithm for two server queue models 

where 

65 

4(1 + p2) 3,; 
OOi = y i  ~2 , i >/O. (32) 

,7(1 +-; ] 
Proof 

For evaluating the expected number of customers 

E= E ( i + j ) p ~ j = 2 E i ( Z p , j ) ,  
i,j>~o i>~o j>~o 

we use the following four equations: 

Y'~ Pl j= p[2 ~_, Poj--Poo], 
j>~O [ j>~O 

E Pij = p[2 ~ Pi-l,j --Pi-l,i-1 
j>~O j>~O 

(i >~.2), 

1 i 

Pii=-~ j~=oPi+I,j, (i>10) 

(33) 

- -  2 ( p i - l , 0  +el-l,1 + "" " +Pi-l,i-2) 

(34) 

(35) 

and (36) 

Y'~ Poj = 1 -  p. 
j>~O 

Here (34) and (35) follow directly from the stationary equations (1)-(6), while 
(36) can be derived from eqs. (3.1) and (3.7) in Halfin [8]. 

Now replace (P,-l,o + P i - I , 1  + " ' "  +Pi-l,i-2) in (35) by PPi-2,~-2 (equation 
given in (36)) and then put the resulting expression and (34) into (33). After using 
(36), we obtain 

E= (12-40) 1 - ( 1 + 2 0  ~ i p .  , 
i>~O 

which leads to the desired result. [] 

Turning now to the non-symmetric case, we note that an arrival will join a 
specific queue, say queue A, when the lengths of two queues are equal. Denote by 
X(t) the length of the shorter queue and by Y(t) that of the other. Then 
{(X(t), Y(t), t >1 0} is a Markov chain and one does not need to distinguish 
between the symmetric case and the non-symmetric case. This idea is due to 
Halfin [8]. The closed form solution given by theorem 1 and corollary 1 is still 
valid for the non-symmetric case, provided one uses the following relationship. 



66 Y. Zhao, W.K. Grassmann / Algorithm for two server queue models 

THEOREM 4 
Let qij, i, j >i 0, be the equilibrium joint probabilities of the queue-lengths in 

the non-symmetric case, then the equilibrium probabilities Pij and qij have the 
following relations: 

2p~y = qq + qj,, i, j >i 0. (37) 

Proof 
The proof is a direct consequence of Halfin's idea mentioned above. [] 

4. Algorithm and numerical results 

The closed form expression (28) for the equilibrium probabilities Pii, i >f 0, 
allows us to derive a stable algorithm for computing the probabilities p, ,  i > 0. 
For this purpose, we rearrange the right hand side of this expression and obtain 

4(1 + 0 2) -l|i 

1 2 J 
23, m 

2(1 + p2) ] i 

+ 7/ - J 

(i>~o). (38) 

By using a standard method of calculus and noticing that as p increases from 
zero to one, 7/ decreases from infinity to 3 + 2v~- and y increases from zero to 
(2 - r + v~-), the following facts are easily obtained. 

LEMMA 1 
Let 

f l ( p ) =  4(1+p2)  f2(p)= 2(1+p2),  f3(p)=y271, (39) 

( �88 ~ / 1 +  

( 1 + 7 ) '  (40) 
and 

h~(p) = 2"~m (m>~ 1). 
(1 + ~," , )~ ' 



Y. Zhao, W.K. Grassmann / Algorithm for two server queue models 6 7  

Then  as p increases from zero to one, (a) f l  increases f rom zero to one; (b) f2 
increases f rom zero to 4 / (3  + 2V~-); (c) f3 decreases f rom one to 1 / (3  + 2v~).  
Also, for each p with 0 < O < 1, (d) gm increases to one and (e) h m decreases to 
zero as m goes to infinity. [] 

L e m m a  I and the following theorem will be used in the analysis of the errors in 
comput ing  p , .  

THEOREM 5 
For  0 < O < 1, we have that 0 < --D2,.+ 1 < D2" . < 1, ( m  >~ 0), and Dm ~ 0 as 

m .-.~ (~ .  

Proof 
From (30) we find that 

( " 1 "0 2 1 q- 
D m = ( _ l ) " ( ~ , a " 0 ) m E  77 , (m>~ 1), D o = l .  (41) 

i=1 ( 1 - y i )  1 

Since 0 < ]t27J < 1 ( lemma 1(c)) the product  in (41) is positive and converges as 
m ---, oo, O2"  . and D2m_ 1 have opposite signs and D" ~ 0 as m ~ o~. It remains 
to show that  for 0 < P < 1, h(m)  < 1 (m >1 1), where 

(1  ml)( 2 1 +  m2) 
,, D,, 7/ (42) 

h ( m ) - - ( - 1 )  D"_ a ='/2~ 7 ( 7 , .+1 ,  
(1 - V , . )  1 + ) 

Since 0 < 7277 < 1, it is easy to show that since 

~ " - - 1  . , / " -2  
1 I + - -  T/2 T/ 

and 
1 - 7 "  7 m+l 

1 + - -  

(43) 

both  decrease as m increases, so does h (m).  Let 

h .  = h ( 1 )  = -/2n 

(1 +)(1 - + y ~ )  

( 1 - ) , ) ( 1 +  - ~ )  

(44) 



68 Y. Zhao, W.K. Grassmann / Algorithm for two server queue models 

Then h(m) <~ h(1) = h o. Since hp is a decreasing function of p, it follows that 

h(m) <~ho< limho = lim y2~/= 1. (45) p---) 0 p~0 
The proof is thus complete. [] 

The next theorem allows us to estimate the truncation errors occurring when 
(28) is used for computing p, .  

T H E O R E M  6 

Let 

M D ~_ym [ p//M G0m~__ 0 -~ ----Z'k-~,,"] 4(1 + p2)ym 

Then 
2 M 

I p . - p Y l ~ G o S o ( ~  n) , (i>0), 
where 

1 ym-1 -'b 

So=YI ( :1)  
,.=1 ( 1 - r  ~ ) 1 +  

i 

, ( i>~O).  (46) 

(47) 

(48) 

Proof 
It follows from formula (38) that 

( : )  i 1--  
p .  _ py -1  = Go 2(1 + o 2) E D,. : 

m>~M 1 + 

Therefore, 

0 ~p.  _p~- i  ~ Go[ 
2(1 

L 1 {I m >~ M 1 

2:] 
( : /  1 + -  7 

q- D2m+l (1 
2y2-,+a 
" .,/2m + 1 )2 
+ "~/ 

2 y  2m 

.y2m )2 

i} 1 ~/2m+ 1 "17 

,y2m+l 
1 + - -  7 - 

l 
i 

(49) 

(50) 



Y. Zhao, W.K. Grassmann / Algorithm for two server queue models 69 

with M 1 = [34/2] or 

2(1 q- p2) E D 2 m - 1  0 >~Pi; _p//M-1 >~ Go 
m >~ M 2 

2y 2m 
+ D2m 

1 + 7 /  

2Y 2m-1 ]i 

( y2m-1)  2 1 + - -  77 

y2m , +,) 
with M 2 

0 <~Pii - - P i  M - 1  

2.{ 2m+1 

i 
2(1 + p 2) D2M~ 2y 2M' 

<~ GoD2M, <~ Go I DM- a [ 

M- a 1 712 1 + 

__Go( 2~)M-' E )( ~/m+l ) 
m=l ( 1 - 7  m 1 +  al 

= [(M + 1)/2]. In the former case (with M 1 = [M/21), 

(51) 

(52) 

(53) 

(54) 

(55) 

2 M-1 < Go(~ ,7) So. (56) 
The inequalities (52), (53), (54) and (56), respectively, come from the fact that 

1 + ~  ~<1, 1 71 71 



70 Y. Zhao, W.K. Grassmann / Algorithm for two server queue models 

lemma l(e) and theorem 5, lemma l(b) and lemma l(e), and from the fact that 

( ~m--1 ) (71] 2 ,~m-2 )/( _ _ 7  ( 1 + ym+a )71 ] 1 1 +  (1 .I/m) ] ~<1. 

In the latter case (with M 2 = [(M + 1)/2]), similarly, 

) So, (57) 0 ~Pii--piMi -a >1 GoD2M_ 1 >i -Go('~27 M-1 

so that 

2 M 
]p, ,-p,T-1l<GoSo(v n) , (i>_.o). [] (58) 

It follows from the above theorem that if we need to compute p .  up to the 
precision q,  then we can determine M (the number of terms needed in the 
summation) safely by letting (~,27)M = q ,  which gives us 

In e a 
M -  ln(ya7 ) . (59) 

In the practical algorithm, q cannot be too small because In q leads to an 
exponential overflow otherwise. In that case, we suggest the following choice of 
M, 

9n 
M -  - - ,  (60) 

P 

where 10-" is the required precision. To get (60), let 

(y27)M = 1 = 10-", (61) 
(1 + 202 + 20V 1 +/i-~p2 ) v 

so that 

n In 10 n In 10 
M= ln(l + 2pz + 20 1~-~)  <~ ( ) (62) 1 + 202 + 2p~/1 + 02 

In 1 +  3 + 2 v ~  

Since 

1 + 2p 2 + 2 p d  + p2 

3 + 2 v ~  

we find that 

n In 10 
M ~  

2p 4- 2p~l + p 2 

3 + 2v~- 

<1 ,  O < p < l ,  (63) 

1 
2 

9n (64) 
P 



Y. Zhao, W.K. Grassmann / Algorithm for two server queue models -71 

Now suppose that E 1 is the required precision and ~2 > 0. Let I be the first 
subscript such that  Pit ~< E2- Then I can be de termined similarly to determining 
M. Let 

4(1 + p2) 

so that  

=c2 ,  (65) 

,n(X) 
/0= ,66) 

In 4(1 + p2) 

and I is i0 rounded  up to the next integer. In table 1, M and I are provided for 
some different traffic intensities and precisions. 

F rom the  program (given in section 5), it is easy to count  the number  No I of 
operat ions needed for comput ing Pii, 0 ~ i ~ I, which is approximately 

No 1 = 21M + 5MI  + 61. (67) 

We now demonstrate  that the algori thm for calculating Dm is numerically 
stable. As shown in Grassmann [6], numerical  algorithms are unstable iff they 
contain sums with the property that some terms of the sums are large compared  
to the total of the sums. We now show that  all terms of eq. (41) are small. We do 
this by showing that the intermediate results 

/x-,m)+ )) 
and (72~) m go to one and zero, respectively, as m ---, c~. In fact, the algori thm is 
stable for comput ing  P~i. To  see this, we simply assume that the rounding  errors 
arise only in calculating summations;  then the difference between the accurate 
p f f  and the computed  pff, denoted by ~ff, will be 

[ Pf f  - Pf f  l ~ p y M S ,  (68) 

where ~ ~< fl~-', fl and t being the machine  base and the machine precision 
respectively. Thus  the relative error eM, for all i 's, is est imated by 

IpY- Yl 
~< M6, (69) 

e M = p f f  



72 Y. Zhao, W.K. Grassmann / Algorithm for two server queue models 

Table  1 
M, I and Pij for different  values of p and  ~ = c 1 = c 2 

p c M I EPii ZPii Zffij 

0.1 10 -5 69 2 0.83333 0.83333 0.998 
10 -1~ 126 5 0.8333333333 0.8333333333 0.99999 
10 -15 184 7 0.833333333333333 0.833333333333333 1.0000001 

0.2 10 -5 34 3 0.71429 0.71428 0.991 
10 -1~ 63 7 0.7142857143 0.7142857143 1.00000 
10 -15 92 10 0.714285714285714 0.714285714285714 1.0000001 

0.3 10 -5 23 4 0.62500 0.62499 1.000 
10 -1~ 42 9 0.6250000000 0.6250000000 0.99997 
10 -15 62 14 0.625000000000000 0.625000000000000 0.9999999 

0.4 10 -5  17 6 0.55556 0.55555 0.997 
10 -1~ 32 12 0.5555555556 0.5555555555 0.99999 
10 -15 47 18 0.555555555555556 0.555555555555555 1.0000000 

0.5 10 -5 14 8 0.50000 0.50000 0.999 
10 -1~ 26 16 0.5000000000 0.5000000000 1.00001 
10 -15 38 24 0.500000000000000 0.499999999999999 1.0000000 

0.6 10 -5 12 11 0.45455 0.45454 0.999 
10 -~~ 22 22 0.4545454545 0.4545454545 1.00000 
10 -15 32 33 0.454545454545455 0.454545454545454 1.0000002 

0.7 10 -5 10 16 0.41667 0.41666 1.000 
10 -1~ 19 32 0.4166666667 0.4166666666 0.100000 
10 -15 28 48 0.416666666666667 0.416666666666666 0.9999998 

0.8 10 -5  9 25 0.38461 0.38461 1.000 
10 -1~ 17 51 0.3846153846 0.3846153846 1.00000 
10 -15 25 77 0.384615384615385 0.384615384615384 0.9999999 

0.9 10 -5 8 54 0.35714 0.35714 1.000 
10 -1~ 15 109 0.3571428571 0.3571428571 1.00000 
10 -15 22 163 0.357142857142857 0.357142857142857 1.0000000 

0.99 10 -5 7 572 0.33557 0.33557 1.000 
10 -1~ 14 1145 0.3355704698 0.3355704698 1.00000 
10 -15 21 1718 0.335570469798658 0.335570469798657 1.0000000 

0.999 10 -5 7 5753 0.33356 0.33355 1.000 
10 -1~ 14 11507 0.3335557038 0.3335557038 1.00000 
10 -15 20 17260 0.333555703802535 0.333555703802541 1.0000001 

which leads to 

1 
l n - -  

In •1 Cl 
eM<~ ln/ ,2T/~ ) 3 =  ln(1/3,2~/) 

3. 



Y. Zhao, W.K. Grassmann / Algorithm for two server queue models 73 

N o w ,  

In ~' 2----~ . 

>/ln(1 + 20(1 + 0)) >i ln(1 + 20) 

(20) z 
>/20 2 = 2 0 ( 1 + p ) > / m i n ( p ,  1 - p ) .  

Consequently, 

in 1 
E1 

ev<~ min(o, 1 - 0 )  8. (70) 

Since 8 is usually around 2 -48, the value of the right hand side in (70) is 
extremely small. 

The numerical results also show that truncation errors are very small. From 
taking u = u 0 in formula (17) it follows that 

1 
Sum = Y'. pii = 1 + 20 '  (71) 

i>~0 

which gives a good check for the precision. Let 

S um= Y'~ flu (72) 
i>~0 

be the sum of the computed probabilities fi,~ at the precision ~ = e a = ~2, then the 
difference between Sum and Sum is around 10G. Some numerical results are 
provided in table 1. 

The equilibrium probabilities p~j, i =~j, can be calculated recursively from the 
stationary equations given by (1)-(6). Specifically, 

Pi, i+a=+[(l+o)Pi+l , i+a-Pi+l . i+2] ,  

Pi,i+z = 2~[2(  1 + P)Pi+l,i+2- OPi+l,i+a 

(i>~O), 

--Pi+2,i+2 -- Pi+ l,i+ 3], i >~ O. 

(73) 

1 [2(1 +P)Pi+l,i+j-Pi+z,i+j-Pi+l,i+j+~] i>~0, j>~ 3. (75) Pi,i+j = " ~  

It follows from the asymptotic formula given in Flatto and McKean [2] or [3] that 
Pu decreases and Pig <Pii for i big enough. We start the recursion with the 
smallest difference between i and j and the largest index i, that is, PM, M+I" 
Then, we proceed, using (73)-(75), until all the desired probabilities have been 
computed. We show in the following that the above algorithm for computing Pij 

(74) 



74 Y. Zhao, W.K. Grassmann / Algorithm for two server queue models 

is numerically stable. In fact, similarly to (68), the difference between the 
accuracy Pig and the computed -M PiS will be 

[ g --M 2M~$), (76) Pi,i+l --Pi,i+l I ~<P~+a( 1 + 
I M --M Pi,i+z-Pi,i+21<~pigi+z(1 + 6M~), (77) 

Table 2 
Complete numerical solution of Pij for p = 0.9 with e 1 = r = 10-7 

(i, i + k )  k = O  k = l  k = 2  k = 3  k = 4  k = 5  k = 6  k = 7  

P, Pi,i+k "1- Pi+k,i 

(0, k)  0.0422 0.0760 0.0280 0.0083 0.0023 0.0007 0.0002 0.0001 
(1, k + 1) 0.0545 0.0701 0.0208 0.0059 0.0016 0.0005 0.0001 
(2, k +2) 0.0485 0.0583 0.0165 0.0046 0.0013 0.0004 0.0001 
(3, k + 3) 0.0401 0.0475 0.0133 0.0037 0.0010 0.0003 0.0001 
(4, k + 4) 0.0326 0.0385 0.0108 0.0030 0.0008 0.0002 0.0001 
(5, k + 5) 0.0265 0.0312 0.0087 0.0024 0.0007 0.0002 0.0001 
(6, k + 6) 0.0214 0.0253 0.0071 0.0020 0.0006 0.0002 
(7, k + 7) 0.0174 0.0205 0.0057 0.0016 0.0005 0.0001 
(8, k + 8) 0.0141 0.0166 0.0046 0.0013 0.0004 0.0001 
(9, k + 9) 0.0114 0.0134 0.0038 0.0011 0.0003 0.0001 
(10, k + 10) 0.0092 0.0109 0.0030 0.0009 0.0002 0.0001 
(11, k + 11) 0.0075 0.0088 0.0025 0.0007 0.0002 0.0001 
(12, k + 12) 0.0061 0.0071 0.0020 0.0006 0.0002 
(13, k + 13) 0.0049 0.0058 0.0016 0.0005 0.0001 
(14, k + 14) 0.0040 0.0047 0.0013 0.0004 0.0001 
(15, k + 15) 0.0032 0.0038 0.0011 0.0003 0.0001 
(16, k + 16) 0.0026 0.0031 0.0009 0.0002 0.0001 
(17, k + 17) 0.0021 0.0025 0.0007 0.0002 0.0001 
(18, k + 18) 0.0017 0.0020 0.0005 0.0002 
(19, k + 19) 0.0014 0.0016 0.0005 0.0001 
(20, k +20) 0.0011 0.0013 0.0004 0.0001 
(21, k +21) 0.0009 0.0011 0.0003 0.0001 
(22, k + 22) 0.0007 0.0009 0.0002 0.0001 
(23, k + 23) 0.0006 0.0007 0.0002 0.0001 
(24, k + 24) 0.0005 0.0006 0.0002 
(25, k + 25) 0.0004 0.0005 0.0001 
(26, k + 26) 0.0003 0.0004 0.0001 
(27, k +27) 0.0003 0.0003 0.0001 
(28, k + 28) 0.0002 0.0003 0.0001 
(29, k + 29) 0.0002 0.0002 0.0001 
(30, k + 30) 0.0001 0.0002 0.0001 
(31, k + 31) 0.0001 0.0001 
(32, k + 32) 0.0001 0.0001 
(33, k + 33) 0.0001 0.0001 
(34, k + 34) 0.0001 0.0001 
(35, k + 35) 0.0001 0.0001 
(36, k + 36) 0.0001 



Y. Zhao, W.K. Grassmann" / Algorithm for two server queue models 75 

and 

- - M  P ~ - P i j  ~<p~(1 + 3 [ i - j [ M S ) ,  (78) 

where 8 has the same meaning as in (68). Thus the relative error for all i and j is 
estimated by 

M - M  Ip/J-p,ll ~< 3M28. (79) 
M 

Pij 

A complete program for computing p~j written in FORTRAN is given in 
section 5. The number No 2 of operations needed for computing p~j, 0 ~< i < j  ~< 1 
is approximately No z = 51 + 212. Combining (67) gives the total number No of 
operations needed for computing p~j, 0 ~< i ~<j ~< 1 is approximately 

No = No 1 + No 2 = 21M + 5M1 + 11I + 212. (80) 

If we derive an algorithm directly from eq. (25), the number of operations 
needed for computing p~g, 0 ~< i ~< ! is approximately 31M1, which is considerably 
larger than No a. Moreover, it seems very difficult to perform the error analysis. 
The formula (26) has similar disadvantages. When p ~< 0.9, the results computed 
from our method match the previous ones, for example, Gertsbakh [4] and 
Conolly [1]. This is clear from comparing table 2 and the corresponding results in 
other literature. However, our algorithm can be used to compute the p~j for very 
high values of p, say p = 0.999, which Can not be done when using the methods 
described in literature. For example, the complexity of the computation of the p~j 
is usually O(I 3) when using an algorithm derived from matrix-geometric tech- 
nique, but ours is O(12) (see eq. (80)). 

5. Fortran program 

10 
C 

This program computes Pij for shorter queue model with equal service 
rates. 

implicit double precision (a-h,o-z)  
dimension D(10000),p(10000),l(500),sp(500) 
dimension r10(10000),r20(10000),r3(10000) 
write(6, * )'What is the traffic intensity rho? rho = '  
read(5, * )rho 
write(6, * )'What is the required accuracy for p(i,i)? Enter E1 = '  
read(5, * )El  
write(6, ,  )'What is the smallest p(i,j) required being computed? Enter 

E 2 = '  
read(5, * )E2 
M1 - M given by (59) or (60). 



76 Y. Zhao, W.K. Grassmann / Algorithm for two server queue models 

11 

12 

C 

E1 = E1 * 0.1 
i f (E1.EQ.0.)  then  

M1 = 5 1 / r h o  
else M1 = l o g ( 1 . / E 1 ) / l o g ( 1 .  + 2. * r h o  * ( rho  + sqrt(1.  + rho  * * 2))) 

endif 

gamma -- 7, eta - q and I1 - I given by (14), (18) and (66). 

help -- sqrt(1. + rho * * 2) 

gamma = (1. + rho - help)/(1. + rho + help) 

eta  -- 1. + 2. �9 (1. + h e l p ) / ( r h o  �9 * 2) 
I1 = l o g ( 1 . / E 2 ) / l o g ( e t a  * (1. + 1 . / e t a )  * * 2 / ( 4 .  �9 (1. + r h o  * * 2))) 

write(20,  * ) ' r ho  = ' , rho  
write(20, * ) ' R e q u i r e d  a c c u r a c y  E1 fo r  p(i,i) = ' , E l  * 10 
write(20,  * ) ' R e q u i r e d  smal les t  p(i,i) = ' ,E2  

write(20, * ) 'No .  M of  D ( m ) " s  needed  to b e  c o m p u t e d  = ' ,M1 
write(20, * ) ' N o .  I of  p ( i , i ) " s  n e e d e d  to  be  c o m p u t e d  = ' , I1 

C o m p u t e  G O  - G O and  D(i) -- D i a c c o r d i n g  to (29) a n d  (30). 
G O =  ( ( 1 . + e t a *  g a m m a * *  2 ) .  ( 1 . + e t a *  g a m m a * *  3 ) *  ( 1 . -  
1 1 . / ( g a m m a  �9 e ta  * * 2)) 
1 �9 ( 1 . -  1 . / ( ( e t a  * * 2) * ( g a m m a  �9 �9 2))) 

1 ~ g a m m a / e t a )  
1 * ( 1 . -  g a m m a )  �9 (1. + 2. �9 rho)  ) 

D(1)  -- 1. 
r l  --  - e t a  * g a m m a  * �9 2 
s -- g a m m a  
a = - r l  
b -- g a m m a  �9 e ta  * * 2 
c -- g a m m a / e t a  
do  12 M -- 2 ,M1 + 1 

D ( M )  -- D ( M  - 1) * r l  �9 ( ((1. + s / a )  * ( 1 . -  s / b )  

s*  c ) ) )  
c l  = (1. - s / e t a ) / ( 1 .  + s / e t a )  

c2 -- 2. * s / ( ( 1 .  + s / e t a )  * * 2) 
w = l .  

do  11 i =  1,I1 + 1 
p(i) = D ( m )  �9 c l  �9 w + p(i) 

w = w * c 2  
con t i nue  
s = s * g a m m a  

con t inue  
C o m p u t e  p(i)  - - p ,  accord ing  to (28). 
c3 -- 4. * (1. + rho  * * 2 ) / ( e t a  * (1. + 1 . / e t a )  * * 2) 

c4 = 2. * (1. + rho  �9 * 2 ) / e t a  
c5 -- ( 1 . -  1 . / e t a ) / ( 1 .  + 1 . / e t a )  

) / (  (1. + 1 . / e t a )  * (1. + 

) / (  ( 1 . -  s) * ( 1 . +  



IT. Zhao, W.K. Grassmann / Algorithm for two server queue models 77 

U ~ I .  
V = I .  
do  13 i =  1,I1 + 1 

p(i)  = G O  * (c5 �9 u + v �9 p(i))  
u = u * c 3  
v = v * c 4  
wr i te (20 ,  * )'i = ',i - 1,' p(i , i)  = ' ,p(i)  

13 c o n t i n u e  
c C o m p u t e  r l 0  =-Pii+l b y  us ing  (73). 

sp(1) = 0. 
l ( 1 )  = I 1  - 1 

r l0 ( l (1 )  + 1) = 0. 
do  14 n = 1 (1 ) ,1 , -  1 

r l 0 ( n )  -- ((1. + rho)  * p (n  + 1) - r l 0 ( n  + 1 ) ) / ( 2 .  * rho )  
i f ( r l 0 ( n ) . G T . 0 . ) t h e n  

sp(1)  = sp(1) + r l 0 ( n )  
wr i te (20 ,  �9 )'i = ' ,n  - 1,' j = ' ,n, '  p(i,j) = ' , r l 0 ( n )  
else 
1(2) = n - 2 

6nd i f  
i f (n .EQ. l (1) )  1(2) = n - 1 

14 c o n t i n u e  
c C o m p u t e  r20 - - P , + 2  b y  us ing  (74). 

sp(2) = 0. 
r20(1(2) + 1) = 0. 
do  15 n = 1 (2 ) ,2 , -  1 

r20(n)  = (2. �9 (1. + rho)  * r l 0 ( n )  - r h o  �9 p (n)  - p (n  + 1) - r20 (n  + 

1 1 ) ) / ( 2 .  * rho)  
i f ( r 2 0 ( n ) . O T . 0 . ) t h e n  

sp(2)  = sp(2) + r20(n)  
wr i te (20 ,  * ) ' i  = ' ,n - 2,' j = ' ,n , '  p(i,j) = ' , r20(n)  

else 
1(3) = n - 2 

e n d i f  
i f (n .EQ. l (2) )  1(3) = n - 1 

15 c o n t i n u e  
c C o m p u t e  r30 = Pii+j, J >/3,  b y  us ing  (75). 

m = 3  
16 sp (m)  = 0. 

r30( l (m)  + 1) = 0. 
i f ( l (m) - m + 1 . E Q . 0 . O R . l ( m ) . E Q . 0 ) t h e n  

K = m - 1  
g o t o  18 



78 

17 

18 

19 

20 

Y. Zhao, W.K. Grassmann / Algorithm for two server queue models 

endif  
do 17 n = l ( m ) , m , -  1 

r30(n) = (2. * (1. + rho) * r20(n) - r l0(n)  - r30(n + 1)) / (2.  * rho) 
if(r30(n).GT.0)then 

sp(m) = sp(m) + r30(n) 
write(20, * )'i = ' ,n - m, '  j = ' ,n, '  p( i j )  = ',2. * r30(n) 
else 
l(m + 1) = n -  2 

endif  
if(n.EQ.l(m)) l(m + 1) = n - 1 
r20(n + 1) = r30(n + 1) 
r l0(n)  = r20(n) 
r30(n + 1) = 0. 

cont inue  
r20(m) = r30(m) 
r30(m) = 0. 
m - - - m +  1 
goto 16 
Sum = 0. 
do 19 M = 1,I1 + 1 

Sum = Sum + p(M) 
cont inue  
write(20, * ) 'Sum of p(i,i) = ' ,1 . / (1 .  + 2. * rho) 
write(20, * ) 'Sum of computed  p(i,i) = ', Sum 
do 20 i = 1,K 

Sum = Sum + sp(i) * 2. 
cont inue  
write(20, * ) 'Sum of computed  p(i,j) = ' ,Sum 
stop 
end 

Acknowledgement 

We thank  the referees for their useful suggestions and  grateful ly acknowledge 
that  this research was supported by  N S E R C  through  grant  A8112. 

References 

[1] B~ Conolly, The autostrada queueing problem, J. Appl. Prob. 21 (1984) 394-403. 
[2] L. Flatto and H.P. McKean, Two queues in parallel, Commun. Pure Appl. Math. 30 (1977) 

255-263. 



Y. Zhao, W.K. Grassmann / Algori thm for  two server queue models 79 

[3] L. Flatto and H.P. McKean, Two parallel queues with equal servicing rates, Science Report, 
RC5916, IBM (1977). 

[4] I. Gertsbakh, Shorter queue problem: A numerical study using the matrix-geometric solution, 
Eur. J. Oper. Res. 15 (1984) 374-381. 

[5] W.K. Grassmann, Transient and steady state results for two parallel queues, Omega 8 (1980) 
105-112. 

[6] W.K. Grassmann, Computational methods, in: Handbook of Operations Research and Manage- 
ment Science, ool. 2: Stochastic models, eds.D.P. Heyman and M.J. Sobel (North-Holland, 
1990) pp. 199-204. 

[7] F.A. Haight, Two queues in parallel, Biometrika 45 (1958) 401-410. 
[8] S. Halfin, The shortest queue problem, J. Appl. Prob. 22 (1985) 865-878. 
[9] J.F.C. Kingman, Two similar queues in parallel, Ann. Math. Statist. 32 (1961) 1314--1323. 

[10] E. Koenigsberg, On jockeying in queues, Manag. Sci. 12 (1966) 412-436. 
[11] M.F. Neuts, Matrix-Geometric Solutions in Stochastic Models (Johns Hopkins University Press, 

Baltimore and London, 1981). 
[12] B.M. Rao and M.J.M. Posner, Algorithmic and approximation analyses of the shorter queue 

model, Naval Res. Logist. 34 (1987) 381-398. 
[13] R. Schassberger, Ein Wartesystem mit zwei Parallelen Warteschlangen, Computing. 3 (1967) 

110-124. 


