
A Polymeric Split Hopkinson Pressure Bar Instrumented 
with Velocity Gages 

by D.T. Casem, W.L. Fourney and P. Chang 

ABSTRACT--Polymeric split Hopkinson pressure bars are of- 
ten used to test low-impedance materials at elevated strain 
rates. However, they tend to be viscoelastic, and a viscoelastic 
wave propagation model is required to analyze the data. This 
considerably complicates the analysis over the more common 
linear elastic split Hopkinson bar. In this research, a polymeric 
split Hopkinson bar is instrumented with electromagnetic ve- 
locity gages. The gages are placed at the interfaces between 
the bars and the specimen. By using this arrangement, vis- 
coelastic effects in the bars are negligible and the need for 
a viscoelastic correction is eliminated. The method is applied 
by testing low-density foams. 

KEY WORDS--split Hopkinson Bar, viscoelastic, bar wave 
dispersion, electromagnetic velocity gages 

Introduction 

Recently, there has been an increased interest in the de- 
velopment of high strain-rate testing techniques for low- 
impedance materials. Most of these techniques are based on 
the split Hopkinson pressure bar (SHPB), a widely accepted 
dynamic testing device capable of reaching strain rates on the 
order of 104 s 1. During a SHPB test, a specimen is com- 
pressed between two bars and its response is determined 
through measurements of stress waves in the bars. To use 
the SHPB effectively, the impedance of the bars should be 
"matched" to the specimen, i.e., to test a low-strength mate- 
rial low-impedance bars are often used. This can be accom- 
plished through the use of polymeric bars. Unfortunately, 
polymeric bars tend to be viscoelastic, and one must be able 
to account for viscoelastic wave propagation in order to an- 
alyze the specimen. This complicates the analysis over the 
more common linear elastic SHPB, especially when the lat- 
ter can be treated as non-dispersive. 

Several authors have developed methods to character- 
ize viscoelastic wave propagation and to apply them to the 
polymeric SHPB. Among the earliest and most complete of 
these is the work by Zhao and Gary 1'2 who generalized the 
Pochhammer-Chree equations to include linear viscoelas- 
tic material behavior and applied the results to nylon and 
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acrylic bars. Viscous effects were included through the use 
of combined Maxwell-Voigt solids and, naturally, the theory 
accounts for attenuation and dispersion due to both mate- 
rial and geometry. Bacon 3 presented an empirical method to 
measure the dispersion and attenuation parameters directly, 
thus eliminating the need to determine a suitable system of 
spring/dashpot elements. This essentially extended the work 
of Lundberg and Blanc, 4 which did not include geometric dis- 
persion. Still other corrections exist; see, for example, Sawas 
et al. 5 

It should be noted that the majority of the need for a vis- 
coelastic correction pertains primarily to the propagation of 
waves within the bars. In fact, much of this need can be miti- 
gated simply by reducing the distances between the specimen 
and the gages. This idea provides the impetus for the present 
paper, in which a polycarbonate SHPB is instrumented by 
placing electromagnetic velocity gages directly at the inter- 
faces between the bars and the specimen. The advantage of 
this arrangement over the conventional strain gage arrange- 
ment is that viscoelastic effects in the bars can be neglected, 
i.e., the bars may be treated as if they are linear elastic. This 
is due to both the gage placement and through the direct 
measurement of velocity, and is true even in cases when the 
conventional strain gage configuration requires a viscoelastic 
analysis. Thus, the need for a reliable viscoelastic model is 
eliminated, as are the difficulties and shortcomings associated 
with these models. 

Longi tudinal  Wave Propagat ion in Viscoelastic Bars 

As mentioned above, the use of a polymeric SHPB in 
general requires a theory of viscoelastic wave propagation, 
although in some cases the linear elastic approximation of 
this theory may be adequate. The theory used herein is due 
to Bacon 3 and Lundberg and Blanc 4 and is summarized as 
follows. The bar material is represented by a frequency- 
dependent complex modulus of elasticity, E(m). The one- 
dimensional wave equation, in frequency space, is then 
written 

02~(x,  m) _ y2~(x ' co) (1) 
Ox 2 

where the/x denotes the Fourier transform, s is axial strain 
and the term y is called the propaga t i on  coeff icient .  It is re- 
lated to E by 

]/2 __ 0 012 (2) 
E (co) 

where 0 is the density. 
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The general solution of eq (1) is given by 

fi(x, 0)) = F(0))e -Yx + G(0))e Yx (3) 

where/~ (0)) and G (0)) represent wave trains that propagate 
in the directions of increasing and decreasing x, respectively. 
In general, a strain gage located at x would read the super- 
position of these two waves. However, in most applications 
with the SHPB, only one pulse is present at a gage at a given 
time so that/F or G can be dealt with individually (i.e., one 
or the other may be treated as being zero). The primary con- 
cern is then the propagation of a pulse between the gage and 
some interface at a distance d from the gage. For example, if 
G = 0 and the gage is located at x = 0, stress and velocity 
at an interface at x = d are determined from the measured 
strain gage, eg (t), as follows: 

00) 2 
6(d, 0)) -- y2 ~g (0))  e - Y d  = E (0)) eg (0)) e -~/d (4) 

i 0 ) ^  
~(d, 0)) = -- - -Sg  (0)) e -Yd. (5) 

Y 

Thus, viscoelastic wave propagation can be dealt with pro- 
vided y is predetermined for the particular bar of interest. 
Practical methods for doing so are based on the comparison 
of the frequency components of an impulsive signal before 
and after it propagates along a bar. 3'4 In light of these meth- 
ods, it is more convenient to view y in terms of its real and 
imaginary parts: 

0) 
V(0)) = ~ + i - - .  (6) 

C 

Here c~ (0)) is an attenuation parameter that governs the 
attenuation of various frequency components as they propa- 
gate along the bar. Similarly, c(0)) gives the phase speeds of 
various frequency components that travel at different speeds 
due to viscous effects in the material. The net effect of this is 
that a transient pulse consisting of multiple frequency com- 
ponents disperses as it propagates. As mentioned above, it 
has also been shown by Bacon 3 that this measurement of 
phase speed also includes geometric dispersion effects that 
occur for signals whose wavelengths are comparable to the 
bar diameter (i.e., Pochhammer-Chree dispersion6). In other 
words, when c(0)) is empirically determined, the resulting 
phase speed contains the contribution to dispersion by both 
viscoelastic and geometric effects. Conversely, when c~ = 0, 
the viscoelastic theory reduces to the linear elastic dispersion 
problem. 3,7 

At very low frequencies, attenuation is negligible and all 
frequencies are assumed to travel at the bar wave speed co 

given by the static modulus Eo according to co = ~/Eo/9.  

This is the familiar non-dispersive linear elastic case in which 
pulses propagate along a bar without change in form. In this 
case, eqs (4) and (5) are replaced by 

u(d,  t -4- d / c o )  ~_ Eosg (t) = OC~Sg (t) ( 7 )  

v(d, t 4- d /co)  = -I-COEg (t) (8) 

11 I~ 
Incident Bar VGlt tVG2 Transmitter Bar 

I II = = I 
SG1 > < d SG2 > Projectile < d >l< d >1< d 

Fig. 1--The two SHPB systems discussed in this paper. 
The first is the conventional arrangement that uses only 
the strain gages (SG1 and SG2). The second system uses 
only the velocity gages (VG1 and VG2). I1 and 12 denote 
the interfaces between the specimen and the incident and 
transmitter bars, respectively. 

where the quantity +d/co accounts for the appropriate time 
shifting. The additional -t- in eq (8) reflects the fact that 
the direction of the particle velocity depends on the direc- 
tion of propagation (a tensile pulse produces particle motion 
in the opposite direction of propagation and a compressive 
pulse produces particle motion in the direction of propaga- 
tion). Thus, non-dispersive, one-dimensional, linear elastic 
bar wave propagation can be treated completely knowing only 
co and P. 

Conventional Split Hopkinson Pressure Bar: Linear 
Elastic Case 

The operation of the conventional linear elastic SHPB is 
well known 8-1~ and is shown in Fig. 1 (ignore the velocity 
gages shown in the figure). A test sample is sandwiched be- 
tween the incident and transmitter bars and the incident bar is 
struck with a projectile. The specimen is compressed and the 
resulting bar waves, the incident, reflected, and transmitted 
pulses, are monitored using strain gages at the mid-points of 
each bar. It is ensured that the pulses in the incident bar are 
short enough that they do not overlap at the gage and can be 
measured independently (this is one reason for the standard 
positioning of the gages at the mid-point). 

Average specimen engineering stress (c~s) and average en- 
gineering strain rate (+s) are then determined by time-shifting 
the appropriate pulses to the instant at which they act at the 
specimen. In the simplest, linear elastic case, the equations 
a r e  

Ah 
Us = ors2 = --~E0~T (9) 

As 

2COER 
~s - ( ~ o )  

Ls 

where Ab and As are the initial cross-sectional areas of the 
bar and specimen, Ls is the initial specimen length, and ~R 
and eT are the time-shifted strain signals for the reflected and 
transmitted pulses, respectively. Specimen strain is obtained 
from eq (10) by time integration. 

The quantity %2 is used to denote the fact that eq (9) is 
really the specimen stress at the I2 interface, as both eqs (9) 
and (10) assume that a state of equilibrium exists within the 
sample. Slightly more complicated equations are used if this 
is not the case. Conversely, it is possible to use the indepen- 
dent measurements of stress at each end of the specimen as 
a check of specimen equilibrium. In this situation, the speci- 
men stress at I2 is given by eq (9) and the specimen stress at 
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11 is given by 

Ah 
Osl : @ E 0  (el + ER) 

As 
(11) 

where Et is the time-shifted incident pulse. 
However, in many cases, the incident and reflected pulses, 

E1 and ER, are not ideally suited to make an accurate stress 
measurement. For example, in the case of a very soft speci- 
men, the magnitude of the reflected pulse is close to that of 
the incident pulse. As the signs of these pulses are opposite, 
poor resolution results when the two are added in eq (11). For 
this reason, most researchers use only the transmitted pulse to 
measure stress, and the incident bar is used only to measure 
the strain rate. This point will again be addressed below. 

Conventional SpOt Hopkinson Pressure Bar: 
Linear Viscoelastic Case 

The basic operation of the viscoelastic SHPB is essen- 
tially as described above, however the equations are devel- 
oped from the viscoelastic theory. Specimen average engi- 
neering stress and strain rate are as follows: 

Ab pco2^ yd Ab~TeYd 
~s2 (co) - -  As 7 8re = E (co) As (12) 

.~ 2 '  8s -- tcoSReYd. (13) 
Ls y 

As above, eq (12) is actually the specimen stress at the in- 
terface with the transmitter bar and both equations assume a 
state of specimen equilibrium. Similar to eq (11), the speci- 
men stress at I1 can be found by 

A b  13012 @ l e - W  + ~Re ~/d) 
6sl (co) - -  As .g2 

-- A~ E (co) (~le-Yd q- ~ReYd ) . 

(14) 

In practice, the viscoelastic analysis is conducted in fre- 
quency space using the discrete fast Fourier transform (FFT) 
with digitized data, and the above equations are used some- 
what indirectly as it is more convenient to perform the dis- 
persion and attenuation operations on each pulse separately. 
However, the fundamentals are as above. 

Split Hopkinson Pressure Bar Instrumented with 
Velocity Gages 

The SHPB investigated during this research is also shown 
in Fig. 1. The interfaces between the bars and the specimen 
are instrumented with electromagnetic velocity gages (ignore 
the strain gages in the figure). The velocities of both ends of 
the specimen are therefore measured directly regardless of 
dispersion or attenuation. The specimen engineering strain 
rate is determined directly from these signals: 

--Vl(t) + V2(t) 
G (t) = (15) 

Ls 

Specimen stress is measured using the transmitter bar ve- 
locity gage, i.e., VG2 in the figure. Provided the test duration 

is sufficiently short that no reflections from the free end of 
the transmitter bar reach the gage, the transmitted pulse is 
measured directly at the specimen. Because of this, there is 
no need to account for dispersion or attenuation because the 
measurement is made exactly at the point of interest. All that 
remains is to determine the magnitude of the specimen stress. 
This is done by combining eqs (7) and (8) (letting d = 0 and 
eliminating eg) if the simple, non-dispersive, linear elastic 
theory is applied, and amounts to multiplying the measured 
particle velocity by the acoustic impedance of the bars and 
scaling by the relative cross-sectional areas of the bar and 
specimen. If the bars are viscoelastic, the relation is derived 
from eqs (4) and (5) instead. These equations reduce to 

Ah 
Os2 (t) ~-- -- OCo -7 y- 1)2 (t) 

As 
(16) 

coi Ab ^ ~ , 
~s2 (CO) = --0 7 --~sV2t, CO) �9 (17) 

The primary disadvantage of this method is that there is 
no way to measure the stress at the incident bar-specimen 
interface as is (at least theoretically) possible in the con- 
ventional arrangement. However, for the reasons discussed 
above, this is not usually a serious drawback. In cases when 
this is important, a technique involving pre-measurement of 
the incident pulse can be employed. This is discussed with 
the experimental results below. 

Electromagnetic Velocity Gages 

Basic Operation 

The velocity transducer used in this research is the electro- 
magnetic velocity gage. The gage, as shown in Fig. 2, is noth- 
ing more than a thin wire embedded diametrically through the 
bar. This embedded portion, dashed in the figure, is the gage. 
A uniform magnetic field of magnitude B is superimposed 
with a set of Helmholtz coils (not shown). The field lines are 
oriented such that they are perpendicular to both the axis of 
the bar and the gage. When a stress wave arrives, the bar and 
gage attain an axial velocity v. The gage crosses the magnetic 
field lines, and (by Faraday's law) an electric potential, E, is 
generated: 

E = BvL .  (18) 

Here L is the length of the gage, which, in this arrangement, 
is equal to the diameter of the bar. Lead wires extend from 
the gage so that the potential can be amplified and measured. 
Since the lead wires are parallel to the magnetic field, they 
do not cross any field lines when they move and therefore 
do not generate a signal. Although other configurations were 
attempted (conductive foils, wire loops, and various lead wire 
arrangements) that shown in Fig. 2 was determined the most 
practical for the SHPB. 

Because the gages are so small (diameter <0.25 mm), 
they provide a simple, non-perturbing measurement of parti- 
cle velocity with a high frequency response. They can also be 
placed very near the end of the bar (<2 mm). Furthermore, 
reasonable sensitivity can be achieved with a modest mag- 
netic field (about 10 mT in these tests) and reasonable am- 
plification (gains between 20 and 100). Increasing the field 
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Fig. 2--A pressure bar with an electromagnetic velocity gage 

strength also increases sensitivity. It is also possible to in- 
crease L, although it is not very practical to increase the gage 
length much beyond the bar diameter. 

Unfortunately, velocity gages have several disadvantages. 
The most restrictive of these is that they require a magnetic 
field to operate. This precludes their use on magnetic ma- 
terials. Furthermore, the presence of the magnetic field may 
affect other instrumentation in the vicinity, and possibly even 
the specimen. 

The greatest error source with these gages has to do with 
lead wire motion. As mentioned above, the motion of the lead 
wires does not create a signal provided they remain parallel 
to the magnetic field. However, as the gage moves, the lead 
wires move, and soon the lead wires are no longer parallel to 
the field. Even slight misalignment can result in considerable 
error because the lead wires are, in general, many times longer 
than the gage. It is possible to mitigate this error by preventing 
the leads from moving excessively. It was found that thick 
grease could be used to contain lead wire motion while still 
allowing them to move "freely" with the gage. In all cases 
discussed herein, the lead wires were passed through a mass 
of grease a few centimeters from the bar (not shown in the 
figure). 

Calibration 

Although other possibilities exist, the simplest way to cali- 
brate the velocity gages in Fig. 1 involves measuring a known 
displacement. The bars are positioned with a precisely mea- 
sured gap between them and the incident bar is impacted 
so that the gap closes. The calibration constant is then de- 
termined by correlating the known displacement to the inte- 
grated velocity signal. With this procedure, calibration con- 
stants between various tests are quite close, within 4-2% of 
the average. It is expected that part of this error is due to 
uncertainty in the measurement of the initial gap. 

Verification of Velocity Gage Data 

To show the quality of the velocity data, Fig. 3 shows the 
free-end velocity of a 1219 mm long, 19.1 mm diameter alu- 
minum pressure bar impacted by a similar projectile of length 
425 ram. Two curves are shown. One is the velocity calcu- 
lated from a strain gage located at the mid-point of the bar 
using the usual analysis, correcting for dispersion. The other 
is a direct measurement with a velocity gage. The closeness 
of the two traces is evident, with some discrepancy near the 

16 

14 ~ - - - -  

F ~ ]- I 
strain gage I 

I - - r l  ~ ] velocity gage 

i 

4 \ 
strain analysis  

- -  direct rneasu, =,nent with - -  
vel~ ei~ g_age 
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o,o ~go o.~ . . . .  ~oo g.J~ . . . .  go o., 
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4 
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0. 

-2 
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time (ms)  

Fig. 3 - -Ve loc i t y  at the end of an a luminum bar: direct 
measuremen t  with veloci ty gage versus d ispers ion-corrected 
strain gage analysis 

trailing end of the pulse. From this and similar experiments, 
it was concluded that the velocity gages are suitable for the 
research discussed herein. 

Exper imental  Resul ts  

The following experimental results have been chosen to 
illustrate the necessity of using a viscoelastic analysis in the 
two SHPB configurations described above. For the sake of 
clarity, it should be emphasized that eqs (7)-(11) and (16) 
are nothing more than the zero frequency limits of their re- 
spective counterparts eqs (4), (5), (12)-(14) and (17). The 
latter group of equations includes dispersion and attenuation 
due to both geometry and attenuation, and from here on is re- 
ferred to as the "viscoelastic" treatment. The former group of 
equations assumes a linear elastic material and neglects geo- 
metric dispersion, and is from here on designated the "elastic" 
treatment. The intermediate cases, where only viscoelastic 
effects or only geometric dispersion are considered, are not 
discussed. 

When using the velocity gage technique, the only place 
where viscoelastic parameters arise is in the determination of 
specimen stress from measured velocity, eqs (16) and (17). 
It has been observed (see, for example, Zhao and Gary 2) 
that locally, viscoelastic effects are insignificant and the dis- 
tinction between these two equations is negligible. However, 
since eq (16) is the low-frequency approximation of eq (17), 
it is clear that this error increases at higher frequencies. It is 
therefore interesting to quantify the difference between the 
two as a function of frequency in an attempt to determine at 
what point the error becomes important. We can do this by 
considering the propagation coefficient for this system. The 
bars are made of polycarbonate with diameters of 19.1 mm 
and lengths of 1219 mm. The parameters c~(co) and c(co) were 
established using the methods of Bacon 3 and are shown in 
Fig. 4. The experimentally determined data have been extrap- 
olated for the purpose of the following theoretical analysis. 
(The data are extrapolated because propagation data are very 
difficult to determine at high frequencies. By doing so, fre- 
quencies as high as 40 kHz can be considered in the analysis, 
even though they are not observed in actual experiments.) 
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Fig. 4--Attenuation coefficient and phase speed for the 19.1 
mm diameter polycarbonate bar used in this paper. The 
data are extrapolated beyond 35-40 kHz with a parabolic 
curve fit and the Pochhammer-Chree dispersion relations, 
respectively 
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Fig. 6--Stress calculated from measured particle velocity 
using the elastic and viscoelastic solutions. The stress is 
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Fig. 5--Error associated with using the linear elastic approx- 
imation (eq (16)) to the more exact viscoelastic equation (eq 
(17)) when calculating stress from measured particle velocity 

Using these data, the calculated magnitudes of stress from 
eqs (16) and (17) can be compared as a function of frequency. 
This is done in Fig. 5. The curve shows the error associated 
with approximating the full viscoelastic treatment with the 
simple linear elastic treatment when calculating stress from 
velocity measured at the point of interest. At low frequencies, 
the error is negligible, but becomes increasingly significant 
as the signal frequency increases. However, it remains quite 
small up to about 20-30 kHz, depending on the accuracy re- 
quired. During practical testing, frequencies higher than this 
are rarely observed and almost never important, and in fact 
begin to violate the standard assumption that plane cross- 
sections of the bars remain plane throughout the deformation 
(for these bars, a wavelength of two bar diameters corre- 
sponds to a frequency of 34 kHz). Thus, in terms of practical 
applications, the elastic approximation is valid. 

Impulsive Transient Signal 

To elaborate this point, consider the following experiment. 
A short polycarbonate projectile (21 mm in length, 18 mm in 

diameter) impacts a polycarbonate pressure bar (1219 mm in 
length, 19.1 mm in diameter) at 14 m s -1 and generates an 
impulsive stress wave that propagates along the bar. The re- 
sulting axial particle velocity is measured by a velocity gage 
located at the mid-point of the bar. Using the propagation data 
of Fig. 4, the stress at this point can be determined from the 
measured velocity data with either the elastic or viscoelastic 
analysis, i.e., eqs (16) or (17). The results from both methods 
are plotted in Fig. 6, although the two curves are difficult to 
distinguish. Obviously, the viscoelastic analysis is unneces- 
sary in this case. 

This example can be used to establish the validity of the 
elastic approximation on actual polycarbonate pressure bar 
data. As discussed above, viscoelastic effects become more 
important as signal frequency increases. Depending on the 
desired degree of accuracy, we might make a decision based 
on the frequency spectrum of a given pulse and Fig. 5 as 
to when the simple elastic solution may be applied in place 
of the more complicated viscoelast{c solution. However, in 
doing so, consideration should be given to the relative mag- 
nitude of the higher frequency components. In other words, 
although a particular signal may contain measurable compo- 
nents in the high-frequency range, they may not be (and often 
are not) significant to the construction of the entire signal. 
Considering the transient pulse above, in very few practical 
applications with a viscoelastic SHPB would a more impul- 
sive signal be necessary (its length is about three bar diam- 
eters). The magnitude of the FFT of this signal shows that 
although frequencies in the range of 20-30 kHz are present, 
they are hardly significant. Therefore, the elastic approxima- 
tion is an appropriate choice and good results (Fig. 6) are 
obtained. 

Application: High Strain Rate Testing of Low-Density 
Foam 

As stated above, the advantage of the velocity gage SHPB 
over the conventional strain gage SHPB is that viscoelastic 
effects in the bars can be neglected. To demonstrate this, the 
SHPB shown in Fig. 1 was used to test several low-density 
foam materials. The two configurations here provide a com- 
parison between the two methods. The first configuration is 
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Fig. 7--Stress-strain curves obtained by the elastic and 
viscoelastic analyses for both the strain gage method and 
the velocity gage method (low-rate test). The viscoelastic 
correction is not needed in either case 

the common strain gage arrangement. Using the strain data, 
the specimen may be analyzed using either an elastic or vis- 
coelastic analysis (eqs (9) and (10), or eqs (12) and (13)). 
Similarly, data gathered using the velocity gages can be an- 
alyzed using an elastic or viscoelastic analysis (eqs (15) and 
(16), or eqs (15) and (17)). By comparing stress-strain curves 
from the four methods, the necessity of the viscoelastic cor- 
rection in each case can be evaluated. 

Low Strain Rate Test 

At low strain rates viscoelastic corrections are often un- 
necessary. This is because the pulses generated during the 
tests do not contain a significant high-frequency spectrum. 
This is true for either method of instrumentation. For exam- 
ple, consider a test on a low-density foam at a strain rate of 
approximately 1500 s -1 (specimen length of 6.4 mm, diam- 
eter of 18.9 ram, striker velocity of 22 m s -1 ). The resulting 
four stress-strain curves are shown in Fig. 7. It is clear that 
the viscoelastic correction offers only a very minor improve- 
ment in the strain gage analysis (very difficult to detect in the 
figure) and essentially no improvement in the velocity gage 
analysis (impossible to detect in the figure). In other words, 
the bars may be treated as linear elastic in either case. 

It is also interesting to compare the velocity gage results 
to the strain gage results in Fig. 7. In theory, both of these 
are "exact", in the context that dispersion and attenuation 
within the one-dimensional framework presented in eqs (1)- 
(8) are accounted for. Indeed they are in good agreement. 
Any differences are attributed to measurement error, as the 
two curves utilize data from two completely different sets of 
gages. 

Intermediate Strain Rate Test 

Figure 8 shows the results of a test on the same material 
at a strain rate of 2500 s - t  (specimen length of 6.5 ram, di- 
ameter of 18.8 mm, and a striker velocity of 28 m s- l ) .  In 
this case, it is important to apply the viscoelastic correction 
to the strain gage analysis. This is shown in Fig. 8(a). The 
neglect of viscoelastic wave propagation results in a higher 
plateau stress and a lower densification strain than the actual 
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Fig. 8--Stress-strain curves for a foam sample at an 
intermediate strain rate. (a) Necessity of the viscoelastic 
correction for the strain gage analysis. (b) Necessity of the 
viscoelastic correction for the velocity gage analysis. (c) 
Comparison of the velocity gage method and the viscoelastic 
strain gage analysis 

specimen response (given by the viscoelastic-corrected data). 
This demonstrates the danger of neglecting viscoelastic ef- 
fects when using a polymeric pressure bar with the conven- 
tional strain gage arrangement. If viscoelastic effects were 
neglected, the incorrect stress-strain curve would be inter- 
preted as a false strain rate hardening of the material. 

Figure 8(b) shows the velocity gage results: the elastic 
compared to the viscoelastic. Again, no difference is ob- 
served, i.e., viscoelastic effects are negligible. Figure 8(c) 
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Fig. 9--Stress-strain curves obtained by the elastic and 
viscoelastic analyses for both the strain gage method and 
the velocity gage method at an extreme strain rate. The 
viscoelastic correction is negligible in the velocity gage 
analysis, and it fails to recreate the true stress-strain curve 
when applied to the strain gage analysis 

shows the comparison between the viscoelastic strain gage 
analysis and the velocity gage analysis. Again, both should 
be exact, and indeed they are in good agreement. 

High Strain Rate Test 

As an extreme example, a test on another low-density foam 
was performed at approximately 10,000 s -  1 (specimen length 
of 3.1 mm, diameter of 17.1 mm, and a striker velocity of 80 
m s- l ) .  Although this may not be a valid test in terms of 
specimen equilibrium, it does illustrate several points about 
the methods. The results from the four analysis techniques 
are presented in Fig. 9. Considering the two strain gage anal- 
yses, clearly, there is an extreme difference between the two 
methods; the viscoelastic correction is absolutely necessary 
in this case. However, only a very minor difference can be 
observed in the velocity gage results. This small difference 
is arguably negligible and not worth correcting for, i.e., the 
simple elastic analysis is sufficient when the velocity gage 
method is applied. 

It is also important to compare the velocity gage result 
to the corrected strain gage result. In theory, both should 
be exact, to the extent that the wave propagation is one- 
dimensional. However, the strain gage result, even though 
corrected for dispersion and attenuation, is in error. This is 
primarily due to the relatively high frequency content of the 
pertinent signals. The attenuation of these frequencies be- 
tween the specimen and the gages is so great that they are re- 
duced to immeasurable levels. Significant portions of the sig- 
nals are therefore lost and the strain gage technique is unable 
to reconstruct the actual specimen response. This problem is 
exacerbated in the presence of electrical noise. If a noisy sig- 
nal measured by a strain gage is dispersed to an earlier time 
(e.g., a transmitted or reflected pulse), the noise component 
is essentially amplified because the dispersion correction as- 
sumes that it is a part of the desired signal. When this is a 
problem, the only option is to filter the noise before the cor- 
rection is applied. Because a portion of these components is 
part of the desired signal, the ability of the bars to faithfully 

carry these frequencies is compromised. The extent of these 
errors depends on several factors, such as the accuracy of the 
data acquisition system. However, in this research, they are 
suspected to be a notable source of error, even at more rea- 
sonable strain rates. They are, of course, altogether avoided 
by the velocity gage technique. 

M e a s u r e m e n t  of  S p e c i m e n  S t r e s s  w i th  the  I n c i d e n t  
Bar  V e l o c i t y  G a g e  

One disadvantage of the velocity gage method is that the 
stress at the interface between the incident bar and the spec- 
imen (I1) cannot be determined directly without additional 
information. Additional gages on the incident bar can be used 
to provide this information, but the placement of these gages 
may require a full viscoelastic analysis. 

Another method involves the measurement of the incident 
pulse before the test with the specimen. Without the transmit- 
ter bar in place, the incident bar is impacted with the striker 
at the same velocity that is to be used during the actual test. 
In this case, the velocity gage reads twice the incident pulse 
velocity, i.e., 

Vlp (t) = 2vi (t). (19) 

The subscript "p"  denotes the pre-test. Stress at I1 can then 
be found after the test on the specimen from the difference 
between the pulses, in a fairly straightforward manner: 

Ab 
~,1 (t)  = - ~ o c o  (Vlp (t)  - vl ( t ) )  . (20) 

The caveat here is that the accuracy of this technique de- 
pends on the repeatability of the incident pulse between the 
pre-test and the actual test. With striker bars, this is usually 
not a problem. However, use of other loading techniques (e.g., 
explosives and pulse shapers) will obviously depend on the 
controls of those systems. 

An application of this technique is presented in Fig. 10. 
A test was conducted using the dual apparatus of Fig. 1 with 
a small gap left between the bars. When the incident pulse 
arrives at the I] interface, the gap begins to close (at about 
1.70 ms). However, the interface remains stress-free until 
the instant it impacts the transmitter bar (at about 1.90 ms). 
Therefore, the expectation is that the stress on I1 should be 
exactly zero up until the instant the gap closes and a square 
stress pulse is observed due to the impact of the bars. The 
stress is measured in two ways: (i) the standard strain gage 
analysis that involves the measurement of the incident and 
reflected pulses and the incorporation of a viscoelastic dis- 
persion correction, eq (14), and (ii) the velocity gage method 
using a pre-measured incident pulse, eq (20). Both results 
show approximately what is expected, but the velocity tech- 
nique is more accurate. The strain gage result contains os- 
cillations that exist before the impact occurs even though 
the data are corrected for dispersion. This is due to errors in 
the dispersion correction, and is sometimes misinterpreted in 
actual tests as representing non-equilibrium effects within a 
specimen. (The dispersion corrected data do make a signif- 
icant improvement over the uncorrected data.) The velocity 
gage technique avoids this correction entirely, and better re- 
sults are obtained. However, it must be reiterated that this 
method depends entirely on the repeatability of the incident 
pulse between successive tests, and is therefore limited. 
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Fig. lO--Stress on the I1 interface during a "gap" test: vis- 
coelastic strain gage analysis versus pre-measured velocity 
gage analysis (elastic). The stress is positive in compression. 

Discussion 

As shown above, the main advantage of the velocity gage 
method over the conventional SHPB is that it avoids the need 
for a viscoelastic analysis. This is due primarily to the place- 
ment of the gages; no dispersion or attenuation occurs be- 
tween the gages and the specimen. In terms of the calculation 
of stress from measured particle velocity, it was found that, in 
all cases with 19.1 mm diameter polycarbonate bars, the wave 
propagation is adequately described as being non-dispersive 
and linear elastic. Therefore, the only material properties nec- 
essary are the bar wave speed and the density; the propagation 
coefficient is unnecessary. In addition, none of the analysis is 
conducted in frequency space. Aside from simplifying calcu- 
lations, this fact facilitates data acquisition. In order to apply 
a viscoelastic correction, we must ensure that the time win- 
dow and vertical scaling are such that the entire signal is 
captured, even though the majority of this window is beyond 
the window of interest. The arrival of unwanted reflections 
also complicates the procedure. Neither of these are issues 
with the velocity gage method. 

It is important to emphasize that much of the error due to 
the neglect of viscoelastic effects in the strain gage method 
is due to attenuation and dispersion between the gages and 
the specimen, and that simply placing the gages closer to 
the specimen can reduce this error. The basic limitation with 
strain gages is that the gages on the incident bar must be 
distant from the specimen so that the incident and reflected 
pulses can be measured independently. Furthermore, there is 
some question as to how close strain gages may be placed 
to the specimen interface so that measurements of surface 
strain accurately represent average strain over the cross- 
section. Nonetheless, it is certainly possible to configure a 
polycarbonate SHPB with strain gages positioned such that 
viscoelastic effects are negligible. The difficulty here is de- 
termining the minimum allowable distance between the gage 
and the specimen before viscoelastic effects become signifi- 
cant. This is easier to justify in the velocity gage case because 
a graph such as Fig. 5 can be used to describe the error in terms 
of signal frequency. Otherwise, there is nothing inherently 

wrong with measuring strain. In fact, it can be shown that 
errors similar to Fig. 5 exist when calculating stress and/or 
particle velocity from measured strain provided those cal- 
culations are made at the measurement point. (This fact is 
more or less routinely used by many users of viscoelastic 
SHPBs, i.e., viscoelastic corrections are used only to account 
for dispersion and attenuation of the strain signal, and not 
for the calculation of interface stress and velocity.) Similar 
statements apply to other transducers, e.g., pressure, force, 
acceleration. 

One final advantage of the velocity gage technique is that 
it provides an extended test duration. The duration of the 
conventional SHPB is limited by the "length" of the incident 
pulse, which is limited to the length of the incident bar due to 
the need to independently measure the incident and reflected 
pulses by the gage at the mid-point. Referring to Fig. 1, the test 
duration is approximately 2d/co. The velocity gage method 
is limited in duration by the time needed for the reflection of 
the transmitted pulse to arrive at the transmitter bar velocity 
gage (VG2). Thus, the time available for the test is doubled 
to 4d/co without the need for a wave separation technique. 
There is also no restriction on the projectile length, material, 
or shape. 

As a final note, this discussion is limited to polycarbonate 
bars with 19.1 mm diameters. Although it may seem unlikely, 
other materials that exhibit greater viscoelastic behavior or 
bars of different diameter might not behave in this fashion. 
Other polymeric pressure bar systems should be evaluated on 
an individual basis. 
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