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ABSTRACT--This paper presents a method for determining 
force histories using experimentally measured responses. It 
is based on a recursive reformulation of the governing equa- 
tions in conjunction with a general finite element program, this 
latter aspect making it applicable to complex structures, It can 
determine multiple isolated (uncorrelated) force histories as 
well as distributed pressures and tractions and allows for the 
data collected to be of dissimilar type. As a demonstration of 
the method and of its scalability, force reconstructions for an 
impacted shell and an impacted plate are determined using 
accelerometer and strain gage data. 

KEY WORDS--Finite element method, force identification, 
regularization, structures 

Introduct ion 

The response u(x, t) of a general linear structural system to 
a single excitation load P(t) can be written as 

t 

u(x, t) = / G(x, t - ~)P(~)d~ 
, I  

0 

where G(x, t) is the system response function. The force 
identification problem is usually posed as: given some mea- 
surements u (t) (perhaps imperfectly), and knowledge of the 
system function G(x, t) (perhaps imperfectly), determine the 
load P(t). This problem is difficult for two quite separate 
reasons. The first is that it is a highly ill-conditioned prob- 
lem which means that small errors in the measurements or 
the modeling can cause very large variances in the identified 
forces. Second, the need to know the system function in ana- 
lytical form has meant that most structural systems analyzed 
have been relatively simple. 

Reference 1 gives an excellent summary of the literature 
on force identification as well as an overview of the subject 
itself; more recent citations can be found in Ref. 2. A variety 
of methods have been used, but the most common solution 
scheme is some form of deconvolution. Reference 3 sum- 
marizes some of the main deconvolution methods, although 
these are not directly applied to the force identification prob- 
lem. References 2, 4, 5, and 6 used Fourier methods because 
of the relative simplicity of the inversion and because it is 
suitably matched to the spectral element approach. Deriv- 
ing analytical response functions is a formidable challenge; 
Ref. 7 and Refs. 8 and 9 looked at half-space and half-plane 
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problems, respectively; general frame structures were solved 
by the introduction of spectral elements in Ref. 2; folded 
plate structures were solved using plate spectral elements. 10 
Each of these are quite limited, in that they are restricted to 
relatively simple geometries and did not address the question 
of multiple or distributed forces. 

The beginnings of a deconvolution method coupled with 
a general finite element approach was given in Ref. 11 which 
used an FEM program to generate wavelet solutions which 
could be synthesized in the inverse solution. A quite different 
approach was pioneered in Refs. 12-14 for heat conduction 
problems and Refs. 15 and 16 for force identification prob- 
lem. This approach uses ideas from dynamic programming, 
but what sets it apart from the above references is that it deals 
with the discretized form of the governing equations. This 
makes it suitable for coupling with a finite element modeling 
of the structure. However, as pointed out in Ref. 15, "one of 
the disadvantages of the method is that the amount of com- 
putations increases dramatically as the order of the model 
increases." Indeed, this necessitated the authors to introduce 
a modal reduction scheme such that the final size of the prob- 
lem studied in Refs. 15 and 16 was nine degrees of freedom. 
More details and applications can be found in Ref. 17. 

It is the goal of this paper to develop a method for force 
identification that is robust enough to be applied to com- 
plex structures, but whose computational costs scale as for 
a forward finite element analysis. Furthermore, we wish to 
be able to determine multiple isolated forces as well as dis- 
tributed pressures and tractions. After developing the main 
ingredients of the method, we illustrate its attributes using 
experimental data from the impact of a 3-D shell and for the 
impact of a plate with a hole. 

The Essential  Diff iculty 

Before developing the specifics of the actual method, we 
first sketch the outlines of a naive method of force identifi- 
cation. This will also serve to introduce some of the main 
notations. 

Using the discretization afforded by the finite element 
method,18' 19 the governing dynamic equations for a general 
complex (but linear) structure can be discretized in space as 

[M]{//} + [C]{ti} + [K]{u} = {P} = [Bg]{g}. (1) 

In this, {u} is the vector of all the free degrees of freedom and 
is of size {m, x 1}, [K] is the [mu x mu] stift'ness matrix, 
[C] is the [mu x mu] damping matrix, {P} is the {mu x 1} 
vector of all applied loads (some of which are zero), {g} is 
the {m e x 1} subset of {P} vector of non-zero applied loads, 
and [Bg] is the [mu • mg] matrix that associates these loads 
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with the degrees of freedom. Let these governing equations 
be discretized in time as the recurrence relations 

{u}n+i = [A]{u}n + [B]{g}n. (2) 

In this, n is the subscript over the discretized time; {u} now 
contains the state vectors (at least displacement and velocity) 
and is of size m > 2m,;  the vector of forcing terms, {g }, is of 
size {rag x 1}; and [B] is the [m x mg] matrix that associates 
the forces with the DoE Some specific forms for [A] and [B] 
are given in Appendix I. 

In the forward problem, given the initial conditions as 
{U}l = known, and the applied load histories {g}, we can 
solve for the response recursively from Eq (2). In the inverse 
problem of interest here, the applied loads are unknown but 
we know some information about the responses; we wish to 
use this information to determine the applied loads. In par- 
ticular, assume we have a vector of measurements {d} of size 
{md x 1} which are related to the structural DoF according to 

{d}n r [Q]{u}n. 

Note that the [md • mu] matrix [Q] could be a difference 
relation as would be the case for strains. We want to find the 
forces {g} that make the system best match the measurements. 
Consider the general least squares error given by 

N 

n=l  

{u}n+l = [A]{u)n + [B]{g}n, 

where rWj could be a general weighting array on the data 
although we will take it as diagonal. Our objective is to find 
the set of forces {g} that minimize this error functional. 

It is possible to establish a global system of simultaneous 
equations by the usual procedures for minimizing the least 
squares. That is, we arrange Eq (2) to form 

[fi,]{~}=[/Y]{~}, {~}={{U}l, " - ,  {U}N} r ,  

{g} = {{g}l,  " " ,  {g}N} T. 

Solve for {~} in terms of {~}. That is, first decompose [e{] 
and then solve [G] as the series of back-substitutions 

[A][G] = [LrDU][G] = [/}]. 

The matrix [G] is the collection of forward solutions for unit 
loads applied for each of the unknown forces. We therefore 
can write the actual forward solution as 

{~} = [G]{~}. 

Substitute this into the error equation and minimize with re- 
spect to {g}. The resulting system is 

[GT QTWQG]{~} = [QG]r[W]{d}. 

This naive scheme is not practical for two very important 
reasons. 

Consider a dynamic problem where there are mu de- 
grees of freedom at N time steps; this would lead to 
the very large system array [A] of size [(mu x N) x 

(mu • N)]. A system with 10,000 DoF over 2000 time 
steps_has nearly 100 • 106 unknowns and a system size 
of [A] which is the square of that. This would lead to 
a RAM memory requirement of 3 x 109 MB. Further- 
more, solving the system of equations would cost approx- 
imately N 3 operations, which on a 1 GFlop supercom- 
puter would take 1013 seconds or 300000 years! Clearly, this 
approach to solving the problem does not scale very well and 
the procedure is restricted to very small problems only. Even 
if advantage is taken of the special nature of [A] as given in 
Appendix I, the numbers would still be outrageously large. 

There is another reason why the above scheme will not 
work even if the computational cost could be afforded: the es- 
tablished system of equations is notoriously ill-conditioned. 
That is, any small perturbations in the input data or system 
parameters will cause significant changes in the estimated 
parameters. 

The two key factors that must be addressed are therefore 
size and ill-conditioning. With this in mind, some of the 
attributes the method should have are: 

�9 Be able to analyze structures with complexities as usu- 
ally found in forward problems and handled by the 
finite element method. 

�9 Be able to determine many unknown force histories 
forming unknown shape distributions as well as acting 
independent of each other. 

�9 Be able to utilize many sensors, of different types, dis- 
tributed through-out the structure and not placed in any 
particularly optimized positions. 

�9 From a computational cost aspect, be scalable similar 
to forward problems using the finite element method. 

In the following, the ill-conditioning is handled by the intro- 
duction of regularization terms. 3 We cope with the problem 
of size by using an algorithm adapted from Bellman's ideas 
in dynamic programming; 2~ this scheme essentially allows a 
recursive (in time) solution of the problem. 

Recursive Formulation of the Problem 

Consider the general least squares error given by 

N V 
E(u, g) = Z ] {d-  Qu}ffFWJ{d- Qu}n 

L n=] (3) 

+ k{g),r~[Hl{g}~] 

{U}n+l : [A]{u}n -}- [B]{g}n (4) 

where the summation is over all the time steps as discussed 
before and the second term on the right of Eq (3) is the reg- 
nlarization term, as discussed in Appendix II. The main idea 
to be developed is to perform the minimization recursively 
rather than globally, working from the last time step. The 
original form of this algorithm was given in Refs. 20 and 21 
and has much in common with the Kalman filter. 22-24 

Ricatti Equation 

We will not give the detailed derivation but just hint at its 
essentials; a full derivation is given in Ref. 17. 
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Consider the arbitrary time step n; the optimized partial 
error sum is 

E (u, g) -  G(u, g) 

N W 
= Z [ [ d -  Qu};FWJ{d- Qu}j 

I_ 

+ k{g};[H]{g}j] 

where En means the summation begins at j = n. The key 
to the algorithm is to rewrite the partial sum in terms of the 
solution to a previously optimized problem. Thus, at the 
earlier time 

min[ T * (u, g) = {Qu - d } , , _ l  FwJ { Q u  - d } n - 1  En-1 ~5~ 

T 
+ k{g}n_ 1 [H]{g}n-1 

* 1 En(un = Aun-I + Bgn-1) 

where the parenthesis of E* means "function of". It can be 
shown that E* is quadratic in {u}n for any n and therefore 
can be written as the recursion relation 

E?,(u) = {u}V. + + G 

where [Rn], {Sn} and Cn are coefficients. It is for these co- 
efficients that a recurrence relation is established. Defining 
the inverse term 

[D,] = [2k[H] + 2[B]T[R,][B]] -I  

then (after some manipulation) we get the recurrence 
relations 

[Rn-1] ---- [Q]TFWj[Q] 

+ [A]T[Rn - 2RnBDnBTRn][A] 

{Sn-1} ~-- - 2 [ Q ]  T [WJ{d},-i  

+ [A]T[I -- 2RnBDnBT]{sn}. (5) 

This is a form of the Ricatti equation. 25 There is no need 
to compute the coefficient Cn since it disappears on differ- 
entiation. The starter values for the recursion are obtained 
by looking at the optimized error function at the end point 
n -- N. This gives 

[RN] = [Q]rrWJ[Q], {SN} -~ --2[Q]TFWJ{d}N �9 (6) 

In this way, starting with the end values, we recursively de- 
termine and store (either internally or to disk) the quantities 
[Dn ] [2 Rn B ] T [A] and [ Dn ] [B] T { Sn }. This is called the back- 
ward sweep. During the forward sweep, we compute 

{g*}n = - [  Dn+I][2RB]T+I [ A ]{u}n 

-- [Dn+I][B]T {sn+I} 

{U}n+l = [A]{u}n + [B]{g}n. (7) 

As discussed in Appendix I, the manipulations with the large 
array [A] are done in an efficient manner. 

These are the form of the equations used in Refs. 15 and 
16 for force identification and Refs. 12-14 for heat conduc- 
tion problems. As discussed next, these equations are still 
unsuited for scaling to large sized finite element problems. 

The arrays introduced with this form of the inverse prob- 
lem are of size 

{d} = [md • 1] 

[WJ = {md • 1} diagonal 

[Q] = rind x m] 
[R~] = [m x m] symmetric 

{&} = {m x 1} 

[Dn 1] = ring x mg] symmetric 

[Dn] = ring x mg] symmetric. 

These arrays show a huge improvement in storage require- 
ments as compared to the naive method. However, they are 
still not in a good form for scaling to large size problems. In 
particular, the square, fully populated array [Rn] is of size 
[m x m] and recall that m > 2mu. For our target system of 
10000 DoF this is on the order of 1000 Mbytes (when stored 
in double precision). Hence, any manipulations involving it 
will be computationally intensive as well as requiring large 
storage. Furthermore, the system requirements are then or- 
ders of magnitude greater than needed for the corresponding 
forward analysis via FEM. 

There is another reason for avoiding the use of the Ricatti 
form of the equations for large systems: as pointed out in 
Ref. 26, they are prone to a numerical instability unless spe- 
cial precautions are taken to preserve the positive definiteness 
of [R,]. For small systems, enforcing the symmetry of [R~] 
by setting [Rn] = 1 T [Rn + R, ] is sufficient, but it is not clear 
that this is sufficient for large systems. 

The equations will now be modified with the intention of 
avoiding having to form the matrix [Rn] altogether and thus 
avoid any drawbacks associated with it. 

Time Invariant Systems 

For most structural problems of interest, the system is time 
invariant (the matrix [A] is constant). The essence of the 
approach to take advantage of this is to realize that when the 
system does not change many of the intermediate matrices 
do not change between time steps and that the recurrence 
relations can be written in terms of their differences. This 
was first introduced in the series of papers by Kailath 26'27 
who discusses a number of variations of the basic algorithm; 
derivations can also be found in Refs. 17 and 28. 

Consider the symmetric array [Rn] at two times in the 
recursion given by 

[Rn-1] = [QTW Q] + [ar][Rn][I - 2BDnBT][Rn][A] 

[Rn-2] = [QT W Q] + [AT][Rn-1][I - 2BDn- IB  T] 

[Rn-1][A]. 

There is a good deal of duplication in going from one level to 
the next; the only recursive term needed at the second level 
is [Dn] which is also obtained from [Rn] as the inverse of 

[Dn 1] = 2k[H] + 2[BTRnB]. 
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This motivates expressing the quantities in terms of  
differences 

[/xRn] -- [Rn] - [Rn-l] .  

The recursion relations are written for the differences. 
The full sequence of  recursion relations is 

[D~-11 ] = [D~ -11 - 2[BTy,][Lnl[Y[B] 

[0n-1]  = [02!1  ]-1 

[Ln-1] = [Ln] + 2[LnyT B][On-1][BTynLn] 

[Y,- I ]  = [Ar][Y,, - 2KnB r Yn 1 

[K~-,]=[K,,]-[Yn-2K,,BrYn][LnYfB][D,,- ,]  

{Sn-i ' = - 2 [  O T W]{d}n-I + [A T ] {{ Sn}-- 2[KnB r ]{ Sn '}. 

It is clear that these computations can be sequenced so that 
many of the partial products can be re-used. When doing 
this, the carry-over arrays should be chosen to be the small 
ones. One such possible scheme is given in Ref. 28. The 
initial conditions for the recursive variables are 

[D~ 1] = 2X[H] + 2[BTQT][WJ[QB] 

[DN] = [0N1] -1 

[YN] = [AT][Q T] 

[KN] = [QTW][QB][DN] 

[LN] = -[WJ + 2[WJ[QB][DN][Br Q] T FWj 

{SN} --- -2[QTw]{d}N. 

During the backward phase of the computations, the 
quantities 

[DnBTI{Sn}, [ K : ]  

are stored either to disk or in-core. These can then be used in 
the forward calculations. The forward stage of the computa- 
tions is given by 

{g}n = -[KT+I][AI{u}n - [Dn+lBr ]{&+l}  

{u}n+l = [d]{u}n+[B]{g}n.  (8) 

This rearrangement of the equations should give exactly the 
same results as when using the Ricatti form. The primary 
restriction incurred is that it is assumed that the system matrix 
[A] does not change between time increments. 

This new form of the recursive relations deals with arrays 
of size 

[Dn 1] = [rag x rag] symmetric 

[Dn] = [mg x mg] symmetric 

[Ln] = [md x rod] symmetric 

[Y~I = [m • rod] 
[K~I = [m x mgl 
{Sn} = [m x 1]. 

The largest arrays are of size [m x md] and [m x rag], and 
since both md and rng (number of sensors and number of 

forces, respectively) are significantly less than m, there is a 
huge reduction in the storage requirements. 

The derived equations have the further advantage that they 
are more stable than the Ricatti form. 26'29 

The Computer Program Inverse 

Both the Ricatti and time invariant equations are incor- 
porated into a computer program called I n v e r  s e. Implicit 
and explicit versions of  the time integrations are selectable. 

Existing finite element code to produce the stiffness, 
mass, and damping arrays of 3-D thin-walled shell struc- 
tures with reinforcements was modified and incorporated into 
Znve  r s e; consequently it can handle the same problems as 
the original finite element program. The model of the struc- 
ture is created using the mesh generating program associated 
with the finite element program. 

Through the matrix [Q], any number of  mixed sensors can 
be used. In the case of the implicit scheme, the accelerometer 
data can be used directly; in the explicit scheme it needs to 
be integrated once to be put in the form of velocity. 

Through the matrix [Bg], any number of forces and mo- 
ments can be determined. As seen in the equations of Ap- 
pendix I, we actually determine the rate of force and not the 
force itself. This has the effect of adding regularization in 
the time direction; this is the only time regularization imple- 
mented. The choice of zero, first, and second order space 
regularization is implemented. 

Note that if we store in-core then we need [(m x m x) x N] 
memory, where N is the number of time steps. For example, 
if the system size is 10000, with 20 unknown forces, and 2000 
time steps, this can lead to over 3 GB of memory. Hence it is 
only for simple problems that in-core storage is performed. 
More details like this, and on the program in general, can be 
found in Ref. 28. 

In order to exercise the program and determine some of the 
metrics, we now apply it to a cylinder problem using synthetic 
data. This will be used to demonstrate the ability of the 
program to handle large problems. It will also demonstrate 
the necessity of regularization. 

This example problem, shown in Fig. 1, presents a com- 
plex problem, in that it is three dimensional with a large 
number of  degrees of  freedom. The elements used are such 
that there are six degrees of freedom at each node: three dis- 
placements, and three rotations. The total number of DoF for 
the mesh shown is 3456 and this translates into a total sys- 
tem size (state vector plus unknown forces) for the inverse 
problem as 

implicit: Size = 10375, At = 5.0 b~s, N = 400 

explicit: Size = 6375, At = 0.4 txs, N = 2000. 

These numbers are on the order of those presented in the 
introductory discussion. 

The distributed load along the west edge is comprised of  
seven unknown forces with a pulse-like history. The sen- 
sors are not distributed in any particular or optimized manner 
for calculating these forces - -  indeed we purposely, for the 
results to be shown, did not use any sensors in the immedi- 
ate location of the unknown forces. Also, the synthetic data 
were contaminated with Gaussian noise having a standard 
deviation of 10% of the average velocity. 

Two sets of  results are shown in Fig. 2 using different 
amounts of regularization. Regularization is seen to be an 
essential ingredient. The timings for the solutions are: 
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Fig. 1--Shell mesh with parameters 

am: 89 m m  (3.5 in.) 

:ngth: 51 rnm (2 ,0 in . )  

l ick:  3 m m  (. 125 in.) 

uminum 

implicit: 53 minutes 

explicit: 10.6 hours. 

The relative cost between the backward and forward por- 
tions of the solution is approximately 8:1 for both integration 
schemes. Both sets of timings are significantly smaller than 
the naive scheme presented in the introduction. The differ- 
ence between the two schemes is that the implicit method 
can use a time step related to the frequency content of the 
excitations, whereas the step size for the explicit method is 
dictated by the element size. In this instance, the advantage 
lies with the implicit method. 

Experiment I: 3-D Cylindrical Shell 

The first experiment is on an impacted shell. While only a 
single force is identified, it demonstrates some of the practical 
issues associated with using experimental data. 

Experimental Setup 

The set-up for the experiment is presented in Fig. 3. A 
51 mm (2 in) long cylinder with 3 mm (1/8 in) wall thick- 
ness was constructed from aluminum. Accelerometers were 
placed on the top (90~ and 180 ~ from the impact site, as 
shown in Fig. 3, and attached using bees' wax. The speci- 
men was suspended by strings and impacted midway 25 mm 
(1 in) along the length. 

Data for the experiments were collected by means of an 
Omega Instruments DAS-58 data acquisition card; this is a 
12-bit card capable of 1 MHz sampling rate and storing up 
to 106 data points in the on-board memory. A total of 8 
channels can be sampled; however, increasing the number 
of channels decreases the fastest possible sampling rate. For 
this experiment, four channels were sampled at 250 kHz, or 
a 4 ~s time step. 

Accelerometers (PCB 309A) and a modified force trans- 
ducer (PCB 200A05) were used to collect the data. The con- 
nections between the accelerometers and the computer were 
through the use of an Omega Instruments BNC-58 multiplex- 
ing unit. 

The accelerometer outputs were integrated according to 
the trapezoidal rule 

A = 1.0 • J . O - 1 6  

time 
Fig. 2--Seven force reconstructions for the shell using 
different amounts of regularization 

vn+l = Vn + �89 + an+l)At  

to determine the velocities. Because of slight offsets in the 
acceleration voltages, a trend is sometimes observed in the 
velocity. This trend is estimated and subtracted; we refer to 
the detrended data as the raw data. The explicit integration 
option in Inverse requires a small At, and so the values of 
the input data are obtained from the measured data by linear 
interpolation. The implicit integration option does not re- 
quire interpolation and can use the acceleration data directly. 

The recorded force and (processed) velocity data are 
shown in Fig. 4. Note that the impact is a double impact 
on a very small time scale. 

Forward Problem 

A good inverse analysis is predicated on a high fidelity 
finite element model of the structure being analyzed. That is, 
this model must correspond accurately to the real experimen- 
tal situation in terms of material properties (Young's modulus, 
mass density), dimensions (diameter, thickness), and sensor 
locations. Therefore, before any solution to an inverse prob- 
lem is attempted, the modeling should be verified by doing a 
forward problem. 
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P o w e r  S u p p l i e s  
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A l u m i n u m  
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w/Omega Instruments DAS-58 
Data Acquisition Card 

Fig. 3--Experimental set-up 
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Fig. 4--Recorded force and velocity traces for the shell. Also 
shown is a comparison with the forward problem results 

A convergence study was performed to determine the 
proper element size for the FEM model; the data from the 
force transducer provided the input force history for this 
study. From the results, it was determined that 3 mm 
(1/8 in) element modules would be an acceptable size for the 

Inverse analysis. A model was then created similar to 
that of Fig. 1 using 1408 folded plate elements. This creates 
a problem with a system size of 4486 degrees of freedom. 

The results for the forward problem can be seen in Fig. 4. 
The two data sets are almost in phase with each other. To 
achieve these results, the effective diameter of the cylinder 
was taken at the average radius. 

Inverse S tudy  

The force reconstructions from the experimental velocity 
inputs are shown in Fig. 5. It is pleasing to note that the 
double impact is detected. Now, a word about the choice 
of regularization is in order. For transient problems, it can 
always be arranged that there is an initial zero force header, 
or an initial period of quiescence. On reconstruction with 
perfect data, this would be zero; with noisy data this would 
oscillate about zero; and with poor parameters this will show 
a trend. We tweak the regularization to give the best looking 
header. 

Accelerometer #2 on its own does a good job but the same 
is not true for Accelerometer #1. At first sight, this might 
appear to indicate that somehow these data are corrupted. 
However, the fact that using both accelerometers together 
gives somewhat improved results does not bear this out. If  
accelerometer #1 was indeed contaminated, then mixing both 
accelerometer data would also show the contamination. A 
more reasonable conjecture is that position #1 is very sensi- 
tive, in an ill-conditioning sense, to slight errors in the data. 

Our conjecture has important implications for inverse 
methods, so we decided to further investigate the nature of 
the discrepancy by manipulating synthetic data in a couple of 
ways and comparing the performance of positions #1 and #2. 

First, the sensitivity due to the positioning of the ac- 
celerometer in relation to the node used in the I n v e r s e  
analysis was examined. These results are shown in Fig. 6 
and demonstrate that, for a given misalignment, the 90 ~ po- 
sition is more sensitive than the 180 ~ position. However, 
the symptom of the error (a constant frequency superposi- 
tion) does not reflect the symptom shown in the experimental 
results. 
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Fig. 5--Comparison of reconstructed forces from Inverse 
and force transducer data for the shell experiment 
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Fig. 6--Effect on force reconstructions of sensor mis- 
positioning in the hoop direction 

As a second study, approximately the same amount of drift 
seen in the experimental velocities was added to the veloci- 
ties generated synthetically. This amount was determined by 
examining the raw data from the accelerometers and estimat- 
ing the digitizing level of the voltages recorded. This value 
was found to be around 15 m/s (600 in/s). These adjusted ve- 
locities were used to reconstruct the force from the response 
at the two nominal 90 ~ and 180 ~ positions and the results are 
presented in Fig. 7. Again, the 90 ~ position is more sensitive 
to slight deviations in the input data. This time the symptom 
is similar to that of the experimental results. It is noted that 

1 

0 

I , 

0 

- -  Inverse 
~ ,  .......... Transducer 

,'" ":"k., ,, . ./,"'".,,, 

18Odeo 

400 800 1200 1600 
Time [gs] 

Fig. 7--Effect on force reconstructions of adding drift to 
velocity inputs 

using both accelerometers does not give a simple average but 
gives a result that is often better than the individual results. 

These studies indicate a concern that is quite crucial in 
inverse studies and is different from the experimental issues 
of position accuracy and signal fidelity. When doing an in- 
verse analysis, the location of the sensor(s) and not just their 
accuracy is very important. This is not something that can 
always be decided in advance; for example, if the impact 
was at the 270 ~ location then the roles of the accelerometers 
would be reversed. The implication is that multiple sensors 
must be used, and that they be combined through the use of 
regularization. Both of these aspects are part of the program 
Inverse. 

Experiment I1: In-Plane Problem 

The second experiment demonstrates the ability of the 
method to determine multiple uncorrelated forces. It is not 
convenient to arrange multiple impacts of a structure; instead, 
we use multiple forces associated with the decoupling of a 
complex structure. This also allows a demonstration of the 
one-sided Hopkinson bar. 

One-Sided Hopkinson Bar 

In experimental verification studies, it often occurs that we 
need to apply a known force history to a structure. In some 
instances, where the frequency content of the excitation is 
low, we can use an instrumented hammer as is common in 
modal analysis, 3~ and as done in the previous experiment. In 
other instances, however, we may need a high energy, high 
frequency input and here the common force transducers do 
not have the required specifications. The one-sided Hopkin- 
son bar was designed for this purpose. 

A widely used method for dynamic material analyses is 
by means of the split Hopkinson pressure bar (SHPB)} ] 
The standard configuration has evolved into one which has 
two long bars of identical material, instrumented with strain 
gages, and with a small specimen placed between them. The 
first rod, or input bar, is impacted by firing a projectile and a 
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stress wave is generated. This wave causes the specimen in 
between the two bars to be dynamically loaded. Typically, 
because the specimen is small, the wave propagation effects 
within the specimen are negligible, and it quickly reaches a 
uniform stress state. Under this circumstance, both the re- 
flected and transmitted signals in the long bars have a simple 
relationship to the specimen stress (and strain) state. Using 
the strain gages to measure the waves propagated in both the 
input and output bars, the stress and strain histories of the 
specimen can be determined. Since the bars are such that the 
cross-sectional radius is not very large, dispersion effects are 
minimal and therefore the analysis can be done using 1-D rod 
theory. 

In the one-sided Hopkinson bar configuration as shown in 
Fig. 8, the specimen is the complex structure for which we 
wish to apply the known force. A pulse of short duration is 
generated at one end of the bar, usually by impacting it. The 
important difference in comparison to the SHPB is that wave 
effects in the specimen are significant and consequently the 
reflected signal does not have a simple relation to the trans- 
mitted force. That is, since the duration of the event covers 
several passages of  the original pulse up and down the in- 
cident bar, simple time shifting of the recorded signal is no 
longer adequate. Both the impacting force and the transmit- 
ted force must, in general, be determined simultaneously. 

The one-sided Hopkinson bar was designed with the fol- 
lowing parameters: It is 254 mm (100 in) long with BLH 
SR-4 semiconductor gages (model SNB 1-16-35-$6) placed 
at the mid- and three-quarters points from the impacted end. 
The rod is made of steel with a cross-sectional diameter of 
6.3 mm (0.25 in). The rather long length of the rod allows 
for pulses of long duration to be generated. 

Inverse Problem 

The finite element convergence study indicated a maxi- 
mum element size of 6.3 mm (0.25 in) modules could be used 
in the analysis. The model and mesh are shown in Fig. 9, A 
symmetric model was used to allow for more elements of a 
smaller size; the number of elements for the resulting model 
was 2159 plate elements, which creates a problem with a 
system size of 3407 degrees of  freedom. 

The specimen was machined from a 6.3 mm (1/4 in) thick 
sheet of aluminum, cut to be a 305 mm (12 in) square with 
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Fig. 9--Square plate with central hole (dimensions in mm). 
The Hopkinson bar is attached to the left side 

a 76 mm (4 in) diameter hole bored in its center. A small 
hole was drilled and tapped at the mid-point of  one of the 
edges for the connection of the one-sided Hopkinson bar. 
Accelerometers were placed on the edge of the force input 
and on the opposite edge of the plate at 50.8 mm (2 in) off 
the force input line, as shown in Fig. 9. The accelerometer 
and strain gage data were collected using the data acquisition 
system of Fig. 3. The data were collected at a 4 tzs rate over 
4000 l~S. 

The acceleration data were converted to velocities and de- 
trended, and the strain gage data were modified to account 
for the slight nonlinearity of the Wheatstone bridge (since 
the resistance change of the semiconductor gages is relatively 
large). These data are shown in Fig. 10. 

The inverse problem was divided into two separate prob- 
lems corresponding to the bar and the plate. The data from 
the two strain gages on the Hopkinson bar were used simul- 
taneously to reconstruct the impact force and the force input 
to the plate. These force reconstructions are shown labelled 
as P and R s, respectively, in Fig. 11. The impact force is 
as expected, in that it is essentially a single pulse input. The 
reconstructions of the force at the connection point, on the 
other hand, are quite complicated persisting with significant 
amplitude for the full duration of the recording. Note that 
the connection force is larger than the impact force because 
of the high impedance of the plate. 

The R s force from the Hopkinson bar was used as in- 
put to the forward problem for the plate and the computed 
velocities are compared to the measured ones in Fig. 10. 
The comparison is quite good considering the extended time 
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Fig. 10--Experimentally recorded data. Top, strains from 
Hopkinson bar. Bottom, velocities computed from 
accelerations 

period of the comparison. The data from the accelerometers 
were then used as separate single sensor inputs to reconstruct 
the force at the connection point. These force reconstructions 
are shown labelled as R e and R~ in Fig. 11. The comparison 
of the reconstructed forces at the connection point agree quite 
closely both in character and magnitude. This is significant 
because the force transmitted across the boundary is quite 
complex and has been reconstructed from different sensor 
types placed on quite different structural types. 

D i s c u s s i o n  

This paper brings together a number of technologies to 
solve the force identification problem on complex structures. 
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Fig. 11--Force reconstructions for the plate with a hole 

At the core is the embedding of the finite element modeling of 
complex structures to determine the system matrix. Conse- 
quently, structures as complex as is usually modeled with the 
finite element method can be handled conveniently. Special 
effort was made to insure that the computational costs scale 
in a manner similar to the forward problem using the finite 
element method. The problem of ill-conditioning is handled 
through regularization. This alleviates the burden of proper 
sensor placement and, as a result, the difficult problem of 
traction and pressure distributions can be solved. This opens 
up the exciting possibility of solving problems with unknown 
boundary conditions or using subdomains for the modeling. 
A preliminary investigation of these are given in Refs. 28 
and 32. 

Further efficiencies can still be achieved in the program- 
ming; for example, operations on the banded representation 
of the stiffness matrix can be replaced with skyline opera- 
tions. This will decrease the storage requirements as well as 
increase the speed. An aspect of the programming that could 
have a profound effect in the future is that the backward so- 
lution stage (in particular, the matrices [Rn ] or [Kn ]) actually 
solves for any force history at the stated force locations in- 
dependent of the measured data. Thus inverse problems that 
require iteration (e.g., force location) or use multiple data sets 
(e.g., real-time health monitoring) need solve the backward 
stage only once (which is the expensive stage) and use the 
forward stage for manipulating the actual input data. The 
implications of this are significant. 

The power of the presented method is that it embeds a 
general purpose FEM program in it. Ironically, this can also 
be perceived as a drawback, in that as the structural com- 
plexity increases (so that it requires a new element type, say) 
so must the complexity of the inverse coding also increase. 
Thus the power of commercial FEM programs cannot be uti- 
lized. In this regard, the methods presented in Refs. 11 and 
33 offer a significant advantage because the FEM analysis is 
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run as an external process to the inverse program and there- 
fore the power of  commercial FEM codes can be leverage& 
The methods do not scale as well as the one presented in this 
paper, so it will be interesting to see which of the attributes-- 
scalability or generality--turns out to be more important. 

Appendix I: Some Forms for [A] and [B] 

We have implemented two schemes for the time discretiza- 
tion of the equations of motion. One is the conditionally sta- 
ble explicit central difference method, 18'19 and the other is 
the unconditionally stable implicit Newark or constant accel- 
eration method.18,19 

Using the central difference finite difference scheme, the 
governing system of equations can be written as 

] fi = 

g n+l 

[ ( I - M l l K A t 2 )  ( I - M I I C A t ) A t  MllBgAt 2 ] 

] o I 
it + 0 At 

g n g n 

with [M1] -~ [M + 1CAt] and [I] as the unit matrix. Note 
that the rate of force, {g}n, is taken as the actual applied load; 
this will give the equivalent of  first order regnlarization in the 
time direction. This relation is abbreviated as 

{u}n+~ = [A]{u}n -t- [B]{g}n (A1) 

where n is the subscript over the discretized time. In this, 
the degrees of freedom vector, {u}, is of  size {(m = 2mu + 
mg) x 1}. 

The system array [A] is very large and therefore it is to 
our advantage to give special treatment to its manipulations. 
The structure of this matrix is shown in Fig. A1. Because of 
the nature of the structural systems, the stiffness matrix [K] 
is banded and symmetric; consequently, the two upper left 
portions can be made banded (although not symmetric). As 
is usual with explicit discretization schemes, both the mass 
and damping matrices are taken as diagonal and hence the 
two upper middle portions are diagonal only. The first two 
bottom matrices are zero and the third is diagonal with unity. 
The remaining far left matrices are mostly zeros but because 
mg << mu usually, we do not give it any special treatment. 

We never do actually assemble the [A] matrix but instead 
retain the individual component matrices. The storage used 
for the array is then 

[(2m, + nag) x (2mu + mg)] ,', ',, [mu x b + 2mu]. 

This affords a substantial reduction for large systems. 
The vector product {w} = [A]{v} is accomplished by 

breaking {v} into three parts {Vl, v~, v3} r and then adding 

[A]= 

m~z 
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0 0 
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Fig. A1- -S t ruc tu re  of the system matr ix [A] 

ft'bz~ 

ft'bu 

/Tz 9 

the separate products as 

{Wl} = {vl} -- ~MllAt2J[K]{vl} + (I-v2 - MllCAt v2j 

-? ~M{1AtJ{Bg}{V3})At 

{w2} = -FMllAtJ[K]{Vl} + (Iv2 - mllCAt  vaJ 

+ FM~IAtJ{Bg}{V3}) 

{w3} = {v3}. 

The only expensive computation is the product [K]{v] }, and 
this is accomplished in banded form. Also, it is re-used 
for both {wl} and {w2}. The middle and right parenthe- 
sis terms are also re-used. This is coded in its own sub- 
routine. The vector product {w} = [Air{v} is accom- 
plished in a similar manner with its own subroutine. Note 
that the additional products {w} = {v}r[A] = {lAir{v}} r 
and {w} = {v}r[A] r = {[A]{v}} r can be obtained using the 
above two subroutines. 

In this way, both the storage and computational cost of 
manipulating the system array [A] are reduced considerably. 
The complete set of arrays associated with describing the 
system are of  size 

{u} = {(m = 2m,  +mg) x 1} 

{g ]  = {rag • 1} 

[Bg] = [mu X rag] 
[B]----[m Xmg]  

FKJ = [mu x b] banded, symmetric 

FMJ = {mu x 1} diagonal 

rCJ = {mu x 1} diagonal. 

As is the case with the forward finite element problem, the 
largest array is the stiffness matrix. 

Using the Newmark implicit scheme, the governing sys- 
tem of equations can be written as 
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Z1 ---- [K -1] F2CAt + 4M J /At  2, 

Z2 = [K-1][CAt + 4M J /At  2, 

Z3 = [K-1][MI /A t  2, 

Z4 = [K-1][Bg] 

and [K1] = [K + 2C/At  + 4M/At2]. This can also be 
abbreviated as Eq (A1). 

As in the explicit case, we never do actually assemble 
the [A] matrix, but instead retain the individual component 
matrices, and the matrix products are performed in an effi- 
cient manner. The expensive computations are the products 

[K1]l[MiJ{vj}. We do not form the inverse of  the stiff- 
ness matrix (since this would be too expensive and require 
t o o  much memory); rather, the product is accomplished in 
banded form as follows: 

{ z } = [ K ~ I ] F M i ] { v j }  or [ K = U D U I { z } = { M i v j } .  

The [UDU] decomposition is performed only once, thus 
the computational cost is essentially that of the back- 
substitutions. This is the same cost as occurs in the for- 
ward implicit problem. The arrays associated with describing 
the implicit system are similar in size to that of the explicit 
scheme except that size {u} = {(m = 2m,  + rag) x 1}. 

Appendix I1: Minimizing Principle with 
Regularization 

The usual least squares procedure is posed in the form of 
finding the set of  discretized unknowns {u} given the set of 
data {d} so that the positive functional & = X 2 is a minimum; 
that is, ' 

minimize: & = [d - Au]T[d - Au]. 
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c6 
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re 

data fit 

Error norm 

Fig. A2--Trade-off curve 

The number of datapoints is typically larger than the num- 
ber of  unknowns and therefore minimizing with respect to 
the unknown {u} gives a determinate system of equations. 
It is actually very difficult to get robust answers for these 
problems (even when there is an excess of data) because they 
are highly ill-conditioned. Regularization is used to make 
ill-conditioned problems better conditioned. 

We now paraphrase some of the discussion of regulariza- 
tion as given in Ref. 3; a more mathematical treatment (plus 
an extensive bibliography) is given in Ref. 34. The essential 
idea in our inverse theory is the objective 

minimize: & + k ~  = {d - Au}T{d - Au} 

+ ?,{u}r[H]{u} 

for various values of 0 < k < oc along the so-called trade- 
off curve of Fig. A2. There are two positive functionals, & 
and 2 .  The first measures the agreement of  the model to the 
data; when & by itself is minimized, the agreement with the 
data becomes very good but the solution becomes unstable. 
This reflects that & alone typically defines an ill-conditioned 
minimization problem. The second term 2 is introduced to 
overcome this problem; it measures the smoothness of  the 
desired solution or sometimes a quantity reflecting a priori 
judgments about the solution. This function is called the 
regularizing operator. Minimizing ~ by itself gives a solution 
that is well-behaved but clearly does not reflect the data. 

Increasing X pulls the solution away from minimizing X 2 
in favor of minimizing {u}r[H]{u}. We settle on a "best" 
value of k by some criterion ranging from fairly objective 
to entirely subjective; this is discussed a little further in the 
main text. 

The regularization method we use is generally called 
Tikhonov 35-37 regularization. Typically, the functional 
involves some measures of smoothness that derive from first 
or higher derivatives and given by [HI  = [D] r [D]  where 
[D] is the difference matrix. Detailed discussion of the dif- 
ferent choices of regularization is given in Refs. 28 and 32 
and therefore will not be elaborated on here. 

The arrays associated with describing the regularization 
are of size 
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[D]  = [(rag - 1) • mg] 

[ H I  = [mg x rag] 

Both arrays are relatively small since usually mg ~ mu. 
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