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S u m m a r y .  - Methods based on trace theorems and transposition are applied to some boundary 
value problems for di//erential lot.ms on co~npaet Riemannian man.i]olds. We obtain com- 
patibility cond~itions o] a classical type ]or the solvability o] these problems in various So- 
bolev spaces. 

O. - I n t r o d u c t i o n .  

The purpose of this paper  is to t r ea t  various non-homogeneous boundary  value 
problems for differential forms on a compact  Riemannian  manifold (with boundary) .  
The methods we use~ based on t race (and density) theorems and transposit ion,  are 
due to J .  L. LIoI~s and E. MAGENES (see [13]) and proved  themselves frui t ful  in 
the scalar case. The bounda ry  value problems considered are essentially the same 
as those t r ea ted  by  DL%'F and SPE~CE~ in [5]. I f  we t r y  to ex tend  thei r  existence 
theorems to solutions in Sobolev spaces ( they consider only continuous solutions), 
we are immedia te ly  faced with the following kind of difficulty: suppose we want  
to solve the problem A u  ~ v, ~u -~ % "v du : ~p where v is a form in some Sobolev 
space on the manifold, ~0 and yJ are forms in Sobolev spaces on its boundary  (we 
denote  by  ~ the operat ion of restr ic t ion to the boundary ,  see 1.2.5); then in order  
a solution to exist,  v, ~, y; have  to ver i fy  some compat ibi l i ty  conditions and the 
conditions given by  Duff  and Spencer involve the  (~ period~ ~) of v, % % i.e. their  
integrals over submanifolds of our manifold. Clearly, such conditions do not  make 
sense if the orders of the Sobolev spaces in which v, % ~ are given, are sufficiently 
low. A much  more simple problem which we cannot  solve using the results of ~ u f f  
and Spencer  is the following: what  is the space described by  the boundary  values 
of the  forr~s co belonging to some Sobolev space on the  manifold and having  the  
p ro pe r ty  do  = 0. In  case (o is continuous,  the answer is known and  involves, as 
before, the periods of the boundary  values. 

Another  point  on which the paper  of Duff and Spencer gi'~es no result  is t h a t  
of regular i ty  of the solutions (in fact  this problem does n,~)t exist  for them because 
they  do not  consider irregular solutions). Complete re.~ults in this direction where 
obta ined by  EELLS and M0~.RE¥ [6] and ~oar~E¥ [15], [16]. However ,  thei r  results 

(*) Entr~t~ in Redazione il 24 uprile 1978. 
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do not  solve problems of the above tsrpe. F o r  example,  one of Morrey 's  theorems 
says tha t :  if weJ~l(f2) (see 1.2, 1.3 for notations) and d w ~ - O ,  then  there  is a 
unique u e J~l(f2) such tha t  du = ~u = O, w - ~  u -~  dv for some v e JC~(~2) and zu = ~w 
(also, regular i ty  assertions). This theorem asserts t ha t  we can solve the problem 
du ~ ~u = O, ~:u ~ q~ if ~ is of the form ~w with dw = O, b u t  the conditions on 

in order this to be t rue  are not  given. 
The essential results of this paper  are given in theorems 3.2.3 and 4.2.2 (compare 

our results with theorems 2,6 f rom DUFF [4], theorems 3,4 f rom DuFF-SPE~CE~ [5], 
and theorems in section 6 of M o ~ E ¥  [15]). Using various trace theorems we have  
been able to give a <~ classical ~> formulat ion of the results,  in par t icular  to s ta te  
explicit ly the  conditions of compat ibi l i ty  on v, q, ~ (etc.) even for irregular (discon- 
t inuous) solutions. On the  other  hand  we have  also given regular i ty  assertions 
similar to those of Morrey. These assertions are in one respect  s tronger then  those 
of Morrey since we permi t  boundary  values in Sobolev spaces of negat ive order.  
Fo r  example,  in the preceding theorem of l~orrey, the fact  t ha t  w e JCI(zg) implies 
~w ~ J~ (F ) ;  we can solve also the case w ~ Je(f2) with dw ~ O, which implies only 
~w e JC-½(F). l~emark tha t  we have  not  used all the  force of the t ransposi t ion method,  
since only the boundary  values can be in some negative order Sobolev spaces. We 
have chosen this case because i t  allows the s tudy of the (domain of the) operators  
in Je(f2) associated to some differential operators (for example we prove in 4.2.6 
t ha t  the Dir ichlet  forme is not  closed on J~($2) and in 4.2.7 we can s tudy  the realisa- 
t ion zl~ of /i, which has a ve ry  <( bad  ,> domain,  obtaining so Co~En~s  [3] results).  
The integwal application of the t ransposi t ion method  (following LIo~s-MAGE~]~S [13]) 
would have  necessitated the in t roduct ion of new spaces of distributions,  which 
would have lengthen considerably the paper.  We have prefered to t rea t  in detail  
the  ease presented,  t h ink ing  t ha t  i t  might  be useful especially for those which aa'e 
not  specialists in par t ia l  differential equations,  for  example theoret ical  physicists 

and topological algebrists. 
With  this in mind, we have t r ied to make the paper  as self-contained as possible. 

In  sections 1.1, 1.2 we give a short  t r ea tmen t  of the notions related to l~iemannian 
manifolds we need. We have  defined in an invar iant  way the  not ion of tangent ia l  
~ d  normal  pa r t  of a differential form, which we th ink  is more clear than  t h a t  of 
Duff  ~nd Spencer.  R e m a r k  t ha t  w h ~  t h e y  call normal  p a r t  no) of a form to differs 
f rom ou~ definition by  a factor :  noJ ~-vAvw, which explains some differences in our 
relations. 'The coordinates of a normal  char t  (U, ¢) such tha t  Uo:/= ~ (see ].2.6) 
are also called :semigeodezic. In  fact  we need the conditions g ~ ( x ) =  1, g~(x ) -~  0 

if i > 1 only  for x ~ U~. Such charts  are called admissible by  Morrey and the  proof  
of their  existence is easy  (see MOaRE¥ [16] or Fa~E~)n~CHS [8]). Section 1.3 is devoted  
to the s t a t emen t  of some known fact  about  Sobolev spaces of forms. The presen.. 
ta t ion is quite detailed since we adopt  a point  of view a lit t le different f rom the  
usual one, which we consider to be t h a t  of PALA~S [18]. There is an impor tan t  
difference between our spaces J¢,(f2) and those of Palais if s < - - ½ ,  as explained 
in (1.3.3). We have proved  only one mterpo~at~o theorem (1.3.5), b u t  we shall 
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use m a n y  others which can be deduced in the same way f rom the corresponding 
theorems in L[O~S-MAGE~ES [13] (chapter  I,  sections 11.5, 12.2-:12A). 

I n  section 2.1 are proved  all the a priori  est imates we need. We could have used 
the results of GE¥~O~AT [11] for  systems of equations,  for example,  b u t  we have  
prefered to  give ~ direct  proof using only the e lementa ry  scalar est imates (10), (11). 
I n  fact ,  only the first order  pa r t  of the operator  A is not  << diagonal }> and we can 
t rea t  it  by  a pe r tu rba t ion  a rgument  as usual. We th ink  tha t  the use of results for 
general elliptic systems wotfld only complicate the presenta t ion  wi thout  essentially 
shortening it. t~emark t ha t  we use in section 3.2 the fac t  t h a t  the operators z],., z]~, z] D 
are se]fadjoint (so we avoid the  use of << dual >> est imates and other  theorems cor- 
responding to those of section 5.3 chapter  I I ,  LIO~S-MAGE~ES [13]). This fact  is 
not  tr ivial  and M o ~ E Y  [16] proved it  via some regular i ty  theorems for elliptic 
systems. However  in [10] we proved  this results using only e lementary  facts about  
scalar elliptic equations.  Since the  proof  is easy h~ving the  t race theorems f rom 
section 3.1 (which are, of course, independent  of the  selfadjointness of z ] ,  zJ,, zip) 
we shall sketch it  in an appendix to this introduct ion.  

The Diriehlet  form, presented in (2.2), p layed an impor tan t  role in most  of the 
classic work  on harmonic  integrals and re la ted topics. We prove  in (4.2.6) t h a t  its 
res t r ic t ion to 5¢t(~) is no t  a closed bilinear form (in the  sense of KATO [12], chap- 
ter  VI) .  Bu t  it  is an impor tan t  fact  (for the proof of the se]fadjointness of z]~, z],, AD) 
tha t  its restrictions to 5¢~(~c2),~ ~, ( /2)  are closed forms. Our proof of this in [10] is 
based on the formula:  

D D 

+ (~u, V~% ~v)o,r + (~u, V~A~Tv)0,r-- (~u, dvv} -- (~u, d~v) 

for u, v e j¢1(~2) (see 1.2.7 for the explanat ion of some of the notat ion).  I f  ~u ~ Tv -~ 0 
or ru = ~v ~- 0 the  last two terms vanish and one can get easily an est imate which 
shows tha t  the norm ~(~,  u) Jr ]lull0,a~ e on 5¢1(~2) or j¢1(~) makes it a Hi lber t  space. 
The preceding formula  is obta ined b y  par t ia l  in tegra t ion in normal  coordinates.  

Section 8.1 contains the trace theorems which const i tu te  the  hea r t  of the  method.  
They  are essential in the formula t ion  and the proof of the theorems concerning the  
boundary  value problems for the operator  d ,  see 3.2. 

The principal  result  of section 4 is theorem 4.2.2. In  4.1 we prove a generalization 
of a densi ty  theorem due to  Friedrichs.  We need this form first in lemma 4.1.7 (in 
the case of 5¢~.~($2), since d and ~ cannot  have  constant  coefficients s imultaneously 
in a system of coordinates) and second in the proof of lemma 4.3.] (the third part) .  
Then,  in section 4.3 we give an applicat ion of our results in algebraic topology and 
prove  a (part icular case of a) theorem of de Rham,  improving it  in one respect  
(namely,  the  regular i ty  assertion). Other  applications can a~lso easily be done, for  
example  in the s tudy  of a generalized form of Stokes equations. 
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We shall explain now some notat ions we use. We denote  b y  the  same le t ter  C 
all the constants.  II "ll~,a, II "l[~,r, etc., arc norms which define the topology of the 
spaces J~(/2), J~( / ' ) ,  etc. We Mlways denote  ( . ,  ")s the scalar p roduc t  of the Hi lber t  
space H and by  < ", "> the dual i ty  between any  topological vector  space V and its 
strong dual  V';  if u ~ V and v e V', we ident i fy  <u, v> with <v, u>. All the func- 
tions, differential forms, vec tor  spaces, etc. will be real. 

Finally,  let 's say some words about  the hypotheses  in which we work. ]?or 
simplicity, we suppose tha t  the manifold is of class C ~. In  fact,  wi thout  changes 
in the proofs, all theorems are t rue  if the manifold is of class C~ (Morrey's notat ion) ;  
obviously, there  are some modifications in the regular i ty  assertions. We can also 
consider the  case C~ (as Morrey and Yriedriehs), b u t  then  we must  work with admis- 
sible bounda ry  coordinates (in the  sense of Morrey) in place of normal  coordinates;  
bu t  in this case the preceding formula  for 9 (u ,  v) is not  valid, since it  contains the  
curva ture  tensor  which is of class C ~-a on a manifold of class C< 

All the s tudy  is done in spaces of square-integrable forms. Using the results 
of Lions-Magenes in L,-spaces (1 < p < oo), m a n y  results can be generalized to forms 

of power p integrable.  

Appendix. 

An essential fact  which we shall use is the selfadjointness of the operators  A~, 
Zl~, A D (see 2.2.3; in this appendix we shall use the  same notat ions  as in the  rest  
of the paper  and also some of our later  results which are clearly independent  of the  
above assertion). We shall sketch here a proof of this in the case of A, (the case 
of A, is then  a consequence and tha t  of A D is much simpler) following [10]. All 
Hodge-Kodai ra-de  R h a m  decomposit ion theorems are easy corollaries of this, as 
explained in {4.1.12) (see also the  proof of 4.2.2). 

Since the  restr ict ion of 90 to ~I~(D) is a closed (proof indicated before;  this result  
is due to CrAFF~EY [9]), positive, densely defined, bilinear form in the Hi lber t  space 
JE(~(2), we can associate to it a unique positive selfadjoint operator  A'~, with domain 
D(A'~)c~(~2)  and ~ ( %  ~ ) =  (A'~% ~)o.a for any  ~veD(A'~) and ~eJE~(~2). Clearly 
zJ~v = A'~  ~ ~ ( ~ ) ,  so tha t  ~v E JCI'~(~) (3.1.1). Moreover v~v = 0 and v d~ = 0, as i t  
follows f rom 3.1.5. So tha t  i t  is enough to show tha t  ~v ~ ~ . z ( ~ ) ,  %v = 0, v d~ = 0 
implies ~v e JG2(O). We show the regular i ty  near a point  p of the boundary  (the 
interior  ease is trivial).  There is a C ® funct ion 0 on ~ ,  with suppor t  in a domain 
of normal  char t  U, such tha t  0 =: 1 in a neighbourhood of p, the der ivat ive  of 0 
in the  normal  direction at  all the  boundary  points being 0. One can show 0~v e~,~(~2) ,  
supp(0~)c  U, v(O~v)=vd(O~)= O, so t h a t  (replacing ~ b y  0~v) we can suppose 
supp~v c U. We shall work in a fixed, normal  sys tem of coordinates in U (the nota- 
tions are as in 2 1 2). Clearly g U ~  ~ ~L~(~) for any  ii, ..., i~ and q5 h ~ eL~(U). 
Since %v = 0, relat ion (5) shows Cv:...~ eZ~(U) ( =  closure of C~(O) in )~(~)) .  Nz- 
UE~]~E~G'S regular i ty  theorem [17] gives ~n~...i~ ~ L~(U). I f  i~, ..., i~ > 2, then  qSh...{~ e 
~D°(U) ,  A =  g~:~Sj (see section 7.2, chapter  I I ,  ~IO~S-MAGI~N:ES [13]; in fac t  we 



V. GE0]~GESCU: Some boundary value problems for diJjerential Jorms, etc. 163 

need only results on Neumann  problem which are given in LmNS-MAGENES [14]). 
Now we want  to apply  theorem 7.4, chapter  I I ,  L~o~s-MAaE~ES [13] (or see [14]) 
with Neumann  operator  as bou n d a ry  operator .  Since supp#h...~ ~ is a t  a posi t ive 
distance f rom the  curved pa r t  of the  boundary  of ~ ,  if we show t h a t  8~95h...~I~0= 0 
(in the  sense of theorem 7.3, loc. cir.) then  we shall get  95~,...~ eL~(~) .  One can 
show tha t  this equal i ty  is a consequence of ~ d~0 = 0 (in the sense of theorem 3.1.5), 
using (6) and the  fact  t ha t  d W = 0 (since W == 0). 

1 .  - P r e l i m i n a r i e s .  

1.1. Algebraic prel iminaries.  

(1.1.1) Le t  E be a finite dimensional real  vector  space provided  with a scalar 
p roduc t  ( . ,  .). We shall ident i fy  E with its dual b y  the canonical isomorphism 
which associates to v e E  the  linear form u ~-*(u, v) on E. For  each p =  0, 1, ..., n 
(n = d imE)  let  A~E be the p-exter ior  p roduc t  of E.  Since E is a t I i lber t  space, A~E 
is eanonica]ly identified with a subspace of the  p-tensorial  power E ®~, so t h a t  i t  

has a canonical  scalar product ,  also denoted  ( . ,  -). We  define A E = ( ~  A~E as 
a hilberti~n direct  sum. ~=o 

I f  {e~, ..., e,} is a base of the vector  space E,  then  we define the du~l base as the  
family  {e 1, ..., e ~} of vectors in E such tha t  (e~, e~) -~ 6~. Le t  g ~ =  (e,, e~), g " =  (e ~, e~). 

The  families {e h A... A e~11 < i~< ... < i~ ~< ~}, {eqA ... A d, I1 ~< i~< ... < i ,  ~< n} will be bases 
of the vector  space A~E. I f  o ) e / W E  we denote  b y  ~o il'''~" (resp. wh...~ ) its coeffi- 
cients in the first (resp. second) base, so tha t  

! 
eJ = ~ cJq. . .*~%A.. .A%=-~.coq. . .~,e~.A. . .Aei  -~ 

il <,,. < ~x 

1 
= ~ ~ '~ , . , .~ ,e~ 'A. . .Ae~=~w~, , . i /~A" 'A d" 

i l< . . .<i~  

(co, .... ~,, m i .... i" are defined for any il, . . . , i ,  b y  ant isymmetry) .  We have  e) h'' '~'-= 
. . . " . . .  ' : gl,h..,  gi~o) ~ .... j~, mq. .x~= gi,j, .. g~j~ c°~' ~ and~ if ~, v E A~E: 

1 

(1.1.2) Le t  v e E ,  Ilvll == 1~ a, nd  Eo the  subspaee of E or thogonal  to ~, provided 
with the  scalar p roduc t  i~dnced b y  E. There  is a canonical identification of A Eo 

with a subspace of A~,  so tha t  we shall always consider AEoc AE. Le t  ~_J : A E - ~  A E  
be the (< interior  p roduc t  >> with ~ (i.e. if o~ e A°E then  v_J~o = 0 and if to e A~E 
(p~>l), then v ~ o ~ A ~ - I E  is given in coordinates b y  (vjto)~ .... ~ _ =  ~wi~ .... ~_~) and 
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vA: A E - +  A E  the (< exterior  p roduc t  )> with v. Then,  using 

(~l )o(vA) ÷ (vA)°(~-J) = idA~ 

it can be shown tha t  (v_])o(vA) (resp. (vA)o(v_J)) is the orthogonal  project ion of A E  
onto AEo (resp. onto its or thogonal  complement) .  We define ~r~--~ (v_J)o(vA) and 
v =  ~ /  as (surjective) applications AN---> AEo. For  any  ~ s A E  we have eo = ~co~ 
4-vAvco and we call vw (resp. vco) the tangentia~l (resp. normal) pa r t  of w. 

(1.1.3) Suppose tha t  we are ~lso given an or ienta t ion of E,  compatible with 
the Hi lber t  s t ruc ture  of E i.e. an element  e s  A~E with ][e[[ ~ 1. I f  {e~, ..., e.} is a 
base of the vector  space E and g =  det(g,.)----det(g~J) -~, then Ile~A...Ae.[l~-~ g and 
]le~A...Ae~]l~-- - g-~; since A ' E  is one dimensional it follows tha t  e ~ &g-½e~A...Ae~ 

~:g½e~/\...Ae~; we call the  base {e~, ..., e.} correct ly  or iented if we have the plus 
sign in these formulas. I t  is known tha t  there is a unique linear application 

, :  A E - ~  A E  such tha t  . A ~ E c  A~-~E and for any  u, v s A~E: (u, v) e ~ uA'~v (in 
p~rtieular,  for 1 s R =  A°E we have  ,1----- e, which explains some fu ture  notation).  
This applicat ion is canonically associated to the Hi lber t  s t ruc ture  and to the  orien- 
ta t ion  of E,  is un i t a ry  and has the p rope r ty  **---=-g ~'+~ (where Z: A E - + A E  with 
zIA,~E----- (-- 1 ) , i d i ~ ) .  The normal  v to Eo being given, we define a unique orienta- 
t ion eo of Eo (compatible with its Hi lbcr t  s t ructure)  b y  the condition e-----~Aeo (equi- 
va len t ly :  % =  v ie ) .  I f  we denote  $~ the  . operat ion on AEo associated to the 
Hi lber t  s t ruc ture  induced b y  Eo and to the or ienta t ion eo, then  for any  ~o s A E :  

~ ' ~  @o~Z ~ -  

(i.1~4) We recall tha t ,  if F is a space similar to E and T i  E - - > F  is linear, 
then  we can associate to 2" a unique linear application TA: AE-->/\F such t h a t  
TA(~A. . . / \u~)  ~ (Tu~)A...A(Tu~) for  any  u~, ..., u~sE. Also, the adjoint  T*:  F - e E  
is defined by  ( u , / ~ ) ~ -  (Tu, v) for  any  u s E ,  v a F .  

1.2. Some remarks on Rieman~ia.n manifolds. 

(1.2.1) We shall always work on ~ C ~, Riemannian,  compact  manifold .C2 of 
dimension n, orientable and oriented. We s,.~ppose t h a t  .C2 has b o u n d a r y / "  (the case 
F--~ 0 is t r ivial  for  what  follows) and we dene te  b y  f2 ~ ~ \ F  the interior of O. 
We recall t ha t  for  each x s ~  is given a scalar p roduc t  (-,  .) on the tangent  space 
T ~  (which depends smoothly  on x) and an orientat ion,  denoted  ( , l a ) (x )  , of TfJ ,  
which is compatible  with the  Hi lber t  s t ruc ture  of : T ~  (and which depends smoothly  
on x). Then  we ident i fy  ~/'O with T * ~  as said before, so t h a t  ~ differential form 
on O will be an application ~ x ~ w(x ) s  A T . ~  (such a form is composed of n4 -  1 
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homogeneous components  of degrees p ---- 0, 1, ...~ n). The C ~ n-form , 11  which has 

value ( , la ) (x)  at  the point  x E ~  is called the volume form on ~ (associated to the 

given r iemannian s t ructure  and orientation). :For each x ~ ~ let , be the operation 

on A I ' ~  associated to the Hilbert  s t ructure  (.,  .) and to the orientation ( , l~)(x)  

of T , ~ .  I f  co is a differential form on ~ then we define ,~o to be the form 
( ,o~)(x)  = , ~ ( x ) .  

(1.2.2) The bounda ry  ]1 has a canonical Riemannian  s tructure defined as follows: 

since F is a C ® submanifold of ~ ,  there is a canonical inclusion T, Fc T,~ for each 
x e F (this identification will always be done); we take on T,F the I t i lber t  s t ructure  

induced by  tha t  of T ~ .  Note tha t  we have also identified AT~Fc AT,~ for any  

x e / ' .  Fo r  each x e F  let us denote v(x) the vector  in T ~  which is or thogonal  
to T,F, is oriented toward  the exterior of f2 and has norm 1. Then v: x ~-~ v(x) 

is a C ~ section of the tangent  fiber bundle of ~ over F (i.e. it is a restriction of a C ~ 

section over ~) .  As explained in 1.1; we can then define a eanonicM orientation on 
each T F which is compatible with its Hilbert  structure,  denoted ( , l r)(X);  it is 

clear tha t  this orientat ion is smooth as a funct ion of x, so it defines a canonical 

orientat ion of F. I f  , 1  r is the ( n - - 1 ) - f o r m  on F which takes the value ( , l r ) (x)  
in x ~ F, then it is a C ~ form and is the volume form ~ssociated to the l~iemann 

s t ructure  and orientat ion of F. Le t  *o be the , operation on T,I ~ (x ~ F) associated 
to its Hilbert  s t ructure and to (,ar)(x).  Then for any  form co on F we define ,o) 
as the form on F which takes the value *0o)(x) at  the point  x e F .  

I~E~AZ~I~. -- Let ' s  note for a moment  *oW this form; since we have identified 

AT, Fc A T ~ ,  any form o) on F can be considered also as a section of the fiber 
bundle A T ~  over /1, so tha t  we can define another  section ,~o by  ( ,co) (x)=  ,o)(x) 

for x e F ;  the sections *004 and ,(o of A T ~  over F are distinct, ,o) never being a 

section of A T F ;  bu t  since we shall never use ,~o if eo is a form on F, we make the 
convention of denoting ,co the form *oco on / ' .  

(1.2.3) Suppose now tha t  ~o is any  form on ~.  We define its tangential  (resp. 
normal) pa r t  as the form wo (resp. ~(o) on /~ given for x e F  by :  

(~co)(x)-~ ~o(x) (resp. (~o))(x)= ~o~(x)) 

(take E =  T ~ ,  Eo= T~I', u ~ v(x) in 1.]).  I t  is clear t ha t :  

(1) 

where we define ;/co by  the condit ion:  if ¢o is a p-form then ;/~o = (-- 1)~o~, for any  
form, on any manifold. 
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(1.2.4) Le t  tg~, f2~ be manifolds with the same propert ies  as t9 and ¢: tg~-~tg~ 
a C ® mapping. We denote  ¢~: T ~ I - +  T¢(~)~ the application tangent  to ¢ a t  the 
point  x e ~ .  I f  to is a form on ~2 then  ¢*to is the form on ~ defined by :  

i f  ¢ is a diffeomorphism and eo is a form on ~ then  q~,o~ is the  form on ~ defined by :  

= 

Coming back to ~ ,  let  i t :  F - ~ g  be the canonical inclusion. I t  is easily (1.2.5) 
seen t ha t  

for any  form co on tg. We deduce tha t  if co is a C ~ form on t9 then:  

(2) ~ dco = d w  

where in the left  side (resp. r ight  side) d denotes the operator  of exter ior  derivat ion 
on t2 (resp. on /~) .  I f  we denote  b y  ~ -  *d  g . - 1 :  (__ 1 ) , + l , d  . Z ~  the  operator  

of codifferentiation on tg, using (1) we obtain:  

(3) ~ ~o~ = - ~r~o 

for any  C ~ form oJ on ~ (in the r ight  side ~ denotes the operator  of codifferentiation 

on F) .  

(1.2.6) We shall call normal  char t  on ~ a correct ly oriented 6~ char t  (U, ¢) 
with the proper t ies :  

1) there  is a char t  (U', ¢') of ~ such tha t  U ¢  U' and ¢ =  ¢~IU; 

2) if U~/ '~---  0, then  ¢(U) ~ U :  B " ( 1 ) =  {xeR~I txt< 1}; 

3) if U N F ~  U 0 ¢ 9 ,  t h e n ¢ ( U )  ~= ~ - ~  (-- ] ,  0] × B " - ~ ( 1 ) =  {xeR~l - -  1 <  x~<O 
and (x~)~-k...-~ (x~)2<1}, ¢ ( U o ) ~  ~ o =  (0} ×B~-~(1) and in the coordinates asso- 
ciated to gl the coefficients of the metr ic  tensor  have  the  p rope r ty :  g~,(x) = 1, g,~(x)~ 0 
for  i =/= 1 ~nd x e ~.  

F r o m  p rope r ty  1-i t  follows tha t  in the coordinates of a normal  char t  the func- 

tions g~. have  extensions of class C ~ to a neighbourhood of /~ in R ~ such tha t  the 

ma t r ix  (g~) is uni formly posit ive definite on ~.  I t  is known tha t  any  point  on 
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has  a ne ighbourhood which is the  domain  of a no rma l  char t  (see for  exemple  Ch. B. 
M o ~ E Y  [16]). l~emark  t h a t  in no rma l  Coordinates the  coefficients of the  exter ior  

normal  a t  a poin t  p e Uo are:  v~(x) = v~(x) ~ 1; v~(x) = v"($) = 0 if i~>2 (x = ¢(p)).  
I t  is useful to in t roduce a canonical  extension of ~ to a neighbourhood of F in 
defined as follows: the  ne ighbourhood is a union of domains  of normal  char ts  wi th  
centers  a t  points  on F and  if p is in the  domain  of such a char t  then  the  coefficients 
of v(p) in the  respect ive  coordinates  are the  same as before.  The  definition does 
no t  depend on the  chosen no rma l  char t  and  the  extension so defined is clearly of 

class C ~'. 

(1.2.7) Suppose t h a t  (U, ¢) is a normal  chart with U 0 =  U(~ F=/: 0; then  (U0, ¢o), 
wi th  ¢ 0 =  ¢lUo, is a char t  of F, and if x~, x ~, ..., x ~ are the  coordinates  associated 
to  ¢, then  x~, ..., x-  are the  coordinates  associated wi th  ¢~. W e  denote  x =  (x ~, 
x ~, ..., x~), x ' =  (x ~, ..., x ~) so t h a t  x~--- (x~, x"). I t  is easily shown t h a t  for  24 i~ ,  ..., 
i~<n, for any  p - fo rm ~ on t~ and  x " ~ 0 ~ - B ~ - X ( 1 ) :  

(~) 

(5) 

(6) 

(7) 

(~,,)~....~,(x") = ~¢,..i ,(0, x") 

(vo~),0...,~(x") - -  co~,..,,(O, x") 

(~ ~ ) i  .... ~(x") = - ~ o ~  .... ~(0, x") + ( ~ ) ~ , . . . ~ , ( x " ) -  
t ~ d  

l! ~ f f  l! 6 t! - (v~(o,  x ) A(~o~)(x ))~,...~,+ ( w ( o ,  x )A ( ~ ) ( x ) ) ,  . . . .  

where ~, means  the usual  de r iva t ive  wi th  respec t  to x ~ and  the  opera tors  d, ~ in the  
r igh t  member s  are those corresponding to  F. H e r e  Vv is the  covar ian t  der iva t ive  
of v, i.e. a C ~ tensor  in the  ne ighbourhood of F, and ,.~, °A, A ~ are algebraic opera- 
t ions (exterior p roduc t  and contrac t ions ;  we do not  need to know more  abou t  t h e m ;  
details are given in the  proof  of theorem f rom 2.3 in GEOgGESCU [10]). 

1.3. Sobolev spaces of forms and a trace theorem. 

(1.3.1) L e t  JC=(~9) = C~(A/2~) be the  Fr6che t  space of all the  C = forms on ~ (its 
topology  is t h a t  of the  un i form convergence of the  fo rm and of all i ts der iva t ives  
(in local coordinates) on any  domain  of chart)  and JC~(f)) the  subspace of forms 
which are zero toge ther  wi th  all their  der iva t ives  (in local coordinates)  on F, prov ided  
wi th  the  induced topology.  L e t  .~-~(~9) be  the  s t rong dual  of Je~'(sP). We  suppose 
known the  definition of the  real  H i lbe r t  space JC(tP) of (equivalence classes of) square- 
in tegrable  differential  forms on ~ .  The  scalar p roduc t  of u, v e J~(~) is: 

(U, V)O,D=f(~, V)~¢ :l~=fU/\@~ 
t2 
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where we have denoted (~, v) the (equivalence class of the) real function ~ e x  ~-~ 

~-+ (u(x), v(x)) e R .  Let  IIulIo.a= v/(-~ u)o. a.  
(1.3.2) Le t  (U, ql) be a normal chart  on f2 and ~ =  ¢(U), so tha t  ~ is either 

on open ball, or the union of on open cylinder with one of its bases. For  any  s >~ 0 

we denote L~(~) the real par t  of the Sobolcv space H~(~) (LIO:NS-I~/~AGENES [13], 
chapter  I ;  the fact  tha t  ~ does not  have a C ~ boundary  in the second case will be 
of no importance in what  follows. If  you  prefer, round off the corners of the cylinder 
and define a normal  chart  by  demanding tha t  the image of ¢ be the obtained domain). 
We ident ify a differential form on ~ with the set of its coei~cients in the canonical 
base of R ~  so t ha t  a form on ~ is a function 

~o:K]->R ~ ,  ~o={e% .... ~ l O < p < n , l < i ~ < . . . < i ~ < n }  

(we define w t .... ~ for any i~,...~ by  ant isymmetry) .  Then J~(~)  is by  definition the 
topological direct sum of 2 ~ copies of L~(~), the components of its elements ~o being 
denoted ~%.. ,~, as before, l~emark now tha t  ¢* induces a topological isomorphism 
¢ , :  j~o(~-)-~ J~(U) (the last  space being a subspace of J~(9)). :For any  s > 0  we shall 
define the hilbertizable topological vector space J~(U) by t ransport  with qi* (the 
space obtained is independent  of ¢). 

(1.3.3) For  any  s>O let: 

JC~(~)~ {~oeJ~(~2)l for any  domain U of normal chart :  colUeJC~(U)} 

provided with the weakest topology for which all the applications JC~(f2)~co ~-+ 
~-+ co I U e JC~(U) are continuous. I t  is easily seen tha t  if {U~}~= 1 ..... N is a finite covering 
of ~ with domains of normal charts and for each i: Ii "[Is,~, is a norm on J~(U~) which 
defines its topology, then:  

N 

(s) It oL,.= Z till 
i=1  

is a norm on JC'(f2) which defines its topology. In  particular JC~(~) is a hilbertizable 
real topological vector space (which for s = 0 coincides, as topological vector space, 
with JC(f2)). We also denote Je~(~2) the closure of J~( f2)  in j~8(~) (using theorem 9.3 
chapter I,  LIONS-MAGE~ES [13], it is easily seen tha t  JC~(~) is dense in each J~(/2)). 
Then, if s < 0, JGs(f2) will be the strong dual of J~o~(~), so tha t  it  is a hilbertizable 
topological vector space (Remark:  if s < -- ½ and F ¢ 0, then the space JC~(f2) jus t  
defined does not  coincide with the space .~" introduced by  PALAIS [18]). 

I f  s~ > s~ > 0 then:  

c c 
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each space being continuously and densely imbedded in the following one. The 
given Hilbert  s tructure on J~(~) allows us to identify canonically ~ ( ~ )  with its 
strong dual. Then, by  transposition, we obtain canonical continuous imbeddings: 

~7(~9) c ~ ( s p )  c ~ , ( ~ )  c ~ (~)  c :~-~(~) c ~e-~(~9) c ~-~(~)  

each space being dense in the following one. We will always make these identifica- 
tions. I f  ( . ,  .} is the dual i ty  between JEo(f2 ) and J~-~(~), then its restriction to 
J~°(~2) × J~-*(O) (s>0)  will be equal to the restriction of the dual i ty  between J~(~(2) 
and JE-*(f2) to the same spac% so tha t  we can denote by  (u, v) (which we also ident ify 
with (v, u}) the value of the linear functional veJ~-*(~2) at  the point ueJ~(~2) 
for any  s > 0 or s ~ c~. In  particular,  if s = 0 : (u,  v} = (u, v)0,~: Le t  s > 0, ][ "]I,,a 
any  norm which defines the topology of Je~(~2) and for co e J~(O): 

(9) I[o~11_,,~= sup {l(u, V)o,~l lu e ~o(-~) ,  Itul],, .<l}. 

Then the topology on J~(~2) associated to [I "l[-~,a coincides with the topology induced 
by  J~-~(~2). 

(1.3.4) I t  follows easily from Sobolev lemma and theorem 11.5, chapter 1 from 
LIO~S-M~GE~ES [13] tha t  Je~°(~2)= N J~(~2), (JE~(~2)= ~ J~(~))  the topology of 

s~>0 s~0  

J~o(f2) (resp. J ~ ( ~ ) )  being the weakest one such tha t  all the inclusions J~o (~ )c  
c J~(~)  (resp. J~(9)cJC~(~2)) are continuous. By  dual i ty :  J~-~(~2)---- ~J ~-~(D), its 
topology being the finest one such tha t  J~-*(.(2)c Je-~(f2) is continuous for any  s>~0. 

(1.3.5) Let 's  prove tha t  for sl>~s2>O and 0 < 0 < 1  we have [JG~.(~2), JCs~(~)]0---- 
= JC(1-°)~l+°~(f2) algebraically and topologically (we follow LIO~S-MAGEEES [13] in 
notations).  I t  is sufficient to consider s l =  m =  integer and s2= 0 (see the proof 
of theorem 9.6, chapter 1, LIONS-MAGEI~ES [13]). I f  U is a domain of normal chart,  
then using Calderon's extension theorem (in case U has corners) it is easily shown 
tha t  there is a continuous linear mapping E:  JE°(U)-+ Je0(~2) such tha t  E(u)]U= u 
for any  u eJCo(U), the restriction E]Jem(U) being a continuous mapping JC"(U)-+ 
-~ Je~(~). Moreover~ we can choose E such that ,  for a given compact subset K of U, 
if s u p p u c K  then (Eu)(x)=- 0 for x $  U. Using a part i t ion of un i ty  it  can be shown 
tha t  any u E JC(~-°)~(f2) is a sum of elements from J~(~-°)~(~2) each having its support  
in a domain of normal chart  (working with a norm of the type  (8) and using theo- 
rem 7.3~ chapter 1 from LIO~'s-MAGENES [13], we easily see tha t  if ~ is a C ~ func- 
t ion on ~ with support in a domain of normal chart,  then co ~-+ ~w is a continuous 
application in JE~(~2), any  s e R). So, in order to show JE(1-°)~(~2)c [JC'~(~2), JC°(~2)]0 
it is sufficient to consider ueJe(~-°)~(f2) with s u p p ~ c K c  U. We have chosen E 
such tha t  E(u] U) -~ u. But  u[ U e j~(~-0)~(U) = [JC~(U), JE~(U)]0 (this is seen in local 
coordinates; since /~ may  have corners~ use in theorem 9.1, chapter 1~ ~IONS-I~A- 



170 V. GEOR~ESCU: Some boundary value problems ]or di]]erentiaI ]orms, etc. 

GENES [13], Calderon's extension theorem). By interpolation E maps [J~(U) ,  J~(U)]o 
continuously into [J~(tg), 5C°(f2)]0, so that  u e[J~'~(f2), J~°(f2)]0. Reciprocally, eo ~-+ 
~-~olU is a continuous linear application J~"(~9)-~J~°(U) and J~( tg)-->J~(U).  In- 
terpolating, it will also be a continuous application 

[ ~ ( 9 ) ,  ~(.~)]~-~ [~,~(~), 5¢~(~)]0 = :~(~-0)~(~). 

From the definition, we obtain [ J~(~) ,  ;E~(~9)]0c J¢(~-°)~(~(2)algebraically and topo- 
logically. Since algebraically this is an equality and since the spaces are hilbert- 
izable, the proof is finished. 

(1.3.6) If ueJC~(~), then eo-+uA~o is a continuous mapping J~(.V2)-+J~(f2) 
which is also continuous for the topology induced by  J~-®(f2) (this is seen by  writing 
explicitely the transposed application). Since J~o(~) is dense in J~-~(~9), this applica- 
tion has a unique continuous extension to J~-~(f2) (same notation). I t  is easily 
seen that its restriction to J~(~9) (any s e R) is a continuous application J~ (~ ) -+  
--~ .~(~9). 

(1.3.7) The operators d, ~ clearly map ;E~(f2) continuously into itself and for 
u, ve;Eo(~9): (du, v)o..~= (u, ~v)o. ~. In particular d, ~ are also continuous for the 
topology induced by  JC-~(~9), so that  they have unique extensions to continuous 
applications J~-~(t~) -~ J~-®(f2), also denoted d, ~. If u e JC~(~9), v e J~-~(~9) then: 

(du, v} = (u, ~v>, <~u, v> = <u, dr}. 

Moreover, if s e R and s # ½, then d, (~ map JG~(£2) continuously into JC~-~(tg). If  
the boundary F =  ¢, then this is true also for s = ½. 

PROOF. - For s a positive integer, it is obvious; by  interpolation we have the 
result for any real s > l .  Clearly, if s>~l, the restrictions of d, ~ to J~(~)  will be 
continuous operators Je~(tg) -~ ~-1(f2) (since d(~(~9))  c Je:(~9) for example). By  
transposition we obtain the result for any real s <0. Then we interpolate the con- 
tinuous operators d: J~°(tO)-+ J~-l(f2) and d: J~(f2)-~ J~°(t~). If  1" =/= 0, for s = ½ we 
have the usual problem (see theorem 12.4, chapter 1, LIO~S-MASE~ES [13]). 

(1.3.8) We also define A = d ~ + ~ d  as a continuous operator in JC-~(tg); it 
leaves JC~(Y2) invariant and its restriction to this space is continuous for the ;E o- 
topology. For ueJCo(tg),  v ~  (tg) we have 

<Au, v> = <u, Av>. 



¥ .  GEOl~ESCV: Some boundary value problems ]or di//erential ]orms, etc. 171 

(1.3.9) Finally,  we note  the following t race theorem:  

Tn~o~E~.  - Le t  s > ½ and So the greatest  integer such tha t  so< s -  ½. Then  
there  is a unique linear continuous applicat ion 

~ ( t 2 )  ~ ~ ~ { ( ~ ,  ~o~), (3 6o~, v d~) ,  (3 6d~,  ~ d ~ ) ,  ... 
$o 

. . . ,  (3 dd~ ... o), ~, d~d ... m)} ~ ® (~--~-~(F)  ® ~ - ~ - ~ ( F ) )  

s .  o ~ e r a t o r s  s~ o l ~ e r a t o r s  

which extends the application na tura l ly  defined on JE~(~9). This applicat ion is surjec- 
t i re ,  in par t icular  i t  has a continuous r ight  inverse (since the spaces are hilbertizable).  
Moreover,  the kernel  of this applicat ion is JE~(tP). 

We shall not  give a detailed proof of this theorem since, using a par t i t ion  of 
uni ty ,  we are reduced to the  case suppu  c U-----domain of normal  char t  with 
U o :  U n F ~ ~, so t ha t  we can consider U a cylinder in R" and o) such t h a t  its 
suppor t  intersects one of the bases of U and is at  a s tr ict ly posi t ive distance f rom 
the rest  of ~U; then  the  theorem is a s t ra ightforward applicat ion of theorems 9.4 
and 11.5 f rom chapter  1 of L~O~S-MA~E~ES [13] (a detai led proof for s ~ 1, 2 is 
given in GEOg~ESCU [10]). We remark  only t h a t  one can prove  (by induct ion on r 
and using the relations (4)-(7)) for any  integer r~>0 the following formulae (where co 
is a C ~ p-form, 2<~i~, ...,i~<~n, and the coordinates are normal) :  

1) I f  r is even:  

~ X r / \  ~* 1 rt ( r O d  ~o)~ .... ~ j ~=(~co~ .... ~,) (0, x") . . . .  ÷ / t ~ , . . . , , ( x  ) ,  

¢ operators 

/I _ _  XH) 2 rl (v d~ ... ~o)~=...~(x ) - -  :k (~%~,...~)(0, ÷ R~,...~(x ) 
operators 

2) I f  r is 

Here  R ~ ( i ~ 1 ,  

odd:  

(3 ~d ... ~)~,...~(x") = :k ( ~  %~,...~,)(0, x") ÷ R~,...~,(x"), 
~,, T r 

operators 

X rl • l~,...i~(X ) (~d~. . .o~) , . . . .~(  ) = ± ( ~  .... ~ ) ( O , x " ) ÷  4 ,, 
r 

o p e r a t o r s  

. . . ,4 )  are expressions of the form:  

t n "~k 

k o p e r a t o r s  k operators 

where _P~ are polynomials (with coefficients dependent  of x") in the tangent ia l  deriva- 
t ives 32, ..., 3~ of order < r - - k .  
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2. - Some est imates  for the operator A. 

2.1. The estimates. 

(2.1.1) We shall first recall the estimates tha t  we need from the scalar case. 
Le t  R ~ =  {xen~lx~<O}, n ~ - ~ =  { x e n ~ l x ~ =  0), U =  ( x e n : l - - l <  x'<O, ( : ) ' +  . . .÷  
÷ ( x ~ ) ~ < l ) ,  U o ~ r h R  --~. Le t  g{; ( i , : = 1 ,  . . . ,n) be a set of functions having 
extensions of class C ~ to a neighbourhood of the closure of ~ in R ~ and such tha t  

g " ( x ) ~ > e ~ l ~ l  ~ for some constant  c >  0, any  x e ~  and ~ e C .  Then for any  in- 
i = 1  

teger r~> 0 there is a constant  e > 0 such tha t  for any  ] e L~(~) with s u p p / c  ~ :  

(10) 

(11) 

~l[/ll~+,,~,< [Ig'~,~lIl,,~-I- Ii/[lo,~-+- 

c]i/ll~+,,~ < Ilg"ai~:ill,,e÷ II/]1o, ÷ II  itl il +,,eo. 
See (1.3.2) for the notat ion and LIOI~S-MAGEi~ES [13], theorem 5.1, chapter 2 for 
the proof of a much more general case. 

(2.1.2) Suppose now tha t  co is a p-form in Je~(O) having its support in the domain 
of a normal chart  (U, ¢) with Uo= U n F ~ :  O. Let  c5 ~- ¢-1"co) so tha t  all its coef- 
ficients are in L~(U) ( ~ =  ¢(U), ~o---- ¢(Uo)). l~ecall tha t  (z~)~,...i, ~ gi~E)i , . .~ ,  ÷ 
÷ (DcS)~,..~, where D is a first order differential operator (system). Suppose more- 
over tha t  A~o e Jg'(~) and veo e J~+'(F), ~ do) ~ J~½+'(F) for some integer r~> 0. Take 
i ~ z l  and 2<i~, ..., i~<n. Then formula (5) shows ~5~,...~]~0eZ~+~(Uo) and from 
the expression of z ~  it follows g ~ 5 ~  .... ~ eL~((~) if r~>l. Using (10) we obtain 
~5~,z,...~ ~L~(U ) if r ~ l .  Take now Mso i~>2, using (6) it  follows ~oS~,...~lUoeL~+~(Uo) 
since dr~oeJ~i+'(F). Using again the expression of z ~  and (11) we will obtain 
eS~, ~ eL~(~) if r~>l and i~>~2. So tha t  o)eJ~S(~2). In  case r>~2, we continue in 

g ~  L~(/~), etc.) and fi- this way (now we have (D~5)~,...~ ~L~(~) so tha t  ~5~,...~ e 
nally we obtain m e J~+ ' (~) .  

On the other hand~ an application of (10) gives: 

where ~ = ¢~*r~o, ¢o = ¢[U0 (see 1.2.7). I f  i~>2 also, we apply (11): 

+ 

where we have used (6). Bu t  in d ~  all the derivatives are tangential  (since il, i~, ..., 
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i~>2) so t ha t  

} = 1  

Using this and additioning the estimates obtained for various values of i~, . . . , i~,  
we obtain:  

oll~iI~+,,~< ! l~[b,o-t-IID~II, ,~÷ [l(Ollo,O÷ II¢~[la+~,oo÷ I}~"~ll~+,,oo • 

~u t  IID~ll~,~<ell~llx÷~,~<~ll~lI~+~,~÷ k(~)l[~llo,~ for any e > 0, with k(e) independent  
of c5. Taking e sufficiently small and going back to ~2: 

(~2) 

where co is supposed to h~ve support  in U. We have supposed Uo# 0, bu t  in fact  
exactly the same proof shows tha t  this inequali ty is also true if Uo --  ¢1 and supp co c U 
(in this case suppo~C~F~ ~), so tha t  the last  two terms are missing; the proof is 
even simpler, since ~51~,...~fU0= 0, ~c5~....~[/~o= 0). 

Suppose now tha.t o)eJCS(~2) has any  support. Le t  (0,)~=1... ~ be a part i t ion of 
un i ty  subordinated to a finite covering of ~ with domains of normal ch~rts. Then 

R 

(o---- ~0/o)  and:  
i = l  

iV 27 

~=i i=I 

But zJ(0~o~) differs from 0~zJo~ only by a first order differential operator applied 

to ~o and vd(0~o) ---- 0~IF.v do~ ÷ v(d0~Aeo). From this we get that (12) is true for any 
o~ e ~(f2). 

(2.1.3) F rom (12) it  is easily obtained another  inequality,  in which ro~ is replaced 
by  ~o~ and ~ dee by  ~ &o. For  this i t  is sufficient to apply (12) to *o~ and to use 
A , ~o ----, A ¢o, ~ ,  co ~ (-- 1)~,  ~co, ~d * o) = (-- 1)~+~+~ ,-~ ~ ~w if oJ is a p-form (the 
operation , is a topological automorphism of J¢'(/2) for any s). One can also replace 

II~11~+,,~÷ [l~ a~II~+,,,~ by  [l~co]I~+,,r÷ ]l~wI[~+~,r, the proof being essential]y the same 
as before (but simpler, since we use only (10) in connection with (4), (5)). 

(2.1.4) We have proved: 

T~EO~E~. - Le t  r~>0 integer and w~J¢~(/2) such tha t  dcoeJ¢~(/9) and one of 
the following conditions is filled: 

1) ( ~ ,  ~o) e ~ + ~ ( r )  ® JC~+~(r); 

3) (30, w ~0~) eJC'~+~(F)@ J¢~+~(/'). 

1 2  - A n n a l i  di Matemal ica  
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Then co e :E'2+~(t9). Moreover, there is a constant e > 0 (independent of co) such that 

I t  will be shown in (3.2.4) that  we can replace r by any real number > 0 (in fact the 
above proof is valid ~]so in this case, since (10), (11) are true for any real r > 0 ) .  

(2.1.5) We shall describe now some consequences of the preceding theorem. 
Using ~ lemma due to Peetre (lemm~ 5.1, chapter 2, LIO~S-MAGE~'ES [13]) it follows 
that  the continuous applications (any r>~0 integer): 

(13) ~+'(~9) ~ ~o ~ (Ao, we, ~o)~ J¢'(~9)® JC~+'(F)® Jd+'(F) 

(15) J¢~+~(~9) ~ o ~ (~/o, , o ,  w ~ ) a  ~ ( 9 ) ®  ~ + ~ ( F ) ®  ~ + ' ( F )  

have finite dimensional kernels and closed images. Moreover, the preceding theorem 
shows that the kernels are independent of r being equal for the second (resp. third) 
application to: 

H,(Y2) = {w e JE~(f2)IzJ~o = O, vo~:  ~d~o= 0) ,  

(resp. 

H,(~ )  = {~ e ~ - ( ~ ) I d ~  = 0, ~ = ~a~  = 0 ) ) .  

By a unique continuation theorem due to ARONSZAJ~c-KI~ZYWIOK-SZAI~SKI [1]-(see 
also MORLEY [16] theorem 7.8.3) it follows that  the first application is in fact injec- 
tire, i.e. if o e JC2(~Q), L/o~ -~ 0, we~ ---- v(o ~ 0, then eo = 0 (use formula (18)). 

(2.1.6) We shall denote ~ ) ,  ~ ) ,  ~ )  respectively the applications (13), (16), (15). 

The theorem (2.1A) shows that:  

Im 1S~):= Im 13~ ¢~ (~ ' ( f2)O JE~*¢(/') 9 ;E~*'(/')) 

and similarly for ~,(~), ~(~).. Moreover, since the image of ~ )  (resp. ~ ) ,  ~ ) ) i s  closed, 
it will be equal to the polar set of the kernel of the t r a n s p o s e d * ~  ) (resp. *~) ,  ~'5~°)). 
~or exemple the transposed ~(~) is a linear continuous application 
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and (v, % ~)E Ira ~0) if and only if 

(16) (v, u)o,o + (% a)  + (% fi) = 0 

for any (u, a, fi) e Je(tP) O JC-~(F) ® ~-½(N) such tha t  *~-(O)/u ,,~ ~ , % f i ) = 0 .  We shall de- 
termine later on the elements having this proper ty .  

2.2. The Diriehlet iorm. 

(2.2.1) Zf u, veiEl( tP)  then:  

(17) (du, V)o,~-- (u, c~V)o,~= (Tu, ~V)o,r. 

Indeed,  since J¢®(~2) is dense in JCl(f2) and using theorem (1.3.9), it  is enough to 
consider the case ~, v EJC~(f2). Bu t  then:  

(du)A * v = d(uA * v) ~ u A d  * Xv = d(uA * v) ~- uA  * ~v 

and the formula follows from Stoke's  theorem, (1.2.5) and (1). 

(2.2.2) The Dirichlet  form is the bilinear continuous form on Jet(f2) given by :  

~(u ,  v) = (du, dU)o,~÷ (~u, ~V)o,o . 

I f  u e JC~(~2) and v ~ J~(f2) then, by  using (17), we obtain the first Green's formula:  

(18) (Au, V)o,a~- ~(u ,  v) + (v c)u, ~,V)o.v-- (v du, "rV)o,r. 

If~ moreover,  v eJC2(E2), then we easily get the second Green's formula:  

(19) (Au, V)o,a-- (u, Av)o,~ =- ('ru, ~, dv)o,r-- F ('r c~u, VV)o,r-- (vu, 7: OV)o,v-- (v du, -rV)o,v . 

(2.2.3) Let  j~l(~) (resp. JC~(E2)) be the subspace of co e JC~(~2) such tha t  Too = 0 
(resp. vco ---- 0). I t  will be shown later (see 4.2.6) tha t  the form ~) is not  closed (on 
~¢~(~)). However ,  it is known tha t  its restrictions O~, O~ to JC1~(~2) and Je~(E2), 
considered as densely defined bilinear forms in the l:Iilbert space J~(.Q), are closed 
(this result  is due to G ~ ¥  [9]; see also GEo~ESCV [10]). Clearly, its restric- 
t ion ~D~ to Jeo~(f2) will also be closed. Let  z], (resp. A,, A~) be the posit ive selfadjoint 
operator  associated to ~ (resp. ~ , ,  ~ )  (see theorem 2.1, chnpter  VI,  K ~ o  [12]). 
Then it is known tha t  A~= AlIEn(f2), A,----AIJ~(~),  A ~ =  A ] J ~ ( ~ ) ,  where Jet(f2) 
(resp. ;E~(~9)) is the set of co e J~(f2) such tha t  "rco = "r &o = 0 (resp. vo~ = v dw = 0) 
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~nd J¢~(9) = JC](zP) (~ JC~(D). This resul~ was implicitely proved by Ch. B. Mom~]~Y 
(see [16]), essentially by  considering i t  as a regular i ty assertion for elliptic systems. 
Another  proof, based only on ~irenberg 's  regulari ty theorem for scal~r second order 
elliptic operators, is given in [1.0] (where only the operators A~, z~, are considered, 
the problem for z]~ being similar and simpler). 

(2.2A) We quote now a result  which will be necessary in a moment ,  an easy 
consequence of theorem 8.3, chapter 2, Lm~S-3IA~E~ES [13] (see also L m ~ s - ~ -  
~E~ES [14] for a shorter proof). Le t  0 be an open bounded subset of R ~ with  C ~ 
boundary  ~0, 0 being locally on one side of ~0. Le t  A be a(scalar) differential oper- 

ator of order 2m with coefficients of class C ~ in a neighbourhood of ~ and which 

is properly elliptic in ~.  Le t  ] e J ~ ( 0 )  ( =  th  closure of Co(U) in Z~(0)) be such 
that A]eL~(O) for some integer r > - - m .  Then / e L ~ + ~ ( 0 ) .  

(2.2.5) We shall need later on an assertion which we prove now, namely tha t  
a =  A~]J¢~(/2) is a topological isomorphism of J¢0~(~) onto JC-~(tP) which sends 
JC0~(t2) c~ JC*(Y2) onto ;E(~). 

PROOF. -- I f  U, V e Je0~([2) then (u, A2v) : (Au, AV)o,o so tha t ,  by  Lax-Milgram 
1emma, to prove the first assertion it is sufficient to show tha t  [1Au[]o,a>e][u[]2,a 
for some e > 0  and any  ueae~(.(2). Using theorem (2.1.4) we obtain eIlul[2.a< 
<]]Au]10,~-k ]lU]]o.o. On the other hand,  the kernel of the positive operator A D is 
zero (see 2.1.5) and (1 q- A~)) -1 is compact  (since the canonical injection J~z(O) c JC(f2) 
is compact),  so t ha t  there is e >  0 such tha t  eIIUllo,Q<flzluI[o, a for any  u eJe~(~) ,  
which finishes the proof of the first assertion. I~et u e Jgo2(~) be a p-form such tha t  
AZu e ag(~), we must  prove u ~ J~4(/2). I t  is sufficient to show Ou e J~(~(2) for any  e ~ 
funct ion 0 with support  in a domain of normal chart  (U, ¢). I f  O = ¢ ( U ) ,  ~ '~= 
: ¢-~*(Ou), then  ~'~e5~(O) and:  

where D 8 is a third order differential operator (system). I t  follows tha t  the left  
member is in L~I(0),  and from (2.2.4) we get (0"~t)~...~ eL~(0) ,  so tha t  ueJC~(Y2) 
(in case U n F ve 0, 0 has corners, bu t  supp ~u is at  a positive distance from them 
~n4 we can apply 2.2.4). Repeat ing the argument  we obtain u e j¢4(~). Q.E.D 

(2.2.6) Remark  also tha t  the restriction of A to J¢~(~) is a topological isomorphism 
of J¢o~(~9) onto ~--1(~). Indeed, since z ] ~ > e > O ,  we have also ~ > V ~ > 0 ,  so 
t ha t  V / ~  is a topological isomorphism of jCl(y)) (the domain of the form 9 D asso- 

2 elated to AD) onto ;E($2). In  part icular  tl tIl,~<eIIv/-~Du]l~,~ ~- cff)(u, u) for any  
u ~ JCl(t)) and the assertion is a consequence of Lax-Milgram Lemma. 
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3. - Some boundary value problems for the operator /~. 

3.1. Trace and density theorems related to the operator A. 

(3.1.1) ~or  each s > 0  we define 

ae*,a(t2) = {co e ae,(t2)lAco e ae(ap)} 

and we give to i t  the graph topology (i.e. the weakest one for which the applications 
JC~'~(~9) ~ co ~-* co e JC~(D) ~nd .~,~(.(2) ~ co ~-~ Aco e J~(D) are continuous). Then JC~,~(D) 
is a hilbertizable topological vector space, which for s ~ 0 becomes a t t i tber t  space 
JC°'~(Y2) ~ .~(Y2) when it is provided with the scalar product :  

(u, V)o,~,.= (u, V)o,. ÷ (~u, Av)o, ~ . 

I f  s > 2 ,  clearly JC~'~(~)= JC,(.Q). We denote A~ the restriction of A to JC~(/2), 
considered as a closed operator in the Hilbert  space JC(~). I f  Ao is the restriction 
of ~ to JC~(L2), then z~0 is symmetr ic  ~nd A * :  z]~ (A* being the t t i lber t  space 
adjoint  of the operator A). 

(3.1.2) LE)e~h. - JC~(/2) is ~ dense subspace of JC~(~). 

P~ooP. - I t  is enough to show L1*= (d~IJC~(~9)) *. Since LJ0cLt*cA~, this equal- 
i ty  is a consequence of (A~IJC~(f2))*cL10 which we shali show. I~ the p-~orm co is 
in the domain of (A~IJC~(tP)) *, then there is w e JC(~9) such tha t  for any  u e J~(Y2) : 
(Au, co)o,a---- (u, w)o, a. Le t  (U, ¢) be u normal chart,  U = ¢(U), and ~ -  ¢-~*(vlU ) 
if v~JC(Y2). Then, if u, ve~(Y2) are p-forms a~nd s u p p u c  U, we have:  

U 

So, for ~ny u~JC~(~2) with s u p p u c  U: 

Y 

l~ecall tha t  (A"u)~...~-~ g~J~ ~4~,...~,-~ (D4)~,..u , where D is a first order differential 

operator with C ~ coei~cients in a neighbourhood of ~ (in R"). In  particular,  if U) 
is defined by:  

U U 
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for ~, y~eJ¢o~(~), then  tD induces a continuous operator ~D: J¢(O)-+J¢-~(~). We 
• " " '*~' ... g~¢~V~ in ~ and equal to zero in denote ¢o~ -'*~ the function equal to c%,..~,g 

R * ~ .  Similarly is defined w~ ' ' ' '~. I t  follows tha t  for any  ~ e 3¢o(R~) with support  
in a sufficiently small neighbourhood of zero in R ~ we have:  

Ra 

which can also be wri t ten:  

=fq~,.. . ,  W~o ''''~" dx 
Rn 

(q~,...~, 3~3¢(g~co~o "' '~) q-(tDcoo)~'"~> = (?~'"'~G w~'"~> 

where <., -> is the dual i ty  between test  functions and distributions in R ~. In  par- 
ticular, we will h~ve: 

~ O~(g'co~ "*~) = w~) ~ ' ' ' ~ -  (~Dcoo)~,...~ 

in the sense of distributions, in a neighborhood of zero in R ~. Since (tDcoo)~'"~* is a 
distr ibution in L2_~ in this neighbourhood, an application of theorem 3.2, chapter  2, 
LI0~WS-MAG~ES [13], gives ~, i~ 2 O~o" e L~ in some neighbourhood of zero in R b  for 
~ny i~, ...,i~. By a new application of the same theorem, we obtain o~ o ~ ' ' ' ~ r ~  
in some neighbourhood of zero in R ~. Then it  follows easily tha t  the function equal 
to @, . .~  in ~ and equal to zero in R~\ \C ~, is in L~ in some neighbourhood of zero 
in R ". This shows tha t  each point  of ~ has a neighbourhood in which ~ is in 3¢ 2, 
so tha t  co e J¢~(~2), ~ being compact. Moreover, if the domain U was such tha t  
U c 3 F # 0 ,  then  we would have ~O~o'"'~*(x ~, x')----0 for x ~ > 0 .  A s tandard  argument  
shows then tha t  ~ e JEo~(/2) (see the first few lines of the proof of theorem 11.4, 
chapter  1, LIONS-MAGENES [13] and also theorem 11.5, same place). Q.E.D. 

C0~0LLAg¥. -- Ao is a closed, symmetr ic  operator in JE(Y2), having J£o(~9) as a 
core. I t s  adjoint  is A~. 3E~(~2) is a core for A~. 

(3.1.3) We shall s tate  and prove now a first trace theorem related to the 

operator d .  

THEO~CE)¢. -- There is a unique linear continuous application: 

JCz(t2) ~ co ~ (30, vo~, ~ ~ ,  v do) ~ ~-~-(F) ® ;E-~(F) ® JC-~(F) ® JC-~(F) 

which restricted to J¢~(/2) is the same as tha t  of theorem 1.3.9 for s ~ 2. The kernel 
of this application is J¢o~(~). I f  u ~J¢ ' (~)  and v ~JEz(.O) we have the generalized 
second Green formula:  

(20) (Au, v)o, ~ -  (u, Av)o,~ = @u, ~ dv> + @ Ou, vv> - @u, ~ &> - @ &q ~v>. 
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PxcooF. - Let 's  note Au----- (~u, vu, v au, vdu),  A 'v-= (~,dv, -- 7: av, vv, -- vv). I f  
Yo-~ 5~(F)  ~) JC~(F) ~ JC½(F) G ;E½(F) then  its strong dual  is 35 '~  J~-~(F) • 

;E-~(F) ~ JC-~(F) ~ JC-½(F). We identify35 c 35~ as usual, by  defining: 

4 

(% ~')= ~(~i, ~)o,. 
i ~ l  

if % ~e35.  Then (see (9)): 

llv, l l~,= sup {1<~, ~>1 Iv ~ 35, II~I1~< ~} 

(where [1 "II~ is a norm defining the topology of ~ )  is a norm on 35 which defines on 35 
the same topology as t ha t  induced by  35'. Remark  tha t ,  if u ~JC~(Q), v e J~( f2 ) ,  
then  Aue35, A've35 and (19) becomes: 

(Au, A'v) -= (Au ,  v)o,.~-- (u, Zlv)o, ~ . 

On the other hand,  we know tha t  there is E :  J~-~JC~(~9) linear continuous such 
tha t  A E ~ - ~  for any  ~E35 (theorem 1.3.9). So tha t ,  for any  ~e35 :  

from which we get:  

i.e. 

(% A'v) = ( A E %  v)o, ~ -  ( E %  dr)o, .  ~ 

lJ A ' q l ~ '  < c[jvl[o,~,.,~ • 

The first assertion of the theorem follows from the lemma (3.1.2) and from the 
cont inui ty  of the inclusion J@(f2)c JCz(.C2). Then the generalized Green's formula 
follows easily by  continuity.  Finally,  let v ~ Z ( f 2 )  be such tha t  zv = vv = T $v-~ 

~- v dv = 0. F rom the formula just  proved we obtain:  (du,  v)o.z= (u, LlV)o.z for any  
u E ;E~(~Q). Since Je'2(tg) is a core for A1, i t  follows v e D(d~) = D(LJo)--- JC~. Q.E.D. 

I t  wilt be proved later on tha t  the mapping defined in this theorem is not  
surjective. 

(3.1.4) LE~IA.  - For  any 0 4 s 4 2  we have:  

[,.W,:,~(,Q), 5-e.,%.,,9)]1_~/2 = .~',.%.,O) 

as topological vector spaces (see LIO~S-MA~E~s [13], chapter 1 for interpolation 
theory).  
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PROOF. -- We follow the proof of theorem 7.2, chapter  2, LIO~S-MA~E~ES [13]~ 
i.e. we use theorem 14.3, chapter  1, loc. cir., wi th  the identifications: 

x = ~ ( ~ ) ,  

Y = ~ ° ( 0 )  , 

~ = A ,  

m = £ = m = ae(o) 

= aeo(~), ~ = g , =  ae-,(~) 

9 = A a  - ~  , r = -  0 

where a: JCo~(f2)->JC-~(~2) is A~IJE~(~2). Taking into account  (2.2.5) and the closed 
graph theorem we see t ha t  g is a continuous applicat ion JE-~(f2)--~JE(~2) and 
JC(~) -+ J~2(~2). Q.E.D. 

COROLLARY. -- JC~(~2) is a dense subspace of .J~S'a(f2) for  any  s > 0 .  

(3.1.5) THEORElVL -- :For any  s > 0  the restr ict ion of the applicat ion defined in 

theorem (3.1.3) to JGs'a(~2) is a continuous applicat ion 

~,a(~9) ~ ~ - ~ ( F )  ® ~ - ~ ( F )  ® 5¢~-~(F) ® ~ - ~ ( F ) .  

I f  u ~ J~l(f2) and v ~ JC~'a(~), then  we have the generalized first Green formula:  

(u, Av)o, ~ = ~ ( u ,  v) ÷ <~u, ~ &> - <~u, v dr>.  

PROOF. - Taking into account  (1.3.9), (3.1.3) and (3.1.4) the first assertion follows 
by  interpolat ion.  The last formula  is obtained using the preceding corollary and (18). 

Q.E.D 

(3.1.6) The above t race theorems can be improved in one respect. Namely,  

we define for any  s > 0 : 

~,A,-~(~9) = {~ e ~ ( ~ ) I A ~  e ~-~(~)} 

provided with the graph topology (see 3.1.1), so tha t  it  will be a hilbertizable top- 
ological vector  space which coincides with JE"(/2) if s >  1; we also denote  JCa'-l(/2)---- 
= ~o,~,-1(O). 

T ~ E o ~ ] ~ .  - I f  0 < s < I then:  

~cs,A,-I(~e~) ~___ [ aC l (~ ) ,  ~A'- I (~¢~)]I_  s 

as topological vector  spaces, ae~(/2) is dense in each Je'/"-~(~). There  is a unique 
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linear continuous applicat ion:  

,~ ,-~(f~)  ~ ~0 ~ (To, w )  e JC-~(F) ® JC-~(F) 

which res t r ic ted to JC~(f2) is the  na tura l ly  defined one. I t s  kernel  equals ~ ( f 2 ) .  
The  restr ict ion of this appheat ion  to J~'z'-~(~2) is a continuous apphcat ion  

ae~,',-a(D) -+ ~¢~-}(F) ® ~ - ~ ( F )  

(it will be proved  la ter  t ha t  this application is surjective for any  s>0) .  I f  ~ e ~ ( ~ )  
and v e ~ A ' - ~ ( D )  then:  

(21) (An, v)o.~= (u, Av> ÷ (3 ~u, vv> -- O' du, vv> . 

PBoov.  - The interpolat ion formula  is p roved  exact ly  as in (3.1.4), b u t  choosing: 

X = ~ ( ~ ) ,  ~ = ~, = ~ = ~ -~(~)  

with the same ~, G and r. Rema rk  only t h a t  9 is also a continuous application 
JC-~(~2)-->J¢1(~2) (by interpolat ion).  I t  is sufficient to prove  the densi ty  assertion 
for s = 0, the general  case being a consequence of the interpolat ion formula.  Le t  
o e J C ~ ' - l ( ~ ) .  Using (2.2.6) we find O)oeJ~(f2) such tha t  d o J ~  Ao0. We can ap- 
p rox imate  oo in J¢~ (so tha t  also in JCJ.-~) wi th  elements f rom J ~ ( ~ ) .  On the other  
hand  o - -  ¢o0~J¢~(~2), so t ha t  we can approximate  i t  in J¢~ (in part icular ,  also in 
JC ~'-~) with elements  f rom J¢~(.(2) (see 3.1.2), which finishes the proof of the  second 
assertion. L e t  veJC~(~)  and u ~ ; ~ ( f 2 ) ,  then  we have  

since ueJC~(D). Using (1.3.9) we choose a linear continuous E :  JC½(F)G JC~(F)-> 

--> J¢~(~2) n JC~(f2) such tha t  ~ ~E(~, fi) -~ ~ and v dE(~, fl) = fi for any  ~, f ie  JC½(F), 
and we cont inue as in the proof of theorem (3.1.3). Then,  b y  interpolat ing between 
the applicat ion we get  for s = 0 and the  application given b y  (1.3.9) for s ~ l ,  we 
obtain the  case 0 < s < 1. The formula  (21) is easily p roved  b y  cont inui ty .  Suppose 
now tha t  ro ~ JCA'-I(~) and zo  = vro ~ 0. Then  there  is ¢%e J¢o~(/2) with A¢o ~-dro0, 
so tha t  e o -  ooe JCz(Q), A(o  ~ Oo) = O, -¢(o-  wo) = ~,(~o-- Oo) = O. We show tha t  v =  
= o - -  oo is zero. F r o m  (20) i t  follows veD(A*~). B u t  A ~=  AD, so t h a t  veJ¢~(~)  
and Av ~ 0, and a theorem of Morrey (see 2.1.5) gives v = 0. Q.E.D. 



182 V. GEORGESCU: Some boundary value problems for dif/erential forms, etc. 

3.2. Boundary value problems for ~ .  

(3.2.1) We re tu rn  to the  problem left  open in (2.1.6), namely  we want  to deter- 
t (o)(~t, mine which elements (u, ~, fi) e ~ ( 9 )  ~ ;E-~(F) ® ~ - ~ ( F )  have  the  p rope r ty  ~ . . 

~, fl)-~ 0. Equ iva len t ly  we can wri te  this ~s: 

(Ao~, U)o,~÷ @o, ~> ÷ <~d~o, fl> = 0 

for any  co e J~*(/2). Taking first w e J~  we obtain Au = 0, so tha t  u e ;E~(Y2) and we 
can use (20), so tha t  the preceding relat ion becomes: 

for  any  oJ E ;E~(~). The sur jec t iv i ty  in theorem 1.3.9 implies: uu ~- v du = 0, ~ (~u = ~, 
v u = f l .  Using (20) again we see tha t  ueD(/I*~)=D(A~,)  so tha t  u ~ ( ~ ) , v u =  

2 : ~ du = 0 and Au = O, i.e. u eH~(~9). Moreover,  we will also have  0-~ l]V~U]to,.~ = 
-~ (u, A,u)o,r~= ~D.(u, u), i.e. du = Ou ~- 0. We have obta ined u e H~(~), ~ =- w (~u-~ 0, 
and /~= wu. Reciprocally,  it  is clear t ha t  for any  u e H ~ ( D )  tT~°)(u, O, wu) ~- O. 

(3.2.2) Combining (2.1.6) and (3.1.3) we arr ive to the conclusion tha t  for any 
integer r>~0 the image of ~*) equals the set of elements (v, ~, ~ ) ~ ( ~ ) ®  J ~ + ' ( F ) ®  
• ;E'~+'(F) with the p rope r ty :  

(v, O~)o,~÷ (% ~O)o.r = 0 

for any  coeH~(.Q), t~easoning as in (2.1.3) i t  follows t h a t  in the  case of ~ )  the 

condit ion on (v, ~, F) changes in: 

(v, ~)o,~-- (W, v~°)0.r= 0 

for any  o ) e H  (Y2). On the other  hand,  ~ )  is an isomorphism for any r. Indeed,  
we know tha t  i t  is injective, so we must  only show its surject ivi ty.  B y  (2.1.6) it  
is sufficient to show tha t  t ~ )  is injectivc. We apply exact ly  the same method  as 
in (3.2.1) and we see tha t  if t ~ ) ( u ,  e, ~) = 0, then  Au ~- O, ~ t  ~ ~u == O, ~ (~u-~ ~, 
~du = -  ~. Using (20) we obtain u ~ D ( A * ) - ~  D(A~) and A u =  O, i.e. u ~ - 0  a~nd 

g = fl = 0, which finishes the  proof. 

(3.2.3) Tn~EORE~. -- 1) The l inear continuous applicat ion 

(22) ~ ( ~ 9 )  ~ u ~ (Au, ~u, ~, du) ~ ~(t~) ® ~ - ~ ( F )  ® :~-~-(f) 
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has finite dimensional kernel equal to H~(£2) and: 

(23) H~(~) = {to e J~(Q)] dco = &o = O, ~(9 = 0}. 

I t  has also a closed image of finite codimension, an element (v, % ~)cJe(£2)Q 
• ;E-½(F)O ;E-g(/") being in the image if and only if, for any o~aH~(~9): 

(24) (o,, V)o. ~ + < ~ ,  ~> = o .  

Let u e J ~ ( t g )  and s>O. Then u~J¢~(D) if and only if 3ueJgs-2(~) ,  vu~Jes-½(F), 
v dueJ¢8-~-(F) (the first condition is automatically verified if s<2) .  

2) The above theorem remains true if we replace (~u, v du) by (ru, • ~u), H,(Y2) 
by H(£2) which is also: 

(25) H ( P . )  = ( ~  e ae-(~9)Ia ,o = ~ o  = o,  ~o~ = o} 

and the condition (24) by:  

(26) (~,  V)o,a-- (vw, y,} = 0 

for any co e H (.(2). 

PlcooF. - Remark first that  we have proved in (3.2.1) that  for any u~H~(~) :  
d u =  (~u= O, i.e. (23) is true. The operator dr:  ~ ( ~ ) - ~ J ~ ( ~ )  is continuous and 
has closed image (since ( I+A~)  "-~ is a compact operator in Je(Y2)). By closed 
range theorem, its transposed tar: iE(~) -> (JC~(Y2))' has a closed range equal to the 
polar of the kernel of zJ~, i.e. of H~(~). Let (v,% F ) a J ~ ( ~ ) O  ~ - ~ ( F ) G  J~-t(F);  
we associate to it the following element of (JG~(~))': for to e JC~(~): 

(~o, (v, % ~)) = (,o, v)o.,~ + ( m ,  ~} + @ ~o~, ~ ) .  

Then (v, % ~) is in the polar of H~(52) in (J~(~)) '  if and only if (24) is true. In this 
case, there is u eJe(Y2) such that t J ~ u =  (v, % ~), i.e. for any co e Je~(~2): 

(~o,  U)o,.o = (o~, V)o..+ (~o, ~,} + (~ &o, ~ ) .  

Taking first o~Je~(Y2), we obtain A u . ~ v ,  in particular u~Je~(tg). Then we use 
(20), so : 

and theorem 1.3.9 shows ~ d u =  % ~u~-of. This proves the assertion about the 
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image of the application u ~-~(du, vu,~,du). On the other hand, if u~J~a(~9) and 
A u =  ~,u-~ v d u :  O, then (20) shows A ~ u =  0. Since A ~ :  A~ we get ueH~(F2). 

By (2.1.5), (2.1.6) and (3.2.2) we know tha t  for any integer r>~0, ~ )  has finite 
dimensional kernel H~(zP) and closed image of finite codimension equal to the set of 
elements (v, % ~) eJ£~(tP) ® J~+~(F) ® J~½+r(F) which verify (24). We interpolate 
and use theorems 13.2, 13.3~ chapter 1, LX0~s-MAGE~ES [13]. So tha t  the preceding 
assertion remains true for any r~> 0 (not necessarily integer). Then we shall inter- 
polate between ~o) and the application (22). An application of lemma 3.1A proves 
the theorem. Q.E.D. 

(3.2.4) For s > - - 2  we denote ~ )  the application: 

~(~) = ~(j~)I;E~+~,~(~9): ~'+~,~(9) -~ ~ ( ~ ' ° ) ( 9 )  ® J~+~(F) ® ~'+½(F) 

where ~(-2) is the application (22). We have proved that  ~ )  is continuous. On 
the other hand, using the fact tha t  j£s+2,~(~)¢ j¢~+~(~)c JC(f2) with compact injec- 
tion if s ~ 2 >  0 together with lemma 5.1, chapter 2, L~o~s-M~E~Es [13], we get 
tha t  the second and third inequalities in theorem 2.1.4 are true for any r e R ,  r ~ - -  2 
if we replace IIAcoll~.~ by HAcot[m~x(r,o),~ (for r - ~ -  2 the inequality is trivial). 

(3.2.5) THEO~E)L - For any s > - - 2  the application: 

(27) .~+ 2,%Q) ~ u ~ (Au, wu, ~,u) e ~(~,o)(.c2) ® JC~+~(F) ® ~ + ~ ( F )  

s a topological isomorphism. If  moreover s re--½, then:  

(28) ,E '+~,a,- l (O)~u ~ ( A u ,  wu, ~u) a ~(~ ' -~)(~9)  ® ~ '+~(F)® ~*+~(F) 

is also a topological isomorphism. 

t~ooF.  - The application (27) is denoted ~6~ ). We know that  ~6~ ) is an isomor- 
phism if s~>0 integer (see 3.2.2). We shall prove that  ~6(D -~) is also an isomorphism 
(then the first assertion of the theorem follows by interpolation, using 3.1.4). First  
of all, if A u =  w u ~  ~u = O, then (20)gives d ~ u =  0. But  a lp=  LJ~ and KerAD----- 
~= {0}, so ~6(D -~) is injective. On the other hand, since zip: ~(/2)--~J£(.0) is an 
isomorphism, its transposed tAD: J6(9)->(J£~(f2))' is also un isomorphism. If  
(v, ?, ~0) e J£(~) O JC-½(F) • J¢-½(F) we associate to it the linear continuous form on 
JC~(f2) given by: 

(co, (v, % ~o))= (co, V)o,n÷ @ ~co, ~ ) - -  @dco, ~ ) .  

Let  u e J6(K2) such that  t a b u  : (v, % ~), i.e. for any ~)e JC~(K2): 

(Aco, u)o.~= (co, V)o.n÷ (w ~co, ~} - @d~,  ~} .  
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E x a c t l y  as in the proof of (3.2.3) f rom this iden t i ty  we get u ~ ~z(f2),  ~v -= zu, ~ = vu, 
Au ~-v,  which proves the  sur ject ivi ty  of ~3(~ -e). Le t  ~(0 be the  applicat ion (28). ~ D  

I f  s>~0, then  ~ ) : =  ~3~ ). Using (3.1.6) and theorem 6.1, chapter  1, L~o~s-MAGE- 
~ES [13], we see t ha t  i t  is sufficient to show tha t  ~(-e) is an isomorphism. This is ~ D  

proved  exact ly  as before, bu t  taking v e JE-l(f2) and replacing (o~, V)o.~ by  <~o, v> 
(since ¢o e 3 ~ ( ~ )  c JE~(D) this makes sense). Then  in place of (20) is used (21). Q.E.D. 

(3.2.6) The sur jec t iv i ty  assertion in theorem (3.1.6) is now evident.  Let ' s  prove 
t ha t  the  mapping f rom theorem (3.1.3) is no t  surjective. I f  u eJE~(~),  then  there  
is a unique  uoc J¢~(~) wi th  Au-~  Auo. Le t  c o ~  u - -  Uo, then  w e J¢~(~) and z]m= 0. 
So t ha t  (3.2.5) shows t ha t  T ~o~ and v d o  are uniquely  defined b y  ~o~ and ~o~. Since 

~u ~ ~ & o ~  ~ 5%, v du ----- v dco-~ ~, duo and ~ ~uo, v dUo~ JC½(F), we see t h a t  if ~:u, vu 
are given, we cannot  choose arbi t rar i ly  ~ 8u, v du in 5¢-~(/'). 

4. - Some boundary value problems for the operators d, ~ and applications. 

4.1. Trace and density theorems related to the operators d, ~. 

(4.1.1) We begin with a general densi ty  theorem for first order differential 
operators  wieh w~s essentially p roved  by  FRIE])~IC~S [7]. I f  ~ is a C ~ vector  bundle  
over  ~ provided  with a r iemanni~n s t ruc tnre  and s e R ,  we denote  J~*(~) the  Sobolev 
space of sections of ~ defined in a way  similar to t h a t  of (1.3.1)-(1.3.3) (see also 
1)ALAIS [18] for  s ~ 0 ;  bu t  for  s <  0 our space JC~(~) is the  dual  of 3Eo~(~) ' so i t  is 
different f rom the space in t roduced  b y  Palais).  Le t  ~ be another  C ® vec tor  bundle  
over ~ provided wi th  a r iemannian  s t ruc ture  and P a first order differential operator  
(with C ~ coefficients on ~)  f rom ~ to ~ (see 1)A]~AIS [18], ch. 4, § 3). We can define 
the action o f / )  on any  3E~(~) in the sense of distributions.  Then  we define for each 
s, t E R :  

and we give to i t  the  graph topology (see 3.1.1) so t h a t  it  becomes a hilbertizable 
topological vec tor  space. Le t  3C~(~) be the vector  space of C ~ sections of ~ over ~ .  

TtIEOI~EI~L -- I f  S, t e R  are not  of the  fo rm - - k - - - ~  wi th  k ) 0  integer  and if 
t<~s, t hen  JC~(~) is a dense subspace of JEs'P.~(~). 

(4.1.2) In  order  to prove  this theorem we need some pre l iminary considerations 
Le t  i ~  { x e R ~ t x l <  0} and R ~ _ be  its closure. Le t  j:  R~-->R be a C ~ function,  
j>~0, j(x) : 0 for {x]~>l , with f i ( x ) d x - ~  1. I f  e >  0 we denote  j~(x) = e-~j(e-lx). We 

R n 

denote  by  e e R  ~ the  vec tor  (1 ,0 ,  ..., 0). Re ma rk  t h a t  if x~R"_, the  funct ion 
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~,(x-- 2ee - - .  ) has aupport  in the  interior  of R ! .  Following FlcI]~DRICtIS idea (see [7]) 
we define for any  dis tr ibut ion u in ~_~ x e R ~ _ and e > 0: 

(J~u)(x) = (~(x - -  2ee-- .), u} =J]~(x-- 2ee -- y)u(y) dy 
n; 

(the second equal i ty  being formal). Here  u can be a vector ia l  distr ibution (with 
values in a finite dimensional vec tor  space). Clearly, J~u is a C" funct ion on the  
closure R'_ and has compact  suppor t  if u has compact  support .  Also for any  e:  

D~J,u----J,D~u as C ~ functions on R~_. 

(4.1.3) L E ~ .  - Le t  s ~ R  not  of the form - - k - - ½  with k~>0 integer. Then 

L ~/~. the  restr ict ion of J~ to ~ ( _ )  is a bounded operator  in L2(/~_) which converge 

s t rongly to id~](~) when e -~  0. 

t'~OOF. - I f  s is a posit ive integer the assertion is evident  (use D~J~u -~ J~D~u). 
I t  will also be t rue  for any real s~>0 by  interpolat ion (use theorem 5.2, chapter  1, 
LI0~S-lgAOE~ES [13]). By  the same theorem, it  is enough to prove  t h a t  the ~ssertion 
is also t rue  if s - - - - -  k where k>~0 is an integer (use theorem 12.2, chapter  1, LI0~S- 
3[AGE~C]~S [13]). For  ~ e J~(l~_) ( =  closure of C~( I~)  in L~(t~_)) and x e R ~ _ let:  

(J*cf)(x) ~- f~( - -  x - -  2ee+ y)cf(y) dy . 
R? 

$ 
Then J * ~ J ~ ( / ~ _ )  (supp~ is in the set x~< - s) and I]J~q~II~,R~<~ellq~]lk.R~_ with C in- 

* ~,2tR" ~ a n d  u e L 2 ~ ( ~  ). dependent  of e and ~. ]~oreover:  (J~ % u~ ~ (% J~u~ if ~ ~.~k . . . . .  
This shows tha t  tlJ~u]l_k,R~<~eIfuIl_~,R~ for any  s > 0  and ueL2k(R~_), with C in- 
dependent  of s, u. So t ha t  i t  is sufficient to prove  ttJ~u-uIl_k,R~--> 0 for  a dense 

subset of u in L2_I¢(~_). Take  this subset as L~(R~_); then  IIJ~u--uII_k,R~<cttJ~u- 
- u]]o,R~-> o. Q.E.D. 

(4.1.4) LElvr~A, - Le t  

P = ~., A~(x)-~x ~ + B ( x ) ,  
i = 1  

where Ai(x), B(x) are k × m matr ices of class C ~ in R'_ and with compact  support .  
suppose tha t  s e R and s 5 - - k - - ½  if k > 0  is an integer.  Then  for any  vectorial  

dis tr ibut ion o~ in/~'_' wi th  components  in ~ ( _ )  we have for e -+  0: 

II ( P J ~ -  J,P)o)It~,R~_ --> o . 

PROOF. - Suppose the assertion proved for any  integer s. B y  interpolat ion,  using 
theorem 5.2~ chapter  1, LIO~S-MAGE~ES [13], we obtain the assertion for any  s. 
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Suppose now tha t  the lemma is true for s >  0 integer. I t  will be clear from the 
o 

2 R ~ proof tha t  any  operator of the form P J , - -  J~P is a bounded operator j~( _; R ~)-+ 
- ~ ( R _ ,  R ~) (usual notation) with a bound independent  of e. Since the adjoint  

of the operator P J , - - J ~ P : L  ~ ( R ~ i R  ~) 2 ~ -~, _ -->L_~(R_;R ~) is essentiMly o~ the same 
form (see the proof of 4.1.3), it  follows thnt  this operator is bounded uniformly in e. 
As a consequence~ in order to prove the assertion of the 1emma in the c~se - - s ,  it  
is sufficient to show [[ (PJ~-- J~P)co l[- ~,R~--~ 0 for ~o in a dense subspace of L 2_ ~(/~ ; R~). 
As in the proof of (4.1.3) we take this subspace equal to L2(/~_; R~)~ which finishes 
the proof. 

In  conclusion~ it  is sufficient to consider the ease when s is a positive integer. 
Clearly P J ~ - - J ~ P  is a bounded operator L~[/~ ~ ' ~  _, R~)-~L~(/~_~; R ~). We prove first 
tha t  it  is bounded uniform]y in e. I f  o0: R~_--+R "~ is of class C ~ and has compact 
support then for any ~: 

= ~fA ~ D~fB(x) f l (x--2ee--y)co(y)dy (D~'Pg~o)(x) D ~(x) fi(x -- 2ee -- y)~o(y) dy + 

fl<~ \PIJ  

where we have used the obvious relation 

~-Sfl(x) -=e-%-%~j) (e-~x)~e-~(~j ) , (x ) .  

Now we use D ~ / ( x - - y ) =  (--1)lZrD~/(x--y) and integrate by  parts :  

(Z 1 (D~-PJe~o)(x) = fl~ ( ~ ) f  e- ( ~ij)e(x -- 2ee -- y)(D~x-~A i)(x)(Dflco)(y) dy + 

A similar calculation gives: 

(D~J~Pw)(x) -- ~ ( f l ) f e  (~O)~(x--Pee--y)(D~-~Ai)(y)(Dflo~)(y)dy + 

+ fl ~(x -- 2ee -- y)[(D~'-BB)(y) -- (D~'-~ ~A~)(y)](D~o)(y)dy. 
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So t h a t :  

(D~(PJ~ --  J~P)a)) (x) ---- 

= ~ ( ~ a ) ~ ( x -  2ee - y)e-~(D~-eA~(x)  - -  D ~ - e A ' ( y ) ) ( D e m ) ( y ) a y  + 

0~ . 

Since under  the  first integral  Ix--y[ < 3s always,  we have  e-~[D~-~A~(x)-- D~-~A~(y)I < C 
independen t  of s. I t  follows easily: 

tlD~(PJ~ - J~P)coIIo,a~ < C Z IlD~wlto,a ~ - 

wi th  C independent  of s and  o), which shows the  un i form boundedness  of the  opera tor  
PJ~--  J~P. 

To finish the proof,  we m u s t  still show I I (PJ , - -  J~P)o)l l~,~-~0 if ~o is, for ex- 
ample ,  of class C ~ in RL. B u t :  

(D~PJ~w)(x) = ~ fi ~(x-- 2se--  y)(n~-~AO(x)(D~,w)(y ) dy ~- 

~- ~, ~(x -- 2ee -- y)(D~'-~B)(x)(D~ oo)(y)dy 

(D~ J~P~o)(x) = ~, ~(x 
~<~ 

-- 2se -- y)(D~-~Ag(y)(D~ G~o)(y)dy q- 

f rom which the  resul t  easily follows. Q.E.D.  

(4.1.5) P~O0F OF TI-IE01CE~[ (4.1.1). -- I f  t < s - - 1  then  j~s,P,t($)= jes($) so t ha t  
we consider only s - - l < t < s .  I f  ~ is a C ~ funct ion on 9 and  ~oeJesP,t($), then  

~o~ e Je~'P't($) so tha t ,  using a par t i t ion  of uni ty ,  we are reduced to the following case: 
c R"  wi th  the  induced r i emannian  s t ructure ,  $ and  ~ are the t r ivial  bundles  9 × R m 

q~ 

resp. ~ × R~ with  euclidian r i emann ian  s t ructure ,  P = ~ A~(x )G+ B(x) where A ~, B 
i = 1  

are k × m matr ices  of class C ~ as funct ions of x on 9 .  Moreover,  o ) =  (~ol, ..., co~) 
wi th  o)~eL~(Q), Peo = (w~, ..., w~) wi th  w~eL~(9) and suppa)  is contained in a cyl- 
inder U =  (--1~ 0 ] × B ' - ~ ( 1 )  (see 1.2.6). B y  modifying A ~ and  B in the  exter ior  
of U we can in fac t  suppose 9 =  RL, A ~ and B being C ~ in RL and  with  compac t  
support .  Then  J ~ o  is C ~ in RL, has  suppor t  in U (small s) and  l[J~o--o~l]~,v-->0. 
Since co eL~(RL;  R m) cL~(RL; R m) ( t< s )  we also have  [IJ~Peo-- PJ~a)l]t,v---~ O. B u t  

IIg~Pco-- Po)l[t,v-->O so t h a t  I1PJ, w - -  P~oIIt, v-->O. Q.E.D.  
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(4.1.6) For  each s>~0 let  ~ ' a ( D )  (resp. J~,~(~); jff,a,~(~)) be the vector  space 
of the  co e J~(~2) such tha t  do  (resp. ~co; de) and 8co) is an element of J~(~), provided 
with the graph topology. I f  s = 0 we denote  J ~ ( ~ ) ~  j~0,~(~) and so on and we 
consider them as t t i lbe r t  spaces with the scalar products  (respectively):  

(4.~.7) 
~'~'~(.0). 

(u, V)o,~,n - -  (u, v)o,n-}- (du, dV)o, n , 

(u, v)o,~,~ ---- (u, V)o,~÷ (~u, ~V)o,~ , 

(u, V)o,~,~,~= (u, V)o,~÷ (du, dV)o,r~÷ (~u, ~V)o,~ ~ . 

L~,~[~.  - For  any s > 0 ,  J~(£2) is dense in each space ~,a(F2), J~,o(.(~), 

1)~oo~. - I t  is a corollary of (4.1.1). I n  the case of J~S,~,~(~) one takes ~ ~ A T ~  
~ / = / k T ~  A T ~  (fiber direct sum) and Pco = (do), ~co). Q.E.D. 

(4.1.8) THEOlCE~. - 1) There  is a unique linear continuous application 

~ ( 9 )  ~ m ~ wco e ~C-~(F) 

whose restr ict ion to JG~(~) coincides with the natura l ly  defined one. This applica- 
t ion is not  surjeetive. For  any  s > 0, s =/: ½ its restr ic t ion to Jff,d(f2) is a continuous 
application of this space into JC~-½(F). Similar assertions are t rue  if we replace d 
and w by  ~, resp. v. 

2) I f  co e J~d(f2) (resp. w e JC~(~)) then do) e JCd(Q) (resp. (~co e JCo(~)) so tha t  
w de) (resp. v ($co) makes sense. We have  w d o ) =  dTco (resp. v ~co = -  ~uco). 

3) Suppose tha t  0 < s  < ½ and u e  Je"d(D), v e J~-~(f2), or u~(~l -s (~) ,  v~S,6(~). 
Then:  

PgooF.  - I f  u e J ~ ( ~ ) ,  v e Je~(D) then  for any 0 < s  < ½ we obtain f rom (17) (tak -r 
ing into account  the fact  t ha t  for such s: J ~ ( ~ ) ~  ~ ' ( Q ) ;  for this, apply  theo- 
rem 11.1~ chapter  1, LI0~S-MAGE~ES [13]): 

where we have used the fact  t ha t  s =/= ½~ ]l "lls,~,n being a norm on JC~,d(~) which 
defines its topology. Bu t  Jel-~(~(2) ~ v ~-~ vv e JC½-s(F) is a continuous surjection (s<½; 

1 3  - A n n a l i  d~ Malemat ica  
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see 1.3.9) so it has a right inverse: E:  J~½-~(F) -~ J~-~(F). So that, for any ~ e JC½-~(F) : 

and from (9) we obtain llvuli~_½,r<e!Iutf~.~. ~. Now the first part  of the theorem is 
a conseqnenee of (4.1.7) (and 1.3.9 for s >  ½). Then the second part  follows by 
continuity and density {see 1.3.7). This also shows the non-surjectivity in 1), since 
if ~ =  ~eo with o ~ ( ~ )  then it has the property ~eJ~-½(I ") and d~eJC-½(F). The 
third part  follows from (17) with a limiting procedure. Q.E.D. 

(4.1.9) Let JC~(D) be the closed subspace of JC~(f2) defined by the condition 
~o~ = 0 and d~= d]J~(~), do= dI~(f2  ) considered as operators in J~(f2). Similarly 
are defined JC~(~2), 3~ and 3o. Then an easy consequence of (4.1.8) are the relations 

* * $ * 

d~= 3o, do=  ~ ,  3~ = do, 3 o = d~. Also, ;E~'(Y2) (resp. JC~(.(2)) is a core for do and 3o 
(resp. d~, 3~). Clearly Imd~cKerd~, ImdocKerdo and similarly for 3~ and 3o. 

(4.1.10) Let's prove the relations 

A ,  d*d ÷ * * * = dld~= 3od~-q-d~3o, A~:dodo~dod~= ~do-~do3~ 

and A~= d'do÷ 3"~3o= 3~do-~- d~3o (see 2.2.3). Indeed, A~c 3 o d ~  d~3o is clear. Since 
A~ is self-adjoint and 3od~d13o is certainly symmetric, we must have equality. 

(4.1.11) From this it follows easily that  J ~ ( ~ ) n  JC~(f2)= JC~(~) and JC~(12)(~ 
(~ JC~(~)= JC~(~) (this theorem is due to Ft~IED~tCHS [8]). Indeed, it suffices to 
remark that  the bilinear form associated to A~ is equal to that  associated to d~ d~-  3o 3o 
(this being a form-sum), for example. Then we obtain that  the operator -- sums 
3* ÷ 30 = d~ + 30, d~ -~ do = do-4- 3~ are selfadjoint operators and A~ = (d~ -~ ~o P, A~ = 
: (3~q-d0)  ~. Also, the operator sum do÷3o (with domain JC0~($~)) is closed and 
As---- (dod- 3o)*(do-~ 30). I t  can be shown that d ~ -  31c (do2~ ~o)* strictly. 

(4.].12) We shall need later on some facts related to Hodge-Kodaira orthogonal 
decomposition as given, for instance, by Mom~EY [16] (see also GE0~ESCU [10]). 
Since (1-~ A,) -1 is a compact operator in JC(D), the spectrum of the positive self- 
adjoint operator ll~ is discrete. So that, if E~, is the orthogonal projection of JC(~) 
onto the finite dimensional space H~(f2)= Ker/l~, the operator ff~ in J~(f2) which 
equals (A~(1 -- EH~))-~ on JC(~) O H~(~) and is 0 on H~(f2), will be a positive compact 
operator in JC(P.), with kernel H~(~) and whose restriction to JC(£)) Q H,(.Q) is a 
topological isomorphism onto JC~(~) G H~(~2) (the direct difference being with respect 
to ( ' ,  ")o.~2). Similarly we define f t .  Then by a direct calcul~tion one shows 



V. GEo~o]~scu: Some boundary value problems/or di/]erential ]orms, etc. 191 

(as operators in JE(~)). An easy consequence are the relations: 

~do¢~6~= ~ ~ doS~C~do --= do 

which in turn imply that  the closed operators (in 3¢(~)) d~, do ~ ,  ¢3o have closed 
images. Also they show for example that  the restriction of d to (3¢~(~2) ~ H~(zP)) C~ 
n K e r ~  (resp. of 6 to (3¢~(~2)~H,(.C2))nKerd~) is a bijeetion onto Imd~ (resp. 
I m ~ )  and having ~o~llmdi  (resp. do~IIm~l) as inverse. 

On the other hand, applying closed range theorem to the operators d o and 6o 
we obtain: 

~ ( ~ )  = I m d , ®  Ker ~o-= ImdoO Ker (~1. 

A more refined decomposition is a obtained by  remarking that 

Ker do = Im do ® H~(f2) 

Kerd~= I m d ~  H,(E2) 

, Ker ~o= Im ~o(~ H,(f2) , 

and Ker ~ = Im ~1G H,(D) . 

4.2. Boundary value problems for the operators d, (~. 

(4.2.1) L ] ~ A .  - 1) The linear continuous application: 

3¢~(i9) ~ u ~ (du, ~u) ~ 3¢(I2) ® JC--~(f) 

has closed image. An element (v, ~)e3¢(/2)O 3E-~(F) is in the image if and only 
if v E I m d l  (which is equivalent to dv-~O and v_LH~(~))), de?--= ~v and for any 

~ I t  (t}) : 

(~, V)o,~-- <,~, ~> = 0 .  

2) The linear continuous application: 

3¢~(f2) ~ u ~ (~u, vu) ~ 3¢(t9) ® 3¢-~(f) 

has closed image. An element (v ,~)eJe(~)Q3~-½(F)  is in the image if 
and only if v~Im81 (i.e. ~v~-0 and v ± H ( ~ ) ) ,  ~q~:--~v  and for any oJEH,(E2): 

(oJ, V)o,, ÷ <~co, ~> = 0 . 
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P ~ o o F .  - Let  v e lmd~ and ~ e J¢-½(/~) wi th  d?  = ~v, (o~, v)o. ~ -  @co, ~ )  = O, Vo~ 
H~(f2). Le t  u e JU(f)) with du : v. Then, if co e H~(D) : 

@~), ~> = (o~, V)o, ~ = (~o, 4U)o, ~ = @~o, vu) 

so tha t  @~o, v u - - ~ >  = 0 for any  o~eH~(f2). On the other aand, if y ~  3¢~(_F) then:  

@~,  ~ u -  q~) = (~,, d v u -  d~v) -= (~ ,  v v -  dc?) = 0 

so t ha t  for any  ~e36~(/"), ~ e H  (f2): 

We prove now tha t :  

{,o)l~ e ~e~(.o), ~ = o} = { ~ + , ~ I ~  e ~ ( F ) ,  ~, e ~ ( 9 ) } .  

I f  F e 36~(/"), there is ~ E 5£~(f2) wi th  u~ =---  F. Then 3~ e 3£~(K2), ~ = 0 and u ~v~ 
= - - ~ = -  3~v which proves one inclusion. Suppose ~e3E~(K2), &o=-0.  Since 
w e Ker  ~ I m  3~® H~(f2), it  is su~c ien t  to suppose c~ e ~ ( z ? )  (3 Im 3~. As explained 
in (.4.1.12) we will have ~do'$,o.~-= co which implies u e o = -  3~doff~w a.nd the proof 
is finished by  an ~ppHcation of (3.2.3) which gives ff~o~ e 3£~(.Q). 

We have proved tha t  for any  ¢o e36~(~) with ~o~ = 0 @co, wu--~} ~ 0. Bu t  
@w, ~u} = (w, du)o,~ -~ (~, V)o, ~ so tha t  (w, v)0, a -  (~w, ~v} -= 0 for any  w e ~(~2)  with 
&o =- 0. 

We know tha t  3: 3¢~(f2)->JE(.O) is a continuous operator with closed image 
equal to I m ~  (see 4.1.12) and with kernel .E~(f2) C~ K e r ~ .  By  the closed range 
theorem the transposed t6-J£(.O)-~ (3¢~(.Q)) ' has closed image equal to the polar 
set of Jet ( f2)n Ker  0~. I f  (v, ~)~  5£(f2)® 56-½(F) we ~ssoeiate to it  ~n element of 
(3~(z?)) ', also denoted (v, ~), by:  

(~ ,  (v, ~))  = (~, v)o..~- @~, ~ ) .  

So tha t  (v, ~v)~Imt~ if and only if (o~, V)o.~--@co, ~v} ~ 0 for ~ny c ~ 1 ( f 2 )  with 
3w = 0. On the other hand (v, q~)EIrn*~ means:  there is u eJ£(~)  such tha t  t~(u) 
-= (v, ~). Equivalent ly,  for any  co e J¢~(z9) : 

( ~ ,  u)o, ~ = ( ~ ,  *~(u)) = (co, (v, ~ ) )  = (~,  V)o, ~ -  @ ~ ,  ~ )  

which is clearly equivalent  to u ~ i~a(9),  du  = v ~nd ru  ~ ~v, so tha t  the first par t  
of the lemma is proved. We get the second par t  by  using operation *. Q.E.D. 
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(4.2.2) Tm~o~n~. - The linear continuous application of J¢~'°(/2) into JC(tg) 
• J¢(/2) ® JC-½(F) given by u ~ (du, ~u, zu) (resp. u ~-~ (du, ~u, vu)) has kernel H~(~2) 
(resp. H (tg)) and closed image. An element (v, w, ~) e J¢(/2) @ J¢(/2) ® JC-½(F) is 
in the  image if and only if the following three conditions are satisfied: 1) d r =  0 
and v_kH~(/2); 2) ~w = 0 and wJ H (/2); 3) d~ : ~v and (co, V)o,~ ~ -  {vo~, ~} = 0 for 
any  coeH~(t)) (resp. 3') ~ : - - ~ w  and (co, W)o.~ + @o~, 9} : 0 for any  co~H (/2)). 
Le t  ueJCa'o(tQ) and s~>0, s v e½. Then ueJ¢~(~) if and only if dueJC~-~(tg), Sue  
e J~-~(~2) and ~u e JC~-½(F) (resp. v u e  ;E~-½(F)). (The <( if ~) par t  is also t rue for 

s =  ~). 

P~oo~. - Clearly the kernel is H'(tg) (see 4.1.11). Also, the (( only if ~ par t  of 
the last assertion is contained in (4.1.8). Suppose now tha t  (v, w, q~)~ J~m~(°'~-~)(/2) 
O JCm~(°'~-~)(tg) O J¢~-½(/') for some s > 0 ,  conditions 1-3) being satisfied. We look 
for a u ~  JC(t~) such tha t  d u =  v, 6 u =  w, -¢u=~ .  Since v e I m d ~ ,  w e i m a r ,  the ele- 
ment  uo= 8o'$,v +dof f ,  w has the properties dUo= v, 6Uo = w, zuo = ~6off~v (see 4.1.12) 
and uoeJ~(~ 's)( /2) ,  ZUoeJCm~(½'~-~)(F) (see theorem 3.2.3). So tha t  we need to 
find ~ ; E ( t g )  such tha t  d ~ =  ~ :  0, ~ - ~  ~- -  Z~off~v. Le t  H ( / 2 ) =  {o~ J~(Y2)]dco = 

~w = 0}, then clearly J¢(~) = I m d o ~  I m d o ~  H(/2) (this is the Hodge-Kodaira  
decomposition and it  is an immediate  consequence of the fact  tha t  Ira do, I m  8o are 
closed). In  part icular  K e r d ~ =  I m d o ~  H(tg) from which we obtain:  

{~¢olco ~ Ker  d~} = {~wlw e H(~)} . 

On the other hand  lemma (4.2.1) shows tha t  F~{~olco~Kerd~} if and olfly if 
d F =  0 and (rw, ~p), = 0 for any  co~H~(~c2). In  conclusion, we can find 4~H( /2 )  
such tha t  ~ =  ~- -  T~o~V if and only if 0 = d~- -  d~(~o~v = dq~-- ~ d~o'$~v = dq~--~:v 
and 0 : @co, ~} -- (wo, z~o~v} : @(o, ~} -- (co, dbo'$~V)o.~ = @o~, ~) -- (co, V)o,~ ~or any 
w e l l  (~Q). M[oreover, remark tha t  A / ~ :  0, ~ :  ~ - -  VUo~JC~-½(F), z ~ :  0. F rom 
(3.2.3) we obtain ~ e J¢~(/2). Q.E.D. 

(4.2.3) C0~0LLAa¥. - For  any  s~>0, s~-½, there is ~ constant  e > 0  such tha t  
for any  u ~ JCd's(Y2) : 

'~ul  CNU!Is,~<tldUilmax(s-l,0),Y2-~ II ]tm~,x(s-l,0),D-~ ]]TUIls--~,F-~ !]U]I0,Q 

P ~ o o F . -  For  s >  0 we use lemma 5.1, chapter 1, LIOh-S-MAGE~ES [13] with 
E : 5e~.a,~(Y2), • : ~(tg),  G ~/Em~x('~- 1'°)(Y2) G .~m~x(~-l'°)(t~) ® J~8-½(F) and Cu : (du, 
~u, zu). Q.E.D. 

I t  is easily seen tha t  we can replace in these inequalities I[ "[]0,~ by any  seminorm 
['1 on Je~(Y2) having the proper ty:  tut~: if O ¢ u e H ( . ( 2 )  (resp. O:/:ueH,(~9)) .  
Rema~rk tha t  this kind of estimates is very  useflfl in the s tudy of hydrodynamic  
equations. 
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(4.2.4) C0]~OLLARY. - -  Let  s > ½ and so be the greatest  integer with the p roper ty  
s o ~ s - - ½ .  Let  veJCm~(s-~'°)(/2)and 9eJC~-½(F) be such tha t  the conditions 1) 
and 3) of (4.2.2) are verified. Then  for any  ~eJC~-½-~(P) (i-~ 0, 1, ..., So) we can 
find u e JC~(Q) such tha t :  du = v, ~u = ~, vu = Y~0, ~ ~u = ~ , v d ~ u  = %, ..., ~... (~d~u-~ 
: ~0~o (in the last relat ion there  are so operators d and ~ and y is v or ~ as so is even 
or odd). A similar result  is t rue  if we change d and ~ with 8 and v. 

P~ooF. - F rom (4.2.2) we deduce tha t  there is r o e  J¢~(/2) with d u o :  v, ~Uo= 0, 
~Uo= ~. Then  we look for u having the form u ~  uo+ du~ with ul+ J¢:+~(~) and 
~u~---- O, vdu~= Y~o-- vuo~JC~-½(P), v~du~= y~-- ~ u o e J ¢  ~-~-1 etc. The sur ject ivi ty  
in theorem (1.3.9) gives us the result. Q.E.D. 

(4.2.5) Cono~LA]~Y. - For  any  s>O, s ~= ½, the application:  

is continuous (for the topology induced by  J¢~(~2) on the initial space) and has closed 
image equal to the subspace of those ~ e JC~-½(F) which have  the propert ies:  d~ = 0 
and (vo~,~)=O for any o e H  (/2). Moreover, if s>½,  q~eJC~-½(F) has the above 
propert ies  and ~ ~ JC~-~(F), then there  is o e J¢~(~)) with do~ ~ 0, ~co ~ % vco = ~. The 
assertions remain t rue  if we replace d by  8 and ~ by  v. 

P~ooF. - I t  is an easy application of (4.1.8), (4.2.2) and (4.2.4). Q.E.D. 
A par t icular  case of this corollary (~2 c R ~ with induced r iemannian s tructure,  

s > 0  and o ~ ¢ o  a 1-form, identified with a vector  field, so tha t  & o = - - d i v ¢ o ,  
re) = ~t~]F) has been proved  by  CATTABRIGA [ 2 ] .  

(4.2.6) I~EXARK. - -  Let 's  prove  tha t  the densely defined, posit ive bilinear form if) 
(defined on the domain J ~ ( 9 )  in the Hi lber t  space J~(/2)) is not  closed (if F=/= 0). 
Suppose ~ is closed. Since J¢~(~) is dense in jCd,~(Q) (see 4.1.7) we obtain then  
J¢1(/2)-~ JCd:(~2)~ JCd(f2)(~ 5¢~(/2) so tha t  it  is sufficient to show tha t  this equal i ty  
is false. Take ~ e Je½(F) such tha t  dyJ 6 JC~(F) ; we certainly have d~f e JC-½(F), ddyJ -~ 0 
and (veo, dF} = (~ro ,  ~} ---- -- (v &o, F} = 0 if o e H (/2). In  theorem 4.2.2 we take 
v-~ w =  0 and ~----dF, and we obtain u eJe~.~(~) with zu--~ ~JC½(F) .  Clearly 

u ¢ Jo(~9). 

(4.2.7) We shall obtain now as a corollary some results of Conner. Le t  ~ be 
the form defined by  the same formula as ~D bu t  on the domain J¢~:(~2). Clearly 
is closed, positive and has J¢~(~)) as a core (see 4.1.7). On the other  hand,  i t  is 
known tha t  L]~= doS+  ~od is a selfadjoint operator  (this is an operator  sum; the 
result  is an easy consequence of a lemma of Gaffney and Stone, see for example 
C o ~ E ~  [3]). Then we easily see tha t  z]~ is just  the self-adjoint operator  associated 
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to ~ .  Obviously, H(~2) c D(~]~.) and in fact  H(Y2) = Ker  z~ (since the kernel of the 
operator coincides with tha t  of its form). We have D(A~)-~ H(Y2)~ I m d  o (~ J¢~(~2)~- 
~ - I m  6o n JC~(Y2) direct sum relative to the scalar product  (.,  ")o.~" 

PRoof.  - I f  ~ e D ( A r )  then ~e;E~'~(~), dq~eJC~(Y2), 5~e /E  (Y2) and conversely; 
since ddq~=--O, 3~q~-~O we get dq~eJ¢~, 5~eJ¢~ (see 4.2.2). We can uniquely de- 
compose ? = ~o + ~ ~- ~ ,  ~o e H(/2), ~ e I m  do, ~ e I m  ~o according to Hodge-Kodaira  
theorem (see the proof of (4.2.2)). Since d~0~=-- 0, ( ~ =  3~ e 3~(/2), theorem (4.2.2) gives 
~eiE~(~2). Similarly ~ e ~ ( ~ 2 ) .  Q.E.D. 

The above orthogonal decomposition of D(zl~.) allows a complete s tudy  of the 
operator At.  In  fact:  

A~IH(£2)-~ O, A~](Imd0 n J¢~(~2)) : A~lImdo, ~ l ( I mOo  n J¢~(£2)) = zt~lIm 5o 

and remark tha t  A~lImd 0 (resp. ~ ] Im~o)  is an isomorphism of I m d o n  J¢~(/2) (resp. 
Im~0n/E~(f2)) onto Imdo (resp. Im~o). (Use the fact  tha t  A~ for example com- 
mutes with do~ff~ = projection of J¢(~) onto Imdo). For  example we obtain t ha t  A~ 
has closed image equul to Imdo® I m  ~o and tha t  its restriction to the orthogonal 
complement of H(/2) has a compact  inverse ff~ such tha t  ff~tImdo= ff, lImdo, 
f f ~ l I m ~ =  ff~IIm~ o (all Conner's results are so recovered). 

4.3. Application: de t~ham's theorem. 

As an application of the preceding results we shall give a new proof of a theorem 
of de Rham (see de I~HA~ [19], theorem 17', § 22) for the case of a compact manifold 
with boundary  and for (( tempered >> currents (i.e. elements of ;E-~(~2)). We shall 
also give a regulari ty result similar to those of L. SCHWAgTZ [20], theorem I,  chap- 
ter  IX,  § 3. I~emark tha t  our proof is purely analytic (no homological notion, etc.). 
We begin with some prel iminary lemmas. 

(4.3.1) L]~wA. - 1) I f  s>~l, then  d: /E~(/2)--~JC~-I(~2) has closed image, equal 
to the set of v ~;E~-1(~2) such tha t  dv = 0 and (co, V)o.~: 0 for any coEH(~).  2) If  
s eR~(O, 1) then the continuous operator d: ~(/2)-->J¢~-1(/2) has closed image. I f  
s>jl, then  an element v e J~-~(f2) is in the image if and only if dv= 0 and (co, V)o.~O 
for any  (oeH~(tP). 3) Le t  s~R~(O, 1), s~=--k - 1  for any k>~0 integer. Then if 
u~JC~-~(D) and du~J¢~-~(~2), there is veJC~(Y2) such tha t  du= dr. All the asser- 
tions remain true if d, ~ are replaced by  6, v. 

PROOF. - 1] In  (4.2.4) we take ~ = ~vo= ~vl . . . . .  ~vso: 0 and v with the above 
properties. Clearly the conditions of (4.2.4) are verified (if s ~ 1, remark tha t  
veImdo,  as can be seen from the proof of (4.2.2), which gives rv ~ 0). I t  follows 
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t ha t  we can find u e 52~(zQ) with du = O, ~:u : vu -~ "~ ~u = v dOu . . . . .  0. Bu t  v du = 

= v v =  0, r ~ d u ~  TcSv= O, etc. which shows ue52o(zQ ). 2] I f  s < 0 ,  then we obtain 
the result by  using closed range theorem and the first par t  of the lemma. I f  
veJC(/2), d v =  0 and v ± H  (~), then v ¢ I m G  and u =  3o~'~ve521(D) has the prop- 
er ty  du = v (see 4.1.12)~ which proves the assertion for s ~ 1. I f  s > 1, i t  is enough 
to show tha t  the condition v e 52~-1(~2) implies ~,v ~ 52~+1(D). Since vCd,v = v d'$~v = 0, 
A ~ v - ~  v - - E ~ v =  v (see 4.1.12), this is a consequence of (3.2.3). 3] I f  s>~l then 
the assertion is a consequence of the criterion given in the second par t  of the 1emma. 
Suppose s~<0, so tha t  s - - 1 = - - t ,  t > l  and u, d u ~ 5 2 - ~ ( ~ ) .  Let 's  prove first the 
relation <6~, u} ~ <~, du> for ~ny ~v ~ 52o~(~) such tha t  ~ e 52o ~. Clearly this is true 
if ue52~(/2); we obtain i t  for any u such tha t  u, d u e 5 2 - ~ ( ~ )  using theorem (4.1.1). 
In  part icular  <q~, du> = 0 if ~ e52o~(/2) and ~v ~ 0, i.e. du is in the polar set of 
the kernel of the continuous application ~: 52~(~)--> JE~-~(f2). Since this applica- 
tion has closed image and since d: 52~(/2)-~J¢~-1(~2) is its adjoint,  it follows tha t  
there is v e 52~(/2) such tha t  d u =  dv (closed range theorem). Q.E.D. 

(4.3.2) LEPTA. - 1) Le t  o) E 52(f2) be such tha t  do) = 0 (resp. 5o) = 0) and re) = 0 
(resp. vo)=0) .  Then there is a sequence {e)~} with e)~a52o(f2),do)~=0 (resp. 
(~e)~= 0) and o)~-~e) in 52(/2). 2) Le t  s~>l not  of the form k +  ½ with k > 0  integer. 
I f  co e52~(~) and d e ) =  0 (resp. & o =  0), then there is a sequence {o)~} such tha t  
e)~e52o(~)), d e ) ~  0 (resp. 6o)~----- 0) and e)~-+e) in 520(/2 ). 

PROOF. -- We prove only the second assertion, the first being similar. Le t  
So=  {e)e52o[do)= 0} with the topology induced by 52o; We prove first tha t  S~ +1 

, q s + l  is dense in ~q~, Since ~o'~+~'q~ ~o, it  is sufficient to show tha t  the polar set of ~o 
coincides with tha t  of S~ (the polar is taken relative to the dual i ty  of 52; with 52-"). 
Bu t  if v is in the polar of ,~+1 in 52-~, then <¢, v>= 0 for any  F e S~ +1 and veJ¢ -". ~ O  

.~.s + 1 and In  part icular  v is in the polar of -o'q~+~ in 52-~-~ (relative to the dual i ty  of ~o 
52-~-1). Closed range theorem gives us ueJE-qf ) )  with v ~ - d u  (use 2) of (4.3.1)). 
Bu t  then u e 52-~(~2) and du = v e 52-~(£2). By  3) of (4.3.1) we get w e 52-~+1(/2) such 
v : d w ,  i.e. v is also in the polar set of S~ in 52-L Suppose now tha t  o) eS~ and 

,q~+~ with lie)l-- c°2][~+1 ~ < s / 2 2 ,  e > 0 .  We find e)leS~ +~ with lip)--ohll~,.~<e/2, o)2e_o 
..., c%eS~ +~ with ilo),-1-- e)n[]z+,-1,~<s/25 . . . .  Then the limit o) ,= lime),~ exists in 
any  3E~+k(D), since for n > k :  ~o~ 

n + m - - 1  n+m--I £ 

Z Z 
i = n  i = n  

We have o)~e U 52~+~(~9) = 52o(~Q) and do)~= O. Moreover 
k ~ > l  

n - - 1  

~t---> ~ ~t--e- c~ i = 0  / = 0  
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(4.3.3) DE R ~ M ' S  Tm~OREM. -- The  con t inuous  ope ra to r  d: J~-~(~9)-+JE-~(.Q) 

(resp. 5: 3E-®(tg) -+ 3~-~(.(2)) has  closed range.  E q u i v a l e n t l y :  let  v e JE-~(£2) be such 

t h a t  ( % v > = 0  for  a n y  ? ~ J ~ o ( f P )  w i th  6 F = 0  (resp. d ? = 0 ) .  T h e n  there  is u e  

e JE-~(~) wi th  v =  du (resp. v =  ~u). Moreover ,  if v eJ~(fP) for  some s e R  with  

s ~ (-- 1~ 0) a nd  s ~ - -  k --  ½ for  a n y  pos i t ive  in teger  1¢, t hen  we can find u e 3E~+~(t)) 

such t h a t  v = du (rcsp. v = 6u). 

PROOF. - L e t  s e R  be such t h a t  v e J ~ ( t g ) .  .If s~>0, then ,  us ing (4.3.2), we 

ob ta in  (% v)0,~-----0 for  a n y  ~ e K e r ~ o ,  so t h a t  v e I m d ~  (see 4.1.12) and  the  second 

p a r t  of (4.3.1) p roves  the  las t  assert ion.  I f  s < - -  1 and  is n o t  of the  f o r m  --  k - -  ½ 

( k > 0  integer) ,  t h e n  (4.3.2) gives <?, v> ~ 0 for  a n y  ? e So ~ (see the  p roof  of 4.3.2). 

Since S~ ~ is t he  kerne l  of ~ : 3E0~(~2) -+ JCo~-~(tg), which  has  a closed range,  i t  fol- 
lows t h a t  v is in the  image  of d:  3E~+I(fP)-+JCS(~). Q .E .D .  
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