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ABSTRACT--The fraction of plastic work converted to heat is 
typically measured either by nearly isothermal experiments, in 
which the thermal energy is measured during a deformation 
experiment with a calorimeter, or by adiabatic experiments, 
in which the thermal energy is determined from the temper- 
ature rise, measured either during the test or immediately 
after the test by dropping the sample into a calorimeter. In 
the present work, the temperature is measured with a single 
fine-wire thermocouple. The restriction to adiabatic Ioadings 
is relaxed by using a hybrid method that combines the mea- 
surements with finite difference simulations to calculate the 
heat losses that occur during the test. These heat losses are 
then accounted for in the final energy balance to determine 
the fraction of plastic work converted to heat. The method is 
applied to annealed 302 stainless steel. The results show that 
the fraction of plastic work converted to heat is a decreasing 
function ranging from 0.7 to 0.4 over a tensile strain range of 
0 to 0.15. An analysis of the restrictions to this method and 
of the potential errors is given. 

Introduction 

It has long been known that the work of plastic defor- 
mation in metals is largely dissipated as thermal energy 
with the balance stored in the material as defect energy 
and as residual strain energy due to incompatible slip. It 
is said that Tresca (ca. 1870) was the first to notice and 
record heating due to plastic deformation, 1 although surely 
the Romans and our other ancient predecessors noticed the 
same phenomena when they hammered out coins, weapons 
and other products. The modern study of thermomechan- 
ics originated with the work of Taylor, Farren and Quin- 
ney, who, in 1925 and 1934, published measurements of 
the heat generated during the plastic deformation of vari- 
ous metals. 2'3 Since then, many further experiments have 
been performed, 4 mostly from the perspective of materials 
scientists who are interested not in the energy dissipated 
but in the energy stored and its effects on recrystallization 
of the material. In mechanics, interest in the dissipation 
of energy is due to the heating produced during rapid de- 
formations such as shear banding, penetration and cutting. 
Temperature increases in such deformations lead to ther- 
mal softening of the material, promoting further deformation 
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and more heating, and potentially leading to runaway defor- 
mation, as occurs in adiabatic shear bands. 

Let us define the fraction of plastic work dissipated as 
thermal energy to be 

= ~i ,p'  (1)  

where (2 is the thermal dissipation rate and ff'P is the plastic 
work rate. For many years, Taylor and Quinney's result that 
J~ ~ 0.90 sufficed for analyses. However, ever-increasing so- 
phistication of numerical modeling of dynamic deformations 
requires better constitutive information, including better in- 
formation on ~. In addition, reliable measurements of ~, par- 
ticularly as a function of plastic strain and plastic strain rate, 
are valuable in helping to formulate and validate microme- 
chanically based models of deformation that seek to predict 
~.5-7 

Measurements of [3 can be classified into single-step and 
two-step methods: In single-step methods, the heat of plas- 
tic deformation is measured either during the deformation or 
immediately after, using a calorimeter. In two-step methods, 
the material is deformed, and the stored energy is measured 
later. The single-step methods are typically either nearly adi- 
abatic or isothermal. The original works by Taylor, Farren 
and Quinney were examples of nearly adiabatic deforma- 
tions. In these experiments, the samples were rapidly loaded 
and either the temperature rise was recorded during the load- 
ing or the sample was placed in a calorimeter immediately 
following the loading. By means of several calibration mea- 
surements, these authors were able to determine that the heat 
loss during these tests was negligible, and thus the results 
could be analyzed assuming an adiabatic process. 

A more recent example of a truly adiabatic experiment is 
the work of Mason, Rosakis and Ravichandran, 8 who mea- 
sured ~ for aluminum, steel and titanium alloys by loading the 
samples in a Kolsky bar at strain rates on the order of 1000/s, 
and measuring the resulting temperature rise using InSb in- 
frared detectors. In this case, the total duration of the experi- 
ment is less than 1 ms and the process is truly adiabatic. This 
approach suffers from a lack of absolute accuracy in the tem- 
perature measurement due to a limited signal-to-noise ratio 
of infrared detectors and uncertainties associated with their 
calibration. Nonetheless, it remains the only demonstrated 
approach capable of estimating [3 at high strain rates. 

Note that due to the relatively slow rate of tempera- 
ture propagation in solids, the loading rate could have been 
much slower (by 1000 times) than the experiments of Ma- 
son, Rosakis and Ravichandran and still have been adiabatic. 
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To estimate the time span over which a deformation is adia- 
batic, one can use the Fourier number 

ctt 
Fo = 12, (2) 

where c~ is the thermal diffusivity, t is the time and I is a 
characteristic sample dimension. When Fo < 0.01 (short 
times), the process is essentially adiabatic. When Fo > 10, 
the process is essentially isothermal. For a metal, a typical 
value is a = lO-5m2/s .  I f / =  0.01m, then i f t  < 0.1s, the 
process is adiabatic. 

It is in a range intermediate to adiabatic and isothermal-- 
that is, 0.01 < Fo < 10--that the current experiments are 
performed. Thermocouples can be used to measure the tem- 
perature rise by slowing down the loading relative to the Kol- 
sky bar type tests. This has the advantage of high absolute 
accuracy, since thermocouple calibrations are NIST trace- 
able. A disadvantage is the limited strain rate that can be 
used due to the finite response time of even the smallest ther- 
mocouple junctions. By using finite difference simulations 
to account for the conduction, convection and radiation heat 
losses that occur during the test, temperature rise measure- 
ments from experiments that are not truly adiabatic can be 
used to determine [~ as a function of plastic strain. Similar 
approaches were taken by Beghi et al., 9 who used the tem- 
perature of the specimen measured at several locations to 
estimate the conductive heat flux, and by Wong and Kirby, l~ 
who used measured temperatures in conjunction with finite 
difference simulations to estimate the heat flux and hence [~ 
during low-cycle fatigue of an aluminum alloy. 

Experimental Method and Apparatus 

The experiments were performed using dogbone tensile 
specimens punched from sheets of vacuum-annealed 302 
stainless steel, with the dimensions shown in Fig. 1. The 
mechanical and thermal properties of the material are given 
in Table 1. The samples were loaded in tension in an In- 
stron 1320 testing machine at cross-head speeds of 50, 78 
and 90 mm/min, corresponding to strain rates of 0.038, 0.06 
and 0.068 l/s, respectively. The temperature of the speci- 
men was measured by taping a type E thermocouple made 
from 0.025-mm (0.001-in.) diameter wires directly to the 
surface of the sample. These thermocouples were chosen as 
a compromise between fast response time and ease of han- 
dling. Even finer (0.0123-mm diameter) wires were tried, 
but without success due to their frailty. The time response 
of the 0.025-mm diameter wires when immersed in water 
is on the order of 0.002 s, and on the order of 0.05 s when 
immersed in air./1 When a thermocouple is in contact with 
the surface of the 302 stainless steel specimen, the effective 
response time will be intermediate to the response times in 
water and air. The loading duration of our experiments is on 
the order of one second, so even if the response time is closer 
to the response time in air, the thermocouples are still fast 
enough for our work. One side of the thermocouple junction 
is in contact with the sample, and the other side is in contact 
with a polymer tape. By making the tape of a relatively low- 
conductivity material, such as a polymer, the heat conduction 
from the thermocouple to the tape is minimized, keeping the 
thermocouple at the same temperature as the metal surface. 

Load, displacement (measured using an LVDT) and tem- 
perature were sampled and recorded at a rate of 100 points 

TABLE 
STAINLESS STEEL 

Thermal diffusivity (et) 
Thermal conductivity (k) 
Average emissivity (~) 
Coefficient of thermal 

expansion (acte) 
Specific heat (c) 
Density (0) 
Modulus of elasticity (E) 
Yield stress 

1--MATERIAL PROPERTIES OF ANNEALED 302 

3.93 x 10 - 6  m2s 
15.7 W/m. K 
0.59 

17.3 x 10-6/K 
500 Jtkg- K 
8,000 kg/m 3 
193 GPa 
380 MPa 

~, 3.1 

T ~__ 12.5 ,[4 19 ~l~l 

Fig. 1--Dogbone tension test sample of annealed 302 stain- 
less steel, 0.10 mm thick. All dimensions are in mm 

per second using a 12-bit digital oscilloscope (Nicolet 440). 
The data were then transferred to a computer system for anal- 
ysis. Examples of the recorded data are given in Figs. 2 and 
3, which plot the temperature rise and true stress as functions 
of time for two cross-head displacement rates. True stress 
is computed from the load using the assumption of plastic 
incompressibility. Note the small temperature drop at the 
start of the test due to the thermoelastic effect. The temper- 
ature starts to drop after the sample breaks (the stress drops 
to zero). The rate of cooling after sample break was used to 
help validate the thermal analysis. 

Theory and Analysis 

Thermomechanics Theory 

The plastic work rate per unit volume (assuming homo- 
geneous deformation and uniaxial loading) is 

I/r = crOP, (3) 

where ff'P is the plastic work rate, cr is the stress and ~P is 
the plastic strain rate, 

~P = ~ - 6 / E ,  (4) 

where ~ is the total strain rate and E is the modulus of elas- 
ticity. 

Let us at first neglect heat transfer. Then, the energy bal- 
ance is 

k /~J ~ 
plastic work in thermal energy stored work stored 

(5) 

If heat transfer is neglected, the expression for [3 becomes 

[5= ~;VP = ~ [ ~ - b / E ] .  (6) 
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Fig. 2--Temperature and true stress as a function of time for 
50-mrn/min stretching rate 
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Fig. 3--Temperature and true stress as a function of time for 
90-mm/min stretching rate 

Since the present experiment is carried out at low strain rates, 
heat transfer must be considered. As shown in Fig. 4, the 
specimen is modeled as a fiat plate insulated on the sides, 
and one-dimensional heat flow (along the plate) is assumed; 
that is, T = T(x ,  t) only. The specimen loses energy by 
conduction into the grips and by convection and radiation 
from the top and bottom surfaces. An energy balance is 
performed on a differential element of the specimen to obtain 
the governing heat transfer equation 

1/" = aT, xx- 2c~(t + w) [h(T - Too) 
Ak  

+ 6~:(T4 - T4)] + kq,  
(7) 

where w is the plate width, t is the plate thickness, A is the 
cross-sectional area of the plate, k is the conductivity, 6 is 
the Stefan-Boltzmann constant, ~ is the average emissivity of 
the surface, h is the convective heat transfer coefficient, T 
is the absolute temperature and Too is the absolute ambient 
temperature. The heat generation term, 0, consists of two 
effects: heating due to plastic work and cooling due to the 
thermoelastic effect.52 Assuming homogeneous deformation 
and uniaxial loading, the heat generation term can be ex- 
pressed as 

---- ~WP -- 6acteToo, (8) 

where acte is the coefficient of thermal expansion. The con- 
vection coefficient is computed using an empirical correlation 
for natural convection from an isothermal vertical plate B 

loglo(Nu) = -6 .2  x 10-4Ra 3 + 1.9 x 10-2Ra 2 

+ 8.2 x 10-2Ra + 1.9 x 10 -1 
(9) 

hl g~(T-Too)l 3 
Nu = - -  Gr = Ra = G r P r ,  

k f v2 

where Nu is the Nusselt number, Gr is the Grashof number, 
Ra is the Rayleigh number, Pr = v/c~ is the Prandtl number, 
l is the characteristic length of the specimen, k f  is the ther- 
mal conductivity of air, g is the gravitational acceleration, ~ is 
the volume coefficient of expansion of air, v is the kinematic 
viscosity of air, c~ is the thermal diffusivity of air and h is the 
convection coefficient. The correlation is valid for Rayleigh 
numbers from 10 -1 to 104 . The length of the plate is the 
length scale used in the correlation. The heat transfer coef- 
ficient from an isothermal horizontal plate is approximately 
half of that from an isothermal vertical plate. 

Coavec~ioa Radiat ion 

Stored Thermal  Energy 

r .x 

Fig. 4-~Energy balance for deriving heat conduction equation. 
Edges of the sample are assumed to be insulated 
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Mollification of Temperature Data 

The dependence of 1~ on plastic strain is calculated by it- 
eratively solving the inverse problem: given the temperature 
history, determine the value of 1~ for which the temperature 
predicted by the governing equation matches the measured 
temperature. This requires computing the time derivative of 
the experimental temperature history, which presents some 
difficulties, since any empirical data invariably contain some 
noise. The data can be decomposed into two parts: the "sig- 
nal" function that would be obtained in the absence of error 
and noise and the "noise" function 

f (t )data = S(t)signal n u n(t )noise. (10) 

The process of differentiation is such that small errors in the 
data function f (t) might produce large errors in the derivative 
function, regardless of how smooth the error function n(t) 
is. TM For example, consider a situation in which the noise is 
a very smooth function of t 

1 
n(t) = - sin(c~2t) (11) 

nt(t) = c~ cos(et2t). (12) 

By selecting a large 0t, the noise in the original function can 
be made arbitrarily small, whereas the error in the derivative 
can be made arbitrarily large. This is illustrated further in 
Fig. 5--the signal-to-noise ratio of the data (see Figs. 2 and 
3) is approximately 100:1; yet, the derivative is highly erratic. 

To obtain a derivative of a noisy function that approxi- 
mates the derivative of the signal function, the noisy function 
must be stabilized, or "smoothed." That is, the data func- 
tion f ( t )  must be transformed into a different, differentiable 
function fro(t) so that fs  = f ' ( t )  + ~, where ~ is some 
arbitrary error level. The mollification method offers a way 
of obtaining fm (t).14 

The mollification method requires the selection of a "blur- 
ring" function; for example, the Gaussian kernel of blurring 
radius 8: (,2) 

ps(t) = ~ exp (13) 

The Gaussian kernel has three important properties: it falls 
off to zero within three blurring radii, it is infinitely differen- 
tiable and it has total integral of one. 

10 

dT/dt, ~ 0 

-5 

- l o  
o 2 4 6 8 lO 

Time, s 

Fig. 5 - -T ime  derivative of temperature before and after mol- 
lification 

The noisy data function (defined on [0, 1]) is extended 
to [-c~,  c~] in such a way that it decays smoothly to zero 
in [-3~, 1 + 38]. The extension can be accomplished by 
defining 14 

[ ,2 } 
f ( t )  = f(0)exp (3~) T -  t2 

-38 < t < 0 (14) 

(t 1) 2 
f ( t )  = f(0)  exp {[(t _ - } 

1 < t  < 1 + 3 8 .  (15) 

The mollified function is obtained by convolving the extended 
noisy data function with the Gaussian kernel. Essentially, the 
mollification process constructs the smoothed function by 
taking a weighted average of the data points in the vicinity of 
the point of interest (the size of the "vicinity" is determined 
by the blurring radius): 

fro(t) = (P8 * f ) ( t )  = f s ) f ( s )ds  
- - 0 0  

t+3~ 

= f p ~ ( t - s ) f ( s ) d s .  

t-3~ 

(16) 

The derivative of the noisy function can be obtained either by 

fro(t)' = (08 * f) ' ( t )  = (08 * f ' )( t)  = (p~ * f ) ( t )  (17) 

or by differentiating the mollified function directly. 
The construction of the derivative of the mollified function 

is a stable problem (small errors in the mollified function will 
not cause gross errors in the derivative function). In addition, 
the mollification process is monotonic with respect to the 
blurring radius 8, which implies that there exists a unique 
such that the norm of the difference between the mollified 
function and the original function is equal to the noise level; 
this is defined as the optimal blurring radius. 

The blurring radius is used to control the mollification 
process. A large 5 results in a very smooth mollified func- 
tion at the expense of producing a derivative that deviates 
substantially from the true derivative. Several methods for 
determining the optimum radius of mollification have been 
suggested;15,16 however, using the optimum 8 does not auto- 
matically guarantee that the norm of the difference between 
the mollified function and the original function is within a 
specified tolerance. Occasionally, it is advantageous to use a 
smaller-than-optimal 8 to ensure that the mollified function 
follows the original function more closely. For our data, the 
blurring radius was typically 5-10 percent of the domain of a 
given function. 

Finite Difference Solution of Heat Transfer Problem 

The governing heat transfer problem [eq (7)] is solved 
numerically using the forward time, centered space (FTCS) 
algorithm. The temporal and spatial steps are selected so 
that the algorithm is of order O(Ax 2) in space and of order 
O(At 4) in time. 17 The boundary condition T = T~ is im- 
posed at both ends of the specimen because the thermal mass 
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of the grips of the testing machine is very large. The spatial 
domain becomes progressively larger over time to account 
for the extension of the specimen�9 The convection coeffi- 
cient is temperature dependent; however, constant average 
emissivity is assumed. 

The calculation proceeds as follows: (1) the spatial dis- 
tribution of temperature at time t + dt  is computed using an 
arbitrary value of 13; (2) the temperature at the center of the 
specimen is compared with the experimental temperature--13 
is adjusted (using the bisection method), and the temperature 
is recalculated until the difference between the two temper- 
atures is less than a specified tolerance; (3) after the value 
of [~ is obtained from step (2), the spatial distribution at time 
t + dt  is adjusted so that the temperature at the center of the 
specimen is equal to the experimentally measured tempera- 
ture; (4) the next time step is taken using (3) as the initial 
condition. This procedure ensures that errors are not accu- 
mulated as the equation is integrated. 

R e s u l t s  a n d  D i s c u s s i o n  

An excellent way to check the accuracy of the numerical 
calculation is to compare the calculated cooling rates to the 
experimental ones. A modified numerical procedure is used 
to accomplish this. The usual calculation is performed until 
the time when the specimen fractures; temperature match- 
ing is turned off thereafter. Figure 6 shows that when all of 
the heat losses are accounted for, the difference between the 
calculated and the experimental cooling rate is less than 10 
percent, which is well within the range of experimental error. 
The graph also demonstrates the relative importance of con- 
sidering various modes of heat transfer: radiation accounts 
for approximately 20 percent of the difference between cool- 
ing rates, and conduction and convection account for 40 per- 
cent each. 

In separate tests, the same dogbone samples were de- 
formed in tension and the temperature field over the entire 
specimen was measured using an infrared camera. Uncer- 
tainties with the calibration of the sample's emissivity make 
the use of the data for quantitative analysis difficult; however, 
we can use the results to show that the heat transfer analysis 
is essentially correct. Figure 7 compares the shape of the 
calculated spatial distribution to that from infrared data. The 

3 4  ' ' - ' " 

32 < [..~ 

3O 

T, ~ 28 

26 

/ I 1 
24 , L~ - Cond/Conv/Rad J 
22 

0 2 4 6 8 
Time, s 

Fig. 6--Temperature versus time for a 50-mm/min stretching 
rate test�9 The measured data are shown along with simu- 
lated data accounting only for conduction, for conduction and 
convection, and for conduction, convection and radiation 

spatial distribution is computed numerically, and the tem- 
perature is matched to the infrared data at the center of the 
specimen at t = 2.5 s. The results of Fig. 7 show that the 
calculated distribution is essentially identical to the experi- 
mental one, lending confidence to the accuracy of the heat 
transfer calculations. 

Over the limited strain range of these experiments, the ma- 
terial response is rate independent. This can be seen clearly 
in Fig. 8, which plots the true stress-true (logarithmic) strain 
curves for the 50- and 90-mrn/min loading rates. The two 
curves lie directly on top of each other. There is no signif- 
icance to the higher strain to failure at 90 mm/min. This is 
simply a reflection of random defects in the test specimens. 

Using the procedures discussed above, 13(eP) was deter- 
mined for each of four tests, two at loading rates of 50 
mm/min, one at 78 mm/min, and one at 90 mm/min. To show 
the effect of accounting for heat loss, 13 (e p) is shown in Fig. 9, 
calculated assuming adiabatic conditions and accounting for 
heat loss. At the lower loading rate, the difference between 
the actual and adiabatic 13 is approximately 16 percent. At 
the higher loading rate, the difference is closer to 8 percent, 
since for a faster test the process is closer to being adiabatic. 
Figure 9 also shows that the values of 13 from tests conducted 
at different strain rates lie in the same broad region of 0.7 to 
0.3. This suggests that ~ is strain rate independent over the 
limited range of these experiments. This is consistent with 
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Fig. Y--Temperature profile along the length of the specimen. 
Temperature is normalized by its value at 2.5 s. Length is 
normalized by sample length. The dotted lines are from mea- 
surements performed using an infrared camera, and the solid 
lines are from the simulation 
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Fig. 8--True stress-strain for the 50- and 90-mm/min stretch- 
ing rates 

Experimental Mechanics �9 299 



the stress-strain curves (Fig. 8), which also do not depend on 
the strain rate. 

Assuming that ~ is independent of strain rate, a "compos- 
ite" ~(s p) was determined by taking the average from the 
four tests at three different strain rates. The result, given in 
Fig. 10, shows that ~ is a decreasing function of plastic strain, 
ranging from 0.7 at zero strain to 0.4 at E p = 0.15. 
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Fig. 9- -The fraction of plastic work converted to heat, i~ for (a) 
50-mm/min stretching, (b) 90-mm/min stretching. The dashed 
line gives the value of ~ one would get assuming adiabatic 
conditions. The solid line gives the true value, corrected for 
heat losses 

To get some idea of the test-to-test variation and of the 
uncertainty in 6, the ~ values from all four tests are plotted 
together in Fig. 11. The maximum difference in ~ is approx- 
imately 20 percent; thus, we can estimate the uncertainty of 
the ~(s p) curve in Fig. 10 to be approximately 4-10 percent. 
The uncertainty in ~ is less than the change in 15, indicating 
that J3 is indeed decreasing with s p. 

Figure 8 shows that the material has nearly linear hard- 
ening but is slightly concave down. The simple dislocation- 
based theories for ~5,6 would predict that ~ increases slightly 
with s p. This is clearly not the case, since ~ decreases. A 
decreasing ~ is consistent with the model of Aravas, Kim and 
Leckie, 7 which gives an upper bound to ~ based on stored en- 
ergy of incompatible deformations. Applying their model to 
the stress-strain curves in Fig. 8 yields ~ = 0.7 at eP = 0.05 
and ~ = 0.65 at eP = 0.15. Both of these are higher than 
the measured values of 13 consistent with the result that the 
model gives upper bounds to IL 

Appfcability and Recommended Parameters of the Hy- 
brid Method 

Within limits, the hybrid method discussed here can be 
used over a broad range of strain rates and geometric config- 
urations of the specimens. If the strain rate used is too high, 
the thermocouple response time becomes inadequate and the 
resulting lag affects the accuracy of the results. On the other 
hand, if the strain rate is too low, very low temperature rises 
occur and uncertainties in heat transfer parameters introduce 
very large uncertainties in the result. To determine the range 
of applicability of the hybrid method, numerical sensitivity 
analyses were performed. 

If eq (7) is nondimensionalized, the following equation is 
obtained: 

2Bi ~ ~ 
() = O,~  - -~--(O - 1) + ~ q ,  (18) 

where 0 = T/Too, () = ao/ae0, F0 -- ozt/l 2, Bih = 
h t / k ,  71 = q / T o o ,  F O  is the Fourier number, Bi is the Biot 
number, t is the thickness of the specimen, l is the length of the 
specimen, h is the effective average convection coefficient, k 
is the conductivity, ~1 = t / l ,  ~ is the nondimensional position. 
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Fig. lO--Composi te 15 versus plastic strain, obtained by aver- 
aging the 13 versus plastic strain results from all tests 
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Fig. 11--Values of 13 for four tests to show spread in the data 
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Hence, 

T =  T o o . 0 =  Too.O(Fo, ~, Bi/~l 2, k~ ) .  (19) 

Thus, temperature is a function of nondimensional time, 
nondimensional position along the length of the specimen, 
the ratio Bi/~2 and nondimensional energy input rate. If we 
neglect the dependence of temperature on the energy input 
rate and consider a fixed value of position (e.g., the middle 
of the specimen), the general relationship above reduces to 

T = Too. O(Fo, Bi/~12), (20) 

where the Fourier number is based on the duration of the ex- 
periment and the Biot number is based on the thickness of the 
specimen and on the average effective convection coefficient. 

The greatest uncertainty in the numerical simulation is 
due to uncertainty in the emissivity and the convection co- 
efficient. In the worst possible case, uncertainty in either 
of these quantities should not exceed 25 percent. This error 
limit is used in the sensitivity analysis. 

The sensitivity analysis proceeds as follows: (1) the tem- 
perature history is computed using the load data and com- 
posite 13 obtained from the dogbone experiments; (2) heat 
transfer is increased by 25 percent, and the temperature his- 
tory is recalculated. The sensitivity analysis is carried out 
either at a fixed F0 or at a fixed Bi/i12. The difference be- 
tween the two results is reported as the error norm, which is 
computed as follows: 

ftmax [To 2 _ T~5%1�89 dt 
Error norm = J0 , (21) 

fo ma~ To dt 

where To is the midpoint temperature history computed in 
step (1) above and T25~ is the midpoint temperature history 
computed in step (2) above. 

The results of the sensitivity analysis are presented in Fig. 
12. In the present experiment, the fastest and the slowest 
speeds correspond to Fourier numbers of 0.02 and 0.04, re- 
spectively, and Bi/~ 2 of 1.4. From Fig. 12, the uncertainty 
in the present experiment due to possible errors in the heat 
transfer parameters is estimated to be approximately 6 per- 
cent for the 50-mm/min test and approximately 4 percent for 
the 90-mrn/min test. 

To ensure that the overall error remains under 10 percent, 
the hybrid method should be used under the following con- 
ditions: 

Fo < 0.1 
(22) 

Bi/n 2 < 2.5. 

The Fourier number restricts the duration of the test, whereas 
the Biot number restricts the thickness of the specimen. If 
the specimen is too thin (large Bi/tl 2) or the test takes too 
long (large F0), the heat losses result in a low temperature 
rise and, hence, produce a large error. 

On the other hand, if the specimen is too thick (small 
Bi/~2), a one-dimensional heat conduction calculation is no 
longer a good approximation. In this case, a two-dimensional 
analysis must be performed. In addition, if the Fourier num- 
ber is too small, large errors in measured temperature will 
result because of thermocouple lag. These two conditions in- 
troduce additional restrictions on the range of F0 and Bi/n2; 
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Fig. 12--Error estimates and sensitivity analysis for various 
stretching rates and thicknesses of the specimen. Twenty- 
five percent error in heat transfer parameters was assumed 

hence, F0 should be greater than 0.02 for the diameter of ther- 
mocouples used in the present experiment, and Bi/112 should 
be greater than 0.5. 

Summary and Conclusions 

A hybrid experimental-numerical procedure was devel- 
oped and tested for determining the fraction of plastic work 
converted to heat from temperature measurements during 
loadings that are not adiabatic. Even though the heat trans- 
fer analysis performed in the present experiments is limited 
to one-dimensional heat conduction in flat plates, the hybrid 
method can be modified to handle heat transfer in 2-D and 
3-D and in specimens of various geometries. The method 
was applied to annealed 302 stainless steel. The results show 
that [3 is a decreasing function of strain, ranging from 13 = 0.7 
at eP = 0 to 13 = 0.4 at eP = 0.15. Guidelines for applying 
the procedure were established, and they show that the hy- 
brid method can be used when the test duration is such that 
F0 < 0.1 and when the sample is thick enough to satisfy 
Bi/~] 2 < 2.5. 
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