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Summary. — Methods based on trace theovems and transposition are applied to some boundary
value problems for differential forms on compact Riemannian manifolds. We oblain com-
patibility conditions of a classical type for the solvabilily of these problems in wvarious So-
bolev spaces.

0. — Introduction.

The purpose of this paper is to treat various non-homogeneous boundary valne
problems for differential forms on a compact Riemannian manifold (with boundary).
The methods we use, based on trace (and density) theorems and transposition, are
due to J. L. Lions and E. MAGENES (see [13]) and proved themselves fruitful in
the scalar case. The boundary value problems considered are essentially the same
as those treated by Durr and SpENCER in [5]. If we try to extend their existence
theorems to solutions in Sobolev spaces (they consider only continuous solutions),
we are immediately faced with the following kind of difficulty: suppose we want
to solve the problem Au = v, 74 = ¢, T du =y where v is a form in some Sobolev
space on the manifold, ¢ and y are forms in Sobolev spaces on its boundary (we
denote by v the operation of restriction to the boundary, see 1.2.5); then in order
2 solution to exist, v, ¢, v have to verify some compatibility conditions and the
conditions given by Duff and Spencer involve the « periods» of v, g, v, i.e. their
integrals over submanifolds of our manifold. Clearly, such conditions do not make
sense if the orders of the Sobolev spaces in which v, ¢, y are given, are sufficiently
low. A much more simple problem which we cannot solve using the results of Duff
and Spencer is the following: what is the space described by the boundary values
of the forms o belonging to some Sobolev space on the manifold and having the
property dw=0. In case w is continuous, the answer is known and involves, as
before, the periods of the boundary values.

Another point on which the paper of Duff and Spencer gives no result is that
of regularity of the solutions (in fact this problem does not exist for them because
they do not consider irregular solutions). Complete results in this direction where
obtained by EErLs and MoRREY [6] and MORREY [15], [16]. However, their results
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do not solve problems of the above type. For example, one of Morrey’s theorems
says that: if weXY(Q2) (see 1.2, 1.3 for notations) and dw= 0, then there is a
unique % € (L) such that du = du = 0, w = u - dv for some v € () and 4= Tw
(also, regularity assertions). This theorem asserts that we can solve the problem
du==0u=0, 7u=¢ if ¢ is of the form 7w with dw =0, but the conditions on ¢
in order this to be true are not given.

The essential results of this paper are given in theorems 3.2.3 and 4.2.2 (compare
our results with theorems 2,6 from DUFF [4], theorems 3,4 from DUFF-SPENCER [5],
and theorems in section 6 of MoRREY [15]). Using various trace theorems we have
been able to give a «classical » formulation of the results, in particular to state
explicitly the conditions of compatibility on v, ¢, 'tp {etc.) even for irregular {discon-
tinuous) solutions. On the other hand we have also given regularity assertions
similar to those of Morrey. These assertions are in one respect stronger then those
of Morrey since we permit boundary values in Sobolev spaces of negative order.
For example, in the preceding theorem of Morrey, the fact that we J01(£2) implies
rwe XHI); we can solve also the case we J(Q) with dw = 0, which implies only
rwe 7HI). Remark that we have not used all the force of the transposition method,
since only the boundary values can be in some negative order Sobolev spaces. We
have chogen this case because it allows the study of the (domain of the) operators
in Je(£2) associated to some differential operators (for example we prove in 4.2.6
that the Dirichlet forme is not closed on X}{£2) and in 4.2.7 we can study the realisa-
tion A, of A, which has a very «bad» domain, obtaining so CONNER’s [3] results).
The integral application of the transposition method (following LioNs-MAGENES [137)
would have necessitated the introduction of new spaces of distributions, which
would have lengthen considerably the paper. We have prefered to treat in detail
the case presented, thinking that it might be useful especially for those which are
not specialists in partial differential equations, for example theoretical physiecists
and topological algebrists.

With this in mind, we have tried to make the paper as self-contained as possible.
In sections 1.1, 1.2 we give a short treatment of the notions related to Riemannian
manifolds we need. We have defined in an invariant way the notion of tangential
annd normal part of a differential form, which we think is more clear than that of
Duff and Spencer. Remark that what they call normal part no of a form o differs
from our definition by a factor: nw = vAvew, which explains some differences in our
relations. ‘The coordinates of a normal chart (U, ¢) such that U, 0 (see 1.2.6)
are also called semigeodezic. In fact we need the conditions gy (2) =1, g,(#)=0
if i>1 only for #c U,. Such charts are called admissible by Morrey and the proof
of their existence is easy (see MORREY [16] or FRIEDRICHS [8]). Section 1.3 is devoted
to the statement of some known fact about Sobolev spaces of forms. The presen-
tation is quite detailed since we adopt a point of view a little different from the
usual one, which we consider to be that of PAvArs [18]. There is an important
difference between our spaces J¢s(2) and those of Palais if s<<— §, as explained
in (1.3.3). We have proved only one interpolation theorem {1.3.5), but we shall
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use many others which can be deduced in the same way from the corresponding
theorems in LionNs-MAGENES [13] (chapter I, sections 11.5, 12.2-12.4).

In section 2.1 are proved all the a priori estimates we need. We could have used
the results of GrEymowaT [11] for systems of equations, for example, but we have
prefered to give a direct proof using only the elemenfary scalar estimates (10), (11).
In fact, only the first order part of the operator A4 is not « diagonal» and we can
treat it by a perturbation argnment as nsual. We think that the use of results for
general elliptic systems would only complicate the presentation without essentially
shortening it. Remark that we use in section 3.2 the fact that the operators 4,, 4., 4,
are selfadjoint (so we avoid the use of « dual» estimates and other theorems cor-
responding to those of section 5.3 chapter II, LioNs-MAGENES [13]). This fact is
not trivial and MORREY [16] proved it via some regularity theorems for elliptic
systems. However in [10] we proved this results using only elementary facts about
scalar elliptic equations. Sinee the proof is easy having the frace theorems from
section 3.1 (which are, of course, independent of the selfadjointness of 4,,4,, 4,)
we shall sketch it in an appendix to this introduction.

The Dirichlet form, presented in (2.2), played an important role in most of the
elassic work on harmonie integrals and related topies. We prove in (4.2.6) that its
restriction to J¢(£2) is not a closed bilinear form (in the sense of KaTo [12], chap-
ter VI). But it is an important fact (for the proof of the selfadjointness of 4,, 4,, 4,)
that its restrictions to J!(£), JL(Q) are closed forms. Our proof of this in [10] is
based on the formula:

(p—1)!

2

Dlu, v) = %fviuil...ipvivi""ip * 1o+ ML fuiil...ip-;(vjvi — ViVyjoitdomk 1g 4
Y-
~+ (vu, VoA v0)y,r + (Tu, \%/\Grv)o,p— {vit, 010y — {TU, dV0)

for u, ve X(Q) (see 1.2.7 for the explanation of some of the notation). If tu=1w=10
or yu = v = 0 the last two terms vanish and one can get easily an estimate which
shows that the norm D(u, u) 4 |u[] , on JCL(L2) or K} (2) makes it a Hilbert space.
The preceding formula is obtfained by partial integration in normal coordinates.

Section 3.1 contains the trace theorems which constitute the heart of the method.
They are essential in the formulation and the proof of the theorems concerning the
boundary value problems for the operator 4, see 3.2.

The prineipal result of section 4 is theorem 4.2.2. In 4.1 we prove a generalization
of a density theorem due to Friedrichs. We need this form first in lemma 4.1.7 (in
the case of 3¢, ,(Q2), since d and § cannot have constant coefficients simultaneously
in a system of coordinates) and second in the proof of lemma 4.3.1 (the third part).
Then, in section 4.3 we give an application of our results in algebraic topology and
prove a (particular case of a) theorem of de Rham, improving it in one respect
(namely, the regularity assertion). Other applications can also easily be done, for
example in the study of a generalized form of Stokes equations.
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We shall explain now some notations we use. We denote by the same letter ¢
all the constants. |-[,0, [ ‘[, ebe., are norms which define the topology of the
spaces Js(Q), Js(I'), ete. We allways denote (-, )5 the scalar product of the Hilbert
space H and by <-, -) the duality between any topological vector space V and its
strong dual V'; if wueV and ve V', we identify {u,v) with (v, ). All the fune-
tions, differential forms, vector spaces, etc. will be real.

Finally, let’s say some words about the hypotheses in which we work. For
simplicity, we suppose that the manifold is of class C*. In fact, without changes
in the proofs, all theorems are true if the manifold is of class O} (Morrey’s notation);
obviously, there are some modifications in the regularity assertions. We can also
consider the case O] (as Morrey and Friedrichs), but then we must work with admis-
sible boundary coordinates (in the sense of Morrey) in place of normal coordinates;
but in this case the preceding formula for D(u, v) is not valid, since it contains the
curvature tensor which is of class C*® on a manifold of class C*.

All the study is done in spaces of square-integrable forms. Using the results
of Lions-Magenes in L7-spaces (1 < p < oo}, many results can be generalized to forms
of power p integrable.

Appendix.

An essential fact which we shall use is the selfadjointness of the operators 4,
4., 4, (see 2.2.3; in this appendix we shall use the same notations as in the rest
of the paper and also some of our later results which are clearly independent of the
above assertion). We shall sketch here a proof of this in the case of A, (the case
of A, is then a consequence and that of A4, is much simpler) following [10]. All
Hodge-Kodaira-de Rham decomposition theorems are easy corollaries of this, as
explained in (4.1.12) (see also the proof of 4.2.2).

Since the restriction of D to JCHQ) is a closed (proof indicated before; this result
is due to GAFFNEY [9]), positive, densely defined, bilinear form in the Hilbert space
J(£), we can associate to it a unique positive selfadjoint operator AL, with domain
DA c1YQ) and Dig, v) = (AL, oo for any geD(4;) and yeXy(Q). Clearly
Ap = Alp e (), so that ¢ e J4(Q) (3.1.1). Moreover yp =0 and »dp=0, as it
follows from 3.1.5. So that it is enough to show that g eX4(0), vp=0,vdp=10
implies ¢ e J€2(2). We show the regularity near a point p of the boundary {the
interior case is trivial). There is a O® function 6 on 0, with support in a domain
of normal chart U, such that =1 in a neighbourhood of p, the derivative of 6
in the normal direction at all the boundary points being 0. One can show Og eJet4(2),
supp (Bp) c U, v(0p) = vd(fp) =0, so that (replacing ¢ by Op) Wwe can suppose
suppe ¢ U. We shall work in a fixed, normal system of coordinates in U (the nota-
tions are as in 2.1.2). Clearly g¥/8, 811;7)1,1“‘“6132([7) for any 4, ..., i, and @i i€ X0).
Since vp = 0, relation (5) shows ¢y, , € LX(T) (= closure of 0F(0) in L}(U)). Nr-
RENBERG’s regularity theorem [17] gives P14y 0, € Lg(ﬁ). If 4y, ..., 49,>2, then @i,..in€
ED%(E’), A =g'3,0; (see section 7.2, chapter II, LIONS-MAGENES {13]; in fact we
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need only results on Neumann problem which are given in LioNs-MAGENES [14]).
Now we want to apply theorem 7.4, chapter IT, LioNs-MAGENES [13] (or see [14])
with Neumann operator as boundary operator. Since supp@, , is at a positive
distance from the curved part of the boundary of U, if we show that 8,¢; , |U,=0
(in the sense of theorem 7.3, loc. cit.) then we shall get ¢ ;e I%0). One can
gshow that this equality is a consequence of » dg == 0 (in the sense of theorem 3.1.5),
uging (6) and the fact that dvp= 0 (since »p = 0).

1. — Preliminaries,

1.1. Algebraic preliminaries.

(1.1.1) Let E be a finite dimensional real vector space provided with a scalar
product (-, -). We shall identify K with its dual by the canonical isomorphism
which associates to v F the linear form % > (u,2) on E. For each p=0,1, ..., 7
(n=dim E) let A?E be the p-exterior product of E. Since ¥ is a Hilbert space, \?E
is canonically identified with a subspace of the p-tensorial power E®?, so that it

F3
has a canonical scalar produet, also denoted (-, -). We define AE=@ A?F a8
a hilbertian direct sum. =0
If {1, ..., €a} i8 @ base of the vector space E, then we define the dual base as the
family {et, ..., e"} of vectors in E such that (e, e7) = &}, Let g,;= (e, ¢,), g/ = (¢, ¢/).
The families {¢; A... ¢, [1 <h<...<i,<n}, {e" A NP1 <iy< ... < i, < n} will be bases
of the vector space A\?E. If we A\?E we denote by o™ (resp. w, ) its coeffi-
cients in the first (resp. second) base, so that

. i . .
o= Z . whetrg AL A6, =— o AL Ne, =
B <iy, p

. . 1 . )
= z cuiln_ipe‘!/\.../\e*v _—_——'wil_,_,',,e‘l/\.../\e’v
i< <ip P

(@, i w'7 are defined for any 4, ..., 4, by antisymmetry). We have "=
— i1l i — iyeoed ; .

=G 05 Oy iy, e Gy, 0 and, i u, vE APE:

1
(1, v) 337% AR P PO

(1.1.2) Let ve B, |v| =1, and E, the subspace of E orthogonal to », provided
with the scalar product igduced by E. There is a canonical identification of AE,
with a subspace of A%, so that we shall always consider AE,c AH. Let v 1: AE—> AR
be the «interior product» with » (i.e. if we A°E then v_lw=0 and if we A?E
(p=>1), then v_lwe A\**H is given in coordinates by (v_lw), , = v'e; and

ceiip- il,..ip-l)
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vA: NE— NE the ¢ exterior product» with ». Then, using
(_Do(A)+ (A)o(v) = i, 5

it can be shown that (v_l)o(vA) (resp. (»/\)o(v_])) is the orthogonal projection of A E
onto AFE, (resp. onto its orthogonal complement). We define 7==(v_])o(rA) and
y=y_] as (surjective) applications AE — AH,. For any we AE we have w= tw--
4+ vAvew and we call Tw (resp. »w) the tangential (resp. normal) part of w.

(1.1.3) Suppose that we are also given an orientation of FH, compatible with
the Hilbert structure of E i.e. an element ¢e A7H with |l =1. If {e, ..., e} is a
base of the vector space F and g= det(g,,) = det(g¥)-, then |e;A...Ae.]?= g and
le*A...Ae"[2= g*; since A"E is one dimensional it follows that ¢= +gre N Nen=
= +gte'A...Aem; we call the base {1, ..., €.} correctly oriented if we have the plus
sign in these formulas. It iy known that there is a unique linear application
#: NE— AE such that xA?Ec A7 ?FE and for any u,ve A?H: (u, v)e= uA#®v (in
particular, for 1e R= A°F we have %1 ==¢, which explains some future notation).
This application is canonically associated to the Hilbert structure and to the orien-
tation of B, is unitary and has the property s = y* (where y: AE— AE with
2IN?E = (—1)7id,,z). The normal » to E, being given, we define a unique orienta-
tion ¢, of E, {compatible with its Hilbert structure) by the condition e==y/¢, {equi-
valently: e,=»_le). If we denote #%, the % operation on AJH, associated to the
Hilbert structure induced by E, and to the orientation ¢,, then for any we A E:

TR = %0,

YR == *ofxw B

(I14) We recall that, if ¥ is a space similar to B and T: E—F is linear,
then we can associate to T a unique linear application T": AE— AF such that
TN\ NUy) = (Tu A ... A(Tu,) for any %, ..., u,€ B. Also, the adjoint T*: F— E
is defined by (u, T*¢)= (Tu, v} for any ucE,vel.

1.2. Some remarks on Riemawnwian manifolds.

(1.2.1) We shall always work on a (, Riemannian, compact manifold 2 of
dimension #, orientable and oriented. We suppose that O has boundary I” (the case
I'=§ is trivial for what follows) and we dencte by Q= (NI the interior of 2.
We recall that for each ze 2 is given a scalar product (-, -) on the tangent space
T O (which depends smoothly on #) and an orientation, denoted (%xl,)(x), of T 0,
which is compatible with the Hilbert structure of Tx.Q' (and which depends smoothly
on z). Then we identify 7,2 with 770 as said before, so that a differential form
on 2 will be an application 232 - w(@)e AT Q2 (such a form is composed of n--1
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homogeneous components of degrees p=0,1,...,n). The 0 n-form %1, which has
value (x1,)(z) at the point #eQ is called the volume form on 2 (associated to the
given riemannian structure and orientation). For each z€Q let % be the operation
on AT {2 associated to the Hilbert structure (-, -) and to the orientation (31 ,)(x)
of T.2. If w is a differential form on £ then we define *» to be the form
(%) (@) = *w(x).

(1.2.2) The boundary I" has a canonical Riemannian structure defined as follows:
since I" is a O~ submanifold of £, there is a canonical inclusion T,I"c T, for each
w1 (this identification will always be done); we take on T, I" the Hilbert structure
induced by that of T,2. Note that we have also identified AT I'c AT OQ for any
wel. For each weI' let us denote »(x) the vector in T 0 which is orthogonal
to T, I', is oriented toward the exterior of £ and has norm 1, Then v: % s ()
is a O section of the tangent fiber bundle of Q over I (i.e. it is a restriction of a
section over Q). As explained in 1.1, we can then define a canonical orientation on
each T I" which is compafible with its Hilbert structure, denoted (x1,)(x); it is
clear that this orientation is smooth as a function of x, so it defines a canonical
orientation of I'. If #1, is the (n— 1)-form on I" which takes the value (x1.)(x)
in zel, then it iy a C® form and is the volume form associated to the Riemann
structure and orientation of I'. Let %, be the % operation on 7 I" (x e I") associated
to its Hilbert structure and to (x1,)(z). Then for any form o on I"' we define sw
as the form on I" which takes the value #,w(x) at the point x el

REMARK. — Let’s note for a moment x,0 this form; since we have identified
AT I'c /\TEQ, any form o on I' can be considered also as a section of the fiber
bundle ATQ over I, so that we can define another section xw by (%w) (%) = %w(x)
for e I'; the sections #,0 and #w of AT over I" are distinct, %o never being a
section of ATT'; but since we shall never use *w if w is a form on I', we make the
convention of denoting %w the form x,w on I

(1.2.3) Suppose now that w is any form on 2. We define its tangential (resp.
normal) part as the form 7w (resp. vw) on I' given for zel by:

(tw)(z) = tw(x) (resp. (vo)(@) = vo(x))
(take B = T,9, E,=T,I',y=v(z) in 1.1). It is clear that:
(1) THRO= KV0 , VRW = kTY®

where we define yw by the condition: if w is a p-form then y0 = (— 1)?w, for any
form, on any manifold.
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(1.2.4) Let Q,, O, be manifolds with the same properties as 2 and ¢: 2, Q,
a C° mapping. We denote ¢, : Tw!§1—> T¢(m)!”§2 the application tangent to ¢ at the
point z€0,. If w is a form on £, then ¢*w is the form on Q, defined by:

($*0) (@) = ¢2" w(p(@)) .

If ¢ is a diffeomorphism and o is a form on £, then ¢, is the form on 2, defined by:

(P50)Y) = P, 0 ($7(Y)) -

(1.2.5) Coming back to 2, let ¢,: I'—>Q be the canonical inclusion. It is easily
seen that

ipw = Tw
for any form w on 2. We deduce that if » is a 0 form on £ then:
(2) T do == drow

where in the left side (resp. right side) d denotes the operator of exterior derivation
on 2 (resp. on I'). If we denote by d==— sdy # 1= (— 1)1 d % y» the operator
of codifferentiation on Q, using (1) we obtain:

(3) v 8w = — dre

for any C° form w on £ (in the right side § denotes the operator of codifferentiation
on I').

(1.2.6) We shall call normal chart on & a correctly oriented C® chart (U, ¢)
with the properties:

1) there is a chart (U’,¢') of 2 such that Uc U’ and ¢ =¢'|U;

2) if UNI'=0, then ¢(U)= U= By1)= {weR*||z|< 1};

3 HUNT = Uy, then $(U) = U = (— 1, 0] x B~ (1) = {ze R"| — 1 < 22 <0
and (2%)24 ...+ (2%)2< 1}, ¢(U,) = U,= {0} x B~1(1) and in the coordinates asso-

ciated to ¢ the coefficients of the metric tensor have the property: gu.(#)=1, g:.(2)=10
for i1 and wel.

From property 1 it follows that in the coordinates of a normal chart the func-
tions g,; have extensions of class ¢ to a neighbourhood of U in R» such that the
matrix (g,,) is uniformly positive definite on U. It is known that any point on 0
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has a neighbourhood which is the domain of a normal chart (see for exemple Ch. B.
MoRREY [16]). Remark that in normal eoordinates the coefficients of the exterior
normal at a point p e U, are: » (@) = v{x) =1; »,(®) =»{(#)=0 if i>2 (v=¢(p)).
It is useful to introduce a canonical extension of » to a neighbourhood of I" in Q
defined as follows: the neighbourhood is a union of domains of normal charts with
centers at points on I" and if p is in the domain of such a chart then the coefficients
of »(p) in the respective coordinates are the same as before. The definition does
not depend on the chosen normal chart and the extension so defined is clearly of
clags C°.

(1.2.7) Suppose that (U, ¢) is 2 normal chart with Uy= U N '+ 0; then (U,, @)
with ¢,== ¢|U,, is a chart of I, and if 2%, 22, ..., " are the coordinates associated
to ¢, then #2, .., " are the coordinates associated with ¢,. We denote o= (2,
X2, ., &7, €7 = (&% ..., 2"} so that x= (%, #"). It is easily shown that for 2<1,, ...,
i,<n, for any p-form o on £ and 2'eU,= B»1(1):

(4) (Tw);,. 5, (@) =y, ;,(0, 27)

Lein

(%) (rw);,. 1,8 = @y, (0, 27)
(6) (vdw); (@)= %0, (0,5~ (dvo), (@)
(7 (7 60))‘1,,,.1-,,@”) = 8‘10)11‘,,,,1,,(07 z")+ (5770))1‘,,..5,,(‘””) -

— (T30, @) ) (@)),...... + (V0(0, 2" A (o) (@),

where 0, means the usual derivative with respect to »* and the operators d, § in the
right members are those corresponding to I. Here Vy is the covariant derivative
of v, i.e. a C* tensor in the neighbourhood of I', and ~, °A, A° are algebraic opera-
tions (exterior product and contractions; we do not need to know more about them;
details are given in the proof of theorem from 2.3 in GEORGEsCU [10]).

1.3. Bobolev spaces of forms and a itrace theorem.

(1.3.1) Let J=(2)= 0°(AT3). be the Fréchet space of all the C* forms on £ (its
topology is that of the uniform convergence of the form and of all its derivatives
(in local coordinates) on any domain of chart) and J7(£2) the subspace of forms
which are zero together with all their derivatives (in local coordinates) on I', provided
with the induced topology. Let J8™(£2) be the strong dual of J7(0Q). We suppose
known the definition of the real Hilbert space J(Q) of (equivalence classes of) square-
integrable differential forms on Q. The secalar product of u,ve J(Q) is:

(u, @)Osg:f(u, v) % lg=|uA%v
2 2
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where we have denoted (u,v) the (equivalence class of the) real function Qex —
> (u(@), (@) €R. Tt July o=V (uyu)op.

(1.3.2) Let (U, ¢) be a normal chart on @ and U = ¢(U), so that U is either
on open ball, or the union of on open cylinder with one of its bases. For any s>0
we denote LX({7) the real part of the Sobolev space H*(U)) (Lrons-MaGENES [13],
chapter I; the fact that U does not have a ¢ boundary in the second case will be
of no importance in what follows. If you prefer, round off the corners of the cylinder
and define a normal chart by demanding that the image of ¢ be the obtained domain).
We identify a differential form on U with the set of its coefficients in the canonical
base of R", so that a form on U is a function

w: T—>R", wo={o, . |0<p<n,1<i<..<i,<n}

(we define w, ; for any ¢, . by antisymmetry). Then Js(U) is by definition the
topological direct sum of 2 copies of Lﬁ(ﬁ }, the components of its elements o being
denoted w, , as before. Remark now that ¢* induces a topological isomorphism
¢*: Jeo(T) — Je(T) (the last space being a subspace of J(Q)). For any s>0 we shall
define the hilbertizable topological vector space Jes(U) by transport with ¢* (the
space obtained is independent of ¢).

(1.3.3) For any s>0 let:
¥}:(2) = {w e 3(Q)| for any domain U of normal chart: o|Ue¥X(U)}

provided with the weakest topology for which all the applications ()2 w >
— | U e J¢(T7) are continuous. It is easily seen that if {U,},.; .y is a finite covering
of  with domains of normal charts and for each 4: | -||, ;, is a norm on Je+(U,;) which
defines its topology, then:

(8} E?wfzs,!‘?: z Hw}Uins,Us

i=1

is a norm on J¢+(£2) which defines its topology. In particular JE:(£2) is a hilbertizable
real topological vector space (which for s =0 coincides, as topological vector space,
with J6(2)). We also denote JE3((2) the closure of Je(82) in X+(2) (using theorem 9.3
chapter I, L1ioNs-MAGENES [13], it is easily seen that J¢°(£2) is dense in each Je(Q)).
Then, if s< 0, (2) will be the strong dual of J;°({2), so that it is & hilbertizable
topological vector space (Remark: if s<— 1 and I's= @, then the space JE+(£2) just
defined does not coincide with the space J¢° introduced by PArais [18]).
If $,>>¢,>0 then:

Je(2) € Je(2) c (L) ¢ ()
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each space being continuously and densely imbedded in the following one. The
given Hilbert structure on J(£2) allows us to identify canonically J(Q2) with its
strong dual. Then, by transposition, we obtain canonical continuous imbeddings:

Je(2) c () ¢ Je(2) ¢ 1(2) c J~(Q) c I~(Q) c =(Q)

each space being dense in the following one. We will always make these identifica-
tions., If (-, -> is the duality between J;°(£2) and ¥ (L), then its restriction to
K3(2) X I—5(£2) (s>0) will be equal to the restriction of the duality between JE3(Q)
and J¢—*(£2) to the same space, so that we can denote by <u, v> (which we also identify
with (v, u)>) the value of the linear functional ve JE-*(£2) at the point u e J&}(Q)
for any $>0 or s= oco. In particular, if s=0: (u,v)>=(u,v), o: Let §>0, | “ls,e
any norm which defines the topology of J:(£2) and for weJ(f):

(9) o] g 0= sup {|(«, )00l lu € X5°(0), H“”s,9<1} .

Then the topology on J¢(£2) associated to ||-|_, , coineides with the topology induced
by Je-(Q).

(1.3.4) It follows easily from Sobolev lemma and theorem 11.5, chapter 1 from
L1oNs-MAGENES [13] that JE3°(2) = ) ¥5(LQ), (H=(2)= () ¥«(2)) the topology of

$20 8220

) (resp. ¥*(RQ)) being the weakest one such that all the inclusions JG""(.Q)C
CcJ;(2) (resp. J*(2)c J+(2)) are continuous. By duality: J&™(Q)= | ¥—+(2), its
topology being the finest one such that JC—(Q)c J&(2) is continuous for any s>0.

(1.3.53) Let’s prove that for §:>8>0 and 0<f<1 we have [J*(2), J*(2)],=
= J0~n T 50y algebraically and topologically (we follow LioNs- MAGEVES [13] in
notations). It is sufficient to consider s,—= m = integer and s,= 0 (see the proof
of theorem 9.6, chapter 1, LioNs-MAGENEs [13]). If U is a domain of normal chart,
then using Calderon’s extension theorem (in case U has corners) it is easily shown
that there is a continuous linear mapping E: 3°(U) — J€°(Q) such that E(u)|U = u
for any ue J°(U), the restriction E|J™(U) being a continuous mapping J&(U) —
— Jm(£2). Moreover, we can choose E such that, for a given compact subset K of U,
if suppuc K then (Eu)(x)=0 for #¢ U. Using a partition of unity it can be shown
that any ue X~ ""(Q) is a sum of elements from Je'~?™(Q) each having its support
in a domain of normal chart (working with a norm of the type (8) and using theo-
rem 7.3, chapter 1 from LroNs-MAGENES [13], we easily see that if ¢ is a C* fune-
tion on £ with support in a domain of normal chart, then —ow is a contmuous
application in J€+(£2), any seR). So, in order to show Je~(Q) c [}m(R2), X°(2)],
it is sufficient to consider w e 1 97(() With supp@LCKC U. We have chosen E
such that F(u|U) = u. But u|U e XL(T) = [Jem(U {IY], (this is seen in local
coordinates; since U may have corners, use in theorem 9. 1 chapier 1, L1oNs-MA-
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GENES [13], Calderon’s extension theorem). By interpolation F maps[X~(U), (U)],
continuously into [J&m(Q), #%(2)],, so that ue[H(RQ), X°(2)],. Reciprocally, w —
> w|U is a continuous linear application J°(2)— J°(U) and J&(Q) — H»(U). In-
terpolating, it will also be a continuous application

[Jem(£2), Je(2)],—>[3em(T), 3e(U)]y= F~"™(V) .

From the definition, we obtain [J&n(Q), £2(Q)],c 1~"™(Q) algebraically and topo-
logieally. Since algebraically this is an equality and since the spaces are hilbert-
izable, the proof is finished.

(1.3.6) If weck>(2), then ® —uAw is a continuous mapping J7(2) - K7 (2)
whieh is also continuous for the topology induced by J6™°(£2) (fhis is seen by writing
explicitely the transposed application). Since 35’ (Q) is dense in J™(£2), this applica-
tion has a unique continuous extension to J&({2) (same notation). It is easily
seen that its restriction to J6s(2) (any seR) is a continuous application Js(£Q)—
— Jes().

(1.3.7) The operators d, § clearly map JJ(Q2) continuously into itself and for
u, v €3 (2): (du, v)y o= (%, 00)y 0. In particular d, 8 are also continuous for the
topology induced by J€ (L), so that they have unique extensions to continuous
applications J™=(2) — (), also denoted d, 8. If we ¥ (2), ve F (L) then:

{duy v) = {uy 0y, {6u, v) = {u, dv .

Moreover, if se R and s}, then d,  map J¢(Q) continuously into Jeey( ). If
the boundary I'= ¢, then this is true also for s= }.

PrOOF. ~ For s a positive integer, it is obvious; by interpolation we have the
result for any real s>1. Clearly, if s>1, the restrictions of d, § to J5(£2) will be
continuous operators Je3(Q) — ¥ HRQ) (since d(JC(Q2))c ¥y () for example). By
transposition we obtain the result for any real s<0. Then we interpolate the con-
tinuous operators d: J°(Q) — Je-(2) and d: XY(Q)— X(L2). It '~ P, for s= 3 we
have the usual problem (see theorem 12.4, chapter 1, LIoNs-MAGENES [133).

(1.3.8) We also define 4=dd-+ dd as a continuous operator in J°(2); it
leaves J¢°(2) invariant and its restriction to this space is continuous for the ¢, -
topology. For ue ¥y (2), ve J&=(2) we have

{Auy vy = {uy Av) .
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(1.3.9) Finally, we note the following trace theorem:

THEOREM. — Let s> 1 and s, the greatest integer such that s,<<s— 1. Then
there is a unique linear continuous application

Q)2 0 - {(tw, vo), (1 dw, v dw), (T ddw, v déw), ...
ey (7085 .0, 9 d0d ... )} €@ (ISFHT) @ Fer— ()

e, s e — =0
8, operators $, operators

which extends the application naturally defined on J*(£2). This application is surjec-
tive, in particular it has a continuous right inverse (since the spaces are hilbertizable).
Moreover, the kernel of this application is JC;((2).

We shall not give a detailed proof of this theorem since, using a partition of
unity, we are reduced to the case suppwc U ==domain of normal chart with
Uy=UNT9, so that we can consider U a cylinder in R" and w such that its
support intersects one of the bases of U and is at a strictly positive distance from
the rest of 0U; then the theorem is a straightforward application of theorems 9.4
and 11.5 from chapter 1 of LioNs-MAGENES [13] (a detailed proof for s=1,2 is
given in GEORGESCU [10]). We remark only that one can prove (by induetion on r
and using the relations (4)-(7)) for any integer >0 the following formulae (where o
is a C® p-form, 2<4, ..., 4,<n, and the coordinates are normal):

1) If r is even:

(Tdd...o), (@) = £ (Fw, ) 0,8+ R}, @),
Nttt
7 operators

(v dé ... w),
R e
7 operators

et @) = £ (T, 3 )0, &)+ Y, (@) .

2) If r is odd:
(zéd...o), @)= £ (o ;,)0,7)+E] (@),

wip
R
7 operators

(vdd...o);, . (@)= % (o, ) (0, 2"+ RE (@),
R
+ operators

Here R* (i=1, ..., 4) are expressions of the form:

r—1
k%(P;;r 8d ..o+ Pyvdd... 0+ Py (¥w)| Uy)

k operators k operators

where P, are polynomials (with coefficients dependent of #”) in the tangential deriva-
tives o, ..., 0, of order <r— k.
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2. — Some estimates for the operator 4.

2.1. The estimates.

(2.1.1) We shall first recall the estimates that we need from the scalar case.
Let R* = {zeR*|a* <0}, R*1= {we R"o*= 0}, U = {we R"|- 1< 2#'<0, (#?)*+ ...+
+ (z7)2< 1}, U,=UnNnR*. Let g (i,j=1,...,n) be a set of functions having
extensions of class ¢ to a neighbourhood of the closure of U in R* and such that

k(2
gif(x)§i§,>c§|§i]2 for some constant ¢> 0, any zeU and &,eC. Then for any in-

=1

teger >0 there is a constant ¢> 0 such that for any feLg(f]) with suppfcU:

(10) o flasr,5<197:8:f1, 5+ [flo,5+ 110all3 1,5, »
(11) 0”f”2+r,t'7< ”g”aiaif”r,fj”+ ||f”o,ff+ I alﬂﬁ”%w,ﬁo .

See (1.3.2) for the notation and LioNs-MAGENES [13], theorem 5.1, chapter 2 for
the proof of a much more general case.

(2.1.2) Suppose now that w is a p-form in J€2(Q) having its support in the domain
of a normal chart (U, ¢) with U,= UN I 0. Let &= ¢ ¥w, so that all its coef-
ficients are in IA(0) (O = ¢(U), U= ¢(U,)). Recall that (dw), . = 9"8,8,@, ., -+
~+ (D&),,..;,» where D is a first order differential operator (system). Suppose more-
over that Aw e’ (2) and vo e JE+"(I"), » dw € I 7(I") for some integer >0. Take
iy=1 and 2<4,, ..., i,<n. Then formula (5) shows &, . |U,eI}, (0,) and from
the expression of Aw it follows ¢¥3,8,6,, , € I3(0) if r>1. Using (10) we obtain
By, ., € L3(0) if r>1. Take now also 4,>2, using (6) it follows 2,6, _,|U.€ 12, .(0,)
since dvw e J+7(I"). Using again the expression of Aw and (11) we will obtain
@;, . €LYT) it r>1 and 4,>2. So that we (). In case r>2, we continue in
this way (now we have (D®), , € Li(U) so that ¢°2,8,®, ,,€L3(U), ete.) and fi-
nally we obtain w e JE*"(Q).

On the other hand, an application of (10) gives:

]r,ff + | (D‘I’)uz...iﬁ

ol|@yq,. iplowri < [(Aw)y,,.. i, ot I@ys,...1,ll0,5+ | (%)i,.“ipugw,ﬁo

where 5% = ¢y *vw, ¢o=¢|U, (see 1.2.7). If i,>2 also, we apply (11):

5+ [(DB);, s,
+ 1,4,

0”67’@'1...5,”2+r,ﬁ<N(Aw)z'l.,.i,, n5 1

!0,17“}‘ (v dw)@...i,,”ﬂ,-,ﬁﬁ‘F ”(d’;;o)i,...ip“kw,ﬁo

where we have used (6). But in d# all the derivatives are tangential (since iy, %, ...y
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1,>2) so that
~ 2 )
(LN R (IS

Using this and additioning the estimates obtained for various values of iy, ..., i),
we obtain:

Nl 4r,5 <1 40|, 54 D8], 5+ [lo,+ 17Bl31r,5,+ 17 @l310,5, -

But |Dall, s<el|dl, ., 5<eldly,, 5 ke)|dl, 5 for any &> 0, with k(e) independent
of @. Taking e sufficiently small and going back to Q:

(12) 0”“’”2+r,9<”Aw

r,ﬂ+ Hw

o,9+ ”W’chw,r‘}‘ I dwuiﬂ',l’

where o is supposed to have support in U. We have supposed U, @, but in fact
exactly the same proof shows that this inequality is also frue if U,= @ and suppowc U
(in this case suppo N I'= 0, so that the last two terms are missing; the proof is
even simpler, since Cbli,,_,i,,]ﬁd: 0, ala,il._.ip[m: 0).

Suppose now that o eJC*(£2) has any support. Let (0,),_, , be a partition of
unity subordinated to a finite covering of 2 with domains of normal charts. Then

N
w= 2 0,0 and:
= N N
Aol ra T001s00% 3 (1400t (0.0l 0+ 10701yt I A0,

But 4(0,) differs from 6;4w only by a first order differential operator applied
to o and vd(0;0) = 6,y dw - »(d0;Aw). From this we get that (12) is true for any
w € }2(L0).

(2.1.3) From (12) it is easily obtained another inequality, in which e is replaced
by Tw and ydw by 7 dw. For this it is sufficient to apply (12) to s*w and to use
Adko=%Ao,v*0=(—1)%10, vd ko = (— 1) Hig17 §p if v is a p-form (the
operation x is a topological automorphism of #+(£2) for any s). One can also replace

[velly 1yt v dooly 1, r BY [T0ly., p+ |v0ly ., ry the proof being essentially the same
as before (but simpler, since we use only (10) in connection with 4), ().

(2.1.4) We have proved:

THEOREM. — Let r>0 integer and w e J*(Q) such that Awe X (Q) and one of
the following conditions is filled:

1) (o, vo) e (M@ JH1(I);
2) (voo, v dw) e X (I") @ Je2+"(I');
3) (rw, T dw) e () @ Je(I).

12 -~ Annali di Malematica
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Then o e (). Moreover, there is a constant ¢> 0 (independent of w) such that

0”¢"”2+r,9<“w“0,9+ [dew o “TW“gH,r‘Jf‘ ”W’H%w,ra

clolyine<loloot [dol, ot Polyipr+ v doly . r,

clolyine<loloet 1ol ot 70l rt 0]y -

It will be shown in (3.2.4) that we can replace r by any real number >0 (in fact the
above proof is valid also in this case, since (10), (11) are true for any real »>0).

(2.1.5) We shall describe now some consequences of the preceding theorem.
Using a lemma due to Peetre (lemma 5.1, chapter 2, LioNs-MAGENES [13]) it follows
that the confinuous applications (any r>0 integer):

(13) Q)3 0 > (Ao, To, v0) 2 Q) © (1) @ ()
(14) (D)3 0 > (A, vo, v dw) 2 Q)@ KT @ *H7(I)
(15) B2 ()3 w > (dw, To, Tow)3 K'(2) D Jet+(I) @ Je+7(I")

have finite dimensional kernels and closed images. Moreover, the preceding theorem
shows that the kernels are independent of 7 being equal for the second (resp. third)
application to:

H Q)= {we k()| do =0, o= do = 0},

(resp.
H(2)= {0 eR(2)|do= 0,10 = 7d0=0}) .

By a unique continuation theorem due to ARONSZAIN-KRZYWICK-SZARSKI [17 (see
also MORREY [16] theorem 7.8.3) it follows that the first application is in fact injec-
tive, i.e. if wekHQ), dw=0, 70 =1r0=0, then w==0 (use formula (18)).

(2.1.6) We shall denote B, B, B respectively the applications (13), (14), (15).
The theorem (2.1.4) shows that:

Im BY = Im BN ()@ &1 D Jetr(Im)
and similarly for B9, 6. Moreover, since the image of B (resp. B, B is closed,
it will be equal to the polar set of the kernel of the transposed ‘B (resp. B0, LB,

For exemple the transposed ‘B is a linear continuous application

) Je(Q) ® Je I @ JeHI) > (JH(Q)’
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and (v, g, ) eIm BY if and only if
(16) (0, w)g, o+ <y o> + <9, f> =0

for any (u, o, f) € R(Q)® ¥*~HI)@ J~¥I") such that *CP(u, , f) = 0. We shall de-
termine later on the elements having this property.

2.2. The Dirichlet form.

(2.2.1) It w,ve Q) then:
(17) (duty 0)g o= (%, O0)y o= (TU; D)y 1

Indeed, since J*(L2) is dense in J!(£2) and using theorem (1.3.9), it is enough to
consider the case %, v€J*(£2). But then:

(du) A\ %o =d{uA\%v)+ uAd % yv=du)%v)+ 4\ % v

and the formula follows from Stoke’s theorem, (1.2.5) and (1).

(2.2.2) The Dirichlet form is the bilinear continuous form on J'(Q) given by:
D(u, v) = (du, du), o+ (04, dv), , .
It wel(Q) and ve XYQ) then, by using (17), we obtain the first Green’s formula:
(18) (Au, 0),0= D(, ) + (7 0u, v0)y p— (v du, T0)o,r -
If, moreover, v e (), then we easily get the second Green’s formula:

(A9)  (du, v)y,0— (u, Av), g= (TU, v dv)y pt+ (v 0w, w0)y p— (v, T O0)g p— (v du, T0), 1 .

(2.2.3) Let JL(0Q) (resp. ¥L(2)) be the subspace of we 1 (Q2) such that 7w =0
(resp. v = 0). It will be shown later (see 4.2.6) that the form D is not closed (on
¥492)). However, it is known that its restrictions D,, D, to JCX(LQ) and JEL(Q),
considered as densely defined bilinear forms in the Hilbert space J8(Q2), are closed
(this result is due to GAFFNEY [9]; see also GREORGESCU [10]). Clearly, its restric-
tion D, to J€;(£2) will also be closed. Let A, (resp. A,, A,) be the positive selfadjoint
operator associated to D, (resp. D,, D,) (see theorem 2.1, chnpter VI, KaTo [12]).
Then it is known that A,= A|XZ(Q), 4,= A|¥XQ), 4,= A|3%(2), where I} Z(Q)
(vesp. Je%(Q)) is the set of w € J%(2) such that o= 7w =0 (resp. yw=»dw = 0)
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and J3(0Q) = J;(2) N JH*Q2). This result was implicitely proved by Ch. B. MORREY
(see [16]), essentially by considering it as a regularity assertion for elliptic systems.
Another proof, based only on Nirenberg’s regularity theorem for scalar second order
elliptic operators, is given in [10] (where only the operators 4., 4, are considered,
the problem for A, being similar and simpler).

(2.2.4) We quote now a result which will be necessary in a moment, an easy
consequence of theorem 8.3, chapter 2, LioNs-MAGENES [13] (see also LioNs-MA-
GENEs [14] for a shorter proof). Let U be an open bounded subset of R» with C®
boundary 80, U being locally on one side of 80J. Let A be a(scalar) differential oper-

ator of order 2m with coefficients of class O° in a neighbourhood of U and which
is properly elliptic in U. Let fe I2(T) (= th closure of C2(0) in I2(T)) be such
that Afe LX) for some integer »>— m. Then feIZ, (U).

(2.2.5) We shall need later on an assertion which we prove now, namely that
a= A?33(02) is a topological isomorphism of () onto J%(L2) which sends
JEE(02) N Y 2) onto K(Q).

PrOOF. — If u, ve H(Q) then {u, A*v) = (du, Av), , so that, by Lax-Milgram
lemma, to prove the first assertion it is sufficient to show that [Aul, o>e|uf, 0
for some ¢>0 and any weX}(2). Using theorem (2.1.4) we obtain cful,,<
<|dul, o+ |#]y 0. On the other hand, the kernel of the positive operator 4, is
zero (see 2.1.5) and (1-4,)"!is compact (since the canonical injection JC3(2) c J&(£2)
is compact), so that there is ¢>0 such that cjul, ,<[du],, for any ueX7(Q),
which finishes the proof of the first assertion. Let u e JC3(2) be a p-form such that
A*u e J(Q), we must prove ue JH£2). It is sufficient to show fu e X4Q2) for any ¢
function § with support in a domain of normal chart (U, ¢). If U= (1), 0 =
= ¢~1*(fu), then fue J2(U) and:

979" 8,5; akae(%)i,..‘%: (@7 A%(0u)),, .1, + (D é;")il.‘.»;,,

where D, is a third order differential operator (system). It follows that the left
member is in L2,(T), and from (2.2.4) we get (%i!_‘_heLg(ﬁ), so that «eJe()
(in case UN I @, U has corners, but supp fu is at a positive distance from them
and we can apply 2.2.4). Repeating the argument we obtain we J4Q). Q.ED

(2.2.6) Remark also that the restriction of A to JE}(£2) is a topological isomorphism
of JL0Q) onto J¢YR). Indeed, since A,>¢> 0, we have also vA,>v6>0, so
that v/4, is a topological isomorphism of J€5(2) (the domain of the form D, asso-
ciated to A,) onto J(£2). In particular ][u”igch\/Z};u]{ﬁ’Q: c¢D(u, ) for any
e JeY(Q) and the assertion is a consequence of Lax-Milgram Lemma.
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3. — Some boundary value problems for the operator A.
3.1. Trace and density theorems related to the operator A.
{3.1.1) For each $>0 we define
¥ Q) = {we J(Q)|dw e (2)}

and we give to it the graph topology (i.e. the weakest one for which the applications
B 30 - wed(Q) and X>L)sw > Adw € 3(2) are continuous). Then J»4(02)
is a hilbertizable topological vector space, which for s =0 becomes a Hilbert space
344(0) = ¥4(Q) when it is provided with the scalar product:

(’l,l,, U)Q,A,Qz ("? ’0)0’9—{— (Auy A”)o,ﬁ N

If s>2, clearly J»(Q)=Je«(2). We denote A, the restriction of 4 to J34(Q),
considered as a closed operator in the Hilbert space J6(Q). If 4, is the restriction
of A; to J3(Q), then A, is symmetric and A5= A, (A* being the Hilbert space
adjoint of the operator A).

(3.1.2) LEMMA. — J°(Q) is a dense subspace of 34(Q).

ProoF. - It is enough to show Aj= (4,]3°(£2))*. Since A,c A;c 4,, this equal-
ity is a consequence of (4,|3°(2))*c 4, which we shall show. If the p-form o is
in the domain of (4,]J*(£2))*, then there is we J(2) such that for any we J>(Q):
(Auy )y o= (u, w)y . Let (U, ¢) be a normal chart, U = ¢(U), and 5= ¢-*(v|U)
if ve(2). Then, if u, veJ(Q) are p-forms and suppuc U, we have:

[, . - L
(’ll/, @)O,Q = Z_)Tfuil‘"i?’vjl"'jl’gz”l s gl’z’“’ \/gdw

U

So, for any u € X*(£2) with suppuc U:

[, @, 0 g g da= [, g g

G &
Recall that (A%)il...if‘“‘" 970,8;@%;, ;,4 (D), , where D is a first order differential

173 iy -
operator with C* coefficients in a neighbourhood of U (in R"). In particular, if *D
is defined by:

(Dw)i,.,.zp’if)i,,..e, do = z j%‘,...ip(tl)?/))il...«;p dw
T

1<i1<...<’l.p<nj 1K< W <ip<
U
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for @, e JXT), then 'D induces a continuous operator ‘D: ’l) - #&U0). We
denote wi the function equal to @, , ¢""...g"*"v/g in U and equal to zero in
R™U. Similarly is defined wi%. It follows that for any ¢ € J8°(R") with support
in & sufficiently small neighbourhood of zero in R» we have:

f(gij 8,8;@s,....o T (DO, 5,) Wl dw:f%;...ipwg'"ip dx
R» R»

which can also be written:
<‘pi1...i,,’ aiaj(gijwzg...ip) + (tpwo)il...ip> — <(p4',...ip’ ,w;i)l...ip>

where (-, -> is the duality between test functions and distributions in R In par-
ticular, we will have:

8,8,(g" s 7y = wiy ¥ — (D v

in the sense of distributions, in a neighborhood of zero in R». Since (‘Dwg)# is a
distribution in L2, in this neighbourhood, an application of theorem 3.2, chapter 2,
LioNs-MAGENES [13], gives. wi-7eL? in some neighbourhood of zero in R», for
any i, ...,4,. By a new application of the same theorem, we obtain wgy' e L3
in some neighbourhood of zero in R~ Then it follows easily that the function equal
to @; , in U and equal to zero in RN\ U, is in L? in some neighbourhood of zero
in R». This shows that each point of £ has a neighbourhood in which w is in X2,
so that we #2(2), 2 being compact. Moreover, if the domain U was such that
UNT 8, then we would have wi-»(2', #")= 0 for 4> 0. A standard argument
shows then that weJ(2) (see the first few lines of the proof of theorem 11.4,
chapter 1, L1oNS-MAGENES [13] and also theorem 11.5, same place). Q.E.D.

COROLLARY. — A, is a closed, symmetric operator in J&(42), having JC;°(£2) as a
core. Its adjoint is A4,. J*(£2) is a core for 4,.

(3.1.3) We shall state and prove now a first trace theorem related to the
operator A.

THEOREM. ~ There is a unique linear continuous application:
Q) ew - (o, v0, T do, v do)e XXM @ D @ ) @ ¥ H)
which restricted to J62(Q) is the same as that of theorem 1.3.9 for s = 2. The kernel
of this application is J(2). If we¥(Q) and ve’(2) we have the generalized

gsecond Green formula:

(20)  (du, v}y o— (U, A0)g o= {TU, ¥ dv) + {7 Oty v0) — (3%, T 80> — (v du, ) .
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ProO¥. ~ Let’s note Aw== (tu, vu, 7 éu, »du), A'v= (vdv, — v dv, vo, — 7v). If
=3 @ 1Y) @ )@ M) then its strong dual is H'=IJ )@
@k Me e XHT). We identityd c I as usual, by defining:

4
gy p> = E(% %)o,g

i=1

if g, peX. Then (see (9)):
[wls = sup {Kg, ¥>|lp e K, (o] <1}

(where | -] % is a norm defining the topology of X) is a norm on X which defines on X
the same topology as that induced by X'. Remark that, if ueX(Q), ve I (0Q),
then AueX, A've X and (19) betomes:

AUy N'v) = (Auy 0)g o— (U, A0)g g -

On the other hand, we know that there is E: Ji — J€2(£) linear continuous such
that AHg=¢ for any pe X (theorem 1.3.9). So that, for any gpe X:

{ps N0y = (4Ep, v), o— (Eo, Av)y o
from which we get:
[{®, /\'1J>]<0ﬁ’l)H0,A’QH(PHJg
i.e.
INvlx <elolo,40 -

The first assertion of the theorem follows from the lemma (3.1.2) and from the
continuity of the inclusion J*(Q)c 3 4(2). Then the generalized Green’s formula
follows easily by continuity. Finally, let » e 34(Q) be such that v =vo= 1 dv=
=y dv==0. From the formula just proved we obtain: (Ju, 0)o,0= (4, 4v), , for any
u € JEHQ). Since (L) is a core for 4, it follows ve D(A]) = D(4,) = ¥:. Q.E.D.

It will be proved later on that the mapping defined in this theorem is nob
surjective.

(3.1.4) LEMMA. — For any 0<s<2 we have:
[e2(2), Q)] _ = F>N(2)

as topological vector spaces (see LIONS-MAGENES [13], chapter 1 for interpolation
theory).
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ProOF. ~ We follow the proof of theorem 7.2, chapter 2, LIoNS-MAGENES [13],
i.e. we use theorem 14.3, chapter 1, loec. cit., with the identifications:

X=35(2), LT=T=0d=5xDQ)

Y=5%(Q), Y=05xQ), T=V¥=275r"3Q)

o=41, §=Ada*, r=0
where a: JCX(Q) — J2(Q) is A2|3;(£2). Taking into account (2.2.5) and the closed
graph theorem we see that § is a continuous application J-2(2)— J(Q) and
»(Q)—x{2). Q.E.D.

COROLLARY. — J8°(£2) is a dense subspace of -JE*4(R2) for any s>0.

(3.1.5) THEOREM. — For any s>0 the restriction of the application defined in
theorem (3.1.3) to J¢*4(2) is a continuous application

¥ Q) et e K HD @ '@ eI .
If ueJy Q) and ve J4(Q), then we have the generalized first Green formula:
(U, 49)y,0= D(u, v)- {vu, T 0v) — {TUy v AV .
ProoF. — Taking into account (1.3.9), (3.1.3) and (3.1.4) the first assertion follows

by interpolation. The last formula is obtained using the preceding corollary and (18).
Q.E.D

(3.1.6) The above trace theorems can be improved in one respect. Namely,
we define for any §>0:

3 Q) = {w e Q)| dow € -12)}
provided with the graph topology (see 3.1.1), so that it will be a hilbertizable top-
ological vector space which coincides with J¢s(2) if s>>1; we also denote ’AHD) =
= }"*"HQ).
THEOREM. — If 0<s<1 then:

e =1(Q) = [Je1(R), kD)),

as topological vector spaces. JC*(2) is dense in each Je=4=1(£2). There iy a unique
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linear continuous application:
®HUDY s 0 - (T, vo) e BHT @ o HT)

which restricted to J*({2) is the naturally defined one. Its kernel equals JCH{2).
The restriction of this application to JX**~1(£) is a continuous application

I Q) >IN @ JeH)

(it will be proved later that this application is surjective for any s> 0). If u e J€3(Q)
and ve 4 HQ) then:

(21) (Au, v)y o= {u, Av) 4 {7 du, v0> — (v du, 0) .
PRrooF. — The interpolation formula is proved exactly as in (3.1.4), but choosing:

X=%842), LX=F=0=30YD
Y=x(2), Y=3xYQ), V=5%Q2), V¥=5R3Q)

with the same 2,8 and r. Remark only that G is also a continuous application
L) - XYQ) (by interpolation). It is sufficient to prove the density assertion
for s =0, the general case being a consequence of the interpolation formula. Let
w € XHYQ). Using (2.2.6) we find w,e ¥(2) such that Adw = Aw,. We can ap-
proximate w, in X (so that also in J¢4~?) with elements from J€2°(2). On the other
hand o — w,cX4(Q2), so that we can approximate it in J¢4 (in particular, also in
J*~1) with elements from J°(Q) (see 3.1.2}, which finishes the proof of the second
assertion. Let veX™(Q) and « e JX3(Q), then we have

[(z 0, 90)o,r— (v dut, T0)o i} = (A, 0)g 0 — (4, A0}y o] < ofully ol ]o,0 + 4]0l 4] 10

since u € J€5(2). Using (1.3.9) we choose a linear continuous E: J¢*(I") @ Je¥(I) —
— J(Q) N K(Q2) such that 7 0B(x, f)== o and » dB(«, f) = for any a, f eI,
and we continue as in the proof of theorem (3.1.3). Then, by interpolating between
the application we get for s==0 and the application given by (1.3.9) for s=1, we
obtain the case 0 < s< 1. The formula (21) is easily proved by continuity. Suppose
now that w e & ~%(2) and 7o = yw = 0. Then there is w, € X(L) with Aw= Aaw,,
8o that w — w,e J@A(,Q), A — oy) == 0, 1(w — wy) = v{w — wy} = 0. We show that v=
= w— w, i3 zero. From (20) it follows veD(4]). But 4,=4,, so that ve Q)
and Av=0, and a theorem of Morrey (see 2.1.5) gives v=0. Q.E.D.
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3.2. Boundary value problems for A.

(3.2.1) We return to the problem left open in {2.1.6), namely we want to deter-
mine which elements (%, «, 8)€J(2) ® I~ HI")® Je~HI") have the property ‘Gi”(u,
o, B)== 0. Equivalently we can write this as:

(dw, “)o,ﬂ”lf' vy ay 4 vdw, f>=0

for any w € J2(Q). Taking first w € J€2 we obtain Au = 0, so that «e J4(2) and we
can use (20), so that the preceding relation becomes:

{rewy v A4y - {7 dw, vu) + vy 06— T 0U) + vdw, f— Tu) =10

for any o e X(2). The surjectivity in theorem 1.3.9 implies: vu=vdu =0, 7ou=2,
ru=p. Using (20) again we see that we D(A))= D(4,) so that ue Q) vu=
=ydu=0and du=0, i.e. we H,(2). Moreover, we will also have 0= [v/A,u|} ,=
= (u, A,4)g,0=D,(u, u), i.e. du= du= 0. Wehave obtained we H,(Q), a= 7 du =0,
and 8= 7tu. Reciprocally, it is clear that for any we H(Q) ‘G (u, 0, 7u) = 0.

(8.2.2) Combining (2.1.6) and (3.1.3) we arrive to the conclusion that for any
integer >0 the image of B equals the set of elements (v, g, w) e X" (Q) © " (I @
@ Jet*"(I) with the property:

(v, w}o,9+ (v, Tﬂ))ﬁ’p:

for any weH (Q). Reasoning as in (2.1.3) it follows that in the case of BY the
condition on (v, @, y) changes in:

(v, @)g,0— (P, )y p=0

for any we H (2). On the other hand, B is an isomorphism for any r. Indeed,
we know that it is injective, so we must only show its surjectivity. By (2.1.6) it
is sufficient to show that ‘G is injective. We apply exactly the same method as
in (3.2.1) and we see that if "G (u, «, f) =0, then Au=0, tu=1yu=0, véu=74,
ydu=—a Using (20) we obtain ueD(Ai):D(AB} and Au==0, ie. u=10 and
o == f =0, which finishes the proof.

(3.2.3) THEOREM. - 1) The linear continuous application

(22) I (Q) 3w k> (Auy vu, v du) € () ® Je~HI) @ 4T
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has finite dimensional kernel equal to H (Q) and:
(23) H (2)= {welk>(Q)] do= dw =0, yo = 0} .

It has also a closed image of finite codimension, an element (v, ¢, p)eJ(Q) D
® ¥~HI @ & HI') being in the image if and only if, for any we H (0):

(24) () 0)g, 0+ (0, 9> =0

Let we J4(2) and s>0. Then ueis(R) if and only if Aue I 2(Q), vuede (I,
vdue 3 HI") (the first condition is automatically verified if s<2).

2) The above theorem remains true if we replace (vu, v du) by (7u, 7 du), H (2)
by H (£2) which ig algo:

(25) H ()= {0 X~(2)|dw = do = 0, 10 = 0}
and the condition (24) by:
(26) (wa v)o,g‘_ {veo, V’> =0

for any we H ().

PROOF. — Remark first that we have proved in (3.2.1) that for any v e H_(2):
du = du =0, i.e. (23) is true. The operator A4 : JC2(Q)— J(LQ) is continuous and
has closed image (since (14 A4,)-* is a compact operator in J(£2)). By closed
range theorem, its transposed ‘A : J6(Q) - (¥2(£2))' has a closed range equal to the
polar of the kernel of 4,, i.e. of H (Q). Let (v, ¢, p)eR(Q)® X HI® J~¥I);
we associate to it the following element of (J€3(Q))': for w e JeXQ):

{w, (@ 9)> = (@, ¥)g 0+ {700, ) + {7 0w, @) .

Then (v, g, ¢) is in the polar of H () in (J€3(L))’ if and only if (24) is true. In this
case, there is ueJ0(£2) such that ‘A, u= (v, ¢, v), i.e. for any we JI*Q):

(Ao, u)o,_rz:: (w, 'v)o,ﬂ+ (ro, vy 4 {7 aw? ¢> .

Taking first o € X(2), we obtain Au==v, in particular e #4(2). Then we use
(20), so:

{rw, v duy + <t do, vu) = {Tw, ¥) + {7 dw, ¢

and theorem 1.3.9 shows »du = y, v =¢. This proves the assertion about the
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image of the application u > (4w, vu,vdu). On the other hand, if ueJ4(0) and
A= vu = v du= 0, then (20) shows Atu= 0. Since A;= A4, we get ue H (2).

By (2.1.5), (2.1.6) and (3.2.2) we know that for any integer >0, B has finite
dimengsional kernel H (£2) and closed image of finite codimension equal to the set of
elements (v, @, p) € " (Q)® (1) ® Jet+r(I"y which verify (24). We interpolate
and use theorems 13.2, 13.3, chapter 1, L1oNsS-MAGENES [13]. So that the preceding
assertion remains true for any r>0 (not necessarily integer). Then we shall inter-
polate between B and the application (22). An application of lemma 3.1.4 proves
the theorem. Q.E.D.

(3.2.4) For s>—2 we denote G the application:
T;E’s): f6g-2)wes+2,A(Q): ges+2»5(9).>5emﬂ(8»0>(g)@ JeS*}*%(F)@ ges+é(1—v)

where B{~? is the application (22). We have proved that B is continuous. On
the other hand, using the fact that J&**24(Q)c J***(Q) c X(2) with compact injee-
tion if s+ 2> 0 together with lemma 5.1, chapter 2, LioNs-MAGENES [13], we get
that the second and third inequalities in theorem 2.1.4 are true for any re R, r>— 2
if we replace [dwl, o BY [4®] paxir,0,0 (for 7=—2 the inequality is trivial).

(8.2.5) THEOREM. — For any s>— 2 the application:
(27) 3B 5 u > (Au, TU, vU) € Jemsxa0( 0y @ JesHI) @ e HHI)
s a topological isomorphism. If moreover s #— §, then:
(28) 2LV 4 > (Au, Tu, vu) € PGV @ T @ eI

is also a topological isomorphism.

Proor. — The application (27) is denoted BY. We know that B is an isomor-
phism if s>0 integer (see 3.2.2). We shall prove that B4 is also an isomorphism
(then the first assertion of the theorem follows by interpolation, using 3.1.4). First
of all, if Au= 7a=vu =10, then (20).gives Apu=0. Bubt 4,= A} and Kerd,=
= {0}, so BG? is injective. On the other hand, since 4,: J5,(£2)—JH(LQ) is an
jsomorphism, its transposed ‘d,:Je(2)— (X3%(L2))’ is also an isomorphism. If
(v, 0, p) € ()@ R~HI) @ J~HI") we associate to it the linear continuous form on
Je%(R2) given by:

{oy (0, @y ) = (@, V), 0+ <7 b, y) — {vdw, @) .
Let % e J(2) such that ‘A u = (v, ¢, y), i.e. for any we¥5H(2):

(A, u)g o= (@5 )g 0+ <T S, Y) — v do, @) .
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Exactly as in the proof of (3.2.3) from this identity we get u € (), ¢ = 7u, p = yu,
Au= v, which proves the surjectivity of B ®. Let B be the application (28).
If >0, then GP= 6. Using (3.1.6) and theorem 6.1, chapter 1, LIONS-MAGE-
NES [13], we see that it is sufficient to show that B ? is an isomorphism. This is
proved exactly as before, but taking »eJ-*(£2) and replacing (w, ), , by {(w,v>
(since w e JC(£2) c JL(Q) this makes sense). Then in place of (20) is used (21). Q.E.D.

(3.2.6) The surjectivity assertion in theorem (3.1.6) is now evident. Let’s prove
that the mapping from theorem (3.1.3) is not surjective. If uec J84(£Q2), then there
is a unique %, ¥%(Q) with du = Au,. Let v = u— #,, then we ¥4(2) and dw= 0.
So that (3.2.5) shows that 7 dw and »dw are uniquely defined by rw and »w. Since
78U =T S+ T 8%y, v du = v dw v du, and T du,, v du,€ JH(I"), we see that if Tu, yu
are given, we cannot choose arbitrarily v du, »du in J~HI").

4. — Some boundary value problems for the operators d, ¢ and applications,

4.1. Trace and density theorems related to the operators d, d.

(4.1.1) We begin with a general density theorem for first order differential
operators wich was essentially proved by FrieDRICHS [7]. If § is a ° vector bundle
over 2 provided with a riemannian structure and s e R, we denote ¥+(£) the Sobolev
space of sections of & defined in a way similar to that of (1.3.1)-(1.3.3) (see also
PArats [18] for s>0; but for s< 0 our space K:(£) is the dual of ;}egs(é)' go it is
different from the space introduced by Palais). Let 5 be another ¢° vector bundle
over £ provided with a riemannian structure and P a first order differential operator
(with C® coefficients on ) from & to 5 (see PALAIS [18], ch. 4, § ). We can define
the action of P on any Je<(£) in the sense of distributions. Then we define for each
s,teR:

3 (€)= {o € ()| P € Je!(n))

and we give to it the graph topology (see 3.1.1) so that it becomes a hilbertizable
topological vector space. Let J6*(&) be the vector space of C° sections of & over 0.

THEoREM. — If 5,tc R are not of the form — k— } with k>0 integer and if
t<s, then JC*(£) is a dense subspace of J&PYE).

(4;1.2) In order to prove this theorem we need some preliminary considerations
Let R = {we R"o'< 0} and R™ be its closure. Let j: R*— R be a (= function,
§>0, j(@) = 0 for |[#|>1, with fj(m) dz=1. If £ > 0 we denote j (x) = e j(e1z). We

Rn

denote by ee R" the vector (1,0,..,0). Remark that if zeR", the function
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j(x — 2e¢— -} has support in the interior of R”. Following FRIEDRICHS idea (see [7])
we define for any distribution « in R, zeR" and £>0:

(7,0)(@) = <Gl — 2e0— ), u) = [j(— 260 — y)u(y) dy

Ry

(the second equality being formal). Here u can be a vectorial distribution (with
values in a finite dimensional vector space). Clearly, J % is a O function on the
closure R* and has compact support if % has compact support. Also for any o:
D*J,u=dJ, D% as C° functions on R”.

(4.1.3) LeMMA. — Let s€ R not of the form — k— % with k>0 integer. Then
the restriction of J, to Lﬁ(ﬁ'i) is a bounded operator in Li(ﬁ’i) which converge
strongly to id;2g when &— 0.

ProoF. — If s is a positive integer the assertion iy evident (use D*J u = J D*u).
It will also be true for any real s>0 by interpolation (use theorem 5.2, chapter 1,
Lions-MAGENES [13]). By the same theorem, it is enough to prove that the assertion
is also true if s = — & where k>0 is an integer (use theorem 12.2, chapter 1, LIONS-
MacENEs [13]). For pe LA(R") (= closure of OF(Rr) in Li(R")) and @€ R™ let:

(729)(@) = [il— o — 2e0+ y)p(w) dy .

R"

Then J’:qpeﬁi(ﬁﬁ) (suppe is in the set @*<— &) and |J, ¢, re<¢|g|, g» With O in-
dependent of ¢ and ¢. Moreover: (T, uy = g, T u) if ¢ ef;?c(Ri) and ueLEk(ﬁﬁ).
This shows that |J u|_, gn<<c|u|_j g for any £>0 and we L, (R*), with C in-
dependent of g u. So that it is sufficient to prove ||J,u— uf_, gn— 0 for a dense
subset of % in LZ? (R*). Take this subset as L*R"); then |J,u— u|_, p<c|J u—
— u]]o,,ﬂ—» 0. Q.E.D.

(4.1.4) LeMMA. — Let
a

P ot

3 4@t B@),

where Ai(x), B(z) are kxm matrices of class O° in R” and with compact support.
suppose that se R and s—k— 4 if k>0 is an integer. Then for any vectorial
distribution  in R with components in Li(l%ﬁ) we have for ¢ —0:

|(PF,— J,P)o] gn—>0 .

ProoF. — Suppose the assertion proved for any integer s. By interpolation, using
theorem 5.2, chapter 1, LIoNs-MAGENES [13], we obtain the assertion for any s.
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Suppose now that the lemma is true for s>0 integer. It will be clear from the
proof that any operator of the form PJ,— J P is a bounded operator iz(R R™) —
>L2(R” R*) (usual notafmon) with a bound independent of e Since the ad301nt
of the operator PJ,— J P: (RZ;R"‘)—>L2 (RE,R") is essentially of the same
form (see the proof of 4.1.3), it follows that this operator is bounded uniformly in e.
As a consequence, in order to prove the assertion of the lemma in the case — s, it
is sufficient to show [[(PJ,— J, P)w| _, gn— 0 for  in a dense subspace of LES(IO{Z{; R™).
Ag in the proof of (4.1.3) we take this subspace equal to Lz(ﬁ’i; R™), which finishes
the proof.

In conclusion, it is sufficient to consider the case when s is a positive integer.
Clearly PJ,— J P is a bounded operator L?(I%ﬁ; R”‘)—>L‘;’(ﬁf‘_; R"). We prove first
that it is bounded uniformly in e. If w: R* — R™ is of class ¢ and has compact
support then for any o:

(D*Pd s)(x) = D:fA"(m) az jelz — 2ee — y)ow(y)dy + D f (x—2¢ee — Yyw(y)dy =

=2 (;)f(Da—ﬁAi)(m)Dﬁe‘l(Mﬁ(x —2ec—yloly)dy +

B<a

-+ 2. (;)f(Du-ﬂB)(w)Dtjjs(w — 2e¢ — y)o(y) dy

where we have used the obvious relation

0

= Jel@) = ete (@) e70) = e H(Buf)elo) -

Now we use D2 f(w—y)= (— 1)?'Dif(z — y) and integrate by parts:

r10)e) = 3 (5) et — 26— p(D-s 9@ DRy +

B<ea

+ z( )faewwee~y)(1>a—ﬁB)< \(DP o)) dy -

<
A similar calculation gives:

Dr7Po)) = 3 (3@t — 200 -y DA D30) ) dy +

Ao

T2 (;)f“” — 2e0 — y) (D> B)(y) — (D>, AN (y) (D) (y)dy -
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So that:
(DHPJ s — J e P) w)(z) =

= 2 (;)f (3ef)ela — 2e¢ — y) e (D*2 A¥(w) — D=8 AX(y)) (Dbaw)(y) dy +

f<a

o . .
T2 (ﬂ)f“x“ 2e0 —y)[D>"2 Blw) — D2 Bly) + D20, 41y)[(DPw)(y) dy -
Since under the first integral |x— y| < 3¢ always, we have ¢ D" 24 (z)— D* P A (y)| < C
independent of . It follows easily:

D(PT,~ T P)oly < 0 3 1D 0l

with C independent of ¢ and o, which shows the uniform boundedness of the operator
PJ,—JP.

To finish the proof, we must still show |(PJ,— J P)o|, gr—0 if w is, for ex-
ample, of class ¢° in R*. But:

@2I)0) = 3 () [io = 260 — ) (D=0 4 0) D320 0) dy +

<a
+ 2 (;) Jelw — 2ee —y)(D=0B)(@)(D w)(y) dy

(D*Je Po)(w) = ﬁz (“)fjs(x — 2ee — y)(D*A A°)(y)(DF 2;0)(y) dy +

p
+ Z (;)fje(m — Zee — y)(D* B B)(y) (D w)(y) dy

B

[

from which the result easily follows. Q.H.D.

(4.1.5) PROOF OF THEOREM (4.1.1). — If t<s— 1 then Je&PY&)= J€*(&) so that
we consider only s—1<t<s. If ¢ is a C® function on Q and e ¥*"Y (&), then
pw € KP(&) so that, using a partition of unity, we are reduced to the following case:
2 c R~ with the induced riemannian structure, & and 7 are the trivial bundles 2 x R™

k2
resp. 2 X R® with euclidian riemannian structure, P = z Ai(x)3;-+ B(x) where A% B
i=1
are kxm matrices of class C* as functions of 2 on Q. Moreover, o == (W1, ...y Om)
with o€ L}Q), Po = (w,, ..., w,) with w,e L*(2) and suppo is contained in a cyl-
inder U= (—1,0]xB™(1) (see 1.2.6). By modifying A¢ and B in the exterior
of U we can in fact suppose 2= R", A’ and B being C* in R" and with compact
support. Then J,w is C* in R, has support in U (small ¢) and |J,0— of, ;— 0.
Since we Li{(R2; R™)c L}(R”; R™) (t<s) we also have |J,Pw— PJ,w|, ,—0. But
[JePw — Powl, ;,—>0 so that |PJ,w— Po|, ;—~0. QE.D.
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(4.1.6) For each s>0 let J&»%(Q) (resp. J+°(Q); ¥>*°(2)) be the vector space
of the o e J:(£2) such that dw (resp. dw; dw and dw) is an element of F(LQ), provided
with the graph topology. If s=0 we denote J¥(Q2) = K> Q) and so on and we
congider them as Hilbert spaces with the scalar produets (respectively):

(Uy )y g0 = (Uy V) o+ (du, dv), ¢,
(u, ”)0,5,9 = (%, ”)o,g‘i‘ (0w, 5’0)0,9 ’

(U 0)g 4,6,0= (% V)g 0+ (duy dV)y o+ (d, 60), o -

(4.1.7) LEMMA. — For any s>0, () is dense in each space Je%4(Q), 35°(Q),
Q).

Proor. — It is a corollary of (4.1.1). In the case of J&**(Q) one takes £ = ATQ
n= ANTQ® ANTQ (fiber direct sum) and Pw = (dw, dw). Q.E.D.

(4.1.8) THEOREM. ~ 1) There is a unique linear continuous application
B()s0 - twe i HT)

whose restriction to JC*(Q2) coincides with the naturally defined one. This applica-
tion is not surjective. For any s>0, s 5= } its restriction to J>4(Q) is a continuous
application of this space into Je~(I"). Similar assertions are true if we replace d
and t by 6, resp. ».

2) It weRQ) (resp. weH(2)) then dwe Q) (resp. dwe K*(L2)) so that
Tdw (resp. v w) makes sense. We have 7dw = drw (resp. v dw = — dvw).

3) Suppose that 0<s< } and ue X>HQ), ve J'4(Q), or uee'~%(Q), ve JH(Q).
Then:

{du, vy — <u, G0> = {TU, Y0> .

PrOOF. ~ If u € (), ve XYR2) then for any 0 <s< } we obtain from (A7) (tak-
ing into account the fact that for such s: Je}(Q) = ¥°(Q); for this, apply theo-
rem 11.1, chapter 1, LioNs-MAGENES [13]):

[(ze, 90)o, pl < [ @] ol Pllg, 0+ [u]s,0 80]_,0<

<|dul

v

0.2l0lo,0F elul ollvl; s o< elul, g0lvl g0

where we have used the fact that s« 4, || ,, being a norm on Je%/(Q) which
defines its topology. But J'"*(Q)3v > wv eI} *(I") is a continuous surjection (s<};

13 ~ Annali di Malematica
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see 1.3.9) so it has a right inverse: B: Jet~*(I")— ' ~%(I"). So that, for any aeJt3(I):

H(zw, o, rl <] u] s,d,xz”EO‘”1—s,Q < oﬁlul!s,d,gllaﬂé..s,p

and from (9) we obtain |zuf, , ~<e|ul,;,. Now the first part of the theorem is
a consequence of (4.1.7) (and 1.3.9 for s> ). Then the second part follows by
continuity and density (see 1.3.7). This also shows the non-surjectivity in 1), since
it ¢= 7w with o e Je¥Q) then it has the property o e X~ }I") and dac J¥(I"). The
third part follows from (17) with a limiting procedure. Q.E.D.

(4.1.9) Let Ji(2) be the closed subspace of J%2) defined by the condition
0 =10 and d,=d|¥%*(2), dy= d|X}2) considered as operators in J&(Q). Similarly
are defined J¢%(£), 6, and 8,. Then an easy consequence of (4.1.8) are the relations
di=28,, dy=0,, i =d,, 0;=d,. Also, X (Q) (resp. () is a core for d, and J,
(resp. dy, 6;). Clearly Imd,c Kerd,, Imd,c Kerd, and similarly for §, and §,.

(4.1.10) Let’s prove the relations
Arm dfdmL d1df= Gody -+ dy 6o A,,= d:do+ dod:: 01dy+ dody

and A,= dyd,+ 058,= 8,dy+ &, 0, (see 2.2.3). Indeed, 4,C d,d; -+ d, 3, is clear. Since
A, is self-adjoint and §,d,4 4,6, is certainly symmetrie, we must have equality.

(4.1.11) From this it follows easily that JE%(Q)N JeX(Q)= kYQ) and X}L2)N
N JHAQ) = JYLQ) (this theorem is due to FriepricHS [8]). Indeed, it suffices to
remark that the bilinear form associated to 4. is equal to that associated to dyd,~+ 85 4,
(this being a form-sum), for example. Then we obtain that the operator — sums
0+ 8= dy+ 8y, dy + dy= d,+ 8, are selfadjoint operators and A, = (d,+ &,)%, 4,=
= (0,+ d,)2. Also, the operator sum d,+ d, (with domain J}(£2)) is closed and
A, = (dy+ 6o)*(dy+ 6,). It can be shown that d,+ &, (d,+ d,)* strictly.

(4.1.12) We shall need later on some facts related to Hodge-Kodaira orthogonal
decomposition as given, for instance, by MoORREY [16] (see also GEORGESCU [10]).
Since (14 4,)! is a compact operator in J&(Q), the spectrum of the positive self-
adjoint operator A, is discrete. So that, if H is the orthogonal projection of J&(£)
onto the finite dimensional space H ()= Ker4,, the operator ¥ in JC(£2) which
equals (4,(1— EH,))_I on ¥(2) © H (£2) and is 0 on H (L), will be a positive compact
operator in J6(£2), with kernel H_(Q) and whose restriction to X(2) 0 H (L) is a
topological isomorphism onto JCX(2) © H_(£2) (the direct difference being with respect
to (-, ‘)O,Q). Similarly we define 7. Then by a direct calculation one shows

F,d,cdF,, F0céT,, T,6,c6%,, T.dcdT,



V. GEORGESCU: Some boundary value problems for differential forms, ete. 191

(as operators in J(2)). An easy consequence are the relations:

G0 Todi=dy, 0,0, T.0,= 6,

51do€rv 51: 61 y doalff',,d()z d,
which in turn imply that the closed operators (in J6(Q2)) d,, d, &, 8, have closed
images. Also they show for example that the restriction of d to (¥1RQ)© H (2)) N
N Kerd; (resp. of ¢ to (KURQ) O H,(2)) N Kerd,) is a bijection onto Imd, (resp.
Im¢,) and having 6,9,/Imd, (resp. d,9,/Imd,) as inverse.

On the other hand, applying closed range theorem to the operators d, and &,
we obtain:

() =Imdé; @ Kerd,=Im,® Kerd, ,
()= TImd, @ Kerdy=Imd,® Keré, .

A more refined decomposition is a obtained by remarking that

Kerd,= Imd,® H,(2) , Ker dy==Imd,® H,(Q),
Kerd,=Imd,® H,(Q2) and Kerd=Ims® H,(Q2).

4.2. Boundary value problems for the operators d, 4.
(4.2.1) LumMA. — 1) The linear continuous application:
D) 3 u — (du, Tu) e B(Q)® JeHI)
has closed image. An element (v, ¢) e J(2)® J~*") is in the image if and only

it veImd, (which is equivalent to dv=0 and vl H(RQ)), dp= 1o and for any
weH(2):

(e, ’U}o,!)"“ v, =0 .
2) The linear continuous application:
Q)5 u > (Su, vu) e (Q)® T HI)

has closed image. An element (v,¢)ed(Q)@® ¥ HI") is in the image if
and only if veImé, (ie. dv=10 and v1H (Q)), dp=—»v and for any weH (0):

(@, V) 0+ <Tw, > =0,
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PRrOOF. ~ Let veImd, and ¢ € X~HI") with dg = 12, (0, v), g— Y0, @> = 0, Yo €
eH,(Q). Let we¥*(Q) with du=v. Then, if weH,(Q):

wy @) = (0, 0)y o= (0, du), o= {vw, TU)
0 that {vw, 74— ¢> =0 for any weH (£2). On the other aand, if yeJe¥(I") then:
Oy, Tu— @) = (y, dru— dg) = {y, 7o—dp> =0
so that for any ye¥eHI"), o e H (2):

{By+row, 74— @)= 0.

We prove now that:
frolw € RYD), dw = 0} = {Syp+rolpe X)), we H(Q)} .

If ¢ e J¥(I"), there is § € Je2(Q) with »{=— p. Then 8¢ XYQ), 66§=0 and » 6=

= — = — dy which proves one inclusion. Suppose weRYD), dw=0. Since
w e Ker d,= Im §,® H (), it is sufficient to suppose w € (L) N ImJ,. Asexplained
in (4.1.12) we will have dd,¥,w = which implies yw = — dv d,T, 0 and the proof

is finished by an application of (3.2.3) which gives § o e X* Q).

We have proved that for any weXYQ2) with dw=0 {yw, 74— ¢)=0. But
o, TU) = (0, du)y o= (0, v)y o 50 that (w, v)y o— v, @) = 0 for any w € JH(L2) with
S = 0.

We know that 6: X)) H(Q) is a continuous operater with clogsed image
equal to Imd, (see 4.1.12) and with kernel ¥3(Q2)N Kerd,. By the closed range
theorem the transposed !6: J6(2) — (K*(£2))’ has closed image equal to the polar
set of JHQ)NKerd,. If (v, 9)cI(Q)@ (") we associate to it an element of
(e1(£2))’, also denoted (v, @), by:

{wy (0, @) = (w, D)y o— v, ¢ -
So that (v, ¢)eIm?d if and only if (w, )p, 0~ Vo, @) =0 for any weXY(2) with
dw == 0. On the other hand (v, ¢) e Im*3 means: there is u € X(Q) such that 'd(u) =

== (v, ). Equivalently, for any wec XYQ2):

(6w, %)O,Q: {w,"d(u)) = <w, (v, @) == {0, ”)0,9_‘ lvar, @

which is clearly equivalent to « e J€%(), du = v and Tu = ¢, so that the first part
of the lemma is proved. We get the second part by using operation *. Q.E.D.



V. GrorGEscU: Some boundary value problems for differential forms, ete. 193

(4.2.2) THEOREM. — The linear continuous application of J*°(0) into ¥(Q)®
® Q) ® X~HI") given by u > (du, du, tu) (resp. u > (du, éu, vu)) has kernel H (Q)
(resp. H,(2)) and closed image. An element (v, w, )€ X(Q)® K(2)® F~HT) is
in the image if and only if the following three conditions are satisfied: 1) dv =0
and vl H (2); 2) dw=0 and wlH(Q); 3) dp= 1 and (w, v)g,0— (v, @) = 0 for
any w e H () (resp. 3') dp=—rw and (o, w)y o+ (T, ¢> = 0 for any weH (2)).
Let we 3™ (Q) and $>0, s 4. Then ue Q) if and only if dueJe—1Q), due
€ Je1Q) and Tue s HI) (resp. vue i HIM). (The «if» part is also true for

= p.

ProOF. - Clearly the kernel is H*({2) (see 4.1.11). Also, the « only if » part of
the last assertion is contained in (4.1.8). Suppose now that (v, w, ¢) e E™=0—D(Q) g
@ Jerex0s—D(0y @ J&~HI) for some s3>0, conditions 1-3) being satisfied. We look
for a v e (02} such that du =9, du=w, t7u=¢. Since velmd,, weIm3d,, the ele-
ment uy= 6,F,v -+ doF,w has the properties du,= v, duy= w, TU,= 76,T,0 (see 4.1.12)
and w,€ L0y gy e =DM (see theorem 3.2.3). So that we need to
find @€ J(2) such that di = 0il= 0, vii=@— ©6,F,0. Let H(Q)= {we R(Q)|dw =
= 0w = 0}, then eclearly ¥(2)=Imd,® Imd,@® H(Q) (this is the Hodge-Kodaira
decomposition and it is an immediate consequence of the fact that Imd,, Im 4§, are
cloged). In particular Kerd,= Imd,@® H({) from which we obtain:

{ro|w e Kerd,} = {rolwe H(R2)} .

On the other hand lemma (4.2.1) shows that ye {twjwcXKerd,} if and only if
dy=0 and {yw, p>=0 for any we H (). In conclusion, we can find e H(Q)
such that 74 = ¢ — 76,%, if and only if 0 = dp — d76,F,v = dp — 7 d8,T,v = dg — v
and 0 = {vo, ) — {vw, 76,9,0) = {yw, p) — (0, A6, T,v), o= (Yo, ¢) — (v, )o,o for any
weH (£2). Moreover, remark that A =0, vii= ¢ — 14, & HI"), 7= 0. From
(3.2.3) we obtain #eX+(2). Q.ED.

(4.2.3) CorOLLARY. — For any s§>0, 5+ 4, there is a constant ¢> 0 such that
for any % e J}%(0Q):

Gnu§is,ﬂ<“duumax(s«-l,o),ﬂ_‘— ﬂé“nmax(s—l,o),a”{” I Tuﬁs—%,[’+ Hu”o,gy

C“/M’us,!?<“dunmax(s-—l,o),9+ H 6%Hmax(s—l,0),Q+ ”’M’LHS—-&,I‘-}w Hu

lo,0-

PrOOF. — For s>0 we use lemma 5.1, chapter 1, Lioxs-MAGENES [13] with
B = 365"5’6({2),F= 3(02), 6 = Jemax(s—l,o)(g) ® Jemax(s—l,ﬁ)(g)@ Je.%é(f) and Cu = (du,
du, Tu0).  Q.E.D.

It is easily seen that we can replace in these inequalities | ‘[lo,e by any seminorm
[] on Je«(Q) having the property: |u|= if 0£uecH (2) (resp. 0=uecH (Q)).
Remark that this kind of estimates is very useful in the study of hydrodynamie
equations.
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(4.2.4) COROLLARY. — Let s>} and s, be the greatest integer with the property
80<< 8 — 4. Let veJem6-1%0) and e J&*~¥I") be such that the conditions 1)
and 3) of (4.2.2) are verified. Then for any y,e 3 *~4I') (i=0,1, .oy 8) We can
find u € X¢(2) such that: du = v, Tu = @, vu = p,, 70U = v, vd0U = y,, ..., y ... 6ddu =
= g, (in the last relation there are s, operators d and é and y is v or 7 as s, is even
or odd). A similar result is true if we change d and = with § and ».

ProOF. — From (4.2.2) we deduce that there is u, € JC*(£2) with duy,= v, du,= 0,
te==@. Then we look for u having the form u = u,-+ du, with u,e X*+(L2) and
Ty =0, v du, = po— vity€ I HI), 7 0du, = v, — T du,e FF ete. The surjectivity
in theorem (1.3.9) gives us the result. Q.E.D.

(4.2.5) CoroLLARY. — For any s>0, s % {, the application:
{w e ¥:(Q)|dw = 0} 30 1> T € FHT)

is continuous (for the topology induced by JE<(£2) on the initial space) and has closed
image equal to the subspace of those ¢ € J&*~#(I") which have the properties: dg= 0
and {vw, @) =0 for any weH (). Moreover, if s> 4, @ € ¥~ ¥I") has the above
properties and v e Je~¥(I"), then there is w € J5(2) with dw = 0, 70w = @, vw = y. The
assertions remain true if we replace d by é and z by ».

Proor. — It is an easy application of (4.1.8), (4.2.2) and (4.2.4). Q.E.D.

A particular case of this corollary (2c R» with induced riemannian structure,
$>0 and o =w a 1-form, identified with a vector field, so that dw = — divew,
vw = vw|I") has been proved by CATTABRIGA [2].

(4.2.6) REMARK. — Let’s prove that the densely defined, positive bilinear form D
(defined on the domain J*(£) in the Hilbert space J¢(£)) is not closed (if I'7= ).
Suppose D is closed. Since J&=(2) is dense in JE*%(Q) (see 4.1.7) we obtain then
JeLQ) = Je4°(Q) = J4LQ) N J(Q) so that it is sufficient to show that this equality
is false. Take y e Je}(I") such that dy ¢ Je}(I"); we certainly have dye Je~*(I"), ddy =0
and (vo, dp) = (dvw, p) = — ¥ dw, > =0 if weH (L). In theorem 4.2.2 we take
v=w=0 and ¢=dy, and we obtain ueJ>(Q) with ru=qp¢R¥{I"). Clearly
u ¢ YR).

(4.2.7) We shall obtain now as a corollary some results of Conner. Let D bf
the form defined by the same formula as D but on the domain 3e89(). Cleatly D
is closed, positive and has Je=(02) as a core (see 4.1.7). On the other hand, it is
known that A,—= d,0-+ d,d is a selfadjoint operator (this is an operator sumj; the
result is an easy consequence of a lemma of Gaffney and Stone, see for example
CoNNER [3]). Then we easily see that 4, is just the self-adjoint operator associated
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to D. Obviously, H(2)c D(4,) and in fact H(Q)= Ker4, (since the kernel of the
operator coincides with that of its form). We have D(4,) = H(2)-+Imd, N J3(2) 4
-+ Imd, N K(2) direct sum relative to the scalar product (-, +), .

ProOF. ~ If peD(4,) then ¢ (Q), dpe k2(Q), dpe Ji(L2) and conversely;
since ddp = 0, 60p =0 we get dpe K, dpe I, (see 4.2.2). We can uniquely de-
COMpPOose ¢ = @y -+ @1+ @5, @€ H(Q2), p,€Imd,y, ,€Im §, according to Hodge-Kodaira
theorem (see the proof of (4.2.2)). Since dp,= 0, dp,= dp € (L), theorem (4.2.2) gives
@€ ¥3(Q2). Similarly ¢,e¥2(2). Q.E.D.

The above orthogonal decomposition of D(4,) allows a complete study of the
operator 4,. In fact:

AJH@)=0,  A)Imd,N¥EXD) = A4,/Imd,,  A,/(Imd,N F(Q)) = A4 |Tm §,

and remark that 4 |Imd, (vesp. A4.|]Imé,) is an isomorphism of Imd,N JE3(2) (resp.
Imd, N JX2)) onto Imd, (resp. Imd,). (Use the fact that A, for example com-
mutes with dy6,F, = projection of J(Q) onto Imd,). For example we obtain that 4,
has closed image equal to Imd,® Imd, and that its restriction to the orthogonal
complement of H(£) has a compact inverse ¥, such that §,/Imd,= T,[Imd,,
F,Imd)= F [Im 4§, (all Conner’s results are so recovered).

4.3. Application: de Rham’s theorem.

As an application of the preceding results we shall give a new proof of a theorem
of de Rham (see de RuAM [19], theorem 17’, § 22) for the case of a compact manifold
with boundary and for « tempered » currents (i.e. elements of J&™(£2)). We shall
also give a regularity result similar to those of L. ScEwaRTZ [20], theorem I, chap-
ter IX, § 3. Remark that our proof is purely analytic (no homological notion, ete.).
We begin with some preliminary lemmas.

(4.3.1) LemMMA. ~ 1) If s>1, then d: J;(2) — J€~1(2) has closed image, equal
to the set of v e J€;*(2) such that dv=0 and (w,v), o= 0 for any we H(Q). 2) If
se R\ (0,1) then the continuous operator d: 3:(Q) — J=1(£2) has closed image. If
s>1, then an element v e J~Y(Q) is in the image if and only if dv= 0 and (w,v), ;=0
for any we H (£2). 3) Let se R\(0,1), s=— k— } for any k>0 integer. Then if
e D) and du e Je1(£2), there is ve Js(2) such that du= dv. All the asser-
tions remain true if d,  are replaced by 6, ».

ProoF. — 1] In (4.2.4) we take ¢ = po= y,= ... = ¢, = 0 and v with the above
properties. Clearly the conditions of (4.2.4) are verified (if s=1, remark that
velmd,, as can be seen from the proof of (4.2.2), which gives 7o = 0). It follows
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that we can find v e X4(Q2) with du =0, tu =su =t =rddu=...= 0. But vdu =
=y =0, 7 0du =7 dv=0, ete. which shows e J;({2). 2] If s<0, then we obtain
the result by using closed range theorem and the first part of the lemma. If
ve J(2), dv=0 and v H (£2), then veImd, and u = §,T,v e FY2) has the prop-
erty du = v (see 4.1.12), which proves the assertion for s=1. If s>1, it is enough
to show that the condition v € J¢-(£2) implies &, v e J 1(2). Since vF v=1»dF v= 0,
AT v=v— B, v=1 (see 4.1.12), this is a consequence of (3.2.3). 3] If s>1 then
the assertion is a consequence of the criterion given in the second part of the lemma.
Suppose s<0, so that s—1=—1¢,t>1 and u, duecJC({2). Let’s prove first the
relation {dg, u) = {g, du) for any ¢ € I(L2) such that dpeJi. Clearly this is true
if ueJ>(R); we obtain it for any « such that «, du e % (2) using theorem (4.1.1).
In particular <{g, du) =0 if p€J;°(2) and dp=0, i.e. du is in the polar set of
the kernel of the continuous application d: JCi(£2)— ¥ *(L2). Since this applica-
tion has closed image and since d: Jes(Q)— JL=-1(2) is its adjoint, it follows that
there is v e J(Q) such that du = dv (closed range theorem). Q.E.D.

(4.3.2) LEMMA. — 1) Let w € ¥(£2) be such that dw = 0 (resp. éw = 0) and 7 = 0
(resp. yo=0). Then there is a sequence {w,} with o, €¥>(Q), dw,=0 (resp.
dw,=0) and w,—>w in F(L2). 2) Let s>1 not of the form k- 4 with k>0 integer.
If wedei(2) and dw= 0 (resp. dw=0), then there is a sequence {w,} such that
0, €3y (2), dw,= 0 (resp. dw,=0) and w,—ow in JK;(2).

Proor. — We prove only the second assertion, the first being similar. Let
8:= {we J!|6w = 0} with the topology induced by J€&;: We prove first that 857!
is dense in §: Since 85T'c 8%, it is sufficient to show that the polar set of §§**
coincides with that of §; (the polar is taken relative to the duality of J¢§ with J~°),
But if v is in the polar of 85! in J&~%, then (¢, v)=0 for any ¢ 8;*' and ve™".
In particular v» is in the polar of S5™! in J&~¢~* (relative to the duality of J¢i*! and
Je5-1). Closed range theorem gives us »e J~(Q) with v= du (use 2) of (4.3.1)).
But then e X—(2) and du=veJ(2). By 3) of (4.3.1) we get w e J&—*r(2) such
v=dw, i.e. » is also in the polar set of 8 in J}~°. Suppose now that we 8} and
e>0. We find w,e 8" with [0 — o], n<2/2, w,€ 8** with [w,— w,],,; o<&/2%,
ey @, € 837" With [, — @)1 0 1,0</2% .... Then the limit w,= limw, exists in

any JESTE(), since for n>k: >
nrm—1 ) n+m—1 | &
10n — Opimlsine< D [oi—oialsine<e 2 [wi—@iti]sii0< =t
i=n i=n

We have w,e U J"5(0Q) = 32 (2) and dw,= 0. Moreover

k21

n—1 o
e — wes,0 = lim [0 — @, |50 <lim Z o — wir1]s,e<e 2 lwi— wica|svio<e -
n—>o0 i i=0

n—>0 i=0 i
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(4.3.3) pE RHAM'S THEOREM. — The continuous operator d: J&™(Q) - X ™=(Q)
(resp. 6: J7°(Q)— J(2)) has closed range. Equivalently: let v ™(2) be such
that {g, v) =0 for any @ e X (2) with dp =0 (resp. dp=0). Then there is ue
e (Q) with v=du (resp. v==06u). Moreover, if vc J(2) for some se R with
s¢(—1,0) and s+=— k— } for any positive integer %, then we can find u e J=+1(Q)
such that v= du (resp. v=du).

Proor. — Let se€ R be such that ve Js(Q). If $>0, then, using (4.3.2), we
obtain (g, v), o= 0 for any g€ Kerd,, so that velmd, (see 4.1.12) and the second
part of (4.3.1) proves the last assertion. If s < — 1 and is not of the form — k— %
(k>0 integer), then (4.3.2) gives (g, > =0 for any ¢ e 8, ° (see the proof of 4.3.2).
Since 8;* is the kernel of §: 3;%(£2) — ¥, °~(£2), which has a closed range, it fol-
lows that » is in the image of d: ¥*+Y(0)— ¥(Q). Q.ED.
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