Arc coverings of graphs.

by OvereIN OrE (a2 New Haven, Conn, U.S.A.).

To Ewnwrico Bompiani on his scientific Jubilee,

1. Definitions. — In the following Wwe shall examine certain properties
of finite graphs. Such a graph G is defined as usual by means of a finite
vertex set V and a number of associations or edges

E=\(a,b), a, beV

connecting some of them. The edges are simple, that is, at most a single
edge connecting any vertex pair; furthermore, there shall be no loops, that
is, edges of the special form (a, a). The local degree p(z) of a vertex v is
the number of edges having v as an endpoint. The total number of edges
is @ is then

Ve =V {G) = -é X, o), ve V.

The complete graph U(V) defined on V has all possible %n(n —1) edges

(@, b) where o and b run through the » vertices in V.
A family of edges of the type

(1.1) A =(a, a)(tt, @) .. (@p_s, a,)

is an arc of length # When no vertex ¢, appears more than once in it, It
is a circuit When a, = @, and this is the only repeated vertex. An are (1.1)
is a Hamilton arc When it includes all vertices of G and similarly for a
Hamilton circuil.

2. Are coverings.
A family of & arcs

(2.1) A, = (Aoy; A1)y, @) - (2 P 1) i=1,2,..k
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shall be given. The degenerate case Where A4; is a single vertex is permitted.
The arcs in (2.1) are disjoint wWhen they have no common vertices. The
vertices

Qi » anii

are the ferminal wvertices of A;. The ares {A;}| form an arc covering of G
when they are disjoint and each vertex in G lies on one of them.

An arc covering (2.1) is mawximal When it contains the greatest possible
number of edges. A HAMILTON arc. When it exists is a maximal covering.
From now on we suppose that (2.1j is a maximal arc covering. Then there
can be no edges in G connecting the terminal vertices of two different arcs
for it could be used to produce a covering with a larger number of edges.

We select tWo terminal vertices ¢ and ¢ on different ares 4 and A4'.
Suppose that for some arc A, there is an edge

E={, a;), a;, on 4,.
Then there cannot exist any edge
B =, aj41,i) ¥4s,s 00 4;

to the following vertex on A4,;. To verify this suppose first that 4, is
different from A4 and A'. (Fig. 1)

One could then replace the arcs
4, 4, 4,
in the arc covering with the fwo arcs
A+ B + Adty41,4, a’n’.,i)

A+ B4 Ai(ay,, ao)
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giving a new covering with one fewer arcs and one more edge. When
=4 (Fig. 2)

aji

aj+1,i

Fig. 2
one can replace the arcs 4 and A’ by the single arc
A+ E4 Aoy, an)+ B+ At U, )

We conclude that When (2.1) is a maximal arc covering there exists to
each edge (/,a;;) a unique vertex a,., ; to Which there can be no edge from #.
Thus if »; and #; denote the number of edges from ¢ and # to A, then

2.2) ri +r! <n,.

In a maximal arc covering (2.1) with £>2 arcs the condition (2.2) must be
satisfied for each arc 4, and all pairs of terminal vertices { and #. Let us
add all these inequalities for a fixed pair of vertices ¢ and ¢. Since

n=Z;(n;+1)=Z;n; + &
it follows that the local degrees of G at ¢ and ¢ must satisfy the condition
olt) + olt) S n—E.

This yields the result:

THEOREM 2.1. - When a maximal arc covering (2.1) contains k>2 arcs
then

(2.3) kE<n — p(f) — o(t)

where n is the number of vertices in G and t and ' two vertices not connected
by an edge.

In particular one has
(2.4) kgn_Pl_pg

Where p, and p, are the two smallest local degrees.
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3. Hamilton ares. - From the condition (2.4) follows as a special case:

TuEOREM 3.1. — When the local degrees of the graph G salisfy the
conditions

(31) ola) +el) 2 —1

for all vertices a and b not connecled by an edge then it has a Hawmilton arc.

This is a companion result to a theorem obtained previously for Hamir-
TON circuits (O. ORE, Note on Hamilton circwits, « Am. Math. Monthly », v. 67
(1960) p. 55):

TurorEM 3.2. - When the local degrees salisfy

(8-2) ela) + p(b) = n

for all vertices a and b not connected by an edge then G has a Hamillon
circuit.

4. Maximal graphs without Hamilton eircuits. The complete graph on n
vertices has a HAMILTON arc and when » >3 also a HAMILTON circuit. Thus
it is to be expected that a graph with » vertices will have the same proper-
ties when its number of edges v, G is sufficiently large. The preceding
results yield the specific conditions:

TaworeEM 4.1. - When the number of edges in o graph salisfies

(n— 1) — 2) + 1

DD} =

(1) velG) =

then G has a Hamilton arc. The graphs without Hamillon arcs and

4.2) (6) = 3 (0 — T){n—2)

consist of an isolated vertex and a complele graph on n—1 vertices; in addi-
tion when w =4 there is the star graph consisting of three edges from the
same verlex,

PrOOF. — When the condition (4.1} is fulfilled the graph may bej} consi-
dered to have been obtained from the complete graph 7/, through the elimi-
nation of at most

%n{n——l)—%(n—l)(n—m—1=n—2
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edges. Buf then no relation
p(a) +pb) =n—2

can hold for any pair of vertices not connected by an edge since this would
imply that at least

(n—1—p(@)+m—1—pb)—1>n—1

edges would have been eliminated. According to Theorem 3.1 the graph has
a HaMILTON arc.

When the number of edges is given by (4.2) there might be a pair of
vertices not connected by an edge such that

ela) + elb) = n — 2.

Then there remains

(n— 2)(r — 3)

DO st

edges so that these must form a complete graph U,_, on the other n — 2
vertices. One readily verifies that a complete graph has a HawmIinToN arc
connecting any pair of its vertices. Consequently also G has a HamirToN arc
if there are edges from a and b to two different vertices in U,_,. Thus only
in the two following cases can there be no HAMILTON arc:

1. Either a or b is an isolated vertex, for instance
pla) =0, plb)=mn—2

giving the first type of graphs.

2. There is a single edge from @ and & to the same vertex in
U,_,. Then

giving the second type.
An immediate consequence of Theorem 4.1 is:

THEOREM 4.2 - A graph with

V@)= 4 (0 — 1) —2) + 1
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edges is connecled. A graph with

(12— 1){(n—2)

DOl =t

Ve @) =

edges can only be disconnected when il consists of an isolaled vertex ond o
complete graph on n — 1 vertices.

This result could also have been obtained directly by a simple argument.

THEOREM 4.3. - 4 graph with
3 1
(4.3) V() 25 (1 — 1)1 —2) + 2
edges has a Hamilton circuit. When

(1 — 1) — 2) + 1

DOl =i

(4.4) V(@) =

the only graph without a Hamilton circuit consists of a complete graph, U, _.
and o single edge connecting it with an outside vertex; in addition, for n=b
there is the exceptional graph depicled in Fig. 3.

Fig. 8

Proor. - It follows by the same reasoning as before that when (4.3)
holds there can be no vertices @ and b not connected by an edge such that

pla) +el) <n—1
so that G has a HAMILTON circuit according to Theorem 3.2.

To prove the second part of the theorem We notice that when (4.4) holds
there may be a pair of vertices @ and b not connected by an edge such that

(45) o(@) + pl0) =1 — 1.
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The remaining

(n — 2)(n—3)

DO} =

edges must define a complete graph U,_, on the other vertices. From this
observation the result is readily verified for the small values n <5. It may
be assumed therefore that » >6. According to Theorem 4.2 the graph is
connected so that p(a) >1. The relation (4.5) shows that when p(a)=1 then
o) =n—2 and we have a graph of the type indicated. Clearly it has no
HAMILTON circuit.

There remains the case Where

pla) =2, p()= 3.

As we shall show there exists a HAMILTON circuit under these conditions.
There must then exist four edges

(a, al)(a: az)(b’ “3)(b7 @)

from a and b to U, _, such that at least three of the vertices a, are distinct.
If all are distinct we form the are

Q = (a1, a)(a, ala:, a)(as, b)b, a,).

The graph obtained from G by omitting a, b, a,, a, and all edges from these ver-
tices is a complete graph U, _,, hence it contains a HaMriLToN are P{a;, a,)
which when combined with @ gives a Hamirron circuit for G. When a,=a,
one obtains a HAMILTON circuit by an analogous reasoning.
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