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Summary. — New techniques are developed, based on the consideration of the projective bundle
associated with a divect sum of two vector bundles, to give a simpler solution of the problem
of blowing wp Chern classes which was previously solved by Porteous [12] using the Grothen-
dieck Riemann-Roch theorem.

Dedication.

It is a particular pleasure to the authors of this work to be allowed to dedicate if, on this
happy jubilee, to Beniamino SeerE. We deal with a problem which SEGRE and Topp brought
to birth and to which SmerE has made illuminating contributions over the years, and we
hope that this paper will make the solution of the problem somewhat more accessible to
classical algebraic geometers.

But we owe far more to SeGrs than the vital scientific inspiration. It was he who brought
us together and eaused our paths to cross, and without him our ¢ollaboration would never
have been undertaken. We both thank him from the depths of our hearts for his deeply-
valued friendship, and for all he has done for both of us and for so many of our friends and
colleagues in such widely separated lands.

0. — Intreduction.

The problem of blowing up Chern classes is to compare the Chern classes of a
variety X with those of the variety X’ obtained by blowing up X along a subvariety Y.
More precisely, if f: X'— X is the « blowing down » morphism we have to calculate
the difference between the total Chern class (or the Chern polynomial) of X’ and
the pull-back by f of that of X.

This problem was first propounded ({in terms of canonical systems) by
ToDpD {18, 19, 21] and further discussed by him in the essential survey article [22].
It was also discussed by SzeRE [17] and neatly reformulated by vaAN pE VEN [23].
The first solution in general terms was given by PorTEOUS [12]: the proof depended
on the Grothendieck Riemann-Roch Theorem, and was therefore fully effective only
in characteristic zero. In positive characteristic it gave the result only modulo
torsion. This latter reservation has now been implicitly removed by Jovanorou [11]

(*) Entrata in Redazione il 2 aprile 1973.
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who has provided the necessary background resulbs in positive characteristie. In this
paper we give a more elementary solution of the problem, based on simple ideas of
vector bundles and the geometry of their associated projective bundles. We develope
the necessary techniques ab initio and fry, in the inferests of eclarity and at some
cost in brevity, to emphasise the geometry of the situation. In the course of fhis
exposition we obtain a few well-known results; in some cases the proofs are essentially
simpler than those generally known; in others our proofy are not more slick. But
we have felt that it was worthwhile to develop our ideas systematically in a way
that enables us to apply them as simply as possibly to our proof, in §§ 8 and 9, of
the blowing up theorem.

The essential idea of our approach is that, since the Chern classes of an algebraic
variety X are derived (cf. GROTHENDIECK [7]) from the geometry of its tangent
direction bundle £ , we need to consider the «lifted correspondence » f induced be-
tween X’ and X. The treatment of this is a development of the ideas put forward
for correspondences between surfaces in [15]. One important point is that since f
is a birational morphism its graph is isomorphic with X'. However f is not a mor-
phism, and its graph is isomorphic with X vlown up along a subvariety.

The caleulations involved in a straightforward approach to f, though not totally
impracticable, are extremely unpleasant and we evade much of the difficult mani-
pulation by a technical trick which enables us to reduce the solution of the general
blowing up problem to that of a special case. This is the case where we blow up the
base space (or zero-section) in the projective completion % of a vector-bundle E.
In our § 8 we give a succinet account of this special case which is based on the ex-
position of our earlier sections and is greatly facilitated by a technical finesse in the
calculations. In the following § 9 we deal with the more difficult problem of reducing
the general case to the special one.

The main tool in all this is the geometry associated with the algebraic correspond-
ence @ from P(E; QE,) to P(E,) X, P(8,) where E,, E, are vector bundles over the
same base space W. The geometry of this situation is developed in §4. However the
essential geometric problems are already present in the, by no means trivial, special
case where W is a point. For didactic reasons we have chosen to develop the speecial
case in § 2 and use the geometric insights thereby gained to sketch the more general
situation, rather than to adopt the less illuminating process of directly establishing
the general results.

It is perhaps worth noting that the idea of investigating the geomefry of
P(E; @ E,) arose from the consideration (cf. [15]) of the special case where the base
space is a product U x V with projections p,, p, onto its components, and E;, B,
are the pulled-up tangent bundles pyT(U) and p.T(V). In fact this special case
plays an essential role in our treatment of the general blowing up problem.

We have already suggested the contents of §§ 2, 4, 8 and 9. In §§ 1 and 3 we
are mainly concerned with stating basic results in a form convenient for later ap-
plications. The results of §§ 5, 6 and 7 are not, as we have already emphasised, all
new, but the systematic treatment and the geometrical methods we offer are original.
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In conclusion we have to express our thanks to many people and organisations
who have helped this work along. Our debt to Professor SEGRE is already recognised.
We are especially indebted to the Secience Research Council of Great Britain who
gave us the opportunity to work together for a full year in the University of Sussex
and we would like to express our appreciation of their support of which this is not
the only fruit. We are also indebted not only to the University of Sussex but also to
the University of Montreal who gave us the opporbunity to come together again and,
inter alia, finalise the presentation of this work. Qur Sussex colleague A. J. KNiGHT
has helped greatly by drawing attention to obscurities in an earlier draft. We owe
a very special debt to I. R. PORTEOUS, who has an obvious proprietary interest in
this problem, who read our earlier draft with very great care and from whose dis-
cerning comments we have learnt a very great deal, even if he may feel that we have
not shown this as clearly as we might have done. Without their assistance the
presentation of this work would have been less clear, but we must emphagise that
neither KNI6HT nor PORTEOUS is responsible for the shorteomings and obscurities
that remain.

1. — Vector bundles and projective bundles over algebraic varieties.

All the algebraie varieties with which we are concerned are defined over a fixed
algebraically closed field, are quasi-projective and non-singular. (The old-fashioned
geometer who prefers projective varieties can proceed as if we were discussing for
the most part only projective varieties. However, we do in one or two places have
to treat the space of a vector-bundle as a variety (cf. Lemmas 3.1 to 3.3).)

If V is an algebraic variety, A(V) is its ring of rational equivalence classes
(Chow ring) graded by co-dimension. To every morphism f: U — V corresponds
a ring homomorphism f¥: A(V) — A(U), and when f is proper (in particular when-
ever U is projective) there is also a group homomorphism f,: A(U) — A(V) for the
additive groups of these rings. Whereas f* preserves co-dimensions, i.e. the gradings
of the Chow rings, f, preserves dimensions. These operations are connected by the
projection formula (cf. GROTHENDIECK [4] p. 4-08)

(1) fu@.b=fs(a.f*D),

where a e A(U), be A(V).

We are concerned with algebraic vector bundles E, F, G etc., over our algebraic
varieties. If we wish to consider, say, B as an algebraic variety, we shall write E.
The trivial line bundle over X (i.e. the product X x A) will be denoted by 1,, which
must be distinguished carefully from the unit of A(X) which we call 1,.

The dual of the vector bundle E will be denoted by I.

We shall denote by P(E) the projective bundle of E whose fibres are the pro-
jective spaces derived from the fibres of E. We shall denote by =z, the fibre pro-
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jeotion 7,: E — X, where X is the base space of E. We shall denote by o, the fibre
projection ¢, : P(E) — X.

If E is a bundle (not necessarily a vector-bundle) over X and we have a
morphism f: ¥ — X then there is a « pull-back » bundle f*E over Y (for definition
see [8] p. 43). In particular we can consider the pull-back ng of the bundle E
to P(B). If 2 is a point of P(E) with g, 2= @, the fibre of Q:E at z i3 a copy
of B, and contains the one-dimensional vector subspace which corresponds to the
line of B, giving rise to the point 2 in the fibre P(E),. The aggregate of these lines
is a line bundle over P(E) (a sub-bundle of g} E) called the tautological bundle
EE of P(E). The notation is that of GROTHENDIECK [7] who denotes by L, the dual
of the tautological bundle.

In the next section we are particularly interested in the case where the base space
of the bundles under discussion is a point. If E is a vector bundle over a point,
ie. an affine space, the bundle P(E) is the associated projective space of B and
g;E is simply the product P(E)x E regarded as a trivial bundle over P(E). But
note that 1., is not trivial (unless E is a line bundle) and Ly is the bundle associated
with the divisor class of a prime section of the projective space P(E).

2. — Some basic, and fairly elementary, geometry.

We consider our basic correspondence in the case where we have two vector
bundles E, and E,, the base space of each being the single point w. Thus E, and B,
are affine spaces A™*+! and A" respectively (*).

We shall denote by G the affine space Amt"2=FH, DE, (or By xXE, or even
E; X, EB,). The associated projective spaces P*= P(E;)}, P*= P(H,), Pri= P(G}=
= P(E, ®E,), will be denoted by P,, P,, R respectively. The Segre product Pmn
of P» and P» will be written as P, X P,.

If (a5, .ey @,) and (b, ..., b,) are co-ordinates of points 4 and B (other than the
origins) in HB,, B, respectively, they are also homogeneous co-ordinates for the as-
sociated points @, b in. P,, P,. The set of all points in 1, giving rise to the point «
in P,, together with the origin, is a line I, in By, and I, in E, is defined similarly.
The aggregate of all ¢ X1, in P, x B, is the taunbological bundle f;El over P,.

The vector (g, ...y Gpy bgy +ooy b,) Tepresents the point A X B in G. And unless
both of A and B are the origins it also gives the homogeneous co-ordinates of a
point of B. We note that B contains two subspaces {those respectively for which B
or A is the origin) which we can identify with P, and P,: speecifically we identify
the point (a,, ..., t4m, 0, ..., 0) of B with the point a of P,. With these identifica-

(*) In this section it will be found convenient to take the ranks of our bundles E, and E,
to be m 4- 1 and n 4 1 respectively (for typographical convenience it is easier to avoid
assigning indices to the ranks here). In all subsequent sections the rank of E (or E,) will be
denoted by 7 (or 7;}. It is hoped the reasons for this will appear clearly to the reader later.
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tions R is the join of P, and P,. We define a rational mapping @: R— P, x P, in
which all the points of B with homogeneous co-ordinates

(Ags Ayy oovy Ay by, pbyy ooy pby)

are mapped by @ to the point a xb of PyxP,.

The geometrical description of @ is as follows. A point ¢ of ENP, P, lies on
a unique transversal of P,, P, cufting them in @, b respectively. Then & maps ¢
(and all other points on the transversal) to the point a xb of P;xXP,. Clearly P,
(unless » == 0) and P, (unless m = 0) are both fundamental for @. Every point a
of P, is blown up (unless n =0 in which case it is simply transformed) into & X P,,
and the transform of either P; or P, by @ is the whole space P, X P,.

Py x P,

Fig. 2.1,

{(In the above figure, and in subsequent figures and diagrams, we use a broken
arrow to denote rational transformations, such as @, which are not morphisms.
This should produce no confusion with a similar convention, with rather different
intent, introduced in the proof of lemma 3.2.)

Suppose now mn >0. Then we can blow up the fundamental subspaces P
and P, of R, thus transforming R into a variety H of the same dimension as E, and
we shall denote by ¥ the birational morphism ¥: H — R. Then ¥-1(P,) and ¥-1(P,)
are both isomorphiec with P, x P, (since the tangent lines to R, at a point ¢ of P,
which do not touch P, are the joins of ¢ to P,). Note that if we blow up by cubic
primals of R through P; and P, (which is possible because, since mn# 0, neither
P, nor P, is a primal of R) the transversals of P; and P, will be transformed by ¥~
into lines.

Suppose now mn=0. If both m=0, n=0, @ is simply the mapping of a
projective line to a point: there are no fundamental varieties on R and we can take
H=R. Less trivial is the case m= 0, n=0. In this case only the point P, is
blown up and we can get the variety H by transforming R by quadries through P,
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(in fact the cubics through P, and P, break up into P, and a quadric through P,)
and again the transversals are transformed by ¥—! into lines.

So in every case H is a bundle of projective lines with two sections ¥—1(P;) and
Y-1(P,) which are each isomorphic with P, X P,. In fact H is obtained from R by
« separating » the transversals of P; and P, at their possible intersections on P, and P,.
As H is a bundle of projective lines over Py X P, it must be the projective bundle of a
vector bundle of rank 2 over Py X P,. We now show how this happens.

In the product (P, X P,) x (E; @ E,) we consider the vector sub-bundle § of rank 2
over P, X P, which is the aggregate of all points (& xb) X ({.@ L) (in more technical
terms 8 = p; EEX@ /N f;mz, where p,, p, are the projections from P, X P, to its com-
ponents)., It is easily checked that there is a birational morphism of P(S} onfo R
(for P(8) is a subspace of (P, x P,) X R and we need only consider the projection of
P(8) onto the component R of this ambient) for the inverse of which P, and P, are
fundamental. So we verify that P(S) is actually isomorphic with . So we have the
following figure 2.2, where ¥ is a birational morphism, p, the projection of the pro-
jective bundle H = P(8), and @ a rational mapping. We denote by s, and s, the
isomorphisms of P, x P, with ¥-1(P;) and ¥Y-(P,) respectively (*).

It is easily checked that s,(P, x P,) arises from the points (@ xb) x (I, P0) of §
so that s,(P; X P,) = P(p; iEl), but of course the projective bundle of any line bundle
is isomorphic with the base space of the line-bundle. As the bundle 8 has the two
sub-line-bundles p; EE,@ 0 and 08 p: :EE,, we naturally get the two sections in

this way.
R r Y-1p, )
H
/ 4 J}]..],Pg
~
o~ ~ 8] fsy
~ e
™~
~
~
axXb P, xP,
Fig. 2.2.

(*) NB. - It is an « abuse of language » to deseribe s, and s, as «sections » of the bundle H.
1f 4,, i, are the inelusions i,: P-YP,)—+H {x=1,2) it is 4;5, and ¢,s, which are properly
desoribed as « seetions ».
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The case »n =0 is worth a little thought. We can then identify P, X P, with P,.
The mapping @ is then essentially the projection of R from the point P, onto the
prime P,. Any point of B\ P; can now be written uniquely in the form (ay, a1, ..., @, 1)
and this maps naturally onto the point (a,, ..., a,) of E,=A=t Thus R == Pnt
is simply the « projective completion » of A»+! by the « prime at infiniby» P;. In
the same way H is the projective completion of the dual of the tautdlogieal bundle
of P, with ¥-1(P,) the «section ab infinity » and ¥-{(P,) the zero section.

3. — Tangent and normal bundles. Chern, Segre and Todd classes.

The bundle of tangent vectors of a variety X will be denoted by T(X) or T,.
We shall frequently denote the bundle P(T,), the tangent direction bundle of X,
by X. We shall write simply oy instead of gy, Or 94, -

If Y is a subvariety of X and ¢: Y <> X the inclusion, we have a pull-back
7*T(X) of the tangent bundle of X to ¥. This is the bundle of tangent vectors o X
at points of ¥ and has as a sub-bundle the bundle of tangent vectors to ¥. The
normal bundle N(Y, X} of Y in X is defined to be the quotient bundle: i.e. we have
the exact sequence

(3.1) 0 —T(Y) —#*T(X) - N(¥, X) -0

of bundles over Y. In algebraic geometry there is no reason for assuming that the
sequence (3.1) splits. There are however special cases of interest when it does.

‘We shall need later the following three lemmas which deal with the tangent bundle
of a vector-bundle and the normal bundle of a sub-bundle.

Lemma 3.1. — Suppose B is o vector bundle over X. Then there is an exact sequence
0 ———>7a:E —T(H) »»x;T(X} .

The mapping T(X) ——>n;T(X ) derives from the tangent map of the projection
(cf. BoUurBAKI [3], § 8.1.3).

The inclusion mapping of az;E in T(E) arises as follows. Let u€F and o=umn_u.
Then E, is an affine space so that

(niE), = B, ~T(B,),.

But the inclusion of E, in E thus gives rise to the inclusion of T(E,), into T(H).,
i.e. an inclusion of #.E into T(E). To complete the proof we only need establish
exactness and this is easily done for the special case where E ==X x A" in which
case the sequence is easily seen fo split.
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What this in fact shows is that @, E is the bundle of tangent vectors along the
fibres of E (cf. BOURBAKI loe. cit. and also the Example 5.5 of this paper where we
consider the more difficult bundle of tangents along the fibres of a projective bundle).

LEMMA 3.2. - Suppose Y is a subvariety of X with inclusion i: ¥ > X, B a bundle
over X end F o sub-bundle of i*E.
Then 0 —m (i B/F) - N(F, B) > 7, N(Y, X) 0.

If j is the inclugion j: F — E we have the commutative diagram

rel.g

Y(——;—-—>’X
%

from which we deduce n j= im, and hence
(3.2) =yt

We then get the commutative diagram which follows (*), the first row is ob-
tained by applying lemma 3.1 to F, the second applies the same lemma to E after
which we apply §* and use 3.2.

0 0 ¢
v v v

0> mF — T(F - A4ZT(Y) —0
v v v

0— md*E — j*T(E) - ahi*T(X) -0
v

0 > 72 (i* BJF) > N(F, B) > aiN(Y, X) > 0
v
0 0 0

We now state as a lemma some special cases of Lemma 3.2.

LEMMA 3.3. - (@) N(i*B, B) ~a, N(¥, X),
by If B, F are both bundles over X, N(F, E) ~ns(B/F),
(¢) N(X,E)=E

To get (s) we take F==i*E. To get (b} we take ¥ =X, to get (¢) we take,
in (b), I as the zero bundle, so that the space of F is X and s, is the identity.

(*) We adopt henceforth the convention that in any 3 x 3 diagram of short exact sequences
we shall depict with dotted arrows the row or eolumn whose exactness is being deduced from
the remainder of the diagram.
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The normal bundle is vital in problems of blowing up subvarieties of a variety.
Suppose ¢: ¥ <> X is an inclusion and X' is & birational transform of X obtained by
« blowing up» Y to a primal ¥’ in X' (so the codimension of ¥ in X is at least 2).
If f is the morphism X'—>X we have the commuftative « blowing up» diagram
below.

v’ d...;.X’

(3.3) 1 Y’l if

7

The variety Y’ is a projective fibre bundle over ¥. The essential features of
this situation are summed up in the following two lemmas.

LeMMA 3.4. — Y'= P(BE), where BE = N(Y, X).

LemMA 3.5, - N(Y, X')=1,.
The first result is obviously plausible, the second is less obvious. They are clearly
implied in {2, § 12] and explicitly stated in [12, p. 123]. Note that the two lemmas
above are unaffected if some subvariety of X disjoint from Y is also blown up, since
the normal bundles are local properties.

For any vector bundle E over V, O, E) is the Chern polynomial of B, i.e.

C(t, B) = > ¢;t', where r is the rank of E and ¢;= ¢;(E), the i-th Chern class of E,
=0

is an element of codimension ¢ in A(V).
The total Chern class ¢(E) of E is defined by

cBY=C1,E)=¢,+ 0,4+ ... +¢.
The Chern polynomial C{, X) of a variety X (and the ¢-th Chern eclass of X) is
defined by
0@, X)=C(t, Ty) .
We can also consider the Segre classes si(F), or inverse Chern classes, of E (or X)

by inverting in A(X){¢] the Chern polynomials to give Segre polynomials S§(i, E)
where

(3.4) i, BY. 8¢ B)=1.
These classes have been introduced independently by Topd and SEGRE: initially

introduced for manipulative convenience, they were given a significance by SEGrz [17]
in line with our requirements here.



10 A. T. Lasou - D. B. Scort: An algebraic correspondence, ete.

The essential properties of Chern classes are the following. If /: Y+ X ig a
morphism and E is a bundle over X then

(3.5) f*ei(E) = e:(f*E),
and if 0 B —->F >G>0 is a short exact sequence of bundles over X then
(3.6) O, By=C(t, B)C(t, G).

We shall denote by C(t, E) the reversed Chern polynomial of E defined by

8.7 C(t, B) =t C(t~%, E) = t76,(E) + ¢'6(E) + ... 4 ¢,(B),

r again being the rank of E.

If Y is a subvariety of X of co-dimension r we shall deseribe as the Todd poly-
nomial T(t; Y, X) and the Todd classes of immergion (¥) #(Y, X) (1=0,1,...,7)
the Chern polynomial and the Chern clasges of the normal bundle of ¥ in X. The
total Todd class £(Y, X) is defined in the obvious way. The Todd classes are in A(Y).

If ¥ is a primal of X, a subvariety of co-dimension 1, and 4: ¥ > X is the
inclugion mapping, it is known (and easily proved) that

3.8) WY, X)=1i*i,(1,),

the result being equivalent, in classical terminology, to the adjunction formula for
eanonical primals.

If B is a vector bundle (of rank #) on V we have on P(E) the Grothendieck class &,
(it B=T(V) we may write £, instead of £.), an element of co-dimension 1 in A(P(E)):
it is defined by

(3.9) b= 0,(Ly) = —0,(Ly)
The ring #A(P(E)) is a finitely generated module over its subring g*A(V) (an isomorphic

image of A(V)) with basis (1, &, ..., &), The class &, satisfies the minimal equa-
tion (over p*A(V))

(38.10) o¥c,. &, + o¥e, &t 4 ..+ g%, = 0.
We write this as
(3.11) [0*Cl(4s, B)=10,

(*) These classes were discovered by Topp [20] and rediscovered by Seerr[16, 17] in
different ways. The authors would like to describe as the Segre classes of immersion those
derived from the inverse polynomial of T (as the Segre classes are inverse to the Chern classes)
but we have no need of them in this paper.
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where ¢* is applied to the coefficients of the polynomial C(t, B) and &, is substituted
for ¢ after the application of g*.

Following GROTHENDIECK [7] we shall take (3.10) as the definition of the Chern
classes.

Segre’s original definition [17] of the Segre classes si(E) is equivalent (cf. GAL-
BURA [5]) to the assertion that

(3.12) 8,(B) = ogl £ .

We conclude this section with some results on sub-bundles of bundles. Lemma 3.6
is trivial. Theorems 3.7 and 3.8 are basic results established in [9]. Theorem 3.7
is there proposition 1 of section 3 and Theorem 3.8 is the first lemma of the same
section.

LEMMA 3.6. — Suppose B is a vector bundle over V, that i: U<V is an inclusion
mapping and that F is o sub-bundle of i*B. There is then an inclusion mapping
j: P(F) = P(E) and

j*f‘}n:ip, 7'*513::51?'

THEOREM 3.7 (Scott’s formula) (*). — With the hypotheses of the preceding lemma,
the equivalence class of P(F) in P(E) is given by

clP(E)P(F) = j*(lp(m) = [925*6](‘513’ *B[F).

THEOREM 3.8. — Suppose B is a vector bundle over V of rank v and a is an element
of A(P(E)) so that, as remarked above, there is an unique expression a = > o*a, 0,
4==1

where a; is an element of A(V) (not necessarily of co-dimension ¢ or even homogeneous)

Then if @ in A(V) is defined by @= > a;, we have

7= gus(a ff;sg) e(E).

(Of course, the infinite sum is purely formal: & =0 for k>r 4 dimV.)

4, — Some basic geometry associated with projective bundles.

Suppose that E,, E, are vector-bundles over an algebraic variety, which (for
reasons which will appear) we shall now call W, and let G=E,®E,. Consider the

{*) The reason for the name of this formula, christened by the authors of [9] seems
obscure to me. In[14] Scorr only provided an incomplete proof of a very restricted case.
D.B.S.



12 A. T. Lasou - D. B. Scorr: An algebraic correspondence, ete.

projective bundle P(G) and the bundle (of two-way projective spaces) P(E;} X, P(H,)
which, for brevity, we shall in future call Z. For any point w of W the relation-
ship between the fibres B= P(G), and Z,== P(E;), X P(B,),= P, X P, is precisely
that discussed in § 2. The results of that section globalise in a straightforward
manner,

Thus P(G) has two sub-bundles, identified with P(E,) and P(E,), of which it
is the «join » (each fibre of P(G) being the join of the corresponding fibres of P(E;)
and P(E,)). We can combine the maps @,,, say, in the various fibres, to give a global
rational transformation @ from P(G) to Z. The transformation @ has P(E,) as a
fundamental locus unless E, is a line-bundle and P(E,) is a fundamental locus unless
E, is a line-bundle.

Just as in the fibres (ef. § 2) we can blow up P(G) along P(E,) and P(E,) to get
a variety H with a birational morphism ¥ from H to P(G). Both Y—P(E,) and
Y-1P(E,) are isomorphic to Z = P(E,) X, P(H,), so we shall call them respeetively
Z, and Z,. The variety H is a projective line-bundle over Z. If ¢,, ¢, (we shall
use p,, p, for the projections from a product to its first and second components:
we use ¢, ¢. because we have not a true product but a restricted one) are the
projections from Z= P(H,)X,P(B,) onto P(E;) snd P(B,) respectively, then
H = P(8) where 8= ¢; I, ®¢, L,,. The sections Z, and Z, of H are isomorphic
with the bundles P(qf f‘E,) and P(q: f;Ez) respectively. Again we denote the iso-
morphiec mappings of Z onto Z, and Z, by s, and s, respectively and 4,, 9, are the
inclusion mapypings of Z,, Z, into H.

All this is summed up in fig. 4.1 below and the diagram (4.2}

Zy=Y-1P(E,)

P(Ey)

Fig. 4.1.
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In the diagram below we have omitted the projection g,: P(G)-> W and the
inclusion maps of P(E,) and P(E,) in P(().

H=P(S)
== "IP E
PG _ Zy=Y¥"P(Ey) ¢ Z,— W-LP(E,)
S ~ -
o ™ - 311 fsz

S
T 7 — P(B,) X, PE,)

AN

The situation in the fibres above any point of W is precisely that depicted in
fig. 2.2

Congider now the various Grothendieck classes &, &, , & in A(H), A(P(E,))
and A(P(E,)) respectively which are the first Chern classes (i.e. of codimension 1)
of Ly, Ly, Ly. To simplify our symbols a little we shall write

(4.3) &= Q‘TSEI’ 52 = Q:gmg ’

these both being classes of A(Z). We shall also write

-

(4.4} L,= Qf iEl 3 iz == ‘1: iz 3
these being bundles over Z. It is clear that
L=—al), &=—a).

We now find the equivalence classes of Z; and Z, in H and also their Todd classes.
These are given by the following

THEOREM 4.1. — (i) ¢l 2, = i}(1,) = &,—0%&,
(i) elyZ, =1, (1,) = &— o5&,
(111) 1 ( ) 51_527

(iV) 83 1( 2’H)=£g”“§1-

2 ~ Annali di Matematica
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Clearly we need only establish (i) and (iii). To prove (i) we remark that
H = P(8) = P(I, ®1s), and Z, is the variety of H representing P(I.;). We can thus
apply Theorem 3.7 where ¢ is now the identity and E, ¥, ¢*E/F are to be replaced
by S, I, L. L

So ¢l (4,)=1(1)= [Q:O](gsﬂ Ly) = &— n.:ée .

To prove (ili) we remark that, by (3.7),

s t,(Z,, H) = s} iy (ix(1)) = 81 0 &g — 8145 038, -

But o.i,s, is the identity mapping on Z, so s;i, gsé, = &,. Also siiré, =
= —stito,(T) = —o,(s; iy I,g). But (lemma 3.6) 4; L, is the tautological bundle on

7, regarded as P(I,). As s is an isomorphism it follows that siiyL, is the
tautological bundle on Z regarded as P(L,), ie. i Iy=1,. So —e¢,(sji; Ly =&
and the theorem is proved.

Next we calculate the classes of P(E;) and P(E,) in P(G). As G=E, QD E, a
further application of Theorem 3.7 gives us

THEOREM 4.2. ~ el (P(Ey)) = [05C1(Eq, Ba), el (P(Ey)) = [02C1(£,, Ba).

The calculation of the Todd classes of P(E,) and P(E,) in P(3) is harder than
for their inverse images under ¥, beeause in general we are not dealing with primals.
The result will be obtained as Theorem 7.3.

Three special cases of all this are of interest later. The first is important in the
theory of correspondences, and is useful in the final section of this paper. Suppose
W=UxV and p,, p, are the projections p,, p, to the components. Consider
B, = piT(U), B,=p,T(V). Then P(B)=UxV, P(E)= UxTV, and, of course.
PG)= T'XV. Theorem 4.2 in this case becomes

TaROREM 4.3. — (U X V) = [07y, 2y CllEpsrs V).

The second special case is where E,= E,= E. In that case Z = P(E,) x,P(E,)
is isomorphic with P(p*E)=p*P(E), and we shall adopt the convention that
0pn=¢:- This is further discussed in example 5.4.

The third special case is where E, == 1, the trivial line bundle over W. A com-
parison with the concluding paragraph of § 2 shows that in this case P(E, @ 1) is
the projective closure £, of E,. Here the subvarieties P(E,) and P(1) (a copy of W)
give respectively the loeus of the primes at infinity in the fibres and the zero section
respectively. A detailed treatment of this situation is given in § 6.

5. — Tensor products with line-bundles. The bundle of tangents along the fibres of
a projective bundle,

Suppose we have two bundles B, and B, over a variety W such that the projective
bundles P(B,) and P(B,} are isomorphic. This means that we have a commutative
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diagram
P(B,) — P(B;)

N /
Op,\ yy £ e,
Then it is trivial that there is a line-bundle L. over W such that B, = B, ® L.

Let us now identify P(B,) and P(B,) and denote both of them by P(B), and
denote both the projections by g,. Pulling back our bundles to P(B) gives

03B, = 03B, ® 0, L.
It follows, by considering the tautological bundles, that
(5.1) Vo, = L, ® 0L

Thus Q:L is uniquely defined as a bundle over P(B) and (because the divisor as-
sociated with a tensor product of line bundles is the sum of the divisors associated
with the two bundles)

(5.2) EB,"‘ 53, = cl(f‘g )— cl(f‘g,) = 61(921*) = Q:GI(L) .

1

But o is an injection of #(W) into #A(P(B)) so that ¢,(L) is uniquely defined, and
thus L is defined to within isomorphism. We summarise all this as

LeMMA B.1. — If the bundles B, and B, have the same projective bundles over W
with projection oy, there is a line-bundle L over W defined to within isomorphism such
that B, =B, @ L and &, —&; is the on tmage of the first Chern class of L.

A consequence of the usual rules for manipulating Chern classes [8, p. 64] is the
following useful

Lemya 5.2, — If L is a line bundle and 1 == c,(Li) then
Cit, BQL)=C(t+ %, E).

We give three examples of situations where different bundles have the same projec-
tive bundle.

Exampir 5.3. — If L and M are any two line bundles over W then
PL)y=PM)=W.

ExXAMPLE 8.4, - If G =B, ®E,, where E,=E, = E, then B,= N(P(H,), P(G))
and B,= oy B have the same projective bundles.

Indeed P(B,)= P(B) X, P(E), and the first projection ¢, is the fibre projection g .
Then im = ¢ Ly
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On the other hand Z,= s, P(B,) is the result, in fig. 4.1, of blowing up P(G)
along P(B;) (and also along the disjoint P(E,)). So also Z,= P(B,) where
B, = N(P(E,), P(G)). In view of this if31 is the normal bundle of Z; in H (lemma 3.5).
So s} ¢,(Ty) = ¢} ¢,(Lyy) — g% ¢,(Ly), by Theorem 4.1 (iii).

If now, as we did in deriving (5.1) and (5.2), we identify P(B,;) and P(B,) we must
take s, as the identity and g, = g,.

So we get el(fzm)—cl{f‘&) = o36,(Ly), and in aceordance with (5.2) we must have

(5.3) B,=B,®L, or N(PE,), PG)=*EQRL,.
We shall be able to check this result later.

ExAMpLE 5.5. ~ Here we introduce the bundle of tangent vectors £’ (or T’(P(E)))
along the fibres of P(E). We have the exact sequence

(5.4) 0 - E'—T(P(E)) - o*T(W) -0,

where W is the base variety (ef. [3], § 8.1.3).

There is another exact sequence we wish to consider which arises because I
is a sub-bundle of p*E. If we denote the quotient bundle (c¢f. GROTHENDIECK [7])
by E we have the sequence

(5.5) 0T, —0*E —>E® 0,

The bundle P(E®) is the following. If z is a point of P(E) lying over the point w
of W{g,z=w), then P(E"), i3 isomorphic with the aggregate of planes of E,
{or (o*E),) containing the line of B, which corresponds to the point 2 of P(E). So
P(E%), is isomorphic with the lines of P(H), through the point 2. Thus P(EW) is
the bundle of projective spaces representing the directions in the fibres of P(E) at
the points of P(E), and this is also P(E').

It is, however, easily seen that, though E' and E® have the same projective
bundle, they are in fact generally distinet. Indeed if we tensor B with a line bundle L
we do not affect P(E) and hence do not alter E'. But on the other hand, by (5.1)
and (5.5}, we tensor BV with o*L. So all we know is that B’ is E® tensored with
a line bundle.

In fact we shall prove in the next section (the result is known, ef. PorTROUS [13],
p. 292) that

(5.6) E'=E¥Q®L,
which, taken with (5.5), gives us the exact sequence

(56.7) 01, —>0*EQL, >E 0.

Alternatively we can caleulate C(¢, BV} from (5.53) (the result is given in § 7)
and we could also calculate C(t, E') from (5.4) if we assume the known formula for
O(t, P(E)). However, we prefer to deduce C{t, P(E)) from our essentially geometrie
derivation of (5.6) and (5.7).
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We shall conclude this section with an important result on the bundle E'. But
first we need a lemma on pull-backs of projective bundles. Suppose f: U — W is
an srbitrary morphism and F = f*E is the pull-back to U of the bundle E over W,
Then P(F)=f*P{E) and we have a commutative diagram (5.8), where f is the
obvious mapping of P(¥F) on P(E).

PE) -ZT
(5.8) 7 f
Y

Y
PE)—>W
45]
The mapping f was introduced by GROTHENDIECK (7, p.139] in remarking that
I,=7*1,. Here we require the equally natural

Levma 5.6. — The bundle ¥’ (of tangents along the fibres of P(F)) is the pull-back
by f of B, t.e. F'=f*E.

The verification of this natural result is straightforward and we omit it. If we
now consider the special case where U= P(E), f=p,, then P(F)= P{o*(E))=
= P(E)x, P(B) with ¢, = ¢, and f=g¢,. In this case Lemma 5.6 becomes

LemMa 5.7. — If F= o*E and we take P(F)=P(E)X,P(E) with q, as bundle
projection o,, then F'= g, B’

‘We now use this to show that E’ is naturally isomorphic with the normal bundle
of the diagonal A4 on P(E)x,P(E). Let i: 4« P(E)x,P(E) be the inclusion
mapping, and let 8 be the diagonal mapping 6: P(E) -4 and ¢ the inverse iso-
morphism &: 4 — P(E). We now have the commutative diagram

= ¢,
Z = P(F) = P(B)x , P(E) Hm
Gr="0 / 0
‘ / ‘F
P(E W
Fig. 5.9.
with ¢,% = g.t=1¢, = 0-1. This gives us
(5.10) =it =¢", F0'=0""=1d.

We can now establish

LemMA 5.8. — *T{Z)=T) @R
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This implies that the normal bundle sequence of 4 in P(E)x,P(E) splits
and that the normal bundle is naturally isomorphic with ¢*E’,

Proor. —~ Congider the bundle along the fibres sequence
0 - F —TP(F) - os T(PE)) - 0.

Now replace (lemma 5.7) F' with ¢;E’, oy by g}, operate on the sequence with i*
and use (5.10). We now get
(5.11) 0 —> &* B/ — i* T(Z) — e* T(P(E)) — 0.

But &* is an isomorphism, so e*T(P(E)) = T(4) which is a sub-bundle of #*T(Z).
So the sequence (5.11) splits and we have

T2y =T(A)PE .
But we also have the normal bundle sequence
0 > T(4) —i*T(Z) - N4, Z) -0,

so that N(4, Z) = ¢*E’. Operating on this with 6* we get
THECREM 5.9. — B/= 6*N(4, Z).

6. — Projective closures of vector bundles.

If G=E@ 1, we have defined the projective closure E of E to be the bundle P(G).
Note that this is the same as the bundle P(G') where G'= (EQ L)@ L for any
line-bundle L. Alternatively the bundle P(E@ L) is the projective closure of EQ® L.

The bundle P(G) includes sub-bundles P(E) and W == P(1) as described in § 4.
We also consider the bundle H= P(S)= P({,;®1) over P(E)X,P(1)= P(E)
which is obtained (as in § 4) from P(G) in this case by blowing up along W.

Fig. 6.2.
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‘We list here some useful formulae: the first of them is Theorem 4.2 and the other
two are Theorem 4.1, (i) and (iii). We state them as

LEMMA 6.1. — clo, P(B) =&, cl,Z, =&, c,Z,=E— o5&y,

The «special case » of blowing up a subvariety which we shall treat in § 8, and
from which the solution of the general problem will be derived, is obtained by tak-
ing X=P(}), Y=W, H=X' and Z,=7’, i.e. we blow up P(G) along W=P(1}.

The variety P(G)\ P(E) is isomorphic with E (if it were not there would be little
point in defining F to be P(G)): to demonstrate this isomorphism we need only
globalise the isomorphism deseribed (in the fibres) at the end of § 2.

Looking at P(G) « the other way up » we ean consider P(G)\'W which is a line-
bundle over P(E). But this is isomorphic with H\ Z, which is the same line-bundle L
over Z,.

But (lemma 3.3(¢)) L= N(P(E), L)=N(Z,, H). Hence, by Theorem 4.1 (iii),
6,(L)=&,, so that L=1L,. We summarise all this in the useful

THEOREM 6.2. — If B = P(G)=PE®@®1), then E\P(E) is isomorphic with the
bundle B and E\W is isomorphic with the line bundle L.

Note that H = P(I,;® 1,0) = P10 @ Li). Thus

LEMMA 6.3. — HN\Z, is the bundle I:E over Z,, H\Z, is the bundle L, over Z,.

(It is clear why « turning the line-bundle upside down » dualises it: for if we in-
vert all local coordinates we also invert the coordinate transformations.)

This last idea supplies a rapid verification of the last two parts of Theorem 4.1.
In the context of that theorem G is now E,@E,, H = P(8) = P(q¢| i’;m@ d; f;E,). So
we have

H=P1® (i L, ® ¢ 1)) = P((¢} 1, @ 0 Lp,)D1) -

The first form for H shows that A\Z, is isomorphiec with the bundle qf L, ® q: f;E,
over Z; and the second that H\Z, is isomorphic with the bundle ¢; L, ® g, Ly,
over Z,. (Again turning upside down dualises.) Thus we have shown that (again
applying lemma 3.3(c)).

NZ, H)= L, Q@ Ly, N(Z, H)=q; Ly @ Ly,

giving 4,(Z,, Hy= & —§&,, t(Z,, HY=§,—§&; a.svbefore.

Let us now consider the bundle P(o*E® L), a bundle over P(E) which we
shall denote for brevity by V. This is, of course, the bundle ¢*E®L,. The
variety V containg the sub-bundles U= P(¢*E)= P(E) X, P(E} and }?(i';E) = P(E):
V is the join of these sub-bundles. We have already remarked in Example 5.3 that
0=, and L= ;L.
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But U also contains the diagonal sub-bundle 4 corresponding to the inclusion
of T, in g} E. There is also the bundle K = P({;,®T,) which contains 4 and P(E)
as subvarieties. Note that K = P(1® 1) = P(E) xP* and is also 1,4,.

We now have the following figure.

U = P(B) X »P(E)

V=P{*E ®Ly)

Fig. 6.2.

Let j;: P(E) <> K and j;: 4 <> K be the inclusions. As before we have the iso-
morphism 6: P(E)-X 4 and the inclusion i: 4> U (cf. (5.9)).

We shall consider a section of K, say 7: P(E)-> K, different from both 7§,
(i.e. P(E)) and §,0 (i.e. 4).

Let K, =K 4, K,= K \P(E). Then tP(E)cK,NK,.

Let V= VU, V,== "\ PE). Then K,, K,, V,, V, are vector bundles where

K, =1 E,=1,,

P(E) ?

by Lemma 6.3. Also by Theorem 6.2
Vi=p*ER@ Ly, Vo= Lypgr, -

But, by dualising (5.1), Lyspey, = Lpw,® 47 L, =L, ®¢ Ty 5
Now, as L,Ce*E, K, is the sub-bundle of V, corresponding to L,& L,. Hence,
by lemma 3.3(b), writing m; (and 7,) for zg (and 7 ),

N(Kl ’ Vx) == ﬁf(g*E@) LE/]‘P(E)} = nf(Em® LE) H

because p*E® Ly/1,,, = (0*B/Iy,) ® L.
Also 4 is the part of U for which ¢;=¢,. Thus V, induces the trivial line-
bundle, i.e. K, on 4. 8o by lemma 3.3(a)

N(K,, V,)=m, N(4, U).



A. T. Lascu - D. B, Scorr: An algebraic correspondence, eic. 21

But 7,7 =1d, g, 7T =10, s0

T*N(K, V)= 1*N(K,, V) = "m0 (BEYQ Ly) = BEV® L,
and
T*N(K, V) = 1*N(K,, V) = t"7, N(4, U) = 6*N(4, U)=F',

by Theorem 5.9.

By equating these two values of +*N(K, V) we have thus established (5.6), and
hence (5.7), which we record as

THEOREM 6.4. - B'=EVR L,
and

THEOREM 6.5. — There is an exact sequence
0—1,,—>0*BEQL, ~E—0,

where the map 1,4 —>0*E® L, derives from the inclusion Ti,co*E by tensoring
with L.

7. — Some formulae for tangent and normal bundles.

In this section we give some applications of theorems 6.4 and 6.5. Some of the re-
sults are not new, but the derivation we give of them here is of some intrinsic interest.

TagorREM 7.1. - C(t, B') = C(t + &, B®) = t-1[o*C)(¢ -+ &, E).

(Note that {g*é](t + &, B) is actually divisible by ¢ in accordance with (3.10).)
Starting from the exact sequence (5.5)

0 -1, >0o*E >EV 0,
we get, by (3.5),
[e*Cl(t, B) = O, ¢*E) = 0, Ig). Oft, BV),

or

[e*Cl¢, E) = (1 —§&59) O(F, EV) .
So

[e*C1(t, B) = (¢t —£,)C(t, BW),
1.e.

[0*Cl(t + &, B) = t0(t + &, EV).

Thus O + &5, B®) = t[p*C](t + &, B).
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But, by theorem 6.4 and lemma {5.2)
O, B') = O(t, BV @ L) = C(t + &, BY)

and the theorem is established.
TarorEM 7.2. - C(t, P(B)) = t-1[g*C1(t + &, E). [0*C1(t, W)).

This is an immediate consequence of the exact sequence (5.4).
The most important result of this section is

THEOREM 7.3. — Suppose V is a subvariety of W with inclusion mapping i: V — W.
Let B be o vector bundle over W and F a sub-bundle of i*E. Then there is an exact
sequence (of bundies over P(F))

0 > (" B/F)® Ly - N(P(F), P(®)) - ¢z N(V, W) ~0.
There are two special cases which we state as corollaries. If we take W=V
we geb the following

COROLLARY 1. — If F is a sub-bundle of the bundle B over W then

ex(E/F)® L, = N(P(F), P(E)).

(This is a generalisation of formula 5.3, the two bundles in that case being EDE
and its first component.)
The other special case comes by taking F = i*E, giving

COROLLARY 2. — If V is a subvariety of W with inclusion i: V— W, then a
bundle B over W gives rise to an isomorphism

N(PG*E), P(B)) ~ 0, N(V, W).

It is no more trouble to establish the theorem directly than to build it up from
the two special cases, 50 we shall now proceed with the proof of Theorem 7.3. Let j
be the inclusion j: P(F)<> P(E) giving the commutative diagram

P(F) -—-1———> P(E)
(7.1) Qri lQE .

%

From the exact sequence (5.4)

0 - E'— T(P(E)) — o, T(W) -0,



A. T. Lascu - D. B. ScorTr: An algebraic correspondence, elc. 23

and because (7.1) ¥ op = oni" We get, by operating with j*, the middle row of the
following commutative diagram; the first row is a direct application of (5.4)

0 0 0
¥ ¥ ¥
0> F TP(F) - osT(V) —0
v v
(7.2) 06—~ PE — PFTPE) — pgpi*T(W) -0
v

0 > *E'[F - N(P(F), P(E)) - gt N(V, W) >0
v v v
0 0 0

and the exactness of the dotted row is a consequence of the exactness of the columns
and the other rows.

We now get an alternative expression for the first term in the bottom row of (7.2).
We use the commutative diagram below in which the first two rows are derived from
Theorem 6.5 (and the second one is operated on by j*, again using the result
¥ ok = oni™* derived from (7.1)).

0 0 0
v v v
01— FQLy - F
\ ¥ v
(7.3) 0—>1-> Q;i*}i@LF > J*B -0
¥

0> 0 > g2(I*B/F) @ L ~> j*B/[F' - 0
v v
0 0 0

The theorem now follows at once.

8. — Blowing up Chern classes. The special case.

We consider now the following situation. Let ¥ be a variety and E a vector-
bundle over Y. Let G=E @®1,, X = E = P(G), the projective closure of ¥ and
4t ¥ o> P(G) the inclusion mapping. We have the situation of fig. 8.2 (cf. fig. 6.1).

In this figure Z, and Z, are copies of P(E), Z,=¥Y-Y(P(E)), Z,= P-4 Y),
and we shall identify Z, with the base space P(E) of the bundle H and also indentify Y
with the base space of the bundle P(G). If we denote by j (instead of ¢, as previously)
the inclusion j: Z, <> H, then, because of the identifications just made

(8.1) osi=Td(on P(B)), g i=TId(on ¥),

where Id represents the appropriate identical transformation.
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/’—ZI_\
\——/ H=X=P(S)

/"_—\ S= I\:E @ 1z’<E)
¥L>

Fig. 8.2.

We have the following blowing-up diagram augmented by the inclusion in if
of ¢, and g, and of the diagonal morphism A to be introduced in (8.4).

g —————
PE)=Y X’
j
(8.3) QEi A P
Q¢
Y C i X

We shall establish the following « Theorem of blowing up Chern classes » in this
special case.

THEOREM 8.1.

O, X') —[P*01(t, X) = js {—_—1 (05 O, TH(L — &) @5 Ot + £n, B) — 05 C1tt, E)}} .

£n

From diagram 8.3

(8.4) oson="P"0os=A"(say) and A" =gj.
Hence, applying theorem 7.2, we get
Ot, X') = C(t, P(8)) = t-'[g;C1(t + &, 8). [0 C1(t, P()) .
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But
Oty 8)=tt—&,), C(t, P(B)) = [0z C1t + £;, B). 105010, T).
Hence
Oty X') = -1t + £ + &, — 05&,) .1 [A*CN(t + 05y, B). [2*CNE, T)
And
O(t, X) = O(t, P(Q)) =t C1(t + &, &) [05Clt, 1) .
But, as
G=E®1, 0t &)=1iC¢ E).
So ’

wEC(t, X) = 1t + P*E,). [A*C(t + P*&,, B).[2*C1¢, T) .
But, by lemma 6.1, &, = cl,, P(E), so

(8.5) PrE) =l Z, =& and & —ogki= clpZ, = ju(1).
Thus
(8.6) Cit, X'y —[P*C1t, X) =
= t=2(t + £ 0N, D{(t + §(0)A*CUt + &, —js(1), B) —t[2*CUt + &, BY} .

But j«(1) is a factor of the terms in curly brackets on the right hand side, so every
coefficient of ¢ on the R.H.S. is of the form

(8.7 & 2*a. (1)),

where s A(Y), r>1.
But we can write (8.7) as

Jx(1)- €5 2% a. (J(1))

and by the projection formula (1.1) this is equal to
(8.8) i &5 7 2% a (7*4(1) ) -

Bub j*1* = gy (8.4), *ju(l) = *(&— 0séa)-
But j*&,= 0, since & ==cl,Z, and so j*& is the intersection class of Z; and Z,
(which have empty intersections).
Thus j*£ =0 and j*j4(1) = —§ 0géy = —&, by (8.1).
Hence by (8.8)
.. () =i (— £

£ 46 gho. (— 5E>') ,
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which is zero unless k= 0 and is then

i
Jx (*‘z:; 9;“; (— SE)‘.) .

This means that, in (8.6), we essentially have to precede the R.H.S. with j,, replace i*
by or, replace & by zero, replace —j,(1) by &, and multiply the result by —1/&,.
Doing this we get

O(t, X')—[P*Cl(t, X) = ju ~-1—[9’£5](t, Y){(t— &) et Cl(t + &e, B) —1[0iC1(4, B)
1w

—iuf— g 165016, {0~ EesClr + &, B) 1201, B

and the theorem is established.
It is perhaps worth stating specifically as a corollary the more usual form of the
result, in terms of total Chern classes, obtained from the above by puftting t=1.

THEOREM 8.2.

e(X')—Pre(X) =1, {:53 ghe(T){(1 —EghCIL + &5, B)— ezcm)}} .

9. — Blowing up Chern classes. The general ecase.

Let us now congsider a variety X and a subvariety Y (of co-dimension at least 2),
both assumed non-singular, which we shall blow up to get a birational transform X'
of X with a primal ¥’ on X’ which arises from « blowing up» ¥. Let us denote by E
the normal bundle N(Y, X). We have the blowing up diagram (cf. 3.2)

Y/ s X’

I
(9.1) Qﬂl lf

%

where Y'= P(E), N(Y', X') = i’JE and f i8 a birational morphism.
We propose to establish the following blowing up Theorems, exactly the same
results as obtained in § 8 for the special case.

THEOREM 9.1.

Ct, X)—[*Cltt, X) = j, {«—;g.l—w;é}(t, V){(1 — &/ eACN + £, B) — [0, E)}} :



A. T. Lascu - D. B. Scort: An algebraic correspondence, elc. 27

THEOREM 9.2.
. 1
o) — el X) = u {———

&s

Before proceeding to prove these results we shall explain the underlying concepts
of the proof, There are two essential ideas involved. The basic one is to shift our
attention, as explained in § 0, from the blowing down morphism f: X'— X to its
associated «lifted correspondence » 7 (which is net a morphism) from X to £ (the
respective tangent divection bundles). The second idea is a purely fechnieal trick.
In order to avoid some very unpleasant, but not totally impraetical, calculations
we content ourselves with demonstrating that the left-hand side in Theorem 9.2,
ie. ¢(X')—f*e(X) is of the form j,w, where w is a class of A(Y') which depends
on Y and E only. In other words the varieties X and X' are irrelevant: all that
matters is the variety ¥ and its normal bundle E in X. If therefore we replace X
by E (the projective closure of E) we do not affect w, so that our theorems derive
immediately from the results of the previous section.

First we explain, before proceeding to the detailed proofs, how we treat the
correspondence f. Let A’ (the prime is used to remind us that we are considering
a blowing up of the diagonal 4 of X x X) be the graph on X' x X of the morphism f
and let I on X' x X be the graph of the lifted correspondence 7. Let us denote the
projections of X’ x X onto its components by p,., p, and those of X' %X by p1, 9.
We shall also abbreviate g, and g, to ¢’ and ¢ respectively (and later abbreviate
£y, £;, the Grothendieck classes of the tangent direction bundles, to &', & respectively).
We summarise these notations in the diagram of fig. 9.2.

ore(Y){(1 — £ e 010 + &sy B)— e’éc(E)}}-

Fig. 9.2

As f is a birational morphism its graph A’ is isomorphic with X'. But 7 is not
an isomorphism. The tangent directions along the fibres of Y' are, as we shall see,
fundamental. So I is not isomorphic with X’ but, as could easily be checked in
loeal eo-ordinates as in PorrEOUS [12] p. 121, with X’ blown up along the subvariety



28 A. T. Lascu - D. B. ScorT: An algebraic correspondence, etc.

P(E’) (where E’, as previously, is the bundle of tangent vectors along the fibres of
P(E)). In fact we don’t consider I directly, but we derive an isomorphic image
of it by using the geometry of § 4.

To see how the geometry of that section applies, we take W=X'x X,
B, =piT(X'), By=piT(X), Z= X' xX and consider fig. 4.1. Instead of looking
directly for I on Z, we consider first its image under @ (the idea used in [15]). Now
DI} is easily determined: it is simply A’, the natural lift of 4’ on W to W= P(G)
(cf. [14,15]) and A’ is isomorphic with X'. Let us denote by 4 the isomorphism
h:A'—>X' and by % the isomorphism 2’——>2’(", giving the diagram

~ ~
A/NX/

9.3) le lgl .
3

A/NXI

Now if we consider the proper fransform by ¥ (still looking at fig. 4.1) of A
we shall get a variety 4 on N. As @V = g, the projection of A to Z will be the
graph IV we require (and the projection is easily seen to be birational). Because the
geometry on H is richer than that on Z it is better to discuss A than IV, and this
we shall do.

So we have the following geometrical situation (fig. 9.4), which is simply fig. 4.1
adapted to our present situation.

H=P({)

h-LP(E')
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Let us now consider the intersections of A’ with the fundamental varieties of ¥-1.
The intersection A4' N X’ x X congists of pairs t, X on X xX , where ¢, is a tangent
direction to X' at @', fo'= 2 and the tangent direction at x corresponding to f,
under 7 is indeterminate. (If ¢, arises from a tangent vector v, to X’, then the trans-
form of v, by the tangent map f, is the zero vector.) This implies that 4. is a
tangent direction to a fibre at a point of P(E).

So

(9.5) ANnE xX=h1PE),

where B’ is the bundle of tangents along the fibres of P(E).
Similarly

(9.6) Anx'xX=0

because the tangent map f,: T(X') —T(X) is a morphism.
The intersection of A’ and X'xX is of excessive dimension. If »= dim X,
7= codim, ¥, then

dmW=4n—1, dimA=2n—1, dimX'xX=3n—1

and dim P(B)=dim Y’ +7—1=mn-+r—2. So the intersection has a dimension
whose excess is #—1, whiech is certainly positive.

However if we apply ¥~ the proper transform of A" by ¥ is obtained by
blowing up A along A-1P(B’), which is isomorphic with X’ blown up along P(E').
Let A be the proper transform of A' by ¥~ and let A: A<>H be the inclusion
mapping. We have the commutative diagram

(9.7)

X! X

f
where o A is the projection of 4 on [ and o', o are simply p, 0,4 and p,0,A respec-

tively. This means that o', & are obtained by projecting /A onto the subvariety I
(the graph of f) on X'x X and then projecting onto the components of X xR

3 ~ dnnalt di Matematica
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One can easily see that g 1 is an isomorphism. In fact ¢;'/" is a bundle of
projective lines over I and A gives a rational section I”—g;'I” which meets only
one of the two sections induced by s: (¢ =1,2). Hence A is a regular section and
this shows that the map g¢,A induced by the projeetion ¢;'/"—I" is an isomor-
phism. We have also the commutative diagram

Ae—An

o L

X' I
where p,|I": I"— X' is the blowing down morphism inverse to the blowing up of
X' along P(B'). It follows that we have the blowing up diagram
w-1P(H') = P(N) —> A

v

(9.8) ox l loz’
P(E) —> X
14

where N = N(P(&'), £') and p, » are the inclusion maps.
Putting together the blowing up diagrams (9.1) and (9.8} with the diagram (9.7)
we have the following composite diagram (9.9) which provides the key to what follows.

PNy ¥
c..ﬁ_.X' big X
\ f@s
P £ .
(9.9) o
O /j,// £
x J
WA '
v On

Now congider the interseetion of A and Z, in fig. (9.4). We know that the inter-
ference A N Z, is actually P(N) and we shall assume for the moment that

(9.10) A.Zy=ANZ = P(N).
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The justification of this assumption comes from a lemma on proper transforms
of subvarieties in a blowing up which, to avoid interruption of our argument, we
shall prove in an appendix (§ 10).

Now the class of P(N) on A is »4(1), and that of A4.Z, on A is A*el,Z,. Now
let us write, as suggested on p. 27, &, =&, &, =& and apply Theorem 4.1(i).
We then get

(9.11) ve(1) = A¥ el Z, = A¥(E,— 0aps &) .

But as A¥(Z,)=0 (by (9.6)) it follows that AN Z, =6, so A*cl,Z,=0. Ap-
plying now Theorem 4.1 (ii) we get

(9.12) *(E—asp &) =0.
Hence
(9.13) vall) = A" oepiE — A oip & = a*E —a*E ().

Now using the formula (3.10) we get
(9.14) [e*Cl(&, X)=0 and [g*Cl(§ X)=0.
From (9.14) we deduce
(9.15) 0 = o*[g*O)(£, X) = [a*¢*C)(a*&, X).
So applying (9.13) we get |
[o* @* ) (' &' ~94(1), X) = 0

which we can write in the form

(9.16) [a*o*ONa/*E', X) + ve(1)-u =0,
where
(9.17) W = ?J*l(l) {[(x*g*é](al*é—/—v*(l), X) —[o* g* C_’](OU*E" X)} .

(*y The vital formula »*(1) = «’'*& — a*£ can be obtained in other ways, We first found
it by considering the Grothendieck classes & and £ as defined by «invariant lifts » (ef.[10]),
using a peneil of primals on X not specially related to ¥ and the images of this pencil by -t
on X’. Porteous has an alternative suggestion which, like our original idea, is not easier to
present than the one given here.
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But, by the projection formula (1.1),
(9.18) V(1) % = p(v*u) .
Also, by (3.7) and lemma (3.5)
(9.19) veue(1) = t,(P(N), 4) = ¢,(Ty) = — &, ..
Again, using (9.9),

VR = gL E = ity
So

1 _ ' _
Y= —g {o*o*Clotéw + &x, X) —[v*o*o* Ol(oxéw, X))
N
But, again using (9.9), v*¢* 0" =pronont’, and also (since E=N(Y, X)) [i*C](t, X)=

=C(t, Y)O(t, B).
Thus »*u is a polynomial of the form

(9.20) vEu = Z(ora) &y s

where a;c AP(E') (but a; is not necessarily of co-dimension ¢) and a; depends only
on E and Y. We then have

LEMMA 9.4. ~ The class pgv¥u depends only on B, Y.
This follows from (9.17) because, by the projection formula,
* # i
QN*((QNai}fN) = 0,0(£3)

where p,(&%) are the Segre classes of N which are determined by the Chern classes
of N. Next we show that these Chern classes of N also depend only on E, Y. Indeed,
if we apply Theorem 7.3 with ¢: V— W replaced by j: ¥'—X', and E, F replaced
by T, B’ respectively, we obtain

(9.21) 0 — ob (*Ty/B)® Ly — N — on. Ly, 0.

We also have the commutative diagram

0 0 0
v v v

06—~ B - B -0 -0
} Ly

0= Ty — Ty —Lg—0
v v 3

0 > gpTy > J*Tg /B > Lg >0
v ¥ v

0 0 0
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It follows that O(f, N) can be calculated from (9.21) in terms of E and Y only.
Now sinece, by (9.9) o*p* = «'*p'* ¥, we deduce from (9.16) with the aid of (9.18)

(9.22) [o/*o"* f* Ol * &', X) + vev*u=0.

Next apply ox to (9.22), remembering that cxe ™ is the identity (because o is
a birational morphism) and since vy = px0y We get

[o"*f*CUE, X) + puxow?*u =0,

or

[e*f*CUE, X) + puv =0,

where, by lemma 9.4, v depends only on Y, E. Hence using (9.14) we now have

[0*CNE, X') —[o*f*OUE, X) = pav,
or
(9.23) zf/(n—l)(gl*ci(Xl) — 0 * ey X)) = g0 .
=0
If we apply Theorem 3.8, in which we now have @ = ¢(X') —f*¢(X), we obtain
(9.24) o) —f*e(X) = dh(mr. 3 &) . e(X).

o

But, by the projection formula (1.1),

M*”'-?f’i:ll*(”*/l*gfﬂ) =M*(v§:§;r) .

Substituting this in (9.24) we get
o(X')— f*e(X) = gupuu(o ZEE)

=“~j*QE'*( 25 ) e(X')

=jo(un(v 3 8L)-ire(X)

0

But since N(Y', X') = I, (lemma 3.5) it follows, by (3.1), that

Fe(X) = (1—§)e(Y).
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And as Y'= P(E) it follows, by theorem 7.2, that ¢(Y’) depends on ¥ and E.
So we have finally established that

e(X')—~f*e(X) = jaw,
where w depends on E and Y only. Or equivalently
Ctt, X')— f*Ct, X) = ju W)

where W(t)e A(Y’)[f] and its coefficients depend on ¥, E only.

Given the variety ¥ and the bundle E we can consider the bundle P(G)= P(E ®1,)},
the projective completion of E. Let us now adopt the notation of § 8 except that
objeets oceurring there (other than B, ¥, U’) which are different from ones with the
same name considered in this section will be denoted by a tilde. We shall, for example,
speak of X=P(&), H=X", %, 7, 8, Z,, Z, and we shall also write ¥=7.

Then, applying the results we have just obtained to the blowing up diagram

1

e d

g

O= =¥

[P

S ———

S

—z>
i

we get C(t, X')—[Z*C(t, X) = j W(2).
But by Theorem 8.1 we deduce

1

£ [0 010, Y){(1 — £l R 010 -+ &, B) (03T E)}} :

(9.25) j* W(t) = .7* {

But, by (8.1), ¢z]=1d,, 50 05+ Jx=1d on A(Y'). If we then apply gz« to each side
of (9.25) we effectively cancel the j, on each side and 8o Theorem (9.1) follows at once.

10. — Appendix. A lemnma on proper transforms.

Suppose we have the blowing up diagram (9.1). We wish to consider the proper
transforms of subvarieties of X having suitable intersections with ¥. We have to
distinguish the interference A N B of two subvarieties from the intersection cycle
(where it is defined) A.B. The object of the following lemma is to give a sufficient
condition for the two to coincide. So we wish to establish the following

LEMMA 10.1. — Suppose U is a non-singular subvariety of X such that U¢ Y
and V= UN Y is irreducible and non-singular. Let U’ (on X') be the proper transform
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of U by f* and denote by g the mapping f{U’. Suppose further that g is the blowing
up of U along V, so that V'=gV=U NY' and is irreducible. Under all these
conditions the intersection U'.Y' is defined and is equal to V'.

Let E=N(Y, X), F=N(V, U). Then Y'= P(E), V'= P(F), I,,=N(¥’, X',
I,=N(V', U’). As F is contained in E, T, is induced on V' by L.

Now Y’ is a primal of X', V'=U'NnY' and, by hypothesis, codim, V'==1,
so the interseetion U’.Y’ is defined in X'. As V'’ is irreducible we need only prove
that its multiplicity is one in the intersection U’.Y’. Hence it is enough to show
that at any point 2z on V', T(U’), and T(XY'), are transversal in T(X"),. As T(Y'),
is & prime in T(X'),, it suffices to show that T(U'),¢ T(Y'}),. This, however, is an
immediate consequence of the following commutative diagram (obtained by pulling
back to z the normal bundle sequences of the form (3.1) for V'c U’ and Y'cX'.

0 - T(V'), = T(T"), - (Tig)s > 0

¥ ¥ "
0 —T(Y'), > T(X"), > (Lig): = 0,

since the image of T(Y"), in (I)y), is zero and that of T(U'), in (I,,), is not.

This establishes the lemma.

Note that if we blow up X additionally along a variety Y, disjoint from both
Y and U, the situation is unaffected.

For the application of this lemma needed in § 9 we have to replace X by

W= X’/X\X and U by A'. The variety W is blown up along X" x X (which replaces ¥)
and X' x X which, since it is disjoint from both X'xX and A’ (which correspond
to ¥, U in the lemma) can be taken as ¥,. The conditions of the lemma are satisfied
with Y'=2Z;, and U'=A4, so we can assert, as we did, that 4.Z,=4AN Z,.
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