Nonlinear Elliptic Equations,
Rearrangements of Functions and Orlicz Spaces (*).

Giore10 TALENTI (Firenze)

Sammary. — See Introduction.

1. — Introduction.

In this paper we take into aceount a class of nonlinear elliptie second-order par-
tial differential equations in divergence form. Typically we deal with equations of
the following form

mo g
(1.1) -3 %ai(m, awy Du) = H(x, u)
=1 i
where x = (@, ..., #,,) 18 8 point in m-dimensional euclidean space R™, % is the rele-

vant solution and Du its gradient, ¢, and H are given real-valued funefions of the
specified arguments. The main hypotheses we assume are the following:

(i) the coefficients @, are measurable in RB» x B! x B™ and a function A(r) exists
such that

(1.2a) A{r) is convex in 0<? < 4 oo,

{1.2b) AFfr -0 i r—0,

(1.2¢) %ai(w, u, E) &> A(JE])  for all (x, u, &).
i=1

Note that A(r) and A(r)/r are positive and inereasing by (1.24) (1.25). Although
no additional assumption on A(r) is really needed for our purposes, we shall assume
for convenience that A(r) is strictly increasing and twice eontinuously differentiable.

(ii) The right-hand side H is measurable in B™ x B* and

(1.3a) (H(@, u) — H(w, 0)) u<0 for all (x,u). m

{(*) Entrata in Redazione il 19 ottobre 1976,
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Let us give some examples. The first example is taken from the classic caleulus
of variations. Let a{w, Du) and b(wx, 4) depend smoothly on the last arguments;
then the Euler equation of the integral f (a(w, Du) + b(w, w)) dw has the form (1.1)
with a; = da/du,,, H = — 0b/ou. In particular the Euler equation of the follow-
ing integral

[Dul

f{f*”dr fH(m, dt}

-3 S () - aw v

is

and verifies the above hypotheses (i)(ii) provided A(r) satisfies (1.24)(1.2d) and H(z, u)

is a decreaging function of u.
The second example might be a linear equation with merely measurable coef-

ficients, and having the following form
— E {am(w Uy} + cl@yu = f(z).
In this case hypothesis (i) is just the usual ellipticity condition

> au(®) &> (a positive constant) 252

k=1 i=1

and hypothesis (ii) is the same as the positiveness of e(w).
The capillary equation with positive gravity

U] W,
2% T o

verifies conditions (i) (ii); the same is done by the equation of (non parametric) sur-
faces with preseribed mean curvature

m Uy
et —H ' H
; DRV A

provided the curvature — H(z, u) is an increasing function of height «. The same
holds for

the Euler equation of the integral f (IDu[—ln (1 + [Du]) — fH(w, t) dt) dz. In
0

these examples the most appropriate choice of A(r) is: A(r) = r2/(1 + 7).
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The following equations
- 2 ’a%{“fk(‘”) [Du»~%u,} = a lower order term
k=1 0%y

S 0 {am(w) oxp (’!gz—il) —1 'waak} =

GE=1 0w,

iMs
L

i

where p > 1 and a;(#) are meagurable functions, belong to our class if the right-
hand side is a function H(z, #) as in (ii) and the lowest eigenvalue of the symmetric
part of the matrix (as(x)) is bounded away from zero, e.g. > an(®)&:&>8 + ...+

d,k=1

-+ £. The appropriate A(r) are respectively: 7, r(er— 1), rIn (14 7). m

We take into account selutions of Dirichlet boundary value problems. Thus a
basie ingredient ig

(1.4) G = an open subset of R»,

and the solutions we are concerned with are real-valued functions verifying the equa-
tion (1.1) in G and the condition

(1.5a) % =g on the boundary 096G f &,

where g is some given function.

To avoid unnecessary complications, we shall consider only domains G with
finite measure. Furthermore we assume that the boundary datum g is a bounded
function. From our point of view the latter seems to be an unpleasant restriction,
but we are unable to remove it at present. In fact in our treatement of Dirichlet
problems we need to know that the level sets {&: |u(x)| > ¢} of the relevant solutions
do not meet the boundary « much » if £ is large enough. As a matter of fact, we shall
focus our attention mainly on the g = 0 case.

We emphasize that no smoothness of ground domain @, or of ecoefficients a, or
of right-hand side H, is required. m

We take into account weak solutions. Roughly speaking, a weak solution in
an open set ¢ to equation (1.1) is a function «, endowed with first derivatives in the
domain @, such that

(2

(1.6a) a.{@, u, Du)p, do = fE(w, w)pdn
=1
@

for every ¢ from a suitable collection of test functions. A weak solution « in @ veri-
fies the boundary condition (1.5a) if the difference uw — ¢ is one of the above test

11 ~ Annalt di Matematica
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fanctions. How to choose such test functions? To avoid contradictions, this collec-
tion shounld not be too big: in particular, the boundary behaviour of test functions
must be suitably restricted of course. At the same time, this same collection should
be broad enough to draw significant conclusions about solutions. In particular,
the following are appropriate requirements: {(a) every compactly supported function,
from the function eclass of the relevant solutions, is a test function; (b) the set of test
functions is linear and closed. Accordingly, the set of test functions is defined to be
the smallest set enjoying the above listed properties; or, more precisely, the closure
of 05(G) with respect to the topology of the linear hull of the function class of relevant
solutions. Here Oy(6) stands for the collection of continuously differentiable funetions
vanishing outside a compact subset of G.

This setting is suggested by a standard argument of the caleculns of variations.
In fact, care is taken so that the weak solutions (in the above sense) of the Kuler
equation of any integral f f(z, u, Du)de (with a smooth f) are exactly the critical
points, ¢.e. the functions annihilating the Fréchet derivative of the integral.

We investigate solutions from the so-called Orliez-Sobolev spaces. Specifieally,
we take weak solutions u, whose distributional derivatives in the domain G are fune-
tions from the convew Orlicz class

(1.7) {7‘ measurable: fA(gﬂw);) o < oo} ,
namely !
(1.8) [4(Du@)) do < oo

G

Here A(r) is the weight appearing in (1.2). Hence

(1.65) the class of test functions = the closure, called Wy4(@), of (3(@) with respect
to the Sobolev-Orlicz space W'4(G);

in other words, equation (1.6a) is to hold for every ¢ from (1.6d) if w is a solution
of interest. Furthermore our assumptions on boundary data read

(1.5b) ge I°(G) N Wr4G) .

Let us explain some notations. As is well-known (see LUXEMBURG [10] and
WeIss [17]), the funetion class (1.7) is linear if and only if A(r) satisfies (in addition
to conditions (1.2a) (1.2b)) the special Orlicz’s Aj-condition: A(2r) = O(A(r)) as
7 — oo. The linear hull of (1.7) is the Orlicz space L4(@) = {f measurable: a con-
stant A exists such that f A(lf(w)/2]) dw < oo}, a complete Banach space under the

norm [f] = inf {1 > 0: f j(ff{w)/,l{) dz<1}. The Orlicz-Sobolev space W 4(G) can be
G

conveniently defined as the collection of those members of L4(G) whose distributional
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first derivatives are in L4(@) too. Note that Wg4(@), previously defined, is the same
thing as the completion of C3(@) under the norm u — ||| Du||; in fact, if w is a Lips-
chitz continuous function vanishing outside a set of finite measure, the following
Poincaré-type inequality holds

{1.9) f A((—Oa meas. sprt. u)ﬂ’m o 1) de< fA (|Du))dw
Bm Em

where €, = nm2[I'(1 4 m/2) is the measure of m-dimengional unit ball and sprtu
denotes the support of u.

The properties of the considered solutions could be more accurately described
by making the following remarks. The first derivatives of these solutions are inte-
grable over the whole of ¢; in fact (1.8) holds, and Jensen’s inequality for convex
functions gives

fﬁDu{dw<(meas. G)4—1 (mezs. GfA([Du{)do:),
[ G

A-* being the inverse function of 4. The solutions themselves are in the Orlicz space
L4(@): this follows from the boundary condition (1.5), more precisely from the bound-
edness of g and from the inequality (1.9) applied to test functions. Additional infor-
mations about our solutions can be obtained from the imbedding theorems of Do-
NALDSON and TRUDINGER [5] (see also ADAMS [1]), provided the weight A(r) is sui-
tably well-behaved.

Obviously the sole hypothesis (1.2) is not enough to ensure that the Orlicz-Sobolev
space Wh4(@), or the subset (1.8) of it, is the appropriate space for «all » weak solu-
tiong to equation (1.1). In other words, some extra assumptions on the growth of
coefficients ¢, and right-hand side H are needed to decide if any member u, satisfying
(1.8), of the space WL4(() is a weak solution in the domain @ to equation (1.1) or
not. In fact, as shown by the very definition of weak solution, such a decision de-

m
mands that the operators u — > (0/ow;)ax, u, Du) and « — H(», u) map the sub-
i=1
set (1.8) of W&4(@) into the Banach adjoint of the test functions class Wi4(@). Clearly
this point is crueial in investigations about the exigtence and uniqueness of weak
solutions, see for instance DoNALDSON [19] or Gossez [21] [22]; it counld be eluci-
dated with the aid of theorems on the action of the so-called Nemyckii’s operators
on Orlicz spaces, see e.g. section 17 of KRASNOSEL'SKII-RUTIOKII [9]. We do not
want to discuss this matter in detail, since in the present paper we assume the existence
of weak solutions from the specified class and we seek a priori bounds for these solu-
tions.
We emphasize that no investigation about the existence (or uniqueness) of solutions
is made in this paper, and that we focus our attention on @ priori estimates only. We
emphasize that our results depend only on ellipticity condition (1.2) and do not



164 Grore1o TALENTI: Nonlinear elliptic equations, ete.

depend on the growth of coefficients or on the geometry of the ground domain. For
what concerns the existence of solutions to boundary value problems for nonliner
second order elliptic equations, we refer to SERRIN [43]; see also GILBARG [42], SER-
RIN [44], STAMPACCHIA [45].

Let us notice that

(1.10a) [%ai(w, , 5}2] <(Const.) A1 (A ()

G=1
m

is a sufficient (although somewhat crude) condition for the distribution > (8/0z,)-

i=1
-a,(x, w, Du) to be a bounded linear functional on the test funetions space WiH4(@),
% being a member of WL4(G) verifying (1.8). Here A1 ig the inverse of A and the
latter is the Young-conjugate of A, namely

8

(1106)  A(s) = max {rs — A(r): 0<r < - oo} = fsup r>0: A'(r) <t} dt .

0
In fact Cauchy-Schwartz inequality for m-vectors and Young’s inequality rs< A{r) -+
4 A(s) give

}f § {2y wy, Du) g, dw | < (Const. )l[fﬁ( Du|)dw —}—ffi | D /l)dm]
J =1

for every positive number 1, hence

1f$ {2, w, Du) g, de| < )dm]

~ (Const.)| D] [1+ f A(1Du

G

just by the definitien of Orlicz norm.

It can be easily seen that all sample equations we have displayed above satisfy
condition (1.10), provided the coefficients formerly called a,(x) are bounded. This
assertion derives from the straightforward inequality:

A(Anr)<A@). =

The present paper is a continuation of an earlier paper [46]. In [46] we showed
that some a priori estimates of solutions to Dirichlet boundary value problems for
linear elliptic equations can be stated in the form of isoperimetric theorems: we proved
in faet that some norms (the IL®-norm, I#-norms or Lorentz norms, as well as some
ILs-norm of the gradient) of the solutions attain their greatest value when the ground
domain is a ball, the differential operator is a numerical multiple of the Laplacian
and the right-hand side is spherically symmetric. As a by-product, we were able to
obtain the sharp form of some estimates for solutions to linear problems. Here we
present a similar and more general approach to a priori estimates.
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Roughly, this approach can be described as follows: (i) Take a set of boundary
value problems including the problem under consideration. Such a set could be de-
fined by the information we have {or we are willing to use) on the data at our disposal.
Here use is made of the following information only: form (1.1) of the differential
squation, cllipticity condition (1.2), the measure of ground domain (1.4), the bound-
edness of Dirichlet datum g in (1.5). As far as right-hand side H is concerned, we
use monotonicity condition (1.3¢) and the distribution funection of H(-, 0), namely
the measure of the level sets {z: |[H(», 0)] > t}; the constraints on this distribution
function being

{1.3b) H(-, 0) is integrable

and

either lim A(r)/r = co or

r—>00
(1.3¢)

8>0 r—>00

sup 1" gup {J‘]]E[(w, 0)|dow: meas. F = s} < mOy™lm A(r)/r,
E

a bound for the norm of H(-, 0) in the Lorentz space L(m, oo) (= weak L™ gpace;
see section 3 for relevant definitions).

Hence we consider the set of of all problems (1.1) (1.2) (1.3) (1.4) (1.5) such that:
the convex weight A(r), the measure of G and the supremum of |g] are fixed; H(-, 0)
is equidistributed with a fixed integrable funection which satisfies a condition ana-
logous to {1.3¢).

The meaning of (1.3¢) will be clear presently. As Holder's inequality shows, a
sufficient condition for the inequality in (1.3¢) to be true is

( f H(z, 0) {mdx)w< mCY™ lim A(r)fr .

R™

Notice also that mOL™ is the isoperimetric constant, that is the constant in the
classic isoperimetric inequality: (meas. B)-Vr<mCY¥"H, ,(0E), H = any smooth
bounded subset of RB», H, ;= the (m — 1)-dimensional measure.

(i) Determine the worst problem in the above mentioned set, namely the
problem which has the largest solution. Here we are able to allow any Luxemburg-
Zaanen norm to evaluate the magnitude of solutions; moreover, in the case of a homo-
geneous boundary condition, we allow f M(|Dul)dz for the same purpose, where
M(r) is either A(r) or a suitable weight « weaker » than A(r). Following KALLMAN-
RotaA [8], we call Luxemburg-Zaanen the norms on the linear spaces of locally inte-
grable real-valued functions introduced in [12]; the essential feature of tlese norms
is: Jul<[of if Jul<|v] and |u| = o] if » is equidistributed with v.



166 G1oraIo TALENTI: Nonlinear elliptic equations, ete.

The main result of this paper can be stated in this way: the worst problem is the
simplest one. In fact let w be a solution from the Orlicz-Sobolev class (1.8) of (1.1)
(1.2) (1.3) (1.4) (1.5) and let the norms and the weight M(r) as before; we prove

(1.11a) lul < lof 5
as well as
(1.118) f M(|Du|) do< [3(|Dv]) do

in the case of a homogeneous boundary condition, if v is the solution to the following
problem

m 9 (A({Dv]) _ ) /
(1.12) mial 55;( Do - ”%) = f(!wl) in the ball jz|<<a,
v(@) = b on the boundary || =a.

Here f(|-]) is the positive spherically symmetric function equidistributed with H(-, 0);
namely the (unique) positive function whose level sets are balls (centered. at the ori-
gin) with the same measure as the level sets of H(-, 0). In the terminology of Hardy-
Littlewood, this f(]- ) is called the spherically symmetric rearrangement of H(-, 0).
Radins a is such that C,am(= measure of the ball x| < a) = meas. @, and b=
= sup |g/-

A diseussion of problem (1.12) is very simple. First of all, the solution of (1.12)
is unique in the Orlicz-Sobolev class (1.8). For differential equation (1.124) is the
Euler equation of the integral

J(0) = [ (i(1Dol) — (jo]) v) da

|zl <a
where j{r) = J(A(t)/t) dt. As A(r)/r inereases strictly according to our assumptions,
0

j(r) is strictly convex and verifies: j(r)<A(r). Hence J is well-defined on the Orlicz-
Sobolev class (1.8) (or so is its nonlinear part at least) and strictly convex. The as-
serted uniqueness follows. On the other hand, we claim that the solution to (1.12)
(from the specified class) must be spherically symmetric, i.e. a function of |»| only.
In fact, the solution of (1.12) gives the minimum of J because of the proved convexity;
moreover, Jensen’s inequality for convex functions easily shows that J decreases
under some symmetrization, i.e.

J(v)=J(w)
if v and w are connected by

w@) = —— | v(|j0]§) Hni(dE) .
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Finally, an explicit representation formula can be written for spherically symmetric
solutions to (1.12). In fact, for such solutions equation (1.12a) becomes the follow-
ing ordinary differential equation
G ov ov
e e m—1 P RN Qe P,
st 1B ) = )

where

By integrating and disregarding the solutions which are singular at @ = 0, we obtain -
the claimed representation formula

N a ¥
(1.13) o(@) = b + fB*l(rl—m fsm—lf(s) ds) ar,
la] 0
if the positiveness of f and boundary condition (1.12b) are taken into account.
Now we are in a position to explain condition (1.3¢). It is apparent from (1.13)
and the previous discussion that problem (1.12) has a solution only if the value of

rl-mfsm“ij(s)dns lies in [0, }Ln& A(r}/r[, = the range of B, for any r. As f{| ) is the
[}

spherically symmetric rearrangement of H(-, 0), a theorem of Hardy-Littlewood
yields

r
st gup {f{H (w, 0)|dw: meas. B = s} = mCYmyi-m f ifydt (s = Cnrm),
B 0

the well-known formula which supports the very definition of Lorentz spaces. Thus
(1.30) is a necessary condition for « maximizing » problem (1.12) to have a solution. =

The underlying idea of our proofs consists of the following two steps: (i) derive
% differential inequality for the distribution function of the solution under estima-
tion; (ii) read this differential inequality in terms of rearrangements of functions.

Step (i) seems to be strongly based on the divergenece structure of the differential
equation. If a great smoothness of solutions is taken for granted, so that pathologies
in the geometry of level sets are prevented by Sard’s theorem, step (i) starts by tak-
ing integrals of both sides of the differential equation over level sets of the solution
and goes ahead essentially along the same lines of [46, section 3]. In the case of
non-smooth weak solutions, more sophisticated arguments are needed.

Step (ii) requires tools which will be mentioned at be beginning of the next seetion.

2. — Main result.

Let us recall some basic definitions from the theory of rearrangements of fune-
tions in the sense of Hardy and Littlewood. We refer to [46, section 2] for some
details and comments, and to HARDY-LITTLEW0OD-POLYA [26, chapter 10], POLYA-
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Szreo [30, chapter 7], Hunt [27], O'NEIL [15] [28], O’NEIL-WEISS [29], SPERNER [31]
[32] and [33] for further developements.

Let u be a real-valued measurable funetion, defined in a measurable subset G
of B». The distribution funetion of u is

(2.1) u#(t) = meas {z € G: |u(®)| > 1} .

The decreasing rearrangement of u into [0, -+ oo} is the smallest decreasing funetion u*
from [0, 4 oo] into [0, 4+ oc] such that u*(,u(zﬁ})}t for every ¢. Equivalently

(2.2 w*(s) = inf {t>0: u(¥) < s} .

The spherically symmetric rearrangement of » is defined by

(2.3) wk(@) = w¥(C,lal")
where
(2.4) C,, = a1 + m/2)

is the measure of m-dimensional unit ball. A basic and easy theorem tell us that u,
#* and u* are equidistributed, i.e.

(2.5) meas {w € G: |u(@)| > t} = lenght of {s>0: u*(s) >t} =

meas {& € B™: u*(x) >t} .

Moreover a theorem of Hardy-Littlewood [26, thm 378] gives

(2.6a) f{uv[dm<fu*(s)v*(s) ds = ju*v*dm,
¢ 0 Bm
in particular
meas. B
(2.60) f luldo < f w(s)ds ,
B 0

whenever u, v are real-valued measurable funetions defined in the domain @ and F
is a measurable subset of . m

Now we state and prove our main theorem.

THEOREM 1. — List of assumptions:

(i) ellipticity condition (1.2) and conditions (1.3) = (1.3a) & (1.3b) - (1.3¢) on
the vight-hand side.
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(ii) grouwnd domain (1.4) has finite measure and boundary datum g is a bounded
function. More precisely, g satisfies conditions (1.5b).

(iii) » is a weak solution to Dirichlel problem (1.1)(1.4)(1.5) from Orlicz-Sobolev
class (1.8), i.e. [A([Dul)de < oco.
¢

(iv) G* = {ze R™: |»|< C;Y™meas. G)~"} is the ball with the same measure as

domain G and v is the function defined in G* by

mees. & 1+17 1+1/
Vet m 7 m
(2.7) o{x) = sup lg] + f B—i(WfE(-, O)*(s)ds)Wd?',
Canla]™ 0

where B(r) = A{r)/r.

List of conclusions:
(v) u*{@)<v(z) for every = in G*.
(vi) [ M(|Dul) dw< [ M(|Dvl) dw, where M is any twice continuously

{zeG:ju(z)| >suple|} a*
differentiable function such that

s M(#)>0 and M'0)M@E)<A' (A if 0<r< oo,
i MO ) =0.

Lgvyma 1. — Assume hypotheses (i)(ii)(iili) of theorem 1. Then the restriction of
the decreasing function

(2.9) t— [ A(IDu) do
{ul@)} >

to the interval sup |g| <t < -+ oo is Lipschitz continuous, and the inequality

ult)

(2.10) O<-—% j A(|Du))dz< J‘H(-, 0)#(s)ds
lulz} >t ]

holds for almost every (a.e.) t>sup |g|. Here and henceforth f ... d i a short
Julx)] >t
form notation for f ... dw; p(t) is the distribution function (2.1) and H(-, 0)*(s)
{weG:julx)] >}
is the value at point s of the decreasing rearrangement of H(-,0) into [0, + ool.

PROOF. — According to hypothesis (iii), we are assuming that » belongs to Orlicz-
Sobolev space W 4(@) and that equation (1.6a) holds for every ¢ from the space
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Wi4@) defined in (1.6b). We choose test functions ¢ so defined:

u{wy— ¢ if o is such that u(w) > ¢
(2.11) ple) =13 u@ -+1¢ if v is sueh that wiw) < —1

0 otherwise,

where ¢ is any number greater than sup |g|. Lemma 8.31 of [1] tell us that these ¢
are in Wv4(@) and that the derivatives are obtained by the usual chain rule; as ¢ is
larger than the boundary values of u, it is easily seen that such ¢ actually are in
Wi4(@). If we insert these test functions into (1.6a), we see that the decreasing fune-
tion @ defined by

kil

(2.12) z ai{, u, Du)u, dz
|u(ac)l>t i
satisfies
{2.13) D(t) = j H(w, w) (|u|— 1) sgnude  for every ¢>sup |gl.
{u(w)] >4

Let 5> 0 and £ > sup lg|; from (2.13) we get

— Ot + k) D) = f H(w, u) sgnudo—h — (1 _lul= z) @,

ful@)] > t<lu@)|<t+h
hence

~%(¢(t+h)~®(t))< f \H(w, 0)| do - f \H (w, 0) |da

tue)] > t<|u(x)<t+ R

because of hypothesis (1.3a); thus according to hypothesis (1.3b)

(2.144) Oc— Ot - 1) + D) <2h f H(z, 0)|dw ,
and ¢
(2.14b) — P ()< f H(z, 0)|dw

lwlzi>t

if ¢ is any point of continuity for the distribution function of u.
As is easily seen, (2.12) and (2.14) imply the asserted conclusions via ellipticity
condition (1.2). The following consequence of Hardy-Littlewood theorem (2.6):

w(t)
(2.15) f \H(z, 0)|de < f H(-, 0)%(s) ds

lu(e)] > 0

must also be used.
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LeMMA 2. — Let 0<r - A(r) be a positive increasing convex function such that
A(r)fr — 0 if r — 0. Let @ be any open subset of B with finite measure, and u a
function from Orlicz-Sobolev space W¥4(G) such that: (i) f A(|Dul)dw < oo (ii) u

G

agrees on the boundary of ¢ with a bounded function g. Then

—1 da
’ 1/m 1-1/m e
(2.16) — @ (&) =>mO™ u(t) G(mC’,‘,{m/z(t)“”m 7

u(z)] >

A( |Du])dw)

for a.e, t > sup |g|. Here p is the distribution function of u, and O is defined by

1
. S >0: 4 <st.
(2.17) o) sup{r (r)fr<s}
Proor. - For the sake of simplicity, we prove this lemma under a supplementary
hypothesis on A(r), i.e. A(r) is twice continuously differentiable and strictly increas-
ing. From the latter condition we easily infer that

(2.18a) 7 B(r) = A{r)[r

inereages strictly from B(0) == 0 to B(+4 oo) = —I}%I—%o Alr)/r as r increases from 0 to -} oo.
Thus

(2.18b) C(s) =1/B~Y(s) if 0<s< lim A(r)jr, =0 otherwise.

r—>+ o0
Straightforward computations give the formulag

—1 A7)
2.19 0'(s) = ——rv "($) =
( ) (S) ’?’ZB{(‘?") G (8) (‘}”Bf(?"))s b
where 7 and s are connected by s = B(r). Consequently, O is a decreasing convex
funetion in half-line 0 << s < <+ co.
Jensen’s inequality for convex functions gives

[ A(|Dul)da

t<lu{w}|<t+n
|Du|dx =

t<iju(w)|<i+h
o (2B D) _ [CABUDI D _ (=t £ 1) )
{1 Du|dw = [1Du|da [ |Duldx

b<ulw)| <t +h

(2.20) ¢

Hence we obtain the inequality

@ay {1 A(|Dulyde

1 w'(t)
(2.21) O\ @) { |Duldz S {(@ay) | |[Duldx
jue)>5 lulz)] >¢

for almost every t.
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We can prove
d
dat

|ul)] >¢

(2.22) |Du |dw>m Oy u@)} =™ for a.e. t> sup |g|.

Clearly, {2.21) (2.22) and the monotonicity of € imply the lemma.
Inequality (2.22) is an easy consequence of Fleming-Rishel formula [89] and of
the isoperimetric theorem. Fleming-Rishel formula reads

+ o0
(2.23a) total variation of ¢ = f Plwe Rm: lp(@)| > A} d2,
0
provided ¢ is integrable over B~ and the left-hand side is finite; here
(2.23b) tot. var. ¢ = sup { ftp div odw: v € (C}(R™))", max I'vKl}
Rm

and P stands for perimeter in the sense of De Giorgi, namely P(#) is the total varia-

tion of the characteristic function of B. As is easy to see, the total variation of an

integrable function ¢, endowed with integrable first derivatives, is f [Dy|dx; the
R™

perimeter of a smooth open subset of B agrees with the (m — 1)-dimensional measure
of the boundary. Let us apply these formulas to the following funetion:

lu(@)|—t if o is such that |u(»)|>1
(2.24) pla) =

0 if ¢ @ or if |u(w)|<t,
where ¢ is any number greater than sup |g|. As in the proof of lemuma 1, we see that ¢

is in the Orlicz-Sobolev space Wi4(G). Hence g is in the (usual) Sobolev space Wy'(G),
since G has finite measure. Thus we obtain

(2.25) f |[Dulde = J.P{m €G: lu®)| > A}di  for t>sup gl
¢

|y >4

By taking derivatives, and using the following case of De Giorgi’s isoperimetric
theorem [37] [38]

(2.26) Pz € @: [u@)| > t} >mOL™ u(t) =~
we obtain the wanted inequality (2.22).

PROOF OF THEOREM 1. — From lemma 1 and lemma 2 we deduce the following dif-
ferential inequality for the distribution funection of u:

1)
: H(-, 0)*(s)ds
(2.27) 1< ___.:—_‘MLB—I éf

< mOTP (=i WW where > sup {g].
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In this deduction we have to bear in mind formulas (2.18) and hypothesis (1.3¢),
a8 well as equation

(2.28) fs H(-, 0)%(t) dt — sup { f |H(z, 0)|do: meas. B = s}

0 E

which is an easy corollary of Hardy-Littlewood theorem (2.6b).
Note that the right-hand side of (2.27) is the derivative of an increasing function
of i, Hence by integrating with respect to £ we have

meas. G fH(7 0)*(8)d8

dr

410

(2.29) t<<sup |g|+ f B MmO i 1m | e AiTm i1 *
#(t)

Obviously (2.29) holds for every { > 0. By the very definition (2.2) of decreasing
rearrangement, (2.29) can be rewritten in the following manner

meas, ¢ fﬂ( ’ 0)*(8)d8
(2.30) u*(s) <sup |g| 4 f B-1{2

8

dr
mC;ln/mrl—I/m m071n/'m 7,1—1/m *

The {2.30) agrees with assertion (v) of theorem 1, because of the definition (2.3)
of spherieally symmetric rearrangement.

Now we proceed with the proof of asgertion (vi). We consider at first the simplest
case, namely the case where M(r) == A(r) and g, the boundary datum, = 0. Under
these circumstances, solution w is in space WE4(@), that is u itself is a test function.
Thus equation (1.6a) with ¢ = u gives

(2.31) f S 4, 4, Du)u, do — f H(z, w)uds.
=1
a &

The proof continues according to the following scheme (numbers mark assertions,
brackets contain motivations):

[4(1Du)) s
@
(2.32) < f H(z, w)udws (eq. (2.31) and ellipticity condtn. (1.2))
é
(2.33) ng(w, 0)udx (monotonicity assumption (1.3a))
:

meas, ¢

(2.34) < f H(-, 0)%(s)u*(s)ds (Hardy-Littlewood thm (2.6a))
L]
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”
meas. & meas. & IH( -, 0Y¥(1)dt dr

(2.35) < fH(-,O)*(s) fB‘I Om(}},{mrl‘”m mOTm =1 s
0 s

(inequality (2.30) with g = 0)

mess.c [ H(-, 0 ()@t [ [ H(-, 0)%(t)dt
(2‘36) = f Omoumsl——l/m B—l OmCI/mSI—I/m ds

(integration by parts)
(2.37) - f A(|Dv])dw
G*

the last step being a consequence of the obvious equations sB-1(s) = A(B*l(s)) and
of the following formula

O}

| 7 0rwas)

0

(2.38) {Dv(w)| = B~ (W

for the gradient of funetion (2.7).
A full proof of assertion (vi) is as follows. A straightforward argument shows
that the function K, defined on the range of M by

(2.39a) K(s) = A(M-Ys)),

is convex. Then Jensen’s inequality gives

t<lufa)|<t+h t<jula}i<t+h

(2.39b) — u(t By + u(®) —u(t -+ h) + pt)

( I M(|Du)) dm) [ A(|Du|)dw

The proof continues in the following way:

M—I(M—';L(—;) 6% f M(|Du|)dw)

)| >4

(2.40) < A—l(ﬁ%g—i f A(]Du|)dm)

ludz)] >4

(inequality (2.39))

—1 d -1
|

w{zw)] >t

(t> sup [g| and lemma 2)
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uit)

1 (., 0)*(s)ds)

-1 000000
(2.42) <B (mG}n/mlu(t)l—l/m s

(t > sup |g|, lemma 1, hypothesis (1.3c) and eq. (2.28), eq. (2.18));
f M(|Do|)d

aG*

meas, G

1 T
(2.4:3) = f M( ”I(WJH(-,O)*(s)dS))dT
0

0
(formula (2.38))

oo )

(2.44) > f M(B—l(-—.-l—(t)l_m f H(-,O)*(s)ds)) (— p'(1)) at
0 1]

mO"

(monotonicity of u(t))

+ o0

(2.45) > f dt(—% f M(]Du])dw)

suplg] |l >
(inequalities (2.40)(2.41)(2.42))
= [ M(Dul)ds.

Juz)| >sup|g|

In the last step we mse the absolute continuity of

(2.46) t > f M(|Du)) dw .

Jula)| >¢

As could be proved, this absolute continuity depends on hypothesis M(0 ) = 0
and on the fact that either {# € @: |u(z)| = ¢} has m-dimensional measure zero or
|Du| vanishes almost everywhere on the same set.

Finally, it is worth-while to remark that the hypotheses made on M(+) imply

(2.47) M) = 0(A(r) if r — + oo.

The proof is complete.

3. — Bounded solutions.

In this section we sketch some easy consequences of theorem 1.

THEOREM 2. — Assume hypotheses (i) (ii) (iii) of theorem 1. Suppose that H(-,0)
actually belongs to Lorentz space I(m, o). Then u is bounded, and the following ine-
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m,oo) b

Note that (3.1) contains in particular a weak form of the maximum prineiple.
Of course all through this paper sup stands for essential supremum, m

quality holds

(8.1) sup |u|<sup |g|+ (—01— meas. G)llmBﬂ (ﬁ%n [H(-, 0)|

where B{r) = A(r)/r.

For convenience of the reader, we recall the definition of Lorentz spaces L(p, ).
We refer to HUNT [27] and O’NEIL [15] [28] for details. If 1<p, ¢ << oo, L{p, q)
is the collection of all measurable real-valued functions f on E» such that the fol-
lowing norm

8

(3.2a) e =] f rfmp]"

is finite. If 0 << p < oo, the appropriate norm on L{p, oo} is

(3.2b) 1,00 = sup si2f(s) .

Here f is the Hardy-Littlewood maximal function associated with the decreasing
rearrangement of f into [0, oo], namely

(3.3a) F(s) =.§ f F@)de.
0

The following alternative representation is easily deduced from Hardy-Littlewood
theorem (2.6)

(3.3b) f(s) = 18‘ sup{ f [f(x)|de: meas. B = s}

Lorentz spaces L{p, p) (with 1 < p < oo) agree with the usual Lebesgue L?(R™)
spaces. In fact the monotonicity of 7* gives: f(s)>7*(s); while Hardy’s inequality

gives: [f(s)»ds<(p/(p — 1))“’ff*(s)”ds. Lorentz spaces L(p, co) (With 1<p < oo) are
0 ¢
also called weak L? spaces; they contain L»(R™), since Holder’s inequality and for-

mulas (3.3) give: f(s)<s~V» x(f f*(t)f’dt) Us, By putting together these two remarks
0

»la

we have the inclusion L(p, p) ¢ L(p, ) (With 1 <p < g< oo), sinee |/ [, < I/ [7517152"
by a trivial argument. Notice that L(1, co) = LRm) with equality between the
relevant norms, as (3.2b) and (3.3) show. m
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Proor oF THEOREM 2. — From assertion (v) of theorem 1 and equations (2.5)
we get: sup |u|<supv. From formulas (2.7) and (3.2b) we get

meas.G
,?a-—l-l-ljm

1
sup v = o(0)<sup lg| + f B“‘(W HH(‘,O)MOQ)WW =
0 m

the right-hand side of (3.1). B

ExampLE. — Any solution # of the following problem

m g In (1 + [Du D . ) ) )
(3.4a) _i,iézﬂ EZR {aik(x) T Dul “mk} = H(z,w) 1in GCR

% = on the boundary oG

is bounded and verifies

1 1m 1
(3.5) sup |u|< (ﬁ"m meas. G) {exp (W TH(-, 0)] m,m)—l},
provided
m me
E (@) &6 > E &
d=1 f=1
(3.4b)

H(z, -) is decressing and H(-, 0) € L(m, co)

meas. G << oo,
and provided u is sought in the following Orlicz-Sobolev class

(3.4¢) f‘Du{ln 1+ Dup)dr<oco. =

THEOREM 3. — Assume

oG

(3.6) f(?‘/A(?‘))"‘d? < oo for some k>0
and
3.7) H(-,0) € L(p, o) for p = mk/(k - 1).

Moreover assume ellipticity condition (1.2) and monotonicity kypothesis (1.3a) as well
as hypotheses (i) (ili) of theorem 1. Then w is bounded. In addition, if the full inte-
gral f(w-/A(v))’c dr converges, the following inequality holds

1}

(3.8) sup Ju| <sup lg| + m~F 0P F(- o)k f (7 A(r)dr .

0

12 — Adnnali di Malematica
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ProoF. ~ Let us limit ourselves to the proof of (3.8). As in the proof of thm. 2,
we have only to show that »(0), the value at the origin of funetion (2.7), is bounded
by the right-hand side of (3.8). From (3.2b) and (3.3a) we get

meas. G
- 1+1/m

pl/m—~1/p
v(0)<sup |g| + f B"‘(W [H(-, O)Ilp,m)Wd’ry
0

hence a change of variables in the integral gives

o(0) <sup [g] + m* O I E(-, )% LB [T B at.
0

Since

k|1 B-1(t) dt = f (r/A()*dr,
0

0

we conclude as planned. Note that in this proof we have msed this fact: B(r) =
= A(r)/r -+ oo if # >+ oo, 2 consequence of (3.6). m

ExaMPLE. — Any solution u of the following problem

m 9 exp ([Dul) —1 _ . .
(3.100) a',kz=:1 b};{am(x) Du| Uyt = H(z,w) in GCR
% = on the boundary oG
verifies
A 1f(m—1)
(3.11) sap ju|< 0T s (= 1) [f 1H (, O)Idm] )
G
provided
Z (@) §:6:> z &
i,k=1 i=1
(3.100)

H(z, -) is deecreasing and H(-,0) e L}(G)

meas. G << o0,
and provided

(3.100) f |Du|[exp (|Du]) — 1]de < oo
a3
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4. — Some applications of theorem 1.

4.1. — In this subsection we derive some a priori estimates of solutions to the
following Dirichlet problem:

mo 9
(4.1) — 2 5 aa@Dulu,} = Hie,u)  in @

% = 0 on the boundary oG .

List of assumptions: A is any number > 1; a, are measurable functions such that

m m

S au(w)EE,>Y & for all @ and &5 H is a measurable function such that H(aw, -) is
byee=1 i=1
decreasing for all # and H{(-, 0) belongs to some Liorentz space L{p, k); G is any open
subset of K™ with finite measure.

Incidentally, the existence and uniqueness of solutions to problem (4.1) can be
set (at least if the nonlinearity of the right-hand is not too severe) in the framework
of monotone operators on reflexive Banach spaces, see e.g. BROWDER [35] [386],
LerAv-LioNs [41]. =

Let % be a solution to problem (4.1) belonging to the (usual) Sobolev space WHA(G).
Theorem 1 gives

(4.2a) uk(x)<v(®) for every x in G*
(4.2b) [IDupan< [popas it 0<q<1,
é a*

where G% i3 the ball with the same measure as G and

meas. G 7 Aa—1)
—1
(4.3) v(w) = (m OLm)~HE-D f r‘”‘/‘""""”)(}—;fﬂ(-, O)*(s)ds) dr ,
Crl2|™ 0

a solution to the following problem

w9
—_— — —2 — . * . *
(4.4) 1:21 axi{lpl"l vz} =H(:, 0)%(@) in @

p=20 on 9G* .,
From (4.3) the following formulas are easily drawn:

meas. & 7

-1
(4.5a) sup v = (mQm)-H-1 f piHH - (%JH(-, O)*(s)ds) o dr,
0
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meas

.G T
war)  w = ooy [0 (P opma)’ T ar
" max (7, s)\r ’ ’
[}

meas. & 14
(4.50) popde = | o (X (&, 0xs)as) ar.
3 i mol{m 7 ?
G* (1] 4]

In (4.5b) 7 indicates the Hardy-Littlewood maximal function associated with
the decreasing rearrangement v* of », see (3.3).

The right-hand side of formulas (4.5) can be conveniently estimated in terms of
Lorentz norms of H(-, 0), via definition (3.2) and standard technical tools (such as
Holder’s inequality, or theorem 319 of [26]). Thus from (4.2) (4.5) we obtain the
following results:

(i) sup [u|< K(meas. G)Mr—mimA=-10) (. 0)|LG=1

Here p>m/i, k>1/(A— 1) and K is the following constant

. 1/my A1 A-1) mp{z‘ _1} . 1 1~1/(k(1~1))
K = (mClm) [ i .

Ap —m A—1)

(i) fu]gra_n<EJH(, O™,

Here

1 __mp(A—1)
T T Ta—p

m> - m
TP a=me =1

and
K = (mQlmy-4-n g )
(i) [[|Dul? do]" < E(meas. G)et @=mimed=0)| (. o) [H0-D
&
Here

mq k> q

PResh PragonTe Ui

_ N —1/g+ (kA1)
K = (mQmy -2 [(1 + fg(z —?—nl))) k(]?i(il)li q} h ‘

4.2. — In this subsection we derive some a priori estimates for nonparametric sur-
faces with prescribed mean curvature. An exhaustive treatement of boundary value
problems for such surfaces can be found in Grusti [40]. Here we consider Dirichlet
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problems only, and for the sake of simplicity we limit ourselves to a homogeneous
boundary condition. Thus we consider the following problem:

. a W
R ———m*’—_—i______ = H(.’,U QL) in G
(4.6) zzl 830,- »\/1 + ;.D’M Ez ’
v =0 on the boundary 2G.

List of assumptions:
{i) ¢ is any open subset of B™ with finite measure.
(ii)y H is » measurable function such that
(4.7a) (H(@w, u)— H(w, 0)) u>0 for all # and »,

(4.7b) [H(, 0)[l,,00 < mOL™= the isoperimetric constant) .

(iii) % is a solution to problem (4.6) from the following Orlicz-Sobolev class:

(4.8) [IDup(t + 1Dup) o < o
G

REMARKS. — The norm in (4.7b) is that of weak L™ spaces, as in (3.2b) (3.3b). Inci-
dentally, assumptions (4.7) are closely related to those of BOMBIERI-GIUSTI [34].
Of course, assumptions (4.7) can be replaced by the following more stringent ones:

H(z,-) increases , <f|H(m, 0) ]mdm)”’” < mQym,
Rm

The Orlicz-Sobolev class (4.8), conpled with boundary condition (4.68), is the same
thing as the usual Sobolev space Wy'(@). For ¢ has finite measure and

r>r1 ) iser— o3l VI—s) (0<s<],
since #*(1 4 r?)"* iy greater than
(4.9) A(r) = /(L + 1),

which is & convex increasing function on 0 <r < oo, whose Young-conjugate is A(s) =

— (1 +vI—35):. m

As is easily seen, problem (4.6) (supported by the specified hypotheses) can be
imbedded in a class of boundary value problems of the type (1.1) (1.2) (1.3) (1.4)
(1.5), provided ellipticity weight A(r) is chosen as in (4.9). Theorem 1 tell us that
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the « maximizing » problem in such a class is the following:

3w
(4.10) <4 0w 1+ Do)
v=20 on oG*,

H(-,0)%(z) in G*

where stars have the customary meaning. The explicit representation formula

mas & im0y fH(-, 0)%(5)ds

pit1fm
dr
1 s
mO ™

(4.11) o(z) =
Gl 1 —1+1/m/,m01/m J‘H ( )dS

and hypothesis (4.7b), show that the (appropriate) solution v to (4.10) is « dominated »
by the numerical multiple

1 1
of the function w defined by
meas, G
7.—-2+2/ m
(4.13) w{w) = f QOZ’WJ‘H , 0)¥(s)ds.
Cmjzj™

This argument more precigsely put and an inspection to formula (4.13) give the
following result. Let u be o solution to problem (4.6) satisfying (4.8); let w be the (Lip-
schitz continuous) solution fo the following linear problem:

(4.14)
w=90 on o0G*.

{ — Adw = H(-, 0)*(@) in G*
The following inequality holds:
(4.15) uk(w) < Cw(x) for every x in G*,

where C is the consiant defined by {4.12). Moreover, estimates of the gradient of w con
be derived, for example:

Dult e ,
(4.16) I(%i) do< 0¢f [Dw e du if 0<g<l.
G*

As a by-product of this theorem, we quote the estimate written below. This
estimate comes from straightforward manipulations of formula (4.13).

SH(y 0)}1»,&
— (1 /m O™ [H (-5 0} moo’

sup |u|<K (meas. G i
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where u i a solution to problem (4.6), p > m/2,k>1 and

1 — m? (12m k 2 EAY b
= o =1 ()
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