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Summary.  - New techniques are developed, based on the consideration of the projective bundle 
associated with a direct sum o / two  vector bundles, to give a simpler solution el the problem 
o/blowing up Chern classes which was previously solved by Porteous [12] using the Grothen. 
diecls Riemann-Roch theorem. 

Dedica t ion .  

I t  is a particular pleasure to the authors of this work to be allowed to dedicate it, on this 
happy jubilee, to Beniamino SEGRE. We deal with a problem which S~ZGm~ and TODD brought 
to birth and to which S~GR~ has made illuminating contributions over the years, and we 
hope that this paper will make the solution of the problem somewhat more accessible to 
classical algebraic geometers. 

But we owe far more to S ~ g ~  ~hau the vital scientific inspiration. I t  was he who brought 
us together and caused our paths to cross, and without him our collaboration would never 
have been undertaken. We both thank him from the depths of our hearts for his deeply- 
valued friendship, axed for all he has done for both of us and for so many of our friends and 
oolleagaes in such widely separated lands. 

O. - In troduct ion .  

T h e  problem of blowing up  Chern classes is to compare  the  Chern classes of a 

va r i e ty  X with  those of the  va r i e ty  X '  ob ta ined  b y  blowing up X along a subvar ie ty  :V. 

More precisely, if f :  X'--> X is the  (~ blowing down ~) morph i sm  we have  to calculate 

the  difference be tween the  to ta l  Chern class (or the Chern polynomial)  of X '  and 

the  pul l -back  b y  f of t h a t  of X.  
This p rob lem was first p ropounded  (in t e rms  of canonical  systems) b y  

TODD [18, 19, 21] and fur ther  discussed b y  h im in the  essential  su rvey  article [22]. 

I t  was also discussed b y  SEG~E [17] and  nea t ly  re formula ted  b y  VAT DE VE~ [23]. 

The first solution in general  t e rms  was given b y  P0~TEOUS [12]: the  proof  depended 

on the  Grothendieck R i e m a n n - R o e h  Theorem,  and  was therefore  fully effective only 
in character is t ic  zero. I n  posi t ive character is t ic  it gave  the  result  only modulo 

torsion.  This la t ter  reserva t ion  has now been implici t ly r emoved  b y  JOUA~OLOU [11] 

(*) Entrata in Redazione il 2 aprile 1973. 
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who has provided the necessary background results in positive characteristic. In this 
paper we give a more elementary solution of the problem, base4 on simple ideas of 
vector bundles and the geometry of their associated projective bundles. We develope 
the necessary techniques ab initio and try, in the interests of clarity and at some 
cost in brevity, to emphasise the geometry of the situation. In the course of this 
exposition we obtain a few well-known results; in some cases the proofs are essentially 
simpler than those generally known; in others our proofs are not more slick. But 
we have felt that  it was worthwhile to develop our ideas systematically in a way 
that  enables us to apply them as simply as possibly to our proof, in 2§ 8 and 9, of 
the blowing up theorem. 

The essential idea of our approach is that, since the Chern classes of an algebraic 
variety X are derived (el. G~o~m~I)~c~ [7]) from the geometry of its tangent 
direction bundle 2 ,  we need to consider the (~ lifted correspondence ~) f induced be- 
tween X'  and 2~. The treatment of this is a development of the ideas put forward 
for correspondences between surfaces in [15]. One important point is that  since ] 
is a birational morphism its graph is isomorphic with X'. However f is not a mor- 
phism, and its graph is isomorphic with 2~' blown up along a subvariety. 

The calculations involved in a straightforward approach to fi though not totally 
impracticable, are extremely unpleasant and we evade much of the difficult mani- 
pulation by a technical trick which enables us to reduce the solution of the general 
blowing up problem to that  of a special case. This is the case where we blow up the 
base space (or zero-section) in the projective completion E of a vector-bundle E. 
In our § 8 we give a succinct account of this special case which is based on the ex- 
position of our earlier sections and is greatly facilitated by a technical finesse in the 
calculations. In the following § 9 we deal with the more difficult problem of reducing 
the general case to the special one. 

The main tool in all this is the geometry associated with the algebraic correspond- 
ence ~ from P(E10E2)  to iP(E1)×wP(E2) where E~, E~ are vector bundles over the 
same base space W. The geometry of this situation is developed in § 4. However the 
essential geometric problems are already present in th% by no means trivial, special 
case where W is a point. ~or didactic reasons we have chosen to develop the special 
case in § 2 and use the geometric insights thereby gained to sketch the more general 
situation, rather than to adopt the less illuminating process of directly establishing 
the general results. 

I t  is perhaps worth noting that  the idea of investigating the geometry of 
P(E~ • E~) arose from the consideration (el. [15]) of the special case where the base 
space is a product U× V with projections p~, p~ onto its components, and E~, E2 
are the pulled-up tangent bundles p*T(U) and p*T(V). In fact this special ease 
plays an essential role in our treatment of the general blowing up problem. 

We have already suggested the contents of §2 2, 4, 8 and 9. In 22 1 and 3 we 
are mainly concerned with stating basic results in a form convenient for later ap- 
plications. The results of 22 5, 6 and 7 are not~ as we have already emphasised, all 
new, but the systematic treatment and the geometrical methods we offer are original. 
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In conclusion we have to express our thanks to many people and organisations 
who have helped this work along. Our debt to Professor SEG~E is already recognised. 
We are especially indebted to the Science Research Council of Great Britain who 
gave us the opportunity to work together for a full year in the University of Sussex 
and we would like to express our appreciation of their support of which this is not 
the only fruit. We are also indebted not only to the University of Sussex but also to 
the University of Montreal who gave us the opportunity to come together again and, 
inter alia, finalise the presentation of this work. Our Sussex colleague A. J. K~Ia~T 
has helped greatly by drawing attention to obscurities in an earlier draft. We owe 
a very special debt to I. 1~. Po~T~,ovs, who has an obvious proprietary interest in 
this problem, who read our earlier draft with very great care and from whose dis- 
cerning comments we have learnt a very great deal, even if he may feel that  we have 
not shown this as clearly as we might have done. Without their assistance the 
presentation of this work would have been less clear, but we must emphasise that  
neither K~m~T nor POt~TEOUS is responsible for the shortcomings and obscurities 
that  remain. 

1. -- Vector bundles and projective bundles over algebraic varieties. 

All the algebraic varieties with which we are concerned are defined over a fixed 
algebraically closed field, are quasi-projective and non-singular. (The old-fashioned 
geometer who prefers projective varieties can proceed as if we were discussing for 
the most part only projective varieties. However, we do in one or two places have 
to treat the space of a vector-bundle as a variety (el. Lemmas 3.1 to 3.3).) 

If  V is an algebraic variety, A(V) is its ring of rational equivalence classes 
(Chow ring) graded by co-dimension. To every morphism /: U--> V corresponds 
a ring homomorphism ]*: A(V)--> A(U), and when ] is proper (in particular when- 
ever U is projective) there is also a group homomorphism ], : A(U) ~ A(V) for the 
additive groups of these rings. Whereas ]* preserves co-dimensions, i.e. the gradings 
of the Chow rings, f ,  preserves dimensions. These operations are connected by the 
projection formula (cf. G~oTm~ND~CK [4] p. 4-08) 

(1.1) f , a .  b = 1,(a.Pb), 

where a ~ A(U), b ~ A(V). 
We are concerned with algebraic vector bundles E, F, G etc., over our algebraic 

varieties. I f  we wish to consider, say, E as an algebraic variety, we shall write E. 
The trivial line bundle over X (i.e. the product X × A 1) will be denoted by i x, which 
must be distinguished carefully from the unit of A(X) which we call I x. 

The duM of the vector bundle E will be denoted by ~. 
We shall denote by P(E) the projective bundle of E whose fibres are the pro- 

jective spaces derived from the fibres of E. We shall denote by z~ the fibre pro- 
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jeet ion z~: E --> X,  where X is the base space of E.  We shall denote b y  e~ the fibre 
projection ~ :  P(E)  -~X .  

I f  E is a bundle (not necessarily a vector-bundle)  over X and we have a 
morphism ]: I T -> X then  there  is a (~ pull-back ~ bundle ]* E over I r (for definition 

see [8] p. 43). In  part icular  we can consider the pull-back ~EE of the bundle E 
$ 

to P(E) .  I f  z is a point  of P(E)  with Q ~ z ~ x ,  the fibre of ~ E  at  z is a copy 

of E~ and contains the  one-dimensional vector  subspace which corresponds to  the 
line of E~ giving rise to the  point  z in the fibre P(E)~. The aggregate of these lines 
is a line bundle over P(E)  (a sub-bundle of ~*E) called the tautological bundle 

~ of P(E) .  The nota t ion is t ha t  of GaOTm~NDIEC~: [7] who denotes by  L E the dual 
of the tautological bundle. 

In  the next  section we are part icular ly interested in the case where the base space 
of the bundles under discussion is a point.  I f  E is a vector  bundle over a point,  
i.e. an afllne space, the bundle  P (E)  is the  associated project ive  space of E and 
e*E is simply the product  P ( E ) x  E regarded as a trivial bundle over P(E) .  Bu t  
note  tha t  ~ is not tr ivial  (unless E is a line bundle) and L .  is the bundle associated 
with the divisor elass of a pr ime section of the  project ive space P{E). 

2. - Some basic, and fairly elementary, geometry. 

We consider our basic correspondence in the case where we have two vector 

bundles E1 and E2, the base space of each being the single point  w. Thus E1 and E2 
are affine spaces A m+l and A ~+~ respectively (*). 

We shall denote by  G the affine space A ~+~+2-~ E1 • E2 (or E1 x E~ or even 
E1 x ~E~). The associated project ive spaces P ~ :  P(E~), P~ ~ P(E2), P ' ~ + ~ :  P(G) -~ 
: P(E1 Q E2), will be denoted by  P~, P~, R respectively. The Segre product  P~." 
of P~ and P~ will be wri t ten as P~ x P~. 

I f  (no, ..., a~) and (be, ..., b~) are co-ordinates of points A anct B (other t han  the 

origins) in E~, E~ respectively, t hey  are also homogeneous co-ordinates for the as- 
sociated points a, b in P~, P2. The set of ~11 points in E~ giving rise to the point a 
in P~, together  with the origin, is a line l~ in E~, and l~ in E~ is defined similarly. 
The aggregate of all a x l~ in P~ x E1 is the tautological bundle  ~ over  P~. 

The vector  (a0, ..., a~, b0, ...,b~) represents the point  A x B in G. And unless 
bo th  of A and B are the origins it also gives the homogeneous co-ordinates of a 
point  of R. We note  tha t  R contains two subspaces (those respectively for which B 
or A is the origin) which we can ident i fy  with P~ and P2: specifically we identify 
the point  (a0, ..., a~, 0, ..., 0) of R with the point  a of /)1. Wi th  these identifica- 

(*) h this section it will be found convenient to take the ranks of our bundles E 1 and E2 
to be m + 1 and n-~ 1 respectively (for typographical convenience it is easier to avoid 
assigning indices to the ranks here). In all slxbsequent seetiorls the rank of E (or E~) will be 
denoted by r (or r~). I t  is hoped the reasons for this will appear clearly to the reader lager. 
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tions R is the join of P~ and /P~. We define ~ rational mapping q~: R--~P~×P2 in 
which all the points of R with homogeneous co-ordinates 

(2no, la l ,  ..., ~.a~, ~bo, #bl~ ...,/~b~) 

are mapped by q~ to the point a × b of P~ ×P~. 
The geometrical description of ~ is as follows. A point c of R \ P I  U P~ lies on 

a unique transversal of P~, P~ cutting them in a, b respectively. Then q~ maps c 

(and all other points on the transversal) to the point a × b of P1 ×P~. Clearly P~ 
(unless n = 0) and P~ (unless m ~ 0) are both fundamental for q~. Every point a 

of P1 is blown up (unless n ~ 0 in which case it is simply transformed) into a × P~, 
and the transform of either P~ or P2 by q) is the whole space P~ ×P~. 

/\o 

\ 

q~ ~ × ~  

Fig. 2.1. 

(In the above figure, and in subsequent figures and diagrams, we use a broken 
arrow to denote rational transformations, such as ~5, which are not morphisms. 
This should produce no confusion with a similar convention, with rather different 

intent,  introduced in the proof of lemma 3.2.) 
Suppose now m n >  0. Then we can blow up the fundamental subspaces P1 

and P~ of R, thus transforming R into a variety H of the same dimension as R, and 

we shall denote by  T the birational morphism T :  H -+ R. Then T-I(P1) and T-I(P2) 
are both isomorphic with Pt  × P~ (since the tangent lines to R, at a point a of P~, 
which do not touch P~ are the joins of a to P~). Igote that  if we blow up by cubic 
primals of R through P~ and P~ (which is possible because, since m n ¢  O, neither 
P~ nor P2 is a primal of R) the transversals of P~ and P~ will be transformed by T -~ 

into lines. 
Suppose now m n =  O. If both m =  0, n--= 0, q~ is simply the mapping of a 

projective line to a point: there are no fundamental varieties on R and we can take 
H = R .  Less trivial is the case m # 0 ,  n = 0 .  In this case only the point P~ is 
blown up and we can get the variety H by transforming R by quadrics through P~ 
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(in fact  the cubics through P1 and P2 break up into P~ and a quadric through P~) 
and again the transversals are t ransformed by  ~P-~ into lines. 

So in every  case H is a bundle of project ive lines with two sections T-~(P~) and 

T-~(P~) which are each isomorphic with P~ x P~. In  fact  H is obtained from R b y  
(, separating )~ the transversals of P~ and Pa at  their  possible intersections on P~ and P2. 
As H is a bundle of project ive lines over _P~ × P~ it  must  be ~he project ive bundle of a 
vector  bundle of rank  2 over P1 × P~. We now show how this happens. 

In  the product  (P~ × P~) × (E~ O E2) we consider the vector  sub-bundle S of rank  2 
over P~ ×P~ which is the aggregate of all points (a× b)× (l~Ol~) (in more technical 

terms S = p~ L~ • P2 Lr:,, where p~, p~ are the projections from P~ × P2 to its corn- 
pouches). I t  is easily checked t h a t  there  is a birat ional  morphism of P(S) onto R 
(for P(S) is a subspace of (P~ x P~)× R and we nee4 only consider the project ion of 
P(S) onto the component  R of this ambient)  for the inverse of which Pz and P~ are 

fundamental .  So we ver i fy  tha t  P(S) is actual ly  isomorphic with H.  So we have the 
following figure 2.2, where T is a birat ional  morphism, ~s the project ion of the pro- 
ject ive bundle  H - ~  P(S),  and ~b a ra t ional  mapping.  We denote  b y  s~ and s~ the 
isomorphisms of P~×P~ with T-~(P~) and T-l(2~) respectively (*). 

I t  is easily checked tha t  s~(P~ ×P~) arises f rom the points (a × b)× (la ~ 0) of S 
so tha t  s~(P~ x P~) -~ P(p~ ~ ) ,  bu t  of course the project ive bundle of any  line bundle 

is isomorphic with the base space of the line-bundle. As the bundle S has the two 
• ® p* L. sub-line-bundles p~ L~  ~ 0 and 0 ~ 0 we natura l ly  get the two sections in 

this way. 

.R 

Fig. 2.2. 

I 

l 
--4--- 

l 
! 

i 

H 

(*) NB. - It  is aa ~ abase of language ~ to desoribe s 1 and s 2 as ~ seotions ,~ of the bundle H. 
If il, i s are the inclusions ¢~: ~-I(P~)-+H (z¢=t, 2) it is ils ~ and Qs 2 wkioh are properly 
described as ¢~ seo~ions ,>. 
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The case n ---- 0 is wor th  a li t t le thought .  We can then  ident i fy / )1  × P2 with P~; 
The mapping q} is then  essentially the  project ion of R from the  point  P2 onto the 
prime P~. Any  point  of R \ P ~  can now be wri t ten  uniquely  in the  form (no, a~,.. . ,  a~, 1) 
and this maps natura l ly  onto the point  (a0, . . . ,a~)  of E ~ = A  ~+~. Thus R~-P~*+~ 
is simply the ~ project ive complet ion ~ of A ~+~ b y  the  ~, prime at  infinity ~ P~. In  
the same way H is the project ive completion of the  dual of the tautological  bundle 

of P~ with T-~(P~) the  (~ section at  infinity ~) and T-~{P~) the  zero section. 

3. - Tangent and normal bundles. Chern, Segre and Todd classes. 

The bundle  of t angent  vectors  of a va r ie ty  X will be denoted b y  T(X)  or T x. 
We shall f requent ly  denote the bundle P(Tx) , the  tangent  direction bundle of X,  
by  S .  We shall write simply ~x instead of ~T(~ or ~T~- 

If  Y is a subvar ie ty  of X and i :  Y ~-> X the inclusion, we have a pull-back 
i*T(X)  of the  t angen t  bundle  of X to  Y. This is the bundle  of t angent  vectors to X 
at  points of Y and has as a sub-bundle the  bundle of tangent  vectors to Y. The 
normal  bundle N(Y, X) of I~ in X is defined to be the  quot ient  bundle:  i.e. we have 

the exact  sequence 

(3.1) o ~ T ( I  7) ~i*T(X) ~N(~[, X) -+0 

of bundles over Y. In  algebraic geomet ry  there  is no reason for assuming tha t  the 
sequence (3.1) splits. There axe however  special cases of interest  when it  does. 

We shall need later  the following three lemmas which deal with the tangent  bundle 
of a vector-bundle  and the  normal  bundle  of a sub-bundle. 

L:F_~A 3.1. - Suppose E is a vector bundle over X.  Then there is an exact sequence 

0 - ~ E E  --> T(E) --> zE*T(X) - ~ 0 .  

The mapping  T(E) - ->~T(X)  derives f rom the tangent  map  of the project ion 7~ E 
(cf. BOUI~BAKI [3], § 8.1.3). 

The  inclusion mapping of ~ E  in T(E) arises as follows. Le t  u e E  and x----zEu. 

Then E~ is an affine space so t h a t  

Bu t  the inclusion of E~ in E thus gives rise to the inclusion of T(E~),~ into T(E),,, 
i.e. an inclusion of nEE into T(E). To complete the  proof we only need establish 
exactness and this is easily done for the special case where E - ~  X × A " in which 
case the  sequence is easily seen to  split. 
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W h a t  th is  in fac t  shows is t h a t  * z ~ E  is the  bundle  of t angen t  vectors  along the  

fibres of E (el. BOtr~BAK~ 10C. cir. and  also the  E x a m p l e  5.5 of this paper  where we 

consider the  more  difficult bundle  of t angents  along the  fibres of a project ive  bundle). 

LE~tV~A 3.2. - Suppose Y is a subvariety o] X with inclusion i: Y ~ X ,  E a bundle 
over X and F a sub-bundle o/ i*E.  

Then 0 -~z~*(i*E/F) -+N(F,/~) * -+ zIFN(Y, X) -+0.  

I f  j is the  inclusion ]: F - +  E we have  the  commuta t ive  4 iagram 

F c J >,E 

q l- ye > X  
i 

f rom which we deduce xEJ = izF and  hence 

(a.2) i*~* = ,~*i*. 

We then  get  the  commuta t i ve  d iagram which follows (*), the  first row is ob- 
ta ined b y  apply ing  l e m m a  3.1 to F, the  second applies the  same l emma  to E ~fter 

which we app ly  j* and use 3.2. 

0---~ 

0 - ~  

0 0 0 

~ F  -+ T(F) -~ G T ( r )  - ~ o  

z * i * E  ---> j*T(E) ---> z d i * T ( X)  ~ 0 

o -.~ =*(i ~' E/F)  -.+ ~ ( F ,  E) -+ G ~ ( r ,  x )  -+ o 

0 0 0 

We now s ta te  as a l emma  some special cases of L e m m a  3.2. 

LEM~A 3.3. - (a) !q(i*E, E)~z~*EI~(:Y, X),  

(b) I] E, F are both bundles over X ,  ~(F~ E)~_zI*(E/F), 

(e) ~(x,  ~ ) =  E. 

To get  (a) we t ake  F - - i * E .  To get  (b) we t ake  Y = X ,  to get  (c) we take,  

in (b), F as the  zero bundle,  so t ha t  the  space of F is X and  z r  is the  identi ty.  

(*) We adopt henceforth the convention that in any 3 × 3 diagram of short exact sequences 
we shall depict with clotted arrows the row or column whose exactness is being deduced from 
the remainder of the diagram. 
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The normal bundle is vital in problems of blowing up subvaI'ieties of a variety. 
Suppose i: Y ~-> X is an inclusion and X' is a bii~tional transform of X obtained by 
<~ blowing up ~> Y to a primal Y' in X' (so the codimension of Y in X is at least 2). 
If  ] is the morphism X ' - + X  we have the commutative ((blowing up ~> diagram 
below. 

(3.3) 

y,  c J > X '  

y c  ~ X  
i 

The variety Y' is a projective fibre bundle over Y. The essential features of 
this situation are summed up in the following two lemmas. 

IJEtV~A 3.4. -- Y ' =  P(E), where E = N(Y, X). 

L ~ A  3.5. - N(Y', X') = ~ .  

The first result is obviously plausible, the second is less obvious. They are clearly 
implied in [2, § 12] and explicitly stated in [12, p. 123]. Note that  the two lemmas 
above are unaffected if some subvariety of X disjoint from Y is also blown up, since 
the normal bundles are local properties. 

For any vector bundle E over V, C(t, E) is the Chern polynomial of E, i.e. 
r 

C(t~ E) = ~ cW, where r is the rank of E and e, = e,(E), the i-th Chern class of E, 
i=O 

is an element of codimension i in A(V). 
The total Chern class e(E) of E is defined by 

c ( E )  - -  V(1, E)  ---- co + el + ... + e , .  

The Chern polynomial C(t, X) of a variety X (and the i-th Chern class of X) is 
defined by 

v(t, x ) =  ¢(t, Tx) . 

We can also consider the Segre classes sdE) , or inverse Chern classes, of E (or X) 
by inverting in A(X)[t] the Chern polynomials to give Segre polynomials S(t, E) 
where 

(3.4) v(t, E).  S(t, E) ---- 1.  

These classes have been introduced independently by TODD and SEGtCE: initially 
introduced for manipulative convenience, they were given a significance by SEGnE [17] 
in line with our requirements here. 
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The essential properties of Chern classes are the following. I f  ]: I z - + X  is a 
morphism and E is a bundle over X then 

(3.5) /*o~(E) ----- e,(/*E),  

and if 0 - ~  E - >  F - ~  G - >  0 is a short exact sequence of bundles over X then 

(3.6) ¢(t ,  F) - -  c ( t ,  E) ¢(t ,  G). 

We shall denote by  C(t, E) the reversed Chern polynomial of E defined by  

(3.7) C(t, E) = t~C(t -*, E) = t~eo(E) + V-*e,(E) + ... + e~(E), 

r again being the rank of E. 
I f  Y is a subvariety of X of co-dimension r we shall describe as the Todd poly- 

nomial T(t; Y, X) and the Todd classes of immersion (*) t~(Y, X) ( i - -  0, 1, ..., r) 
the Chern polynomial and the  Chern classes of the  normal bundle of I¢ in X. The 
tota l  Todd class t(Y, X) is defined in the obvious way. The Todd classes are in A(17). 

I f  lZ is a primal of X, a subvariety of co-dimension 1, and i: I ~ - + X  is the 
inclusion mapping, it  is known (and easily proved) tha t  

(3.s) t l (Y, X)  = i ' i , ( 4 )  , 

the result  being equivalent, in classical terminology, to the adjunet ion formula for 
canonical primals. 

I f  E is a vector bundle (of rank r) on V we have on P(E) the Grothendieek class ~E 
(if E =  T(V) we m a y  write Sv instead of Q),  an element of co-dimension 1 in A(P(E)) : 
i t  is defined by  

(3.9) ~:E = e,(LE) = --  e,(LE). 

The ring A(P(E)) is a finitely generated module over its subring ~*A(V) (an isomorphic 
imago of A(V)) with basis (1, ~ ,  ..., ~-t) .  The class ~ satisfies the minimal equa- 
t ion (over e*A(V)) 

(3.10) 

We write this as 

6 :'-1 + ... + ~,* e~ = 0. e*°o" ~;: + ¢'ol. 

(3.11) [~*C](6:~, E ) =  0,  

(*) These classes were discovered by TODD [20] artd rediscovered by SEORE [16, 17] in 
different ways. The authors would like to describe as the Segro classes o~ immersion those 
derived from the inverse polynomial of T (as the Segre classes are inverse to the Cherlt classes) 
but we have no need of them in this paper. 
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where ~* is applied to  the  coefficients of the  polynomial  0(t,  E) and ~ is subst i tu ted 

for t af ter  the application of ~*. 
Following G~OT~;E~D~C~ [7] we shah take  (3.10) as the  definition of the Chern 

classes. 
Segre's original definition [17] of the Segre classes s~(E) is equivalent  (eft GAL- 

BvlcX [5]) to the assertion t ha t  

(3.12) s,(E) = e ~ , ( ~ + ' ) .  

We conclude this section with some results on sub-bundles of bundles.  Le mma  3.6 
is trivial.  Theorems 3.7 and 3.8 are basic results established in [9]. Theorem 3.7 
is there  proposit ion 1 of section 3 and Theorem 3.8 is the  first lemma of the same 

section. 

L ~ : ~ A  3.6. - Suppose E is a vector bundle over V, that i: U~--> V is an inelusion 
mapping and that F is a sub-bundle of i*E.  There is then an inclusion mapping 

: P(F) ¢-> P(E) and 
• v -,~ 

T H E O ] ~  3.7 (Scott 's  formula) (*). - With the hypotheses of the preceding temma, 

the equivalence class of P(F)  in P(E)  is given by 

g t  . m 

T]~Eo~E~ 3.8. - Suppose E is a vector bundle over V of rank r and a is an element 

of A(P(E))  so that, as remarked above, there is an unique expression a = 9 at ~.~1, 
t = l  

where a~ is an element of A(V) (not necessarily of co-dimension i or even homogeneous) 
r 

Then if ~ in A(V)  is defined by ~ t : ~  a~, we have 
i = l  

$~ = 0 for k ~> r ÷ dim V.) (Of course, the infinite sum is purely  formal:  

4. - Some basic geometry associated with projective bundles. 

Suppose tha t  El ,  E~ are vector-bundles over an algebraic variety,  which (for 
reasons which will appear)  we shall now call W, and let G = E 1 O E p .  Consider the 

(*) The reason for the name of this formula, ¢hrister~e4 by the authors of [9] seems 
obscure to me. In [14] Sco~T only provided an incomplete proof of a very restricted ease. 

D.B.S. 
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projective bundle P(G) and the bundle (of two-way projective spaces) P(EI) × wP(E~) 
which, for brevity, we shall in future call Z. :For any point w of W the relation- 
ship between the fibres R =  P(G) .  and Z~ = P(E1)~×P(E~)~=/) i  ×P~ is precisely 
that discussed ia § 2. The results of that section globalise in a straightforward 
m a n n e r .  

Thus P(G) has two sub-bundles, identffied with P(E1) and P(E~), of which it 
is the (< jo in ,  (each fibre of P(G) being the join of the corresponding fibres of P(E1) 
and P(E~)). We can combine the maps O . ,  say, in the various fibres, to give a global 
rational transformation O from P(G) to Z. The transformation ~b has P(E1) as a 
fundamental locus unless E~ is a line-bundle and P(E~) is a fundamental locus unless 
E~ is a line-bundle. 

Jus t  as in the fibres (cf. § 2) we can blow up P(G) along P(E~) and P(E~) to get 
a variety H with a birational morphism T from H to P(G). Both T-~P(E~) and 
~V-~P(E~) are isomorphic to Z ~ P(E~)× wP(E~), so we shall call them respectively 
Z~ and Z~. The variety H is a projective line-bundle over Z. If q~, q~ (we shall 
use p~, P2 for the projections from a product to its first and second components: 
we us~ ql, q~ because we have not a true product but  a restricted one) are the 
projections from Z=P(E~)×wP(E~)  onto P(E~) and P(E~) respectively, then 
H = P(S) where S = q~ L~ ~ q~ ~E~" The sections Z1 and Z~ of H are isomorphic 

, - ¢  , v  
with the bundles P(q~ L~) and P(q~ L~) respectively. Again we denote the iso- 
morphia mappings of Z onto Z~ and Z2 by  s~ and s~ respectively and i~, i~ are the 
inclusion mappings of Z~, Z~ into H. 

All this is summed up in fig. 4.1 below and the diagram (4.2). 

P(:E~) 

p(:E~) 

P(o) ~ Ip(E~)~E~ ~ 

Fig. 4.1. 
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In  the diagram below we have omit ted the projection ~)a: P(G)--> W and the 
inclusion maps of P(E~) and -P(E2) in P(G). 

~ /  H = P ( s )  

k 
Z2 = ~ - I A ° ( E ~ )  

/ 
z = t ' ( ] ~ )  x . P ( E , )  

P(E~) P(E,~ 

Fig. 4.2. 

The situation in the fibres above any  point of W is precisely t ha t  depicted in 
fig. 2.2. 

Consider now the various Grothendieck classes ~s, -~E1, ~E~ in A(H), A(P(E1}) 
and A(P(E2)) respectively which are the first Chern classes (i.e. of codimension 1) 
of Ls, L~,, L~ .  To simplify our symbols a little we shall write 

*~ * 
(4.3) ~t : ql E1' ~2 : q~ ~E,, 

these both being classes of A(Z).  W e  shall also write 

: q2 LE. ' (4.4) LI qt L~  , 

these being bun41es over Z. I t  is clear t ha t  

~ = - e~(5~) , $~ = - c ~ ( L , ) .  

We now find the equivalence classes of Z~ and Z 2 in H and also their Todd classes. 
These are given by  the following 

TI~OlCE,~ 4.1. - (i) cl~Z~ = i*(lz, ) = ~s-- Os~2,* 

(ii) "* = ~s-- 0s~t, 

(iii) s* t~(Z~, T1) = ~ - ~ , 

(iv) s*t~(Z,, H) -~  ~.--~. 

2 - A n n a l i  d i  ~ l a t e m a t i c a  
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Clearly we need only establish ( i ) a n d  (iii). To prove (i) we remark that 
H = P(S) = P ( L 1 0  L~), an4 Z1 is the variety of H representing P(L1). We can thus 
apply Theorem 3.7 where i is now the identity and E, F, i ' E l F  are to be replaced 
by  S, L1, Z~. 

So cl (zl) i , , ( 1 )  = * 
To prove (iii) we remark that, by  (3.7), 

, * t l ( z , ,  H )  8" i : ( i 1 , ( i ) )  *'* *'* -- Si $I ts -- Si $i @s¢2 • 

Bat  ~shs~ is the identity mapping on Z, so s~h ~s¢2----~- Also s~1~s---- 
. . . .  vl(s~ h Ls)" But  (lemma 3.6) ,1 L s is the tautological bundle on 
Z~ regarded as B(L~). As s~ is an isomorphism it follows that s~t~L s is the 
tautological bundle on Z regarded as B(~ ) ,  i.e. s * i * L s :  LI. So --c~(s 1 h ~s )= ~1 
and the theorem is proved. 

Next we calculate the classes of 20(E~) and P(E~) in P(G). As G : E~ • Eo. a 
further application of Theorem 3.7 gives us 

The calculation of the Todd classes of 20(E~) and B(E2) in B(G) is harder than 
for their inverse images under ~r], because in general we are not dealing with primals. 
The result will be obtained as Theorem 7.3. 

Three special cases of all this are of interest later. The first is important in the 
theory of correspondences, and is useful in the final section of this paper. Suppose 
W----U× V and p~, Pv are the projections pl,  p~ to the components. Consider 
E~ = p * T ( U ) ,  E~ =p*T(V) .  Then 20(E1)-~ ~ ×  V, B(E~)----- U ×  ~, and, of course. 

P(G) = U × V. Theorem i.2 in this case becomes 

- x V ) =  V). 

The second special case is where E~-- E~ ------- E. In that  case Z = B(E~) × ~B(E~) 
is isomorphic with B ( ~ * E ) :  ~*P(E), and we shall adopt the convention tha~ 
o~.~----ql. This is further discussed in example 5.4. 

The third special ease is where E~ = lw, the trivial line bundle over W. A com- 
parison with the concluding paragraph of § 2 shows that  in this case P(E~ @ 1) is 
the projective closure E1 of E~. t tere the subvarieties 20(E1) and 2o(1) (a copy of W) 
give respectively the locus of the primes ut infinity in the fibres and the zero section 
respectively. A detailed treatment of this situation is given in § 6. 

5. - Tensor products with llne-bundles. The bundle of tangents along the fibres of 
a projective bundle, 

Suppose we have two bundles B1 and B~ over a variety W such that the projective 
bundles P(BI) and B(B~) are isomorphic. This means that  we have a commutative 
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diagram 

\ / 

Then it  is t r ivial  t ha t  there  is a line-bund/e L over  W such tha t  B~ = B~ (~ L. 
Le t  us now ident i fy  P(B~) and P(B~) and denote  bo th  of t hem b y  P(B) ,  and 

denote bo th  the projections b y  ~B. Pulling back our bundles to P(B)  gives 

~*B1 * * = eBB2 ® CBL.  

I t  follows, b y  considering the tautological  bundles,  t ha t  

(5.1) L~ = L~® e~L. 

Thus CBL is uniquely  defined as ~ bundle  over  P(B)  and (because the divisor as- 
sociated with ~ tensor p roduc t  of line bundles is the sum of the divisors associated 

with the two bundles) 

:But ~* is an injection of A(W) into A(P(B)) so tha t  e~(L) is uniquely  defined, and 

thus L is defined to within isomorphism. We summarise all this as 

L~)a:gi 5.1. - I f  the bundles BI and B~ have the same projective bundles over W 
with pro]evtion ~B, there is a line-bundle L over W defined to within isomorphism suvh 
that B1 = B~ @ L and tB~--~B1 is the q* image o/ the/irst Chern class o/ L. 

A consequence of the usual rules for manipulat ing Chern classes [8, p. 64] is the 

following useful 

LEtW_~fA 5.2. - I /  L i s  a line bundle and ~-~ e~(L) then 

C(t, E ® L) = C(t + v, E) .  

We give three  examples of situations where different bundles have the same projec- 

t ive  bundle.  

EX~IPLE 5.3. - I f  L and M are any  two line bundles over  W then  

P(L) = P(M) = w .  

EXA~WIPLE 5.4. -- I f  G = E1 O E 2 ,  where E1 = E~ = E,  t hen  B1 = N(P(E1), P(G))  

and B 2 - - ~ E E  have the same project ive bundles. 
Indeed  P(B~) = P(E)  × wP(E)~ and the  first project ion q~ is the fibre project ion ~B~" 
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On the other hand Z1 = siP(B2) is the resu/t, in fig. 4.1, of blowing up P(G) 
along P(E1) (and also along the disjoint P(E2)). So also ZI-~P(B1) where 
B1 = N(P(E0,  P(G)). In view of this L~I is the normal bundle of Zt i n / / ( l e m m a  3.5). 

, v 

qlel(L ~) by Theorem 4.1 (iii). So s~ el(L~l) ---- * * - -  q~ c~(L~), 

If  now, as we did in deriving (5.1) and (5.2), we identify P(B~) and P(B~) we must 
take s~ as the identity and ql = @B. 

v v . 

So we get e~(L~)--e~(LB~)= @Bel(L~), and in accordance with (5.2) we must have 

(5.3) B~-----B~®L~ or N ( P ( E ~ ) , P ( G ) ) =  e * E ® L . .  

We shall be able to check this result later. 

EXA~t'LE 5 .5 . -  Here we introduce the bundle of tangent vectors E'  (or T'(P(E))) 
along the fibres of P(E). We have the exact sequence 

(5.4) O --> E'--> T(P(E)) -> @*T(W) -->0, 

where W is the base variety (cf. [3], § 8.1.3). 
There is another exact sequence we wish to consider which arises because LE 

is a sub-bundle of ¢*E. If we denote the quotient bundle (cf. G~OT]~E~DIV.CK [7]) 
by  E a~ we have the sequence 

(5.5) 0 ~ f ~  ~ ~*E ~ E(~I ~ 0 .  

The bundle P(E (~) is the following. If z is a point of P(E) lying over the point w 
of W(@~z= w), then p(Ea))~ is isomorphic with the aggregate of planes of E~ 
(or (~*E),) containing the line of E .  which corresponds to the point z of P(E). So 
P(Ea))~ is isomorphic with the lines of P(E)~ through the point z. Thus P(E ~)) is 
the bundle of projective spaces representing the directions in the fibres of P(E) at 
the points of P(E), and this is also P(E'). 

I t  is, however, easily seen that, though E' and E (~) have the same projective 
bundle, they are in fact generally distinct. Indeed if we tensor E with a line bundle L 
we do not affect P(E) and hence do not alter E'. But  on the other hand, by (5.1) 
and (5.5), we tensor E (1) with @*L. So all we know is that E'  is E a~ tensored with 
a line bundle. 

In fact we shall prove in the next section (the result is known, cf. PetTIfOgS [13], 
p. 292) that 

(5.6) E ' =  E ~ ®  L~ 

which, taken with (5.5), gives us the exact sequence 

(5.7) 0 ~ 1~)  --> e*E ® L~ -+ E ' - ~  0 .  

Alternatively we can calculate C(t, E (~)) from (5.5) (the result is given in § 7) 
and we could also calculate C(t, E') from (5.4) if we assume the known formula for 
C(t, _P(E)). However, we prefer to deduce C(t, P(E)) from our essentially geometric 
derivation of (5.6) and (5.7). 
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We shall conclude this section with an important result on the bundle E'.  But 

first we need a lemma on pull-backs of projective bundles. Suppose /: U-+ W is 
an arbitrary morphism and F = / * E  is the pull-back to U of the bundle E over W. 
Then P ( F ) = / * P ( E )  and we have a commutative diagram (5.8), where ] is the 

obvious mapping of P(F) on P(E). 

(5.8) 

P(F) eF ; U 

7, 11 
P(E) )~ W 

The mapping ] was introduced by Gt~OTttENDIECK [7, p. 139] in remarking that  

LF = ]* LE. Here we require the equally natural 

L E n A  5.6. - The bundle F' (o/tangents along the/ibres o /P(F) )  is the pull-back 

by i ol i.e. F ' =  ]*E'. 
The verification of this natural result is straightforward and we omit it. If we 

now consider the special case where U=-P(E) ,  / -~  9E, then P(F) - - - -P(e*(E))=  
----P(E) ×wP(E) with 9 F :  ql and ] - -q2 .  In  this case Lemma 5.6 becomes 

L E ~ [ ~  5.7. - I /  F = 9*E and we take P ( F ) =  P (E)×wP(E)  with q~ as bundle 
projection ~F, then F ' =  q2* E'. 

We now use this to show that  E'  is naturally isomorphic with the normal bundle 
of the diagonal A on P(E)×wP(E) .  Let i :A~->P(E)×wP(E)  be the inclusion 
mapping, and let ~ be the diagonal mapping ~: P ( E ) - +  A and e the inverse iso- 
morphism s: A -+ P(E). We now have the commutative diagram 

= q~ 
Z = _P(F) ---- P(E) X wP(E) ..... 

~F = q1 

p(E  ' ~  

Fig. 5.9. 

- -  P(E) 

A 

* . . . .  W 

with ql i ~ qs i : s, e = ~-1. This gives us 

(5.1o) i'q* = i 'q:  = , 

We can now establish 

*(5"= ~*~* : Id .  

L~L~A 5.8. -- i * T ( Z ) =  T(A) ®e*E' .  
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This implies that  the normal bundle sequence of LJ in P(E)×wP(E) splits 
and that  the normal bundle is naturally isomorphic with e*E'. 

P~ooF. - Consider the bundle along the fibres sequence 

0 + F ' + T P ( F ) +  e*T(P(E)) + 0 .  

Now replace (lemma 5.7) F '  with q~ E ,  0F by ql, operate on the sequence with i* 
and use (5.10). ~¥e now get 

(5.11) 0 -> s* E'--> i*T(Z) -~ s*T(P(E)) -> 0. 

But e* is an isomorphism, so s*T(P(E))-~ T(A) which is a sub-bundle of i*T(Z). 
So the sequence (5.11) splits and we have 

i*T(Z) : T(A)(~ s*E'.  

But we also huve the normal bundle sequence 

0 -->T(A) ->i*T(Z) --->N(A, Z) -~0, 

so tha~ N(A, Z ) ~  s*E'. Operating on this with (5" we get 

THEOI%F_~ 5.9. - E ~ -  c~*N(Z], Z). 

6. - Projec t ive  c losures  o f  vec tor  bundles .  

If  G ---- E(~ 1 w we have defined the projective closure E of E to be the bundle P(G). 
Note that  this is the same as the bundle P(G ~) where G + :  ( E ( ~ L ) O L  for any 
line-bundle L. Alternatively the bundle P ( E O  L) is the projective closure of E Q  ~. 

The bundle P(G) includes sub-bundles P(E) and W-~ P(i) as describe4 in § 4. 
We also consider the bundle H :  P(S) : P(L~O 1) over P(E) xwP(1) : P(E) 
which is obtained (as in § 4) from P(G) in this ease by blowing up along W. 

Fig. 6.2. 

H 
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We list here some useful formulae: the first of them is Theorem 4.2 and the other 
two are Theorem 4.1, (i) and (iii). We state them as 

L E n A  6.1. cl~(~P(E) ~ ,  c l . Z ~ :  Cs, cl~Z~ * 

The ~ special case ~ of blowing up a subvariety which we shall treat in § 8, and 
from which the solution of the general problem will be derived, is obtained by tak- 
ing X : P ( G ) ,  : Y : W ,  H : X '  and Z ~ : I  z', i.e. we blow up _P(G) along W = P ( i ) .  

The variety P(G) \P(E)  is isomorphic with E (if it were not there would be little 
point in defining E to be P(G)): to demonstrate this isomorphism we need only 
globalise the isomorphism described (in the fibres) at the end of § 2. 

Looking at P(G) (( the other way up )) we can consider P ( G ) \ W  which is a line- 
bundle over P(E). But this is isomorphic with H \ Z ~  which is the same line-bundle L 
o v e r  ~ 1 .  

But (lemma 3.3(v)) L = N(P(E), L) = N(Z~, H). Hence, by Theorem 4.1 (iii), 
c~(L) : ~ ,  so that  L-~ L. .  We summarise all this in the useful 

T m ~ o ~  6.2. - / ]  E =  P ( G ) =  P(E(~ 1), then ~, ,P(E)  is isomorphic with the 
bundle E and E'.~W is isomorphic with the line bundle L~. 

Note tha t  H :  P ( ~ @  1~)) : P(I~(~)@L~). Thus 

L ~ v I h  6.3. - H \ Z ~  is the bundle L~ over Z2, H \ Z 2  is the bundle L~ over Z~. 

(It is clear why ~ turning the line-bundle upside down ~> dualises it: for if we in- 
vert all local coordinates we also invert the coordinate transformations.) 

This last ide~ supplies a rapid verification of the last two parts of Theorem 4.1. 
In the context of that  theorem G is now EI(~ E2, H :  P ( S ) :  P(q*L~(~ q, L~,). So 
we have 

H = P ( 1  O * * " ® = P((q* ® q* 1). 

, , v  
The first form for H shows that  H~Z2 is isomorphic with the bundle q~ LE~® q~ L~. 

, v  , 
over Z~ and the second that  / /~Z~ is isomorphic with the bundle q~ LE~® q2 L~, 
over Z~. (Again turning upside down dualises.) Thus we have shown that  (again 
applying lemma 3.3(c)). 

N(Z1, H) *T ~ * v , v , = ql ~E~LX.) q2 L~,, lq(Z~, H) = ql L~,@ q2 L~ ,  

giving tl(Zi, H) = ~1--~2, t1(Z~, H) = ~2--~  as before. 
Let us now consider the bundle P(~*E(~LE), a bundle over P(E) which we 

shall denote for brevity by V. This is, of course, the bundle ~ * E Q L  E. The 
variety V contains the sub-bundles U =  P(o*E) : P(E) ×wP(E) and P(L~) = P(E): 
V is the join of these sub-bundles. We have already remarked in Example 5.3 that  
~*~ = ql, and Le, ~ : q~ L~. 
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But U ~lso contains the diagonal sub-bundle A corresponding to the inclusion 
of L~ in ewE. There is also the bundle K ~ P(~E@ I~E) which contains z] and ~(E) 
as subvarieties. ~Tote that  K =  P ( l @  1)----P(E)xP I and is also 1,(~). 

We now have the following figure. 

= P(E)  x ~P(E)  

V ~- P(~*E 

%22  
Fig. 6.2. 

Let it: P(E)~->K a.nd ]~: A ~->K be the inclusions. As before we have the iso- 
morphism ~: P(E) -% z] and the inclusion i: A ~-> U (cf. (5.9)). 

We shall consider a section of K, say z: P ( E ) - + K ,  different from both ]1 
(i.e. / '(E)) and ] ~  (i.e. LI). 

Let Kz = KN,A, K~ = K \ P ( E ) .  TheI1 zP(E) oK1 n K2. 
Let Vt= V \U,  V~= V \ P ( E ) .  Then /£i, K~, VI~ V~ are vector bundles where 

by  Lemmu 6.3. Also by  Theorem 6.2 

V~ = e ' E ®  L E , V~ = L~.E®~E. 

, v  , , v  
But, by dualising (5.1), L~,E®L~ --~ L~.E@ ql LE = q~ LE@ ql LE. 
~OW, as LEC ¢*E, K1 is the sub-bundle of V~ corresponding to L ~ ) L  E. Hence, 

by lemma 3.3(b), writing ~ (and z~) for ~ (and ~ ) ,  

* * ~*(E(1)® L~) 

because ¢*E (~ LE/1p(E) ~ (q'ElL,) Q LE. 
Also A is the p~rt of U for which q~----q~. Thus I~ induces the trivial line- 

bundle, i.e. K~ on A. So by  1emma 3.3(a) 

~(K~,  V 2) = ~ * ~ ( ~ ,  U) .  
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But  z~=Id~(B)  , ~ =  (t, so 

T*Iq(K, V ) :  ~*N(K1, V1)= ~*~1"(E(1)(~)L~)= E(1)@LE, 

and 

~*N(K, V) z*N(K~, V2) * * = =~ ~N(A, V)= ~*N(A, U)=E', 

by Theorem 5.9. 
By equating these ~swo values of z*N(K~ V) we have thus established (5.6)~ and 

hence (5.7), which we record as 

T n : ~ o ] ~  6.4. - E ' :  E(~)@L~ 

snd 

TnEo~:~[ 6.5. - There is an exact sequence 

0 -+ I~(E) -+ 9*E @ L~ -+ E'--> 0 

where the map I~(~--~*E(~L~ derives ]rom the inclusion ~ c ¢ * E  by tensoring 
with L~. 

7. - Some formulae for tangent and normal bundles. 

In  this section we give some applications of theorems 6.4 and 6.5. Some of the re- 
sults are not new, but  the derivation we give of them here is of some intrinsic interest. 

TEEO~Etv~ 7.1. - C(t, E') = C(t + 8~, E (~)) = t-~[e*C](t + $~, E). 

(Note that  [~*C](t + $~, E) is actually divisible b y  t in accordance with (3.10).) 
Starting from the exact sequence (5.5) 

0 - ~  - ~ * E  ->E ~) -+0 ,  

we get, by  (3.5), 

o r  

So 

i.e. 

[e* ¢]( t ,  E) = C(t,  e ' E )  = O(t, [ ,~).  C(t, ]~,)) , 

[ C  ¢](t, E) = (1 - ~ t )  C(t, ZE(~)). 

[e*C](t, E)= (t-$~)C(t, E,,), 

[e*C](t + ~ ,  E) = tC(t + ~ ,  E(1)). 

Thus C(t + ~ ,  E (1)) = t-l[e*C](t + ~ ,  E). 
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But ,  b y  theorem 6.4 and lemma (5.2) 

and the theorem is established. 

Tm~o~ 7.2. - ~(t, P(E)) = t-1[e*~](t + $~, E). [e*C](t, W)). 

This is an immediate  consequence of the exact  sequence (5.4). 
The most  impor tan t  result  of this section is 

T ~ o t t E ~  7.3. - Suppose V is a subvariety o] W with inclusion mapping i: V ~-> W. 

Let E be a vector bundle over W and F a sub-bundle o / i * E .  Then there is an exact 
sequence (o/ bundles over P(F))  

o -~ e*(/*E/F) ® L~ -~ N(P(F), P ~ ) )  -~ e*N(V, W) ~ 0 .  

There are two special cases which we s ta te  as coroll~ries. I f  we take  W = V 
we get  the  following 

COltOL]~A~¥ 1. - I]  F is a sub-bundle o/ the bundle E over W then 

e*(EfF) ® L~ = N(P(F), P(E)). 

(This is a generalisation of formula  5.3, the  two bundles in t h a t  case being E (~ E 
and its first component.)  

The other  special case comes b y  taking F =  i ' E ,  giving 

COrOnArY 2. - I f  V is a subvariety o/ W with inclusion i: V c-> W, then a 

bundle E over W gives rise to an isomorphism 

~(P(i*E), i~(E)) ~ * --  ~,.EN(V, W).  

I t  is no more t rouble  to establish the theorem direct ly  than  to build it  up from 
the  two special cases, so we shall now proceed with the proof of Theorem 7.3. Le t  j 
be the  inclusion j:  ~ (F)¢-~P(E)  giving the commuta t ive  diagram 

(7.1) 

i 
P(F) ~ u> e(E) 

V ~ W  

F r o m  the exact  sequence (5.4) 

o -~ E'-~ T(e(E)) + £T(W)+o, 
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and because (7.1) "* * * "* cE = ~F ~ we get, by operating with j*, the middle row of the 
following commutative diagram; the first row is a direct application of (5.4) 

(7.2) 

0 0 0 
4, 4, 4, 

0 -~ F '  -+ TP(F) -+ e~,T(V) --> 0 
4, * 4, 

o ~  j*E'  -,,- j*TP(E) --> e~,i*m(W) -+0 

o --+ j* ~' t~, '  -,. s(P(~') ,  P(E))  --+ q*N(V,  W) --+. 0 
4, 4, 4, 
0 0 0 

and the exactness of the dotted row is a consequence of the exactness of the columns 
and the other rows. 

We now get an alternative expression for the first term in the bottom row of (7.2). 
We use the commutative diagram below in which the first two rows are derived from 
Theorem 6.5 (and the second one is operated on by #*, again using the result 
J*~*E= e ' i*  derived from (7.1)). 

0 0 0 
4, 4, 

0 - + 1 - +  ~*F®Lr  -+ F '  
4, ~ 4, 

(7.3) 0 - > 1 - +  ~ i * E ® L r  --~ ]*E' -+0 

o --+ o -~. e*(i* E / F )  ® L~ -.~, j * E ' / F '  --~. o 
4, ~ 4, 
0 0 0 

The theorem now follows at  once. 

8. - Blowing up Chern classes. The special case. 

We consider now the following situation. Let 1 z be a variety and E a vector- 
bundle over Y. Let G =  E G lr ,  X =  E = P(G), the projective closure of ~ and 
i: :Y=>P(G) the inclusion mapping. We have the situation of fig. 8.2 (cf. fig. 6.1). 

In this figure Z1 and Z~ are copies of P(E), Z I =  ~-I(P(E)),  Z~= ~-l(lZ), 
and we shall identify Z~ with the base space PiE) of the bundle H and also indentify]  r 
with the base space of the bundle PIG). If  we denote by j (instead of is as previously) 
the inclusion j: Z~ ¢-~ H, then, because of the identifications just made 

(s .1)  ~osj = Id  (on P(E)) ,  eoi --- Id  (on I7), 

where Id  represents the appropriate identical transformation. 
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P(G) = ; 

T 

Id. 

H = x ' =  P(s) 

I0 s 

Fig. 8.2. 

We have the following blowing-up diagram augmented b y  the inclusion in it 
of ~s and ~o and of the diagonal morphism ), to be introduced in (8.4). 

( 8 . 3 )  

~S 

J 

P ( E )  = y '  x '  

Ir (. i X 

We shall establish the following (( Theorem of blowing up Chern classes ~ in this 
special case. 

T H E O ~  8.1. 

C(t, X')--[~*C](t ,  X ) :  ] ,  { ~ 1  [~*C](t, Y){(1 ~/t)[~*C](t-k ~ ,  E) * - t  E)}} - - [ e ~  c j ( ,  . 

From diagram 8.3 

( 8 . 4 )  * * * * j * ~ *  * ~s ~ = T ~ ~ i f(say)  and ---- ~ .  

t tenc% applying theorem 7.2, we get 

C(t, X') = C(t, P(S)) = t-I[e*0](t + &, S). [e*C](t, P ( E ) ) .  
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But  

Hence 

And 

But, as 

So 

(s.5) 

Thus 

(8.6) 

C(t, S) ~- t ( t - -  ~ ) ,  C(t, P(E)) = t-~[~*C](t + ~ ,  E). [~*C](t, Y). 

C(t, X ' )  = t-~(t -[- $s)(t + Ss-- e~$~), t-~[2*C]( t + ~s*$~, E). [2*C](t, Y). 

C(t, x ) =  ~(t, P(G)) = t-~[e*~](t + Io, ~) .  [e*O](t, Y). 

G = :E ~ 1, C(t, G ) =  tC(t, E).  

T*C(t ,  X)  = t-x(t A- T*~Q). [),*C](t + T*$a, E). [~*C](t, Y). 

But ,  by lemma 6.1, ~Q= cl~(G)P(E) , so 

T*(~)  = clHZ ~ : ~s and ~ s -  ~s$~ = cl~Zz = i ,(1).  

C(t, x ' )  - [T*~](t ,  x )  = 

= t-~(t + $~)[;~*C](t, y){(t + j,(1))[;,*C](t + ~ - - j , (1 ) ,  E) - t[;~*~](t + ~ ,  E)}. 

But j,(1) is a factor of the terms in curly brackets on the right hand side, so every 
coefficient of t on the I~.H.S. is of the form 

(8.7) 

where a~  A(Y) ,  r ~  l .  
But  we can write (8.7) as 

~.  k*a. (j,(1))", 

j , (1) .~ ,  k*~. (j,(1))) '-1 

and by the projection formula (1,1) this is equal to 

(8.8) j,(j, j, 4, (j,j,(1))'-1). 

But j'z* = e~ (8.4), j ,j ,(1) = J*(~s-  espy)-* 
But J*$s = 0, since $s = clHZ1 and so J*$s is the intersection class of Z1 and Z2 

(which have empty  intersections). 
Thus J*~s= 0 and i * j , ( 1 ) : - - 7  e s $ ~ = - - $ x ,  by (8.1). 
Hence by (8.8) 

~ .  k*a. (],(1))r = j ,  ( - - ~ .  (j*~s) ~. ~*a. (_  $~)r), 
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which is zero unless k----0 and is then 

• e ~ a . (  

This means that,  in (8.6), we essentially have to precede the R.H.S. with j , ,  replace 4" 
by ~*, replace 8s by zero, replace ~ j , ( 1 )  by ~E and multiply the result by - - 1 / ~ .  
Doing this we get 

1 * -  t C(t, X')- - [~*C]( t ,  

[o~c](t, E) = ]* --~--~ [e~  Cl( t ,  :Y) {(1  - -  ~E/t)[e*C](t + ~E, E )  - -  * - 

and the theorem is established. 
I t  is perhaps worth stating specifically as a corollary the more usual form of the 

result, in terms of total Chern classes, obtained from the above by  putting t ~ 1. 

Tm~ORE~ 8.2. 

c(X')-- W*c(X) :  j ,  {~1E1 ~ c ( 1 7 ) { ( 1 -  ~E)[~*0](I + ~E, E ) -  ~*c(E)}}. 

9.  - B l o w i n g  u p  C ~ e r n  c l a s s e s .  T h e  g e n e r a l  c a s e .  

Let us now consider a variety X and a subvariety Y (of co-dimension at least 2), 
both assumed non-singular, which we shall blow up to get a birational transform X' 
of X with a primal Y' on X'  which arises from (~ blowing up ~ Y. Let us denote by E 
the normal bundle I~(Y, X). We have the blowing up diagram (cf. 3.2) 

(9.1) 
y c  ~ X  

i 

where Y ' =  P(E), N(Y', X ' ) =  LE and ] is a birational morphism. 
We propose to establish the following blowing up Theorems, exactly the same 

results as obtained in § 8 for the special case. 

T]~EORE~ 9.1. 
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THEORE~ 9.2. 

Before proceeding to prove these results we shall explain the underlying concepts 
of the proof. There are two essential ideas involved. The basic one is to shift our 
attention, as explained in § 0, from the blowing 4own morph i sm/ :  X ' - + X  to its 
associated (~ lifted correspondence, ~ (which is not a morphism) from ~ '  to ~ (the 
respective tangent direction bundles). The second idea is a purely technical trick. 
In  order to avoid some very unpleasant, but  not totally impractical~ c~lculations 
we content ourselves with demonstrating that  the left-hand side in Theorem 9.2, 
i.e. c(X' ) - -]*c(X)  is of the form j .w,  where w is a class of A(:Y') which depends 
on 1 r and E only. In other words the varieties X and X '  are irrelevant: all that  
matters is the variety 1 r and its normal bundle E in X. If  therefore we replace X 
by  E (the projective closure of E) we do not affect w, so that our theorems derive 
immediately from the results of the previous section. 

First we explain, before proceeding to the detailed proofs, how we treat the 
correspondence 7. Let A' (the prime is used to remind us that  we are considering 
a blowing up of the diagonal A of X × X) be the graph on X '  x X of the morphism / 
and l e t / "  on ~ '  × ~ be the graph of the lifted correspondence 7. Let us denote the 
projections of X'  x X  onto its components by  Pz', Px and those of ~ '  x ~  by  Pl, P~. 
We shall also abbreviate cx' and cx to ¢' and ~ respectively (and later abbreviate 
~x', ~z, the Grothendieck classes of the tangent direction bundles, to ~', ~ respectively}. 
We summarise these notations in the diagram of fig. 9.2. 

, P~4 ~ ~ " ~ '  x2 

~'ig. 9.2. 

As / is a birational morphism its graph A' is isomorphic with X t. But  7 is not 
an isomorphism. The tangent directions along the fibres of I 7' are, as we shall see, 
fundamental. So F '  is not isomorphic with X'  but,  as could easily be checked in 
locM co-ordinates as in PO~TEOUS [12] p. 121, with ~ '  blown up along the subvariety 
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JP(E') (where E', as previously, is the bundle of tangent vectors along the fibres of 
P(E)). In fact we don't consider f "  directly, but  we derive an isomorphic image 
of it by  using the geometry of § 4. 

To see how the geometry of that  section applies, we take W = X ~ × X ,  
EI-~p*.T(X'), E~-=p*T(X), Z =  2~' x2~ anti consider fig. 4.1. Instead of looking 
directly for P '  on Z, we consicier first its image under ~b-1 (the idea used in [15]). I~ow 
¢- i (p , )  is easily determined: it is simply ~' ,  the natural lift of A' on W to ] 9 =  P(G) 
(cf. [14, 15]) and A' is isomorphic with .~'. Let us denote by  h the isomorphism 
h: A'-+X'  and by  ~ the isomorphism ~ ' - + : [ ' ,  giving the diagram 

h 

(9.3) e~'i h t 0'" 

A' ~ X '  

Now if we consider the proper transform by T -~ (still looking at fig. 4.1) of A' 
we shall get a v~riety A on N. As ~bT= ~s, the projection of A to Z will be the 
graph E '  we require (and the projection is easily seen to be birational). Because the 
geometry on H is richer than that on Z it is better to discuss A than I" ,  and this 
we shall do. 

So we have the following geometrical situation {fig. 9.4), which is simply fig. 4.1 
adapted to our present situation. I H: 2(S) 

2(E~) : 

P(E,) = X' × 2  z2 

W 

/ r / ^ ^ 

Fig. 9.4. - " - 4  
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Let us now consider the intersections of ~'  with the fundamental varieties of T -~. 
The intersection ~ '  n 2~' × X  consists of pairs t~, ×x on .~' ×X,  where t~, is a tangent 
direction to X' at x', ] x ' :  x and the tangent direction at x corresponding to t~, 
under ] is indeterminate. (If t~, arises from a tangent vector v~, to X', then the trans- 
form of %, by the tangent map ]~ is the zero vector.) This implies that  t~, is a 
tangent direction to a fibre at  a point of P(E). 

So 

(9.5) 2'(~ 2~' × X - ~  h-~P(E'),  

where E' is the bundle of tangents along the fibres of P(E). 
Similarly 

(9.6) /~'(~ X' x X :  0 

because the tangent map ]~: T(X ' ) -~T(X)  is a morphism. 
The intersection of ~'  and X ' × X  is of excessive dimension. If n - ~ d i m X ,  

r ~ codim x Y, then 

d i m W :  4 n - - 1 ,  d i m ~ ' ~  2n--1~ d i m ~ '  ×X---- 3 n ~ 1  

and dimP(E')  ~ dim Y'~- r - - l ~ -  n d- r - -2 .  So the intersection has a dimension 
whose excess is r - - l~  which is certainly positive. 

However if we apply T -~ the proper transform of ~'  by T -~ is obtained by 
blowing up d '  along ~-~P(E'), which is isomorphic with X' blown up along P(E'). 
Let A be the proper transform of ~'  by T -~ gnd let 2: A ¢-~H be the inclusion 
mapping. We have the commutative diagram 

, 

(9.7) 

A 

H 

j~l ~ X ? 

where es ~ is the projection of A on F '  and ~', ~ are simply p~s2  and p~es2 respec- 
tively. This means that  a', a are obtained by projecting A onto the subvariety/~'  
(the graph of ~) on X'  ×2~ and then projecting onto the components of 2~' × ~ .  

3 - A n n a l i  d~  ~ f a t e m a t i c a  



30 A. T. LASCU - D. B. SCOTT: An algebraie eorrespondenee, ere. 

One can easily see tha t  @s 2 is an isomorphism. In fact ~slF ' is a bundle of 
projective lines over F '  and A gives a rational section F ' -~  @~:F' which meets only 
one of the two sections induced by s~ (i = 1, 2). Hence A is a regular section and 
this shows tha t  the map @s 2 induced by the projection @s~F'~F ' is an isomor- 
phism. We have also the commutative diagram 

A'< A 

X' < F' 

where p~]F': F ' - ~ '  is the blowing down morphism inverse to the blowing up of 
S '  along P(E'). I t  follows that  we have the blowing up diagram 

(9.s) 

£-~P(E')  = P(N) ..... > A 

~N ~r 

P(E') > x '  
ff 

where N = N(P(E'), X') and if, v are the inclusion maps. 
Putt ing together the blowing up diagrams (9.1) an4 (9.8) with the diagram (9.7) 

we have the following composite diagram (9.9) which provides the key to what follows. 

(9.9) 

P(N) ~ A 

# 

2'x.2 

2 

] _ . - X  

4 
l j  :Y 

y, ~ @E 

Now consider the intersection of A and Z1 in fig. (9.4). We know that  the inter- 
ference A n Z1 is actually P(N) and we shall assume for the moment that  

(9.10) A.  Z: = A n Z: = P ( N ) .  



A. T. L i s c v  - D. B. Scomm: An algebraic correspondence, etc. 31 

The justification of this assumption comes f rom a lemma on proper  t ransforms 
of subvarieties in a blowing up which, to avoid in terrupt ion of our argument ,  we 
shall prove in an appendix  (§ 10). 

Now the class of B(N) on A is v,(1), and tha t  of A.Z~ on A is ~*elHZ~. Now 
let  us write,  as suggested on p. 27, tx----$, ~x' = ~' and apply  Theorem 4.1(i). 

We then  get 

$ * 

(9.11) v,(1) = ~* cI.Z~ = 2"(~ s -  e~P~ D. 

But  as ~'.T(Z~)= 0 (by (9.6)) it  follows tha t  A n Z 2 =  O, so ~*cl~Z~= O. Ap- 
plying now Theorem 4.1 (ii) we get 

(9.12) 

Hence 

(9.13) 

$ $ ¢ t 

v . ( 1 ) =  ~ q s P i ¢ - - A  ~ s p 2 ¢ =  a ' * ~ ' - - a * $  (~). 

Now using the formulm (3.10) we get 

(9.14) [e'*C]($', X') = 0 ~nd [e*C]($, X)  = O. 

F r o m  (9.14) we deduce 

(9.15) 0 = ~*[~*C](~, X) -~ [~*¢*C](~*~, X ) .  

SO applying (9.13) we get 

[a*e*C](¢¢'*$'-- ~,(1), X) = 0 

which we c~n write in the  form 

(9.16) 

where 

(9.17) 

[~*e*~](~'*~:', X) + ~,(1)'u = O, 

(¢) The vital formula v*(1) = a'*~'--a*~ can be obtained in other ways. We first found 
it by considering the Grothendieck classes ~' and ~ as defined by (( invariant lifts i) (of. [10]), 
using a penoil of primals on X not specially related to Y and the images of this pencil by ]-* 
on X'. Porteous has an alternative suggestion which, like our original idea, is not easier to 
present than the one given here. 
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But ,  by  the projection formula (1.1), 

(9.18) ~',(1)" u = ~',(~'*U) . 

(9.19) 

Again, using (9.9), 

Also, by  (3.7) and lemma (3.5) 

¢ v , ( 1 )  = t~ ( i ° (N) ,  A )  = q( :LD = - ~.  

So 

* * ~ / '  * , 

But,  again using (9.9), v 'a* * * * * "* e =e~e~,eE ~ , and also (since E = N ( Y ,  X)) [i*C](t, X ) =  

= C(t, y ) ~ ( t ,  ]~). 
Thus ~,*u is a polynomial  of the form 

' $ i (9.20) v* u = Z(~%ai)~ ~ , 

where a~ ~ AP(E')  (but a~ is not  necessarily of co-dimension i) and a~ depends only 

on E ~nd Y. We then  have 

LF_~A~A 9.4. - The class ~N.v*u depends only on E, Y. 

This follows f rom (9.17) because, b y  the  project ion formula,  

* * ,qN*(~ - ) ,  

where ~ . ( ~ )  are the Segre classes of N which are determined by  the Chern classes 
of N. Next  we show tha t  these Chern classes of lq also depend only on E,  Y. Indeed,  

if we apply  Theorem 7.3 with i:  V - - . W  replaced by  ]: Y~-+X', and E, F replaced 
by  Tx, , E r respectively, we obtain 

(9.21) 0 * " *  I ¢ v @ @~,(~ Tx,/E ) @ L ~ , - ~ N  ~ e~,L,~ ~ 0 .  

We also have the commuta t ive  diagram 

0 0 0 
4 4 

0--> E '  -> E '  -÷ 0 -->O 

0 - +  Ty, --> j*Tx' -->L~-->O 

0 0 0 
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It follows that C(t, ~ )  can be calculated from (9.21) in terms of E and Y only. 
Now since, by (9.9) ~*~* ~--- ~"0'*]*, we deduce from (9.16) with the aid of (9.18) 

(9.22) [~'*e'*]*C](~'*~', X)  -i- v ,~*u -~ O . 

l / ,~$ 
~Text apply ~, to (9.22), remembering that ~ .~ is the identity (because ~' is 

! 

a birational morphism) an4 since ~ , v , - - - - / ~ , ¢ ~ .  we get 

[o'*/*C](~', X) + / ~ . ~ . l , * u  = 0, 

or 

[e'*/*C](~', X) + / ~ . v  = o,  

where, by lemma 9.4, v depends only on Y, E. Hence using (9.14) we now have 

[e'*o](~' ,  x ' ) -  [e'*/*C](~' ,  x )  = l~.v, 

or 

(9.23) 
n 

I f  we apply Theorem 3.8, in which we now have g = v(X')--]*v(X), we obtain 

co 

(9.24) c ( x , ) -  s* ~(x)  = ~; (~, ~ 2 ~"), ~(x , ) .  
0 

But, by the projection formula (1.1), 

cc~ t ~  m 

= / ~ .  v ~, . 
0 0 

Substituting this in (9.24) we get 

0 - -  

c o  

co 

= 

But since N'(Y', X ' ) =  ~ (lemma 3.5) it follows, by (3.1), ghat 

j* c(X') = ( 1 - - ~ ) c ( : r ' ) .  
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And as Y ' =  P(E) it follows, by theorem 7.2, that  c(:Y') depends on Y and E. 
So we have finally established tha t  

c ( X ' ) -  /* c ( X )  = j ,  w , 

where w depends on E and I7 only. Or equivalently 

C(t, x ')-l*O(t,  x ) =  i, w(t) 

where W(t)eA(~Y')[t] and its coefficients depend on /7, E only. 
Given the v~riety I / and  the bundle E we can consider the bundle P(G) = P(E O It), 

the projective completion of E. Let us now adopt the notation of § 8 except that  
objects occurring there (other than E, :Y, U') which are different from ones with the 
same name considered in this section will be denoted by a tilde. We shall, for example, 
speak of X =  P(G), H =  X~, ~', ~ ~', ~ ,  Z~ and we shall also write T =  ]. 

Then, applying the results we have just obtained to the blowing up diagram 

17 ~J~ 

we get C(t, 2 ' ) -  [T*O](t, 2 )  = j , w ( t ) .  

But by Theorem 8.1 we deduce 

(9.25) { }} - [ ~ c ] ( t ,  E) . - ~ l t ) [ ~ c ] (  + ~, ]~) * - ~,W(t)  = ~, --~'~[eEC](t, Y){(1 * -  t 

But, by (8.1), ~ j - ~ I d r .  , so ~ , j , = I d  on A(Y+). If  we then apply ~ .  to each si4e 
of 0.25) we effectively cancel the ~. on each side and so Theorem (9.1) follows at once. 

10. - Appendix .  A l e m m a  on proper trans forms .  

Suppose we have the blowing up diagram (9.1). We wish to consider the proper 
transforms of subvarieties of X having suitable intersections with Y. We have to 
distinguish the interference A (~ B of two subvarieties from the intersection cycle 
(where it is defined) A.B. The object of the following lemma is to give a sufficient 
condition for the two to coincide. So we wish to establish the following 

LEPTA 10.1. - Suppose U is a non-singular subvariety o] X such that U ~ Y 
and V ~ U (~ Y is irreducible and non-singular. Let U' (on X')  be the proper trans]orm 
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o] U by ]-1 and denote by g the mapping ]IU'. Suppose ]urther that g-1 is the blowing 
up o] U along V, so that V'-~ g-~ V ~ U' (~ Y'  and is irreducible. Under all these 
conditions the intersection U ~. ~r is defined and is equal to V'. 

Let  E ~--- N(Y, X), F ~- N(V, U). Then Y ' =  P(E),  V ' :  P(F),  LE = N(Y',  X'),  
L F =  N(V', U'). As F is contained in E, ~ is induced on V' by  L~. 

Now Y' is a primal of X' ,  V'~- U'(~ Y' and, by  hypothesis, codimv, V'-~I ,  
so the intersection U'. Y' is defined in X' .  As V' is irreducible we need only prove 
tha t  its mult ipl ici ty is one in the intersection U'. Y'. Hence i t  is enough to show 
tha t  at  any  point z on V', T(U'L and T ( Y ' L  are transversal in T(X') , .  As T ( Y ' L  
is a prime in T(X')~, i t  suffices to show tha t  T(U ' ) ,~T (Y ' ) , .  This, however, is an 
immediate consequence of the following commutat ive  diagram (obtained by  pulling 
back to z the normal bundle sequences of the form (3.1) for W¢ U' and Y 'cX ' .  

v 

o - ~  T ( V ' ) ,  - ~  T(~')~ - ~  (L~), - ~  o 

o - ~  T ( r ' ) o  - ~  T(X')o -~  (L~), -~  0 ,  

since the image of T(Y')~ in (I~E) ~ is zero and tha t  of T(U')~ in (LF)~ is not. 
This establishes the lemma. 
Note t ha t  if we blow up X addit ional ly along a var ie ty  I/I disjoint from both 

Y and U, the situation is unaffected. 
For  the application of this lemma needed in § 9 we have to replace X by  

~Y = X '  × X and U by  z]'. The variety )~/is blown up along 2~' × X (which replaces I r) 
and  X'  ×2~ which, since it is disjoint from both 2~' × X  and 5 '  (which correspond 
to Y, U in the temm~) can be taken as Yl. The conditions of the lemma are satisfied 
with Y ' : Z 1 ,  and U'-~A, so we can assert, us we did, tha t  A . Z I : A n Z 1 .  
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