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Summary. - See Introduction. 

1 .  - I n t r o d u c t i o n .  

I n  this pape r  we take  into account  a class of nonl inear  elliptic second-order  par-  

t ial  differential  equat ions  in divergence form. Typica l ly  we deal with equat ions of 

the following fo rm 

(1.1) - -  ~ ,  ~ a , ( x , u ,  D u ) =  H(x,  u) 
~=1 

where x = (xl, ..., x~) is a po in t  in m-dimensional  euclidean space R "~, u is the  rele- 
v a n t  solution and  Du its gradient ,  a~ and  H are  g iven rea l -va lued funct ions of the  

specified a rguments .  The ma in  hypo theses  we assume are the  following: 

(i) the coefficients a~ are measurab le  in R ~ x R  1 x R  ~ and  a funct ion A(r) exists 

such that 

(1.2a) A(r) is convex in 0 < r <  A - c o ,  

(1.2b) A(r)/r --> 0 if r -*  0 ,  

(1.2c1 ~. a~(x, u, ~) } ,>  e(l} l)  for all (x, u, ~). 

Iqote t h a t  A(r) a n d  A(r)/r are  pos i t ive  and  increasing b y  (1.2a) (1.2b). Al though  
no addi t ional  a s sumpt ion  on A(r) is real ly  needed for our purposes,  we shall  assume 
for  convenience t h a t  A(r) is s t r ic t ly  increasing and  twice cont inuously  differentiable. 

(ii) The r igh t -hand  side H is measurab le  in R m × R  1 and  

(1.3a) (H(x, u) - -  H(x,  0)) u < 0  for all (x, u). • 

(*) Entra ta  in Redazione il 19 ottobre 1976. 
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Let us give some examples. The first example is taken f rom the classic calculus 
of variations. Let a(x, Du) and b(x, u) depend smoothly on the last arguments; 
then the Euler equation of the integral f(a(x, Du) ÷ b(x, u)) ax has the form (1.1) 
with a~ = aa/au~, H - = -  ab/au. In particular the Euler equation of the follow- 
ing integral 

j [ j  r j 
0 0 

is 

and verifies the above hypotheses (i)(ii) provided A(r) satisfies (1.2a)(1.2b) and H(x, u) 
is a decreasing function of u. 

The second example might be a linear equation with merely measurable coef- 
ficients, and h~ving the following form 

3 
- + = t ( - ) -  

i , ~ = t  

In this case hypothesis (i) is just  the usual elhpticity condition 

~a~(x )~ ,~>(a  positive c o n s t a n t ) i  ~ 
~ , k = l  i = 1  

and hypothesis (ii) is the same as the positiveness of e(x). 
The capillary equation with positive gravity 

u~ 
U 

Vx~ V f  + t•u t ~ 4=1  

verifies conditions (i) (ii); the same is done by  the equation of (non parametric) sur- 
faces with prescribed mean curvature 

u~, - H(x, u) 
Ox~ ~/]. ÷ [D-u l --~ i = 1  

provided the curvature -- H(x, u) is an increasing function of height u. The same 

holds for 

0 u~, - H(x, u) 

~t 

the Euler equation of the integral f ( lDul- - ln(1  ÷ IDul)--fH(x,t)dt)dx. In 
o 

these examples the most appropriate choice of A(r) is: A(r )= r~/(1 + r). 
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The following equat ions 

- = a  l o w e r  o r d e r  t e r m  
"~ ,k  = 1 

~,~ ~ ~ I / )u  i u ~  . . . .  

where p > 1 and  a~¢(x) are measurab le  functions,  belong to our class if the  r ight-  

hand  side is a funct ion H(x, u) as in (if) and  the  lowest  e i g e n v a h e  of the symmet r i c  

p a r t  of the  m a t r i x  (a~(x)) is bounded  away  f rom zero, e.g. ~ a ~ ( x ) ~ $ ~ > ~  -F . . . -F  
i ,k= l 

-F ~ .  The  app rop r i a t e  A(r) are respect ive ly :  rr, r(e ~ -- 1), r In (1 -F r). [] 

We t ake  into account  solutions of Dirichlet b o u n d a r y  value problems.  Thus a 

basic ingredient  is 

(1.~) G = an open subset  of R ~', 

and  the  solutions we are concerned w~th are rea l -valued funct ions ver i fy ing the equa- 
t ion (1.1) in G and the condit ion 

( 1 . 5 a )  u ~ g on the  b o u n d a r y  ~G ~.f G, 

where g is some given funct ion.  

To avoid  unnecessary  eomplications~ we shall consider only domains  G with 
finite measure .  F u r t h e r m o r e  we assume t h a t  the  b o u n d a r y  d a t u m  g is a bounded 
funct ion.  F r o m  our po in t  of v iew the  l a t t e r  seems to be  an  unp leasan t  restriction~ 

bu t  we are unable  to  r em ove  it  a t  present .  I n  fact  in our t r e a t e m e n t  of Dirichlet  
p roblems we need to know t h a t  the  level sets {x: ]u(x)l ~ t} of the re levan t  solutions 
do no t  m e e t  the  b o u n d a r y  (< much  )> if t is large enough.  As a ~natter of fact ,  we shall 
focus our ~ t ten t ion  ma in ly  on the  g ~ 0 case. 

We emphas ize  t h a t  no smoothness  of g round  domain  G, or of coefficients a~ or 
of r igh t -hand  side H, is required.  I 

We take  into account  weak solutions, l~oughly speaking,  a weak  solution in 

an open set  G to equat ion  (1.1) is a funct ion u, endowed with  first der ivat ives  in the  
domain  G~ such t h a t  

(1.6a) f ~=1 £ a~(x, u, D~r)q~dx : f H(x, u) dx 
G (; 

for  every  ~ f rom a sui table  collection of tes t  funct ions.  A weak  solution u in G veri-  
fies the  b o u n d a r y  condit ion (1.5a) if the  difference ~ -  g is one of the above  tes t  

1 1  - A n n a l i  di Matemat ica  
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functions. How to choose such test  functions? To avoid contradictions, this collec- 
t ion should not  be too big: in particular,  the boundary  behaviour of test  functions 
must  be suitably restricted of course. At  the same time, this same collection should 
be broad enough to draw significant conclusions about  solutions. In  particular,  
the follo~dng ~re appropriate requirements:  (a) every compactly supported function,  
f rom the funct ion class of the relevant  solutions, is a test  function;  (b) the set of test  
functions is linear and closed. Accordingly, the set of test  functions is defined to be 
the smallest set enjoying the above listed properties; or, more precisely, the closure 
of C~(G) with respect to the topology of the linear hull of the function class of relevant 
solutions. Here C~(G) stands for the collection of continuously differentiabte functions 
vanishing outside a compact  subset of G. 

This sett ing is suggested by  a s tandard argument  of the calculus of variations. 
In  fact, care is taken so tha t  the weak solutions (in the above sense) of the Euler 
equation of any  integral f](x, u, Du)dx (with a smooth ]) are exactly the critical 
points,  i.e. the functions annihiIating the Fr6chet  derivative of the integral. 

We investigate solutions from the so-called Orlicz-Sobolev spaces. Specifically, 
we take weak solutions u, whose distributional derivatives in the domain G are func- 
tions from the convex Orlicz class 

G 

namely 

(1.s) f A(lDu(x)]) dx < co. 

Here A(r) is the weight appearing in (1.2). Hence 

(1.6b) the class of test  functions ~ the closure, called W~'A(G), of CI(G) with respect 
to the Sobolev-Orlicz space WI'~(G); 

in other words, equation (1.6a) is to hold for every ~s from (1.6b) if u is a solution 
of interest. Fur thermore  our assumptions on boundary  data  re~d 

(1.5b) g ~ Z~(G) n WI'~(G). 

Let  us explain some nota~tions. As is well-known (see LVXE~U~G [10] and 
WEISS [17]), the function class (1.7) is linear if and  only if A(r) satisfies (in addition 
to conditions (1.2a) (1.25)) the special Orlicz's zJ~-condition: A ( 2 r ) :  O(A(r)) as 
r -+ c~. The linear hull  of (1.7) is the Orlicz space Z~(G) ~-- {] measurable: a con- 
s tunt  ~ exists such tha t  fA(I/(x)/),])dx < c¢}, a complete Banach space under  the 

G 

norm It] II --- inf {4 > 0: fA(I/(x)/).]) dx < 1}. The Orlicz-Sobolev space Wt'~(G) can be 
G 

conveniently defined as the collection of those members of Z~(G) whose distributional 
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first derivat ives are in LA(G) too. Note  t h a t  W~'~(G), previously defined, is the same 
thing as the complet ion of C~(G) under  the norm u --> I] [Du] ]l; in fact,  if u is a Lips- 
chitz cont inuous funct ion vanishing outside a set of finite measure,  the following 
Poincar~- type inequal i ty  holds 

1 u) ex< (1.9) A ~-~ meas. sprt .  A (Inu I) dx 

where C~ ---- z~/~/F(1 ~- m12) is the measure of m-dimensional uni t  ball and  sprt  u 
denotes the suppor t  of u. 

The propert ies  of the  considered solutions could be more  accurate ly  described 
by  making the  following remarks.  The first derivat ives of these solutions are inte- 
grable over the whole of G; in fact  (1.8) holds, and Jensen 's  inequal i ty  for convex 
functions gives 

f 'Du'dx<~ (meas. G)A-l(me~s. G f A(TDul)dx ),  
G 

A -1 being the inverse funct ion of A. The solutions themselves are in the Orticz space 
Z~(G) : this follows f rom the boundary  condit ion (1.5), more precisely f rom the bound- 
edness of g and f rom the inequal i ty  (1.9) applied to tes t  functions.  Addit ional  infor- 
mat ions about  our solutions can be obta ined f rom the imbedding theorems of DO- 
NA]~])SON and  TRV~)ZNGE]~ [5] (see also A])AMS [1]), p rovided  the  weight A(r) is sui- 
t ab ly  well-behaved. 

Obviously the sole hypothesis  (1.2) is not  enough to ensure t h a t  the Orlicz-Sobolev 
space W~A(G), or the subset  (1.8) of it, is the appropr ia te  space for (~ all ~ weak solu- 
t ions to equat ion (1.1). In  other  words, some ex t ra  assumptions on the growth of 
coefficients a~ and r ight-hand side H are needed to decide if any member  u, satisfying 
(1.8), of the  space W~A(G) is a wea.k solution in the domain G to equat ion  (1.1) or 
not .  I n  fact ,  ~s shown by  the ve ry  definition of weak solution, such a decision de- 

mands  tha t  the operators u-~ ~ (3/3x~)a~(x, u, Du) and u-~ H(x, u) map the sub- 
i = l  

set (1.8) of W~A(G) into the Bunach adjoint  of the tes t  functions class W~o'~(G). Clearly 
this point  is crucial in investigations abou t  the existence and  uniqueness of weak 
solutions, see for  instance DONALDSON [19] or GossEz [21] [22]; i t  c o ~ d  be eluci- 
da ted  with the aid of theorems on the act ion of the  so-called Nemyckii ' s  operators 
on Orlicz spaces, see e.g. section 17 of KtCASNOSEL'SKII-].~UTICKII [9]. We do not  
want  to discuss this ma t t e r  in detail, since in the present  p~per we assume the existence 
of weak solutions f rom the specified class and we seek a priori bounds for these solu- 
tions. 

We emphasiz~e t ha t  no investigation about the existence (or uniqueness) of solutions 
is made in this paper, and  tha t  we focus our  a t t en t ion  on a priori estimates only. We 
emphasize tha t  our results  depend only on ellipticity condition (1.2) and do not  
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depend on the growth of coefficients or on the geometry  of the ground domain. For  
what  concerns the existence of solutions to boundary  value problems for nonliner 
second order elliptic equations,  we refer  to SEREIN [43]; see ~ls0 G ~ A ~  [42], SEE- 
~Ln [44], S T A ~ C C m A  [45]. 

Let us notice that 

is a sufficient (although somewhat  crude) condit ion for the distr ibution ~ (3/~x~). 
i = 1  

• ai(x~ u~ Du) to be ~ bounded  linear funct ional  on the tes t  functions space WI'~(G)~ 
u being a member  of W~,~(G) verifying (1.8). Here ~-~ is the inverse of .~ and  the 
la t ter  is the Young-conjugate  of A, namely  

$ 

(1.10b) _~(s) = max  {rs -- A(r): 0 <~ r < -]- oo} = j 'sup (r ~> 0: A'(r) < t} dt. 
0 

In  fact  Cauchy-Schwartz inequal i ty  for m-vectors and Young's inequal i ty  rs <~A(r) 
_~(s) give 

for every  positive number  2, hence 

f ~= a~(x, u, Du)q~dx ~(Const.)U 'D~']] [l + 
G 

'2(tD  I) dx] 
G 

just  by  the definition of Orlicz norm. 
I t  can be easily seen tha t  all sample equations we have displayed above satisfy 

condit ion (1.10), provided the coefficients former ly  called a,~(x) are bounded.  This 

assertion derives f rom the s t ra ightforward inequal i ty:  

~(A(r)/r) •A(r) . ,. 

The present  paper  is a cont inuat ion  of an  earlier paper  [46]. In  [46] we showed 
t ha t  some a priori  est imates of solutions to Dirichlet  boundary  value problems for 
linear elliptic equations can be s ta ted  in the form of isoperimetric theorems:  we proved  
in fact  t ha t  some norms (the L~-norm, L~-norms or Lorentz  norms, as well as some 
Zq-norm of the gradient) of the solutions a t ta in  their  greatest  value when the ground 
domain is a ball, the  differentia~l operator  is a numerical  multiple of the Laplaeian 
and the r ight-hand side is spherically symmetric .  As ~ by-product~ we were able to 
obtain the sharp form of some estimates for  solutions to linear problems. Here  we 
present  a similar and more general approach to a priori estimates.  
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Roughly,  this approach can be described gs follows: (i) Take a set of boundary  
value problems including the problem under  consideration.  Such a set could be de- 
fined by  the informat ion we have  (or we are willing to use) on the data. gt our disposal. 
Here  use is made  of the following informat ion only:  form (1.1) of the digerent ial  
equat ion,  ell ipticity condit ion (1.2), the measure of ground domain (1.4), the bound- 
edness of Diriehlet  da tum g in (1.5). As far  as r ight-hand side H is concerned,  we 
use monotonic i ty  condition (1.3a) and the distrib~ltion funct ion of H ( . ,  0), namely  
the measure of the  level sets {x: ill(x, 0) I > t}; the  constraints  on this distr ibution 
funct ion being 

(1.3b) H(., 0) is integrable 

and 

0.3c) 

ei ther  lira A(r)/r == c~ or 

sup s-ld-1/m sllp l f ]t~(x, O) l(~x: nleas. E : s} < mCX~ lim A(r)/r , 
s>O ~'--> oo 

a bound  for the norm of H ( . ,  0) in the Lorentz  space L(m, c~) ( =  weak Z~ space; 
see section 3 for re levant  definitions). 

Hence we consider the set of of all problems (1.1) (1.2) (1.3) (1A) (1.5) such tha t :  
the convex weight A(r), the  measure of G and the supremum of Ig] are fixed; H(.~ 0) 
is equidis t r ibuted with a fixed integrable funct ion which satisfies a condition ana- 
logous to (1.3c). 

The meaning of (1.3c) will be clear present ly.  As H61der's inequal i ty  shows, a 
sufficient condit ion for the inequal i ty  i s  (1.3c) to be t rue  is 

(f o) < (r ) / , .  

~N-otice also tha t  mC ~/~ is the isoperimetric  constant ,  t ha t  is the cons tant  in the 
classic isoperimetric  inequal i ty :  (meas. E)I-li~<m6~I~'~H~_~(SE)~ E =  a n y  smooth 
bounded  subset of R "~, H~_I ~ the  (m- -1 ) -d imens iona l  inca, sure. 

(ii) Determine  the worst  problem in the above ment ioned  set, namely  the 
problem which has the largest  solution. Here  we are able to allow any  Luxemburg-  
Zaanen norm to evaluate  the magni tude  of solutions ; moreover ,  in the ease of a homo- 
geneons boundary  condition, we allow fM([Du])dx for the same purpose,  where 
M(r) is ei ther A(r ) or a suitable weight (~ weaker s than  A(r). Following KAnn~A~- 
I~OTA [8], we call Luxemburg-Zaanen  the norms on the linear spaces of locally inte- 
grable real-valued functions in t roduced in [12]; the essential feature  of tLese norms 

is: [lull< ][vll if lul<lvl and Ilull = llvll if u is equidis tr ibuted with v. 
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The main result  of this paper can be s tated in this way:  the worst problem is the 
simplest one. In  fact  let u be ~ solution from the Orlicz-Sobolev class (1.8) of (1.1) 
(1.2) (1.3) (1.4) (1.5) and let the norms and  the weight M(r) as before; we prove 

(1.11a) 

as well as 

(1.11b) 

II~II < ]i~li, 

f~ ( IZ)u l )  ~x< J'_~-(ID, I) ~ 

in the case of a homogeneous boundary  condition, i] v is the solution to the ]ollowing 
problem 

~ (A(Iz)vl)  ) / ( lx l)  in the ball Ixl < a ,  
(1.12) ~ ~x, \ l D v p  % = 

v(x) = b on the  boundary  Ix l = a .  

Here ](t" I) is the positive spherically symmetr ic  function equidistributed with H( . ,  0) ; 
namely the (unique) positive funct ion whose level sets are balls (centered at  the ori- 
gin) with the same measure as the level sets of 8 ( . ,  0). In  the terminology of Hardy-  
Littlewood, this ](l" ]) is called the spherically symmetric  rearrangement  of H( . ,  0). 
l~adins a is such tha t  CreeP(= measure of the ball Ixl < a) = meas. G, an4 b ---= 

= sup Tgl- 
A discussion of problem (1.12) is very simple. F i rs t  of all~ the solution of (1.12) 

is unique in the Orlicz-Sobolev class (1.8). For  differential equation (1.12a) is the 
Euler equation of the integral 

J(v) = ] (j(I-vl)-  i(l r)v)d , 
l~l<a 

r 

where j(r) = f(A(t)/t)dr. As A(r)/r increases strictly according to our assumptions,  
0 

j(r) is strictly convex and verifies: j(r)<~A(r). Hence J is well-defined on the Orlicz- 
Sobolev class (1.8) (or so is its nonlinear par t  a t  least) and strictly convex. The as- 
served uniqueness follows. On the other hand,  we claim tha t  the solution to (1.12) 
(from the specified class) must  be spherically symmetric,  i.e. a function of Ixl only. 
In fact,  the solution of (1.12) gives the min imum of J because of the proved convexity;  
moreover, Jensen's  inequali ty for convex functions easily shows tha t  J decreases 
under  some symmetrizat ion,  i.e. 

J(v)>~J(w) 

if v and w are connected by 

w ( x ) -  1 t" mC~ I J  
v ( l ~ l ~ ) ~ _ ~ ( ~ )  • 
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Finally, an explicit representation formula can be written for spherically symmetric 
solutions to (1.12). In fact, for such solutions equation (1.12a) becomes the follow- 
ing ordinary differential equation 

where 
B(r) = A ( r ) / r .  

By integrating and disregarding the solutions which are singular at x = 0, we obtain 
the clMmed representation formula 

a 

dr, 

if the positiveness of / and boundary condition (1.12b) are taken into account. 
Now we are in a position to explain condition (1.3c). I t  is apparent from (1.13) 

and the previous discussion that  problem (1.12) has a solution only if the value of 

rt-'~s';-ti(s)ds lies in [O, lira A(r)/r[,-~-the range of B, for any r. As ](l 'l) is the 
0 

spherically symmetric rearrangement of H(., 0), a theorem of Hardy-Zittlewood 
yields 

E 0 

the well-known formula which supports the very definition of Lorentz spaces. Thus 
(1.3o) is a necessary condition for (~ maximizing,  problem (1.12) to have a solution. • 

The underlying idea of our proofs consists of the following two steps" (i) derive 
a differential inequality for the distribution function of the solution under estima- 
tion; (ii) read this differential inequality in terms of rearrangements of functions. 

Step (i) seems to be strongly based on the divergence structure of the differential 
equation. If  a great smoothness of solutions is taken for granted, so that  pathologies 
in the geometry of level sets are prevented by Sard's theorem, step (i) starts by tak- 
ing integrals of both sides of the differential equation over level sets of the solution 
and goes ahead essentially along the same lines of [46, section 3]. In the ease of 
non-smooth weak solutions, more sophisticated arguments are needed. 

Step (ii) requires tools which will be mentioned at be beginning of the next section. 

2 .  - M a i n  r e s u l t .  

Let us recall some basic definitions from the theory of rearrangements of func- 
tions in the sense of Hardy and Littlewood. We refer to [46, section 2] for some 
details and comments, and to HAI~DY-LITTLEWOOD-P6LYA [26, chapter 10], P 6 L Y A -  
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SzEG5 [30, chapter  7], Hv~T  [27], O'•EIL [15] [28], O'NEIL-WErss [29], S1)E~E]~ [31] 
[32] and [33] for fu r ther  developements.  

I~et u be a real-valued measurable function,  defined in a measurable subset G 
of /~". The distr ibution funct ion of u is 

(2.1) /~(t) == meas (x e G: lu(x)l > t}. 

The decreasing rear rangement  of u into [0, 47 oo] is the smallest decreasing funct ion u* 
f rom [0, 47 oo] into [0, 47 oo] such t h a t  u*(g(t))>t for every  t. Equiva len t ly  

(2.2) u * ( s )  = inf { t > 0 :  #(t) < s) . 

The spherically symmetr ic  rea r rangement  of u is defined b y  

(2.3) 

where 

(2.4) 

(2.6a) 

in par t icular  

(2.6b) 

is the measure of m-dimensional uni t  ball. A basic and easy theorem tell us tha t  u, 
~e* and u* are equidistr ibuted,  i.e. 

(2.~) meas  {~ e a :  lu(x)l > t} = lenght  of { s > 0 :  u*(s) > t} = 

mea, s {x e R~: u*(x) > t} .  

Moreover a theorem of Hardy-IAt t lewood [26, thin 378] gives 

f fu rd < = f *v*dx , 
0 1~ m 

i ncus ,  E 

E 0 

whenever  u, v are real-valued measurable functions defined in the domain G and E 
is a mea.surable subset of G. I 

:Now we s ta te  and prove our main theorem. 

TtIEOEE~ 1. -- Zist O] assumptions: 

(i) ellipticity condition (1.2) and conditions (1.3) = (1.3a) 47 (1.3b) 47 (1.3e) on 
the right-hand side. 
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(if) ground domain (1.4) has finite measure and boundary datum g is a bounded 
]unction. More precisely, g satisfies conditions (1.5b). 

(iii) u is a weak solution to Dirichlet problem (1.1)(1.4)(1.5) from Orlicz-Sobolev 
class (1.8), i.e. f A ( [ D u l ) d x <  ~ .  

G 
(iv) G* = {x e / ~ :  IX/< C~l/~(mea~s. G) -1/~'} is the ball with the same measure as 

domain G and v is the ]unction defined in G* by 

(2.7) 
me~. ~ /r  -l+llm 

v(x) = sup Ig] + J B - ~ | ~  |H(. \ m ~  j 
c,@[~ o 

~ , ~  . .  ~r -1+11m 
, .j" ts)asj ~ dr, 

where B(r) : A(r)/r.  

.List of conclusions: 

(v) u*(x)<v(x)  /or every x in a*.  

f M ( { D u l ) d x < f M ( I D v l ) d x  , where i is any twice (vi) continuously 

dif]erentiable ]unction such that 

(2.s) 
{ M'(r) > 0 and M"(r ) /M' (r )<A~' ( r ) /A ' ( r )  

M(O + )  = O . 

i] 0 < r <  c~, 

L E ~ ) ~  1. - Assume hypotheses  (i)(ii)(iii) of theorem 1. Then the restriction of 
the decreasing function 

(2.9) t--> f A(IDul)  dx 

to the interval  sup lg{ < t < + c~ is Lipschitz continuous,  and the inequali ty 

(2.to) 0 <  - d  f A(IDul)dx< f H(',O)*(s)ds 
]u(~)I>t o 

holds for almost  every (d.c.) t > sup ]g[. Here  and henceforth f . . . d x i s  a short 
lu(~)i>t 

form notat ion for f ... dx; #(t) is the distr ibution function (2.1) and H( . ,  0)*(s) 

is the value a.t point  s of the decreasing rearrangement  of H ( . ,  0) into [0, + ~ ] .  

PI~OOF. - According to hypothesis  (iii), we are assuming tha t  u belongs to Orlicz- 
Sobolev space WI'~(G) and tha t  equat ion (1.6a) holds for every ~ from the space 



170 GIot~GIo TALE~rZ: Nonlinear elliptie equations, ere. 

WI'a(G) defined in (1.6b). We choose tes t  functions ~0 so defined: 

u(x ) -  t if x is such tha t  u(x) :> t 

(2.11) q~(x) = u(x)-~ t if x is such tha t  u(x) < -  t 

0 otherwise, 

where t is any  number  greater  th~n sup Igl- L e m m a  8.31 of [1] tell us t ha t  these 
are in W~'~(G) an4 tha t  the derivat ives ~re obta ined b y  the usual chain rule;  as t is 
larger than  the bounda ry  values of u, it  is easily seen tha t  such ~ actual ly  are in 
W~o'A(G). If we insert  these tes t  functions into (1.6a), we see tha t  the decreasingfunc- 

t ion ~b defined by  

(2.12) 

satisfies 

(2.13) 

qS(t) = f ~ a~(x, u, Du)u~,dx 
J 4,=1 

lu(~)l > t  

~(t) = f H(x, u) ( lu l -  t) sgn u ~ 
lu(~)I >t 

Let n >  o and t >  sup lal; from (2.13) we get 

- -~ ( t - k  h )+  (I)(t) = h f H(x, u ) sgnudx- -h  f 
. 2  i ]  

tu(~)l >t 
hence 

/or every t> sup lg[. 

H(x,u) sgnu(1 lu~--t)dx 

t<iu(~)l<~t+a 

because of hypothesis  (1.3a); thus according to hypothesis  (1.3b) 

(2.14a) 

and  

(2.14b) 

o < -  o(t + n) + ~(t)<2nfl~(x, o)1~,  

- o ' ( t )<  f l~(x, o)la~ 

if t is any  poin t  of cont inui ty  for  the dis t r ibut ion funct ion of u. 
As is easily seen, (2.12) and (2.14) imply the a.sserted conclusions via elliptieity 

condit ion (1.2). The following consequence of Hardy-IAtt lewood theorem (2.6): 

i,(t) 

(2.15) f IH(~, 0)la~<j'H(' ,  0)*(s)ds 
I,~(~)i>t o 

must  also be used. 
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LElV~A 2. - Let  0~<r -> A(r) be a positive increasing convex function such tha t  

A(r)/r -~ 0 if r -+ 0. Let  G be any  open subset of R "~ with finite measure, and u a 

funct ion f rom Orlicz-Sobolev space W~'~(G) such tha t :  (i) fA( IDul)dx< ~ (ii) u 

agrees on t~he boundary  of G with a bounded funct ion g. Then 

- -1  d 
(2.16) --ff'(t)>mC~l"f(t)~-llmC(mCli~-~t)l_l/,. d- ~ f A(iDui)dx) 

l~(~)l>t 

for a.e. t > sup Igi. Here # is the distr ibution funct ion of u, and  C is defined by 

1 
(2.17) C(s) -- sup{r>  0: A(r)Ir<-< s}. 

P~OOF. - For  the sake of simplicity~ we prove this 1emma under  a supplementary 

hypothesis  on A(r), i.e. A(r) is twice cont inuously differentiable and strictly increas- 
ing. F r o m  the lat ter  condition we easily infer t ha t  

(2.1Sa) B(r) ~- A(r)/r 

increases str ict ly f rom B(0) = 0 to B ( ~  c~) = l im A(r)/r as r increases f rom 0 to -[- c~. 

Thus 

(2.18b) C(s) --~ ] / B - 1 ( 8 )  if 0 < S < lira A(r)/r, = 0 otherwise.  

Stra ightforward computat ions  give the formulas 

--1 A"(r) 
(2.19) C'(s) -- r,B,(r ~ C"(s) == (rB,(r))--------- , 

where r and  s are connected by  s-~ B(r). Consequently,  C is a decreasing convex 
funct ion in half-line 0 < s < ~ c~. 

Jensen% inequali ty for convex functions gives 

/ ~ A (IDu t) dx~ 
/t<~(~)l<t+h _ _  ) (2.~0) c /  f< ID~Id~ = 

C ( fB(  tPu ])IDu Idx~ 

Hence we obtain the inequal i ty  

/(d/dt) 5 A(IDul) ax\ 
,~ I I.(_~)J>t _ _ _  | 

fC(B( iDu I)) tD~ ]dx ( - i f ( t  + ~) + if(t)) 
SJD~Xdx ~< JDuldx 

t < lu(x) ] .~t + h 

ff'(t) 
< (d/dt) S IDuldx 

I~(~)i>t 

for almost  every t. 
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W e  c a n  p r o v e  

d f ]Duldx>mC~/~#(t)~_:/~ (2.22) dt 
lu(z)] >t 

]or a.e. t>  sup Igl. 

Clearly, (2.21) (2.22) and the monotonici ty  of C imply the lemma. 
Inequal i ty  (2.22) is an  easy consequence of Fleming-l~ishel formula [39] and of 

the isoperimetrie theorem. Fleming-l~ishel formula reads 

+ c o  

(2.233) tota] variat ion of ~ = fP{x G/~'~: l~(x)t > ~}d~, 
0 

provided f is integrable over /~'~ and the left-hand side is finite; here 

(2.23b) tot. var.~=sup{f~di~d~:~e(C:(R~o))'., ma~ t~I<:} 

and P stands for perimeter in the sense of De Giorgi, namely P(E) is the tota l  varia- 
t ion of the characteristic function of E. As is easy to see~ the tota l  v~ri~tion of an  
integrable function ~, endowed with integrable first derivatives, is flDq~]dx; the 

Em 

perimeter of a smooth open subset of R ~ agrees with the (m -- 1)-dimensional measure 
of the boundary.  Let  us apply these formulas to the following function: 

(2.24) 
I lu(x) l -  t if x is such tha t  lu(x)]> t 

~(x) l 0 if x ~ G  or if [u(x)l<t , 

where t is any  number greater than  sup [g]. As in the proof of lemm~ 1, we see tha t  
is in the Orlicz-Sobolev space Wlo'A(G). Hence ~ is in the (usual) Sobolev space W:o':(G), 
since G has finite measure. Thus we obtain 

+co  

(2.25) f lDuld~ = - - j P { ~ :  Ju(~)j > ~}d~ /or t >  sup Jab 
]~(z)l > t  t 

By taking derivatives, and using the following case of De GiorgPs isoperimetric 
theorem [37] [38] 

(2.26) P{x e G: lu(x)l > t} >~mC~#(t) :-:f'~ , 

we obtain the wanted inequali ty (2.22). 

PROOF OF TttEORE}I 1. -- F rom lemma 1 and lemma 2 we deduce the following dif- 
ferential  inequali ty for the distribution function of u: 

(~(t) \ 
- , ' ( t )  -1 o f Hi.,  o)*(8)es~ 

(2.27) 1~< mCl,.#(t):_:/.B~ ~ / t ~ F ; ]  where t >  sup ]gl. 
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In this deduction we have to bear in mind formulas (2.18) and hypothesis (1.3c), 
as well as equation 

(2.28) 
8 

0 

which is an easy corollary of Hard 
~o te  that  the right-hand side of 

of t. Hence by  integrating with res 

(2.29) t < s u p  Ig]-+- 

meas. (7 

f B_ I 
~(t) 

r-Littlewood theorem (2.6b). 
2.27) is the derivative of an increasing function 
~ect to t we have 

~ H(., O)*(s)ds dr 
~i-~/~iri~ l/W: ~-1/~ • mC~ r ] mC~d r 

Obviously (2.29) holds for every t > 0. By  the very definition (2.2) of decreasing 
rearrangement, (2.29) can be rewritten in the following manner 

(2.30) ~*(8) < sup [g] + 
meas.(7 [ f H(., O)*(s)ds~ 

1]m 1--1Ira " 
m I m G ~  r 

The (2.30) agrees with assertion (v) of theorem 1, because of the definition (2.3) 
of spherically symmetric rearrangement. 

Now we I)roceed with the proof of assertion (vi). We consider at  first the simplest 
case, namely the case where M(r) = A(r) and g, the boundary datum, -~ 0. Under 
these circumstances, solution u is in Sl)aec W~'a(G), that  is u itself is a test function. 
Thus equation (1.6a) with ~ ---- u gives 

(2.31) f ~=1 ~ a~(x,u, Du)u~flx = f H ( x ,  u)udx. 
(7 (7 

The proof continues according to the following scheme (numbers mark assertions, 
brackets contain motivations): 

(2.32) < f t t(x,  u) udx 
(7 

(2.33) < fH(x, o) tdx 
(7 

r~eas, G 

(2.34) < f H( ' ,  0)*(s) u*(s) ds 
0 

fa(IDuJ) dx 
(7 

(eq. (2.31) and ellipticity condtn. (1.2)) 

(monotonicity assumption (1.3a)) 

(Hardy-Littlewood thm (2.6a)) 
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o [ .. ( . , ) ( ) A  meas. meas a ~ 0 * t d 

f i I B-d ° I +" (2.35) < H( -, 0F(s) ~ - ~ - - v ~  " ~/~:~_~ 
o lsJ \ mC~ r ]mC~ r 

(inequality (2.30) with g = O) 

(2.a6) = f o B-J ~-V2--+_-: ~ .] ds 
O 

(integration by parts) 

(2.37) = f A(IDvl),~x 
G* 

ds 

the last step being a consequence of the obvious equations sB-1(s) --= A(B-I(s)) and 
of the following formula 

i 1 0)*(s)ds) (2.38) IDv(x)I = B-(mC~x]~_~ f H(., 
0 

for the gradient of function (2.7). 
A full proof of assertion (vi) is as follows. A strMghtforw~rd argument shows 

that  the function K~ defined on the range of 21/by 

(2.39a) K(s) = A(M-I(s)), 

is convex. Then Jensen's inequality gives 

(2.39b) 
[ f M(tDut)dx\ .[< A(IDul)dx 

\ --#(t+h)+y(t) ] < --y(t+h)+y(t) 

The proof continues in the following way: 

1 1 d 
M- (yT(t) dt f M(IDuI)dx) 

lu(~)i > t  

(2.40) 

(2.41) 

lu(~)l > t  

(inequality (2.39)) 

C --i d - I  

( t >  sup Ig] and lemma 2) 
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(2.42) 
g(t) 

0 

( t >  sup lg[, lemma 1, hypothesis  (1.3c) and eq. (2.28), eq. (2.18)); 

fM(IDv l) 
O* 

m e a s .  G ~" 

0 0 

(formula (2.38)) 

+ oo tt(t) 

0 0 

(monotonici ty of #(t)) 

suplal [~(z)l >~ 

(inequalities (2.40)(2.41)(2.42)) 

= f M(IDul)dx" 
N(x)l >suvlgl 

In  the last  step we use the absolute cont inui ty  of 

(2.46) t ~  f M(JDul)dx. 
luC~)l>t 

dt 

As could be proved, this absolute cont inui ty  depends on hypothesis  M(0 + ) =  0 
and on the fact  tha t  either (x e G: [u(x)l = t) has m-dimensional measure zero or 
IDu] vanishes almost everywhere on the same set. 

Finally,  it  is worth-while to remark tha t  the hypotheses made on M(r) imply 

(2.47) M(r) = O(A(r)) if r -> + c¢. 

The proof is complete. 

3 .  - B o u n d e d  s o l u t i o n s .  

In  this section we sketch some easy consequences of theorem 1. 

THEOm~ 2. -- Assume hypotheses (i) (ii) (iii) o] theorem 1. Suppose that H(. ,  O) 
actually belongs to Zorentz space ~(m, c~). Then u is bounded, and the following ine- 
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quality holds 

1 
(3.1) sup [ul<su p Igl d- (~--:meas. \~i~ 

where B(r) = A(r)Ir. 

Note that  (3.1) contains in particular a weak form of the maximum principle. 
Of course all through this paper sup stands for essential supremum. • 

For convenience of the reader, we recall the definition of Lorentz spaces JL(p~ q). 
We refer to Hv~m [27] and O'NE~ [15] [28] for details. If  1 <p~ q < c% L(p~ q) 
is the collection of all measurable real-valued functions ] on R ~ such that  the fol- 
lowing norm 

c~ 

0 

is finite. If  0 < p <  c% the appropriate norm on Z(p, ~)  is 

(3 .2b)  IlSll ,  = sup s l , , ? ( s ) .  
s > 0  

Here ] is the ttardy-Littlewood maximal function associated with the decreasing 
rearrangement of ] into [0, c~], namely 

(3.3a) 
1 8 

](s) = s f ]*(t)dt. 
0 

The following alternative representation is easily deduced from Hardy-Littlewood 
theorem (2.6) 

.N 

Lorentz spaces L(p, p) (with 1 < p < c~) agree with the usual Lebesgue Z~(R m) 
spaces. In fact the monotonieity of /* gives: ](s)~>]*(s); while Hardy's inequality 

co ~o 

gives: f](s)~ds<(p/(p- 1)),f/*(s)*ds. Lorentz spaces Z(p, c~) (with l < p  < co) are 
0 0 

also called weak Z ~ spaces; they contain/i~(R~), since HSlder's inequality and for- 
oo 

mulas (3.3) give: ](s)<s -1/~ ×(f]*(tFdt) II~. By putting together these two remarks 
0 

III IIS'II , II/lt ,<. we have the inclusion D(p, p) c_L(p, q) (with 1 < p < q < ~) ,  since ,/q 1-,S~ 
by a trivial axgument. Notice tha t  Z(1, c ~ ) =  L~(R m) with equality between the 
relevant norms, as (3.2b) and (3.3) show. • 
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PgooF oF Tm~ogn~ 2. - From ~ssertion (v) of theorem 1 ,~nd equations (2.5) 
we get: sup Iu[<supv. From formulas (2.7) and (3.2b) we get 

m e a s . G  

f B_I t 1 . \ r  -I+1/~ 

0 

the right-hand side of (3.1). 

ExA)rPLE. - Any solution u of the following problem 

(3.4a) 
[ 3 { h i ( l +  IDut) } H(x,u)  in G c R  ~ 

- ~ ~x~ a~(x) IJOul u~  = i,k = i 

u ---- 0 on the boundary ~G 

is bounded nnd verifies 

(3.5) 

provided 

(3.4b) 
i,k=l I=i 

H(x , . )  is decree~sing ~nd H(. ,  0 )e  ]~(m, c~) 

me~s. G < c~ 

~nd provided u is sought in the following Orlicz-Sobolev class 

G 

T H E O I ~ E M  3 .  - -  Assume 

(3.6) 

and 

f ( r /A(r) )~dr  < ~ for some ~ > o 

(3.7) H(-, 0) e L(p, ~ )  for p -~ mk/(k ~- 1). 

Moreover assume eltipticity condition (1.2) and monotonicity hypothesis (1.3a) as well 
as hypotheses (ii) (iii) of theorem 1. Then u is bounded. In  addition, if the full inte- 

co 

gral f(r/A(r))l¢dr converges, the following inequality holds 
0 

(3,8) sup iul <sup  IgJ + m -~ ¢,~"+~)/~ IrH(', o),p~,~f(r/A(,);¢dr. 
0 

12  - A n ~ a l i  d~ 21 la t ema t t ca  
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P~ooF.  - Le t  us l imit ourselves to the proof of (3.8). As in the proof of thm. 2, 
we have  only to show tha t  v(0), the vMue a t  the origin of funct ion (2.7), is bounded 
by  the r ight-hand side of (3.8). F r o m  (3.2b) and (3.3a) we get  

m e a s .  G 

v ( 0 ) < s u P l g [ +  kmC~ ][H(., ,,~, ] m c ~ d r ,  
0 

hence a change of variables in the integral  gives 

c o  

v(o) < sup Igl + m-'~ a~ ~+'~,~'~ II ~(' ,  o)tl~,co @-~-~  B-l(t) dr. 
0 

Since 

c o  o o  

kft-~-lB-l(t)dt--_ f(r/ACr))kdr, 
0 0 

we conclude as planned.  Note  tha t  in this proof we have used this fact :  B(r)= 
= A(r)/r -+ q- c~ if r --> + ~ ,  a consequence of (3.6). m 

:EXAMPLE. -- Any solution u of the following problem 

(3.10a) 
~ [ , , c x p  [Du -- } H(x,u) in G c R m  p,~tx~ ( I) 1 

u = 0 on the  b o u n d a ry  0G 

verifies 

(3.11) If,°, 0,, C sup lul< cff~, sin (~/(m - -1 ) )  
0 

provided 

(3.10b) 
i,k=l ~=I 

H(x, .) is decreasing and H ( . ,  0) e LI(G) 

meas. G < c~ 

and  provided 

(3.10o) f l D u l [ e x p  (IDut) - 1] ax < oo. 
G 
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4. - Some applications of  theorem 1. 

4.1. - I n  this subsect ion we derive some a priori  es t imates  of solutions to the 
following Diriehlet  p rob lem:  

(4.:[) 
-~ = 

u = 0 on the  boundu ry  ~G. 

List  of a s sumpt ions :  2 is any  n u m b e r  ~ 1 ; a~  are measurab le  funct ions such t h a t  
m 

~, a~(x)~,~k> ~ ~ for ull x and  ~; H is a me~surable  funct ion such t h a t  H(x, • ) is 
G~=I i = I  

decreasing for  all x and  H(., O) belongs to  some Loren tz  space Z(p, k); G is a n y  open 

subset  of _ ~  with  finite measure .  
Inc identa l ly ,  the existence and  uniqueness of solutions to p rob lem (4.1) can be 

set  (at  leas t  if the  nmfl inear i ty  of the  r igh t -hand  is no t  too severe) in the  f r a m e w o r k  

oi mono t one  opera tors  on reflexive B~nach  spaces, see e.g. ]31¢OWDEia [35] [36], 

LEI~AY-LIONS [41]. • 

Let u be ~ solution to problem (4.1) belonging to the (usual) Sobolev space WoI'~(G). 

Theorem 1 gives 

(4.2a) u*(x)Kv(x) for every  x in G* 

(4.2b) fID toa <ftD l'd  if 0 <  q < 2 ,  
G G* 

where G* is the ball  wi th  the  same measure  us G and 

(4.3) 

m e a s .  ~ r 

v(x) =(mCl~/'~)-M:~-l) f r-l+M(m(~-l))(?[ f H(', O)*(s)ds) 3 
C~l~l ~ o 

d r  

a solution to the  following p rob lem 

(4.4) 

0 ~=i ~ {[Do [~-2v~} -~ H (  , O)*(x) in G* 

v ---- 0 on a G * .  

F r o m  (4.3) the  following formulas  are easily drawn:  

(4.5a) 7 .° sup v = (mC;d~') -~I<~-" ie-~+~Ic,,,~--> 

0 0 

tt(., oF(s)&) dlr ) 
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(~.5b) ~(s)  = ( m ¢ ~ ' ~ )  -~'a-~) max (r, s) ~T J H(', O)*(t)dt) ~/(~-~) 
0 0 

(4.5c) IDvlqdx = f mC~/~\ r , H(., O)*(s)ds dr. 
G* O 0 

d r  

In (4.5b) ~ indicates the Hardy-Littlewood maxima,1 function associated with 
the decreasing rearrangement v* of v, see (3.3). 

The right-hand side of formulas (4.5) cun be conveniently estimated in terms of 
Lorentz norms of H( .~ 0)~ via definition (3.2) and standard technica,1 tools (such us 
H61der~s inequality, or theorem 319 of [26]). Thus from (4.2) (4.5) we obtain the 
following results: 

(i) sup [u I <K(me~s. G) (~-~)/(m(~-l)~)l]H(., 0) 1/(a-1) 

Here p > m/~, k > 1/(~--1) and K is the following constant 

(ii) iiullq,~(~_l)<~KiiH(. /-t/II1](i-1) "J/tl~,k 

Here 

and 

m m t mp(~ --1)  

K = ( m ¢ ~ )  -~/(~-" q~ q - - 1  

Here 

and 

(iii) [f I D u l  ~ dx]11~ < K(meas. G) TM + (~ -  m)/(mP(~-- 1))11H(-, 0) 11(~-- 1) 
G 

mq q 
O<q<~,  P > m ( ) , - - 1 ) + q '  k > ) , - - 1  

K=(mC~)-~/(~-~)[( 1@ mp(2q(p--m)~--l)] k(2k(2 - -  1 ) _  1) - -  q]- ~/~+ ~/(k(~-~)) 

4.2. - In this subsection we derive some a priori estimates for nonparametric sur- 
faces with prescribed mean curvature. An exhaustive treatement of boundary value 
problems for such surfuces can be found in GIVSTI [40]. Here we consider Dirichlet 
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problems only, and for the sake of simplicity we limit ourselves to a homogeneous 
boundary  condition. Thus we consider the following problem: 

(4.6) 
U = 0  

- / / ( x ,  u) in G 

on the  boundary  8G. 

List  of assumptions:  

(i) G is any  open subset of R "~ with finite measure. 

(ii) H is a measurable function such tha t  

(4.7a) 

(4.7b) 

(H(x, u) --  H(x, 0)) u >  0 for all x and u ,  

1]m IIH(-, 0)lJ,~,~o < mC~ (-= the isoperimetric cons tant ) .  

(4.8) 

(iii) u is a solution to problem (4.6) from the following Orliez-Sobolev class: 

flDul'(1 + IDulg-~ ax < o o .  

G 

X~EMAI~KS. - -  The norm in (4.7b) is t ha t  of weak L ~ spaces, as in (3.2b) (3.3b). Inci- 
dentally,  assumptions (4.7) are closely related to those of BO~BIEI~I-GIUSTI [34]. 
Of course, assumptions (4.7) can be replaced by the following more stringent ones: 

H(x," ) increases,  (f , . ( . ,  0) l dx)l  < 

The Orlicz-Sobolev class (4.8), coupled with boundary  condition (4.6b), is the same 
thing as the usual  Sobolev space W~'~(G). ]?or G has finite measure and 

r>r2(1 + r~) - i>sr - -  s~(1 + %/1--'-s)-~ ( O < s < l ,  

since r~(1-}-r~) -½ is greater than  

(4.9) A(r) : r~/(1 + r) , 

which is a convex increasing function on 0 < r < c% whose Young-conjugate is X(s) = 
= ~2(1 + V i - - ~ ) 2 .  - 

As is easily seen, problem (4.6) (supported by the specified hypotheses) can be 
imbedded in a class of boundary  value problems of the type  (1.1) (1.2)(1.3) (1.4) 
(1.5), provided ellipticity weight A(r) is chosen as in (4.9). Theorem I tell us thatl 
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the (< ma.ximizing >> problem in such ~ clgss is the following: 

~ v~ 
(4.10) .~=I Ox~ 1 + IDvI H(- ,  O)*(x) in G* 

v = 0 on ~G*, 

where st~rs h~ve the customary mea.ning. The explicit representation formul~ 

r rae~fa (r-I+I/'VmC~/'~)JH(. , O)*(s)ds r_l+,/,, 
(~.11) v(x) = , mC~/~ d r ,  

r-l+llm mGllm ~ l ~ P  1 - ( / ~ ) S H ( . ,  0)*(s)  as 
0 

~nd hypothesis (4.7b), show tha t  the (&lapropria, te) solution v to (4.10) is <( dominated ~> 
by the numerical multiple 

1 1 
v = ~ mC~p I1~(., o)tio,~ (4.12) Cw(x) , 

of the function w defined by  

mey. O r-~+~Im~.,( H 
(4.13) w(x) -~ dr ~-C~f-,, ! (-, O)*(s)ds . 

v~l~] ,~ o 

This argument  more precisely put  and an inspection to formula (4.13) give the 
following result. Zet u be a solution to problem (4.6) satis]ying (4.8); let w be the (Lip- 
schitz continuous) solution to the ]ollowing linear problem: 

! - -  A w  = H( .~  0)*(x) in G* 
(4.14) 

t w = 0 on ~G*. 

The following inequality holds: 

(4.15) u*(x) <~ Cw(x) ]or every x in G*, 

where C is the eonstant de]ined by (4.12). Moreover~ estimates o] $he gradient o / u  can 
be derived~ ]or example: 

( 4 . ] ~ )  ~T-]~ul/d~<c~ IDwl~odx il o < q < ~ .  
q G* 

As a by-product  of this theorem, we quote the est imate writ ten below. This 
estimute comes from straightforward manipulations of formulu (4.13). 

sup Iut<~g (meas. G) ~I~-~I~ ]IH(" °)II"~ 
- (~ /mc~ ~) I1~(', o ) i l , ,~ '  
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where u is a solution to problem (4.6), p > m/2, k>~l ~nd 

 oo ,o[ 
K [ k - - 1  \ m  p]J 
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