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We present some optimal conditions for the compact law of the iterated 
logarithm of a sequence of jointly Gaussian processes in different situations. We 
also discuss the local law of the iterated logarithm for Gaussian processes 
indexed by arbitrary index sets, in particular for self-similar Gaussian processes. 
We apply these results to obtain the law of the iterated logarithm for composi- 
tions of Gaussian processes. 
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1. I N T R O D U C T I O N  

We cons ider  different k inds  of  laws of  the i te ra ted  loga r i t hm (L.I .L)  for 
G a u s s i a n  processes.  In  the  cons idered  s i tua t ions  the  l imit  set is the  uni t  bal l  
of  a r ep roduc ing  kernel  Hi lbe r t  space (r.k.h.s.) of  a covar iance  function. So, 
first we will review the def ini t ion of  this concept .  Let  T be a p a r a m e t e r  set 
and  let R(s, t) be a covar iance  funct ion defined on  T x  T, i.e., 

~ ajakR(tj, t~)>~O (1.1) 
j = l  k= l  

for each aa,..., a , ,  E ~ and  each tl,..., t,, ~ T. Then,  there  exists a mean-ze ro  
G a u s s i a n  process  { Z ( t ) ' t ~  T} such tha t  E[Z(s)Z( t )]  =R(s, t) for each 
s, t e  T. Let  ~ be the  l inear  subspace  of  L2, genera ted  by  { Z ( t ) ' t ~  T}. 
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Then, the reproducing kernel Hilbert space (r.k.h.s.) of the covariance 
function R(s, t) is the following class of functions on T 

{ (E[Z(t )~]) , , r  : ~ e s (1.2) 

This space is endowed of the inner product 

( f ~ , A )  :=E[~ ,~2]  (1.3) 

where f a t )  =E[Z(t)  ~i] for each t e  T and each i =  1, 2. The unit ball of 
this r.k.h.s, is 

K : =  {(E[Z(t)~])r~r: ~ e ~  and E[C-] ~< 1} (1.4) 

We refer to Aronszajn ~3) for more in r.k.h.s.'s. 
In Section 2, we consider the compact L.I.L. for Gaussian processes 

and random vectors with values in a separable Banach space. Given a 
sequence {X,,(t) : t ~ T}, n/> 1, of jointly Gaussian processes (any linear 
combination of the random variables X,(t), n~N,  tET, is Gaussian), 
we examine the problem of when there exists a compact set K, such that, 
with probability one, the sequence { (2 log n) - ,/2 X,,(t) : t ~ T} is relatively 
compact in lo~(T) and its limit set is K, where lo~(T) is the Banach space 
consisting of the uniformly bounded functions on T with the norm 
Ilxll~ : - s u p , ~ r  Ix(t)l. This problem has been considered before by several 
authors: Nisio] is) Oodaira, (~6) Lai, ~9"1~ Mangano, ~4) and Carmona and 
Kbno, 16) among others. Here, we present some sufficient conditions for the 
L.I.L. of sequences of Gaussian processes, which are simpler than those 
from these authors, and have some optimality properties. We also consider 
the L.I.L. of {(2n tog log n) -x/2 Z~=I Xj(t) : t ~ T}, where {X,,(t) : t ~ T} is 
a stationary sequence of Gaussian processes. 

In Section 3, we discuss the local L.I.L. for a Gaussian process. We say 
that a subset {x(u):O<<.u<~l} of metric space is relatively compact as 
u ~ 0 + ,  if any sequence of positive numbers { u,} ,~__,, converging to 0, has 

u co such that x(u,,k) converges as k--* oo. Let a further subsequence { ,,} k= 1 
T be a parameter set which is a subset of a space having a scalar product 
defined for t E T and 0<~u~< I. Let { X ( t ) : t e  T} be a Gaussian process 
indexed by T. Our main result is to give some sufficient conditions in order 
that the process {(w(u)) -1 (2 log log u-l)  -1/'- X(ut) : te  T} is a.s. relatively 
compact (as u--* 0 +  ) and its limit set (for all sequences of positive num- 
bers converging to zero) is the unit ball of a r.k.h.s., where w(u) is a weight 
function. Of course, there is nothing particular about 0, we could have 
chosen another number, even infinity. A particular case, we will consider, 
is the local law of the iterated logarithm for self-similar processes. 
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In Section 4, we apply the results in the previous section to the study 
of the L.I.L. for compositions of Gaussian processes. 

2. STRASSEN LAW OF ITERATED LOGARITHM FOR 
SEQUENCES OF GAUSSIAN RANDOM PROCESSES 

First, we consider the case of a sequence of jointly Gaussian random 
variables. The following lemma extends Theorem2 in Lai C9) (see also 
Theorem 2 in NisioCl5)). 

Lemma 2.1. 
random variables. Assume that: 

(i) lim,,_ ~o E[4~] exists. 

(ii) For each 0 < e < 1, 

Then, 

Let { 4.} .~ ,  be a sequence of centered, jointly Gaussian 

lim l imsup sup E[~.4.,] <~0 (2.1)  
r ~ l +  n ~ o o  m : n + n E < ~ m < ~ n + n  r 

lim sup (2 log n) -1/2 4. = a a.s. (2.2) 
n ~  oo 

where a a :=lira . . . .  E[~]] .  

Proof Since 

Pr{(2 log n) -1/214.1 ~> a + r / }  < oo 
n = l  

for each r/> 0, by the lemma of Borel-Cantelli, 

lim sup (2 log n) -1/214,1 < a  a.s. 
n ~ o o  

(2.3) 

This proves the lemma in the case a = 0. If a # 0, we may assume, without 
loss of generality, that E[4~] = 1 for each n. Given 0 ~< 1/< 1/3, take 0 < e < 
r < 1 < q < p such that 

e<p(p+q) -l, 1--rl<(p--1)(p+q) -a, 

and 

(p+q-  1)(p + q) -~ < r  

(2.4) 

lim sup sup E [ r 1 6 2  < I/ (2.5)  
n ~ o O  m : n + n C ~ m < ~ n + t l  r 
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For example, take 

p=(3-~12)  ~l-l, q=  l + ~l, O < e < (3 -~2) (3  + ~l)-t and 3(3 +rl)-~ <r  

Then, there exists k0 such that n + n ~ ~< m ~< n + n r, where n = [ kq(k p + i t )]  
and m =  [kq(ke +j,_)], for each 1 <.j~ <j2 <. (k + 1 ) P - k  p and each k >~k o. 
Hence, by Eq. (2.5), we have that 

E[ ~[kq~kP +j,)] ~kq~kP + j_,)] ] ~< 11 

for each k>~ko and each I <~j~ < j ~ [ ( k +  l ) ' - k P ] .  Let g, gI,  g2 .... be 
independent centered normal random variables such that 

E[g  z] =r/ and E[g~] = 1 - q ,  for k~> 1 

We have that 

for each 1 ~<Jl <J2~<( k +  I)P--M'; and 

2 E[fftk~kP +m ] = 1 = E[ (g + &)2] 

for each l < ~ j < ~ ( k + l ) P - k  p. So, by the Slepian lemma (see e.g. 
Corollary 3.12 in Ledoux and Talagrand~t2)), 

Pr{ max (21og([kq(ke+j)]))-l/ '-~tkqlkp+i,)a<~(1--3rl) } 
1 <~j~< [ ( k +  l )P - -k  p] 

~< Pr{ max (rkq(~p +j)l < (1 -2r/)(2 log(kP+q)) 1/2 } 
I <~j<~[(k+l)P--kP] 

~<Pr{ max (g+gj)<~(1-2~l)(21og(kP+q)) 1/2} 
[ <.j<<.C(k+ 1]t'--k p] 

~< Pr{ g ~< -r / (2  log(kP+q)) ~/2} 

+ Pr{ max g.~< (1 - ~/)(2 log(kP+q)) '/~-} 
l < . j < [ ( k + l ) P _ k p ]  J 

By the usual bound on the tail of a normal distribution 

Pr{g~< --17(2 log(kP+q) ) 1/2} < oo 
k = l  
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(by Eq. (2.4) 1 <<.tl(p+q)). We also have that 

max ~.~<(1 --~l)(21og(kP+q)) u2} Pr{ 1 ~<j~< t(k+ 1)P--kP] oj 

= (Pr{ g~ ~< (1 --t/)(2 log(kP+q)) u2} )[(k+ 1)P--kP] 

~< exp( -- [ (k + 1 )v - k p ] Pr{ g~ > ( 1 - t/)(2 log(k p + q))u2} ) 

Again, by the usual bound on the tail of a normal distribution 

exp(-- [(k + 1 ) P - k  p] Pr{gl  > (1 --I/)(2 log(kP+q))U2}) < oo 
k = l  

Therefore, 

Pr{ 
k = l  

max (2 log([kq(k: + j ) ] ) ) - l / 2  
1 ~<j~< [ ( k +  1 ) P - - k P ]  

X ~[kqlk,+j)] ~< (1 -- 3t/)} < oo 

and the result follows from this, the lemma of Borel-Cantelli and (2.3). [] 

The difference between Lemma 2.1 and Theorem 2 in Lai (9) lies in con- 
dition (ii). In Theorem of Lai, ~9~ the author impose the stronger condition 

lim sup E[~n~m] <~0 (2.6) 
n,  n l  - -  t~ ~ oo 

In the study of self-similar Gaussian processes, we need a weaker condi- 
tion. For example if {B(t)'O<<.t<<. I} is a Brownian motion and ~,,= 
2"/2B(2-")+2"B(2-2"), then E [ ~ ]  ~ 2  and E[~,~2,,] ~ 1 .  In this case 
condition in Eq. (2.6) is not satisfied, but condition in Eq. (2.1) is. 

Obviously, some condition similar to Eq. (2.1) is needed. If ~ j=  41 for 
each j >1 1, then 

lim (2 log n)-l/2 [ in  [ = 0 a.s. 
n ~  oo 

The following example shows that condition of Eq. (2.1) is sharp. Let 
{g:}j~176 1 be a sequence of i.i.d.r.v.'s with standard normal distribution. 
Fix p >  1, let nk = [kp-1] .  Define ~ , = &  if ~ = 1  nl<n<<-Z~-+-i lnj  and 
n = ~k= l nl + J. Then Zk= 1 n: "~ p - Xkp. Hence, 

k + l  \ - 1 / 2  

l imsup(21ogn) -~ /2~ .= l imsup  21og ~ nl) g k = p  -u2 
n ~ o o  k ~ o o  / = 1  / 

a.s. 
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We have that E[  ~ ] = 1 and 

lim sup sup I E [ # , , ~ . , ]  I = 0 
n ~ 0 0  ~ l : l | ~ n l ~ t | - J ~ n  r 

for O < r < p - l ( p - 1 ) ,  but Eq.(2.2) is not satisfied. Of course, Eq. (2.1) 
does not hold for this sequence: 

lim lim sup sup E[ ~,, ~,,] = 1 
g i n | - -  I t ~ o 0  / t t : t l - ~ l r r < ~ t l i ~ n . . ~ n  I: 

for 0 < e < p - i ( p _  1 ). So, Lemma 2.1 is not true if the group of words "for 
each 0 < e < 1" is substituted by "for some 0 < e < 1". 

A standard argument (see the proof  of Lemma 2 in Finkelstein (8)) 
gives the compact L.I.L. in the finite dimensional case: 

Lemma 2.2. Let {~n = x'~n(ff(l),'", ~(d))~n ,)n=l~176 be a sequence of centered 
jointly Gaussian random vectors with values in R a. Assume that 

(i) F o r e a c h  l <<.j,k<<.d, r (kl E[~,, (,, ] converges as n ~ m. 

(ii) For  each 21 ..... 2d e R and each 0 < e < 1 

d 
lim lim sup sup ~' (j) (k) 

r ~ l - -  n ~ c o  m : l l + / I t < ~ m ~  n-l-nr j , k = l  

Then, with probability one, {(2 log n) - m  ~,,} is relatively compact 
and its limit set is the unit ball K of the reproducing kernel Hilbert space 
of the covariance function 

d 

R ( s ,  t ) =  lim ~ o t r-r~(J),~(k)l "~j k ' ~ L ~ n  "~n d~ 
n ~ o o  j , k = l  

where s = ( s I ,..., S d) and t = ( t a ..... t d) 

To get the compact L.I.L. for processes, we need the following two 
consequences of the Ascoli-Arzela theorem (see e.g., Theorems 4.1 and 4.3 
in Arcones and Gin6(2)): 

Lemma 2.3. Let { X , , ( t ) : t ~ T } ,  n>~l, be a sequence of random 
processes indexed by T. Let p(s ,  t) be a pseudometric in T. Let K be a 
compact subset of the space C,(T, p) of uniformly bounded and uniformly 
continuous functions on ( T , p ) .  Assume that the sequence of processes 
{X,(t) : t ~ T} satisfies the following conditions: 

(i) (T, p) is totally bounded 

(ii) lim~_~ o lim sup ,_  oo SUpp(tl.,_,)~<~ [X,,(tl) - -  Xn(t2)l = 0 a.s. 
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(iii) For  each m E ~ and each t x ..... t,, ~ T, with probability one, the 
sequence {(X,(t l)  ..... X,(t,,))}~= I is relatively compact in R" 
and its limit set is { ( X ( / 1 )  .... .  x(lm)):xEg }. 

Then, with probability one, the sequence {X,(t) : t ~ T} (whose terms 
are eventually a.s. in loo(T)) is relatively compact in lo~(T) and its limit set 
is K. 

Lemma 2.4. Let {X,,(t):t~ T}, n~> 1, be a sequence of stochastic 
processes indexed by 7". Suppose that 

(i) There is a set Kcloo(T) such that for each t l ,..., t,, E T, the 
sequence {(X,(tl),..., X,,(t, ,))},~ 1 is a.s. relatively compact in ~m 
and its limit set is {(x(t~),..., x(t , , ) ) :x~K}.  

( i i )  There is a set L such that, with probability one, the sequence 
{X,,( t): tET} is relatively compact in l~(T) and its limit set 
is L. 

Then, 

(a) (T,p) is totally bounded where p(t,s)=supx~Klx(t)-x(s)[,  
t ,s~T,  

(b) lim~_~ o lim sup, ~ o~ SUpp<,,s)~<~ [X,(t) - X,(s)[ = 0 a.s. 

(c) The set L coincides with the set K and is compact. 

Lemma 2.3 (maybe in a less abstract version) has been used by many 
authors in similar situations. Lemma 2.4 was probably introduced in the 
cited reference. Observe that conditions (a) and (b) in Lemma 2.4, and 
X,,(t) ~ 0 for each t e T, imply that sup/~ T [X,(t)l ~ 0. This.follows from 
the fact that condition (b) in Lemma 2.4 implies that 

lim l imsup Pr{ sup [X,(s)-X,(t)[ >117} =0 
~ 0  n ~ r  p ( s , t ) ~ J  

for each r /> 0. 
We also need the following upper bound on the tail probability of a 

Gaussian process (see e.g. Lemma3.1 in Ledoux and Talagrand <~2)) (a 
more refined inequality on the tail of  a Gaussian process is in BorellCS>): 

Lemma 2.5. Let {X( t ) : t~T}  be a centered Gaussian process. Let 
M be the median of sup ,dr  IX(t)l and let a2=sup,~rE[X2(t)]. Then, for 
each u > 0, 

( u2) Pr{ [sup [X(t)l - M[ t> u} ~< exp - 
t ~ T  
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Now, we are ready to prove a compact L.I.L. for Gaussian processes. 

Theorem 2.1. Let { X , ( t ) : t ~ T } ,  n>>. 1, be a sequence of Gaussian 
processes and let p be a pseudometric on T. Suppose: 

(i) sup ,~r (2  logn) -1/2 IX~(t)[ ~ 0. 
(ii) For each s, te  T, E[X,(s) X,(t)]  converges as n ~ oo. 

(iii) For each d~>l, each l > e > 0 ,  each tl ..... t a c T  and each 
•1 ..... 2 d E  ~ ,  

d 

lim l imsup sup ~ )~j2kE[X,(tj)X,,(tk)]<~O (2.7) 
r..-* l - -  n.--~oo m : n + n ~ < ~ m < ~ n + n  r j , k = l  

(iv) (T, p) is totally bounded 

(v) For each r /> 0, 

lim ~. e x p (  n l o g n  s ~ < o o  (2.8) 
~ 0 , , = 1  supp~.,)~< a IIX,,(t)-X,,(s)ll~J 

where IIXII2 := (EEX2]) 1/2. 

Then, with probability one, { (2 log n) - x/2 X,(t) : t e T} is relatively 
compact and its limit set is the unit ball K of the reproducing kernel 
Hilbert space of the covariance function R(s, t) = lim, ~ o~ E[ X,,(s) X,(t) ]. 

Proof By Lemmas 2.1 and 2.3 (and hypotheses (ii)-(iv)), it suffices 
to show that 

lim l imsup sup (21ogn) -1/2 IX~(t)-x,,(s)l=O 
~ 0  n ~ o ~  p(s , t )<~J 

a . s .  

By the lemma of Borel-Cantelli, it suffices to show that, for each r/, there 
is a J > 0 such that 

Pr{ sup (21ogn) - ' /2 IX,(t)-X,,(s)l  ~rl} <oo 
n = l  p ( s , t ) < . J  

This follows from Lemma 2.5, using hypotheses (i) and (v). [] 

A choice of pseudometric, intrinsic to the problem, is p(s, t ) =  
lim.~oo IIX~(t)-X~(s)ll2. Condition (i) in Theorem 2.1 can be restated in 
terms of majorizing measures (see Talagrandt17). Condition (v) is satisfied if 

l imlimsup sup [[X,(t)-X,(s)[[2=O (2.9) 
di -.-,, 0 n ~  p(s , t )<~J 
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Next, we will discuss the optimality of the conditions in Theorem 2.1. 
Hypotheses (ii) and (iii) are conditions to get the L.I.L. for the finite 
dimensional projections of the process. They are quite reasonable conditions. 

Proposition 2.1. Let {Xn(t):t ~ T}, n ~> 1, be a sequence of centered, 
jointly Gaussian processes. Suppose that: 

(i) For each s, t~T, E[Xn(s)Xn(t)] converges as n--* ~ .  
(ii) There is compact set K in I~(T) such that, with probability one, 

the sequence { (2 log n)-1/2 X,,(t) : t ~ T} is relatively compact and its limit 
set is K. Then 

(a) (T, p) is totally bounded, where p(s, t):= sup{ Ix(s)-x(t)l  :x e K} 

(b) lim~_0 lira s u p n  ~ ~ SUpp(s,t)<~, 5 (2 Iog n) -I/~- IX.(t)-X.(s)l =0 a.s. 
(c) sup,~r(21ogn) -1/2 IX~(t)l--~ 0. 

If, in addition, {Xn(t):tET}, n>~l, is a sequence of independent 
Gaussian processes, then 

(d) 

lim ~ exp(  n logn  "~ 
~o, ,=,  supp~s.t~ IIX,,(t)-X,,(s)ll~J < 0o (2.10) 

for each r/> 0. 

Proof Assertions (a) and (b) follow by Lemma 2.4. By the remark 
after Lemma 2.4, (c) follows. If we also assume independence of the 
sequence of processes, by the Kolmogorov zero-one law, for each 6 > 0, 
there is a constant c(8) such that 

limsup sup (21ogn) -1/2 IX.(t)-X.(s)l =c(O) a.s. 
n ~ o o  p(s,t)<~6 

and lim~_o c(6)=0. So, by the lemma of Borel-Cantelli 

lim ~ Pr{ sup (21ogn) -I/2 IX.(t)-X.(s)l  >~rl} <oo 
d ~ 0  n = l  p(s,t)<~O 

for each ~/> 0. For a standard normal random variable g, we have that 
if Pr{Igl~>x} ~<1/4, then x-le2-'"-'<~Pr{Igl>~x }. So, for n large, and 
p(s, t) ~ ~, 

Pr{ sup (2 logn) - m  ]X,,(t)-X,,(s)i >>-rl} 
p(s, t) ~ 

>/Pr{ (2 log n) -~/2 IX,,(t) - X,(s)l >t ~/} 

>~ 2-1q-1(2 log n) -~/2 I[X.(t)-X,,(s)llzexp ( -  
r/2 log n 

II x . ( t )  - X.(s)II  ~J \ 

860/8/4-11 
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assuming that the processes are Gaussian. Therefore, 

sup ((21ogn)-m,[X,(t)-X,,(s)Jl2exp( 
n = l  p(s,t)<~g 

and (d) follows. 

Observe that in the previous proposition 

p(s, t) =lim sup (2 log n) -1/2 IX, U ) -  X.(s)l 
n ~ o o  

~/2 log n 

a . s .  

< o o  

[] 

As a consequence of Theorem 2.1, we easily obtain the following: 

Theorem 2.2. Let { X,} ,~=1 be a sequence of centered random vectors 
with values in a separable Banach space B. Let X be a another B-valued 
Gaussian centered random vector. Assume that the following conditions 
are satisfied: 

(i) (21ogn) -1/2 IIX,,II--~ 0, as n--, ~ .  

(ii) For each f, gsB*, lim,_oo E[f(X,,) g(X,)] = E l f ( X )  g(X)] 

(iii) For e a c h f s B *  and each r />0 

lim ~ e x p ( -  r/logn ) 
2 < i X 3  

a--.o ,=,  sup II/(X,) - g(X,,)ll 2 
IJfll, Ilgll ~< 1 

i i f ( x )  - -  g(X)l l2 ~< d~ 

Then, with probability one, {(2 log n)-l/zx,}, ,~l is relatively com- 
pact in B and its limit set is the unit ball K of the reproducing kernel 
Hilbert space of X. 

The observations about the optimality of the conditions in Theorem 2.1 
also apply to this case. In particular, we have the following: 

Proposition 2.2. Let {X,,} oo= ~ be a sequence of independent B-valued 
centered random vectors and let X be a another B-valued Gaussian centered 
random vector. Suppose that 

l i m  E[f(X,,) g ( X , , ) ]  = E [ f ( X )  g ( X ) ]  
n ~ o o  

for each f, g ~ B*. Then, the sequence { (2 log n ) -  1/2 X,} oo= 1 satisfies the 
compact L.I.L. if and only if 

(2 log n) -1/2 [[X~ II P r  , , O, as  n ~ oo 
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and 

lim 
O---, 0 

~ e x p  ( r/log n '~ 
- -  2 / < o o  

o = 1 sup llf(X.) - g(X.)II z/  
Ilfn, Ilgll ~< 1 

i i f (x )  - g(X)ll2 ~< J 

for each r/> 0. 
Next, we will consider the laws of the iterated logarithm of the process 

{(n 21og log n) -I/2 ~] Xj( t) " t e T} 
j = l  

where {Xj(t) �9 t �9 T}j~I  is a stationary sequence of Gaussian processes. 

T h e o r e m  2.3. Let {X,( t ) : te  T}, n~> 1, be a sequence of mean-zero 
jointly Gaussian processes. Assume that the following conditions are 
satisfied: 

(i) E[X](t) X.(s)]  =E[X.,+l(t) X.,+.(s)], for each n, m e  l~ and 
each s, t e T, 

(ii) Z.~=I r(n) < oo, where r(n)= sups.t~r IE[Xl(t ) Xo+x(s)] 1. 

(iii) E[sup,~rlY(t)l]<oo, where {Y( t ) : t eT}  is a mean-zero 
Gaussian processes with covariance given by 

E[ Y(t) Y(s)] = ~ 2-1(IE[XI(t) Xk+t(t)] l  + IE[XI(s) Xk+l(S)]l 
k ~  --co 

- 2 IE[ (X~(t) -- Xl(s))(Xk + ~(t) -- Xk + l(S))] I) 

Then, with probability one, 

ins] } 
(n21oglogn) -1/2 ~' Xj(t) : 0~<s~< 1, t e  T (2.11) 

j = l  

is relatively compact in loo([0, 1] x T) and its limit set is the unit ball K of 
the r.k.h.s, of the covariance function 

R((s], tl), (s2, t2)) :=min(s l , s2)  ~ E[X](t]) Xk+l(t2) ] 

Proof Let {Y , ( t ) : t eT} ,  n>>.l, be a sequence of i.i.d, mean-zero 
Gaussian processes with covariance given by E[Y,(tl) Y,(t2)]= 
E[ Y(t~) Y(t2)]. Define Ss(t)= ~}L]~ Xj(t) and Us(t)= E~L~ Xj.(t), for s > 0  
and t e T. 
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First, we prove that, for each 2 > 1, with probability one, 

(2"21ogn) -I/2 ~. X.i(t)'O<~s<~ 1, t~  T (2.12) 
j = l  

is relatively compact in l~([0,  1] x T) and its limit set is K. We apply 
Theorem 2.1. We have that for 0 ~< Sl < s2 ~< 1 and t~, t2 ~ T, 

E[(Sa.. ,( t l)  - S~..2(t2)) 2 ] 

~< 2E[ ( Sa.~,( t 1 ) -- S ~.s,( t2) ) 2 ] + 2E[ ( S a.s,( t2) - S ).,,~_( tz) ) 2] 

~< 2[ 2"s, ] El (Y(t l )  -- Y(t2)) 2] + 2([2"s2] -- [2"s, ]) E[ Y~(t2)] 

= 2El (U~.~,(tl) -- Ua.~(t2)) 2 ] (2.13) 

From this inequality, the Gaussian comparison principle (see, e.g., 
Theorem 3.15 in Ledoux and Talagrand t~2)) and the L6vy inequality, we 
get that 

( 2 " 2 1 o g n ) - l a E [  sup sup IS~.s(t)l] 
0 ~ s ~ l  t E T  

~< 4(2"2 log n) - 1/2 E[ sup sup I U;..~.(t)l ] 
0~<s~<l t ~ T  

~< 8(2"2 log n) -1/2 E[sup [ U~.(t)l ] 
t e T  

~< 8(2 log n)-1/2 E[sup I Yl(t)] ] ~ 0 
t ~ T  

So, condition (i) in Theorem 2.1 follows. 
It is easy to see that 

2-"E[S~..s,(tl) S~.~2(t2)] ~ m i n ( s l ,  s2) ~ E [ X I ( t l )  Xk+l(t2)]  
k ~ - - o 0  

i.e., condition (ii) in Theorem 2.1 holds. 
Let 0 < e < r <  1. I f n + n ~ < ~ m < ~ n + n  r, 0~<st, s2~< 1 and t~, t2~ T, 

2-./22 -.,/2 IE[ Sa.s,(tl) S~.,~_(t2) ]l ~ b22 -"'/2 ~ 0 

where b 2 := sup,~ r E [  y2(/)]  (condition (iii) of Theorem 2.1 holds). 
Take p((s l ,  tl), (s2, t 2 ) ) : = [ s l - s 2 [  +d( t l ,  t2), where d2(tl ,  t2)= 

E[(  Y ( t l ) -  Y(t2))2]. By hypothesis (iii) and the Sudakov inequality (T, d) 
is totally bounded. So, ([0, 1] x T,p)  is also totally bounded (condition 
(iv) of Theorem 2.1 follows). 
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Hypothesis (v) in Theorem2.1 follows from (2.13). Therefore, the 
assertion containing equation (2.12) holds. 

From a comparison principle (see, e.g., Equation (3.12) in Ledoux and 
Talagrand ~12)) and the L6vy inequality, we get that 

~ P r {  sup sup IS,,(t)- Sta~a(t)l 
k = l  [,'/-k] ~< n ~< [2k + I ] t ~ . T  

>i 16(2 -- 1 )m b(22k log k) 1/2} < oo 

So, 

lim sup sup sup (22 k log k )  - i / 2  IS,,(t) - SEakl(t)l 
k ~ o o  [).k] ~< n -~< [).k+ I ] t ~ T  

~< 16(2-  1) I/2 b a.s. (2.14) 

By Eq. (2.14), given e > 0, there exists a ko finite (and maybe random) 
such that 

sup sup (22klogk)-l/E IS,,(t)--Stak~(t)l <<.16(2--1)l/E b +e 
[2 / " ]~<n~<[2  TM ] t ~ T  

forkl>ko. Le tk> /k  o + I  and let [2 k]~<n~<[2 k+l] . I f0~<s~<[2 k~ 
then ns, Xks <~ 2 k~ So, 

IS,~(t)-Stxkls(t) 1~<2 sup ISj(t)[ 
1 ~< j ~< ).k0 

i f  2k0--k-I ~<S ~< 1, then there exists an integer k I such that [2 kj ] ~< [2k]s ~< 
[2k~+l]. Then, [2 k'] <<.ns<~[xkl+3]. So, 

IS , , s ( t )  - Sak~(t)l ~< 3( 16(2 -- 1 )1/2 b + e)(22 k+2 log(k + 23) m 

Hence, 

sup sup sup I S . s ( t ) - - S x k s ( t ) l  
[2k]~<n~<l-~l. k+l ' ]  t ~ T  0~<s~<l  

~<2 sup sup ISj(t)l +3(16(2-1)l/2b+e)(22k+21og(k+2)) m 
1 ~<j~< 2k0 t e T  

Therefore, 

lim sup sup sup sup (22 k log k) - ~p- IS.s(t) - Sake(t)[ 
k--*oo [2k]~<n~<[) .  T M ]  0~<s~<l  t e T  

~< 482(2-- 1) 1/2 b a.s. (2.15) 

This limit and the assertion containing Eq. (2.12) imply the thesis of the 
theorem. [] 
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From previous theorem we get immediately the following two corollaries: 

Corollary 2.1. Let {~,}n~__l be a stationary sequence of jointly 
Gaussian mean-zero random variables. Assume that Z~=l  Jr(n)[ <0% 
where r( n ) = E[ XI X,, + 1 ]. 

Then, with probability one, 

{ t,sj } 
(n21oglogn) -I/2 ~ ~ j ' O ~ s ~ < l  

j = l  

is relatively compact in l~([0, 1]) and its limit set is 

{ (cr f~ ~ du)o<~s<~ " i~ ~ du <~ l } 

where ~r 2 - ~o~ - -  " . k = - - ~  e [ r 1 6 2  

Corollary 2.2. L e t  {Xn(t)}teT, n>~ 1, be a sequence of independent 
identically distributed mean-zero Gaussian processes. Then, the following 
are equivalent: 

(a) E[sup,~rlXl(t)l] < oo 
(b) With probability one, 

{(n21oglogn) -'/2 ~ Xj(t)" t~T} 
j = l  

is relatively compact in loo(T) and its limit set is the unit ball K of the 
r.k.h.s, of the covariance function 

R(tl, t2):=E[X'I( /I)  XI(t2)] 

Deo tT) obtained Corollary 2.1 under the stronger condition 

lim n~r(n) = 0, for some ~ > 1 
n ~ o t ~  

Corollary 2.2 is easily deducible from the L.I.L. for empirical processes (see 
e.g., Theorem 8.6 in Ledoux and Talagrand(12)). 

3. LOCAL L.I.L. FOR GAUSSIAN PROCESSES 

In this section, we consider the local L.I.L. for Gaussian processes. 

Theorem 3.1. Let {X(t) : t~  T} be a centered Gaussian process and 
let p be a pseudometric on T. Let w be a positive function defined on 
(0, 1 ]. Assume that the following conditions are satisfied: 
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(i) I f t E T a n d 0 ~ < u ~ < l ,  t h e n u t ~ T .  

(ii) For each s, t ~ T, the following limit exists 

[ x(ut) x(us) 1 lim E =: R(s, t) (3.1) 
. ~ o +  w2(u) J 

(iii) For each m >i 1, each e > 0, each t I . . . . .  t,, ~ T and each 
21 ..... ~,,~ 

lim 
r---~ 1-- 

lim sup sup ~, , j, kE [ X(u0)x(,,tk) 1 
. - o +  ..... -"~176 s,e=, L w(u )w(v )  J <~o 

(3.2) 

(iv) sup,~rlZ(u,  t)[ Pr~. 0 as u ~ 0 + ,  where 

X(ut) 
Z(u, t) := w(u)(2 log log u - - l )  1/2 (3.3) 

(v) (T, p) is totally bounded. 

(vi) For each t />  0, there is a J > 0 such that 

l imsup ~ e x p (  --~lw2(On) l~ ) 
o~1-  ,,ffil sup IIX(O"t)-X(O"s)ll~_ <oo (3.4) 

s , t ~ T  
p(s, t) <~ J 

(vii) lira,__, 1 - p(t, ut) = 0 for each t e T. 

Then, with probability one, {Z(u, t ) : t e  T} is relatively compact in 
loo(T), as u ~ 0 + ,  and its limit set in loo(T), as u ~ 0 + ,  is the unit ball K 
of the reproducing kernel Hilbert space of the covariance function R(s, t). 

Proof First, we see that condition (ii) implies that R(s, t) is the 
covariance function of a self-similar Gaussian process. This fact is similar 
to Theorem 2 in Lamperti. ~H) The difference is that we do not assume that 
the function w to be increasing. We refer to this reference for the definition 
and main properties of self-similar (also called semi-stable) processes (see 
also Mandelbrot and van NessCX3)). We claim that there exists a y > 0 such that 

R(as, at)=arR(s,t) for each s, t ~T  and each O<a<<.l. (3.5) 
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If R(t, t ) =  0 for each t e T, Eq. (3.5) is trivially true. Otherwise, there exists 
a t o e T such that R(to, to)--/:0. We have that 

lira w2(au------)- lim w2(au) E[X2(auto)]_R(ato,  ato) 
,40+ w2(u) ,,-~0+ E[X2(auto)] w2(u) R(to, to) 

for each 0 < a < 1. We also have that 

p2(uto, to) = R(uto, Uto) -- 2R(uto, to) + R( to, to) ~ 0 

as u --* I - .  So, R(to, uto) :/: O, for any u in a left neighborhood of 1. Hence, 
by e.g., Theorem 1.4.1 in Bingham etal., ~4) w(u) is a regularly varying 
function at 0 and there is a real number ? such that 

w2(au) 
l i m - - - a  r, foreach a > 0  

~ o +  w2(u) 

Therefore, Eq. (3.5) holds. Since (T, p) is totally bounded, there are s, t e T 
such that p(s, t) :/: O. We have that p(as, at) = ay/2p(s, t) for each 0 < a < I. 
Since (T, p) is totally bounded, y > 0 (by Theorem 8.5.1 in Bingham et aL (4) 
~,#0). 

Next, we prove that 

lira supp(t,  ut)=O (3.6) 
u ~  l - -  t e T  

Given e >0,  take a J-covering tl ..... tp of T, i.e., for each t e T, there is 
1 4 j<~p  such that p(t, tj)<~g. We have that 

p(t, ut) <~p(t, tj) + p(tj., utj) +p(utj, ut) ~<~(1 + u  r/2) + p ( t  i, utj) 

From this and hypothesis (vii), Eq. (3.6) follows. 
By Theorem 2.1, with probability one, {Z(O", t) : t e  T} is relatively 

compact in l~o(T) and its limit set is K, for each 0 < 0 <  1. Here, we use 
hypotheses (ii)-(v). So, to end the proof, it suffices to show that there is a 
constant A(O) such that 

lim sup sup sup [Z(u, t ) -Z (O" ,  t)l <<.A(O) 
n--*oO o n + l ~ u ~ O  n t e T  

a.s. (3.7) 

for each 0 < 0 < 1 ,  and A(O)-+O as 0 ~  1 - .  By hypothesis (vi) and 
Eq. (3.6), given t />  0, there are ~ > 0 and 0 < 0o < 1 such that 

-rlw2(O ") log n ) 
~ e x p  < oo 

,=1 sup llX(O"t)-X(Ons)ll~ 
$ , t 6  T 

(3.8) 
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for each 00 < 0 < I and 
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sup supp(t ,  ut) <<.~ (3.9) 
00~<u~< 1 t ~ T  

We have that 

IZ(u, t ) - Z ( O " ,  t)l ~< 
IX(O" t ) -  X(ut)l 

w(u)(2 log log u - l )  1/2 

w(0") (21oglog0-")  1/2 1 IZ(O", t)[ (3.10) 
+ w(u)(2 log log u-X) x/z 

and 

IX(O"t) - X(ut)l _ w(0")(2 log log 0-")1/2 
- -  - -  IZ(O", t ) - Z ( O " ,  uO-"t)l w(u)(2 log log u - l )  1/2 w(u)(2 log log u - l )  x/z 

By Theorem 1.5.2 in Bingham et aU 4) 

lim sup w(0") = 0_r/2 (3.11) 
, ~  o.+l<<.u<~o, w ( u )  

By Lemma 2.5 and hypothesis (iv) and Eq. (3.8), 

lim sup sup IZ(O", s) - Z(O", t)[ ~< (2r/) 1/2 a.s. 
, - - * o o  s , t ~ T  

p(S, t) <~ 6 

for 00 < 0 < 1. From this and Eq. (3.9) 

lim sup sup sup IZ(O", t) - Z ( O " ,  uO-"t)] <~ (2r/) 1/2 a.s. 
. ~ o 0  on+l<~u<~O n t ~ T  

for 00 < 0 < 1. Last fact and Eq. (3.11 ) imply that 

IX(O"t) - X(ut)l 
lira sup sup sup w(u-  1-og  -og--U r) 1/2 1/2 

. - ' ~  o n + l ~ u ~ O  n t ~ T  

a . s .  

(3.12) 

for 0o < 0 < 1. Again, by Theorem 1.5.2 in Bingham et al. (4) 

lim sup w(0~) - 1 = 0 - y / 2 -  1 (3.13) 
. - . o o  o.+1<~u<~O . W(U) 

for each 0 < 0 < I. By Theorem 2. I 

lira sup sup [Z(0", t)[ = sup (R(t, t)) I/2 a.s. (3.14) 
n--*oo  t ~ T  t ~ T  
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From Eqs. (3.13) and (3.14), it follows that 

Iw(O")(21oglogO-")~/2 [ 
limsup sup sup W(U)(21oglogu_l)l/2 1 IZ(O", t)l 

n--~oo on+l~u~<O n l e t  

~< (0 -r/2 - 1) sup (R(t, t ) )  1/2 a.s.  (3.15) 
t ~ T  

for each 0 < 0 <  1. Finally observe that Eqs. (3.10), (3.12), and (3.15) imply 
Eq. (3.7). [] 

The comments on Section 2 on optimality of hypotheses apply to 
previous theorem. Conditions (i) and (ii) more than conditions are part of 
the set-up. A condition like (iii) is needed to obtain the L.I.L. for the finite 
dimensional distributions (see Example 3.1 next). This condition (iii) is 
weak enough to allow us to obtain the L.I.L. for self-similar Gaussian 
processes under best possible conditions (see Corollary 3.1). Conditions (i) 
and (ii), and the compact law of the iterated logarithm with limit set K, 
imply conditions (iv), (v) and 

IX(ut) - X(us) I 
lim lim sup = 0 a.s. (3.16) sup w(u)(21oglog u-l) 1/2 
~ 0  n - * o o  s , t ~ T  

with p2(s, t )=R(s,  s )+R(t ,  t ) -  2R(s, t). Condition (vi) seems to the right 
condition to obtain Eq. (3.16), since an analogous condition is also suf- 
ficient in a similar L.I.L. for empirical processes (see Arcones")). Observe 
that condition (vi) is satisfied if 

IIS(ut) - X(us)ll,, 
lim lim sup =0  (3.17) 
~ o  . ~ o +  s , , o ~  w ( u )  

p(s, t) <~ 

Conditions (vii) is a very weak regularity condition. We also must observe 
that (iii) is implied for the stronger condition: 

(iii)' For each m/> 1, each tl,..., tm E T and each •1 ..... /~m ~ R 

- F X(utj) x(otk)] 
lira limsup sup ~" (3.18) 

r - - * l +  u ~ O +  v:ur<~v~c  u j , k = l  
c ~ O +  

which is easier to check and holds in all the examples considered. 
In the case that the Gaussian process is self-similar, the hypotheses in 

the previous theorem simplify: 
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Corollary 3.1. Let {X( t ) : t~T}  be a mean-zero Gaussian process 
and let ? > 0. Suppose that the following conditions are satisfied: 

(i) I f t E T a n d  0~<u~<l, then ut~T. 
(ii) E[X(ut) X(us)] =u2rE[X(t) X(s)] for each 0~<u~< 1 and each 

s, t~T. 
(iii) sup , , r [Y( t ) [  < o o  a.s. 
(iv) lim,_~l_ E[ X(ut) X( t) ] = E[ X2( t) ] for each t E T. 
(v) For each m >/1, each t l,..., tm E T and each 21 . . . . .  A m ~ 

l imsup ~', 2jAku-~E[X(tj) X(Utk)] ~0  
u ~ 0 +  j , k = l  

Then, with probability one, 

X(ut) : t ~ T }  
uY(2 log log u - t )  t/2 

is relatively compact in I~(T), as u - * 0 + ,  and its limit set, as u ~ 0 + ,  is 
the unit ball K of the reproducing kernel Hilbert space of the Gaussian 
process {X(t) : t~  T}. 

Proof : Without loss of generality we may assume that E[X2(to)] > 0 
for some toe T. We apply Theorem 1. Observe that by self-similarity 
supt ~ r(lY(ut)l )/(ur(2 log log u -  1) I/2) has the distribution as sup t  ~ T ( I X ( t ) I ) /  
((2 log log u-1)m). So, condition (ii) in Theorem 3.1 follows. We also have 
that by the Sudakov inequality (see, e.g., Theorem3.18 in Ledoux and 
Talagrand(12)), (T, p) is totally bounded, where p2(t, s) = E[ (X(t) -- X(s))2]. 
The rest of the conditions in that theorem follow trivially. [] 

Observe that condition (v) in Corollary 3.1 is satisfied if 

lim u-rE[X(t)X(us)]=O, fo reach  s , t~T.  
u ~ O +  

Example 3.1. Let T =  [0, 11, let g be a standard normal random 
variable and let ? > 0. Consider the Gaussian process {X(t) : t E T} defined 
by X(t)=trg. This Gaussian process satisfies conditions (i)-(iv) in 
Corollary 3.1. However, it does not satisfy neither condition (v) nor the 
compact law of the iterated logarithm. 

Example 3.2. Let T be a collection of measurable subsets of g~n. Let 
2 be the Lebesgue measure on •a. Let { X ( A ) : A e T }  be a centered 
Gaussian process such that 

EEX(A) X(B)"1 =2 (A  r iB)  



896 Arcones 

Suppose that 

(i) I f 0 ~ u ~ < l  a n d A ~ T ,  t henuAET.  

(ii) E[supA~r[X(A)]] < oo. 
It follows from Corollary 3.1, that, with probability one, 

ul/'-(2 log log u- I )  1/2 " A e T 

is relatively compact, as u -* 0, and its limit set, as u ~ 0, is the unit of the 
r.k.h.s, of the covariance function ;t(A m B), i.e., the limit set is 

{ ( f  oL(si,...,sa) dsa'"dsl)A~r" ;~ ~2(sl,..., sa) dsa"'ds~ <<, l } 

Observe that l im,,_l_ 2((uA)nA)=2(A), for each measurable set A, 
with finite Lebesgue measure, because a standard argument based on 
approximation by open sets. By the Sudakov minorization (see, e.g., 
Theorem 3.18 in Ledoux and Talagrand~-')), supa~r)~(A)< oo. So, condi- 
tion (iv) in Corollary 3.1 follows. We also have that u-~/22(Ac~(uB))<~ 
u~/'-2(B) for each A, B e T. Hence, condition (v) in Corollary 3.1 is satisfied. 

In particular, if T={[O, t l ]X . . . x [O,  ta]:O<~t I ..... ta~l},  the 
process {Jr(t) : t s  T} is a Brownian sheet, i.e., 

d 

E[X(t) X(s)] = l-[ (tj ^ sj) 
y=l  

for each t, s e [ 0 ,  1] a, where t=(tl,..., td) and s=(sl ..... ds). So, we have 
that, with probability one, 

{ u - I/2(2 log log u-l) -i/2 X(ut) : t ~ [0, 1 ] a} 

is relatively compact, as u--+ 0, and its limit set, as u---, 0 is 

{(f~' ... I~o~(sl,..., ds) dsa...dsl~ " ~ ... f~ o~2(Sl,..., s,,) dsa...ds, <~ l } 
/ l e [ 0 , 1 ]  d 

4. LOCAL LAW OF ITERATED L O G A R I T H M  FOR 
COMPOSITIONS OF GAUSSIAN PROCESSES 

In this section, we consider the law of the iterated logarithm for 
compositions of Gaussian processes. First, we present a variation of 
Theorem 3. I, which is more suited for the applications in this section. 
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Theorem 4.1. Let {X(t) : tE T} be a centered Gaussian process, let p 
be a pseudometric on T and let w, r :  (0, 1] ~ (0, ~ )  be two functions. 
Assume that the following conditions are satisfied: 

(i) If t ~ T and O <~ u <~ l, then ut ~ T. 
(ii) For each s, t ~ T the following limit exists 

lim " [ X(r(u)s) X(r(u)t)] 

(iii) For each m>~l, each e>O, each tl ..... tm~T and each 
21,..., 2.,~ R 

lim lim sup sup ~ 2j2kE I X(utj) X(vtk)] 
. . . .  o +  . . . .  j < . 0  

( iv)  

IX(v(u)tl r,~ , 0 as u ~ 0 +  
sup - 1 ) 1/2 ,~ r w(u)(2 log log u 

(v) (T, p) is totally bounded. 

(vi) For each r/> 0, there is a 6 > 0 such that 

~.. ( --1/w2(0 " ) ... ~ . l ~  n '~ 
lim sup exp 
o - 1 -  .=1 sup ll~(O"t)-x(O"s)ll~/<c~ 

x, I E  T 
p ( s , t ) ~ e 5  

(vii) 

(viii) 

r(u) is an nondecreasing function, which tends to 0, as u ~ 0 + ,  
and 

r ( 0  "+1)  
lim limsup 1 = 0  

o - .  I . . . .  ~ r ( 0 " )  

lim sup sup w(u) _ 1 1 = 0  I lim 
o ~ ,  . . . .  o.+, ~ , ,~o .  w(O') I 

(ix) l im,,~l_ supt~Tp(t, ut )=0 .  

Then, with probability one, 

X(r(u)t) " t ~ T}  
w(u)(2 log log u-l)  l/z 

(4.1) 



898 Arcones 

is relatively compact in loo(T), as u ~ 0 + ,  and its limit set is the unit ball 
K of the reproducing kernel Hilbert space of the covariance function 
R(s, t). 

The proof of last theorem is very similar to that of Theorem 3.1 and 
it is omited. If the function r(. ) is not continuous, last theorem is not just 
a change of scale in Theorem 3.1. 

Next, we recall the definition of r.k.h.s, of a covariance function in the 
multivariate case. Let Tj be a parameter set for 1 ~j<<.d. Let Rj.,(tj, tk), 
1 <~j<~k ~ d, be joint covariance functions, i.e., Rj.k(ti, tk)= Rk.j(tk, tj) for 
each t je  Tj and each t/, e T k, and 

d p 

E E aJ, tak,mRj, k(tj, t'tk, m)~O ( 4 . 2 )  
j,k~l L m = l  

where a] jeR  and tj, t eTj ,  for each 1 ~<j~<d and each 1 <~l<<.p. Then, there 
are Gaussian processes {Zj(tj): tje Tj}, l<~j<~d, defined in the same 
probability space, such that Rj, k(tj, tk )=E[Zj( t j )Zk( tk)] ,  for each t ie  T] 
and each tke Tk. Let LZ be the linear subspace of L2, generated by 
{ Zj (t j ) :  tj e Tj, 1 <~j ~< d}. Then, the r.k.h.s, of the joint covariance function 
Rj.k(tj, tk) is the class of functions on Ti x ..- x T a 

{(E[ZI( t , )~] ..... E[Za(ta)~])t,~rj,.,..t,~ru:~e~ff' } (4.3) 

This space is endowed of the inner product 

(f,,f2) :=E[r162 

where fi(t~,..., td )=(E[Zl ( t l )  ~i] ..... E[Za(ta) ~i]) each tl e TI ..... tae Ta 
and each i = 1, 2. The unit ball of this r.k.h.s, is 

K : =  {(E[Za(tl)~ ] ..... E[Za(ta)~]),,~r~.....td~r,:E[~ 2] <. 1} (4.4) 

Theorem 4.2. Let {Xj(t):  t e Tj} be a centered Gaussian process, let 
P2 be a pseudometric on Tj and let %, r2: (0, 1] ~ (0, oo) be two functions, 
for j =  I,..., d. Assume that, for each I ~<j ~< d, the conditions in Theorem 4.1 
are satisfied for {Xj(t) :  t e  Tj}, pj, wj and rj. Assume also that the follow- 
ing conditions are satisfied: 

(i) For each t ie  Tj and each tk e Tk, where 1 ~<j, k ~< d, the following 
limit exists 

lira E [  Xj(~j(u) tj) Xk(~(u) tk) ]  
,--,o+ [_ wj(u) wk(u) =: Rj, k(tj, tk) 
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(ii) For each p~>l, each e>0 ,  each tj, l , . . . , t j .peT j and each 
,~j.1,..., ,~j.,, e u, 

d p 

lim limsup sup ~, ~, 2jjXk.,, 
r ~ l - -  u-*O+ v:ue-(lagu-I)r<-v<~ue-(logu-I)~ j , k = l  L m = l  

• E [ ~(~j(,,)_ t,.,) ~(~,,(,~) t,...,)] < o 
L wj(u) wk(v) I 

Then, with probability one, 

( x,(n(,) t~) x,,(~(u) t~) '~. ) 
\wl(u)(2 log log u - - l )  1 /2 ' ' ' ' '  Wd(U)(2 log log U-I)I/2J tl e T l ..... tale T d 

(4.5) 

is relatively compact in l~(Tl x ... x Ta) and its limit set is the unit ball K 
of the reproducing kernel Hilbert space of the covariance function 
Rj, k(tj, tk). 

Proof By Lemma 2.1 

~. ~ xj(~j(o") tj,,) 
lim sup wfi0")(2 log n) 1/2 n ~ o o  j = l  I=1 

= ~, 2j.t2k,,,Rj, k(tj.t, tk.m)) a.s. 
j k  1 I , m = l  

for each 0 < 0 < 1, each 2j, te ~ and each tj, te Tj. So, this implies the com- 
pact law of the iterated logarithm for the finite dimensional distributions of 
the process 

\w1(0")(2 log log 0 - - 1 )  1/2 ..... Wd(On)(2 log log O-,)U2) t l~ Tl,..., td6 Td 

(4.6) 

The same arguments as in Theorem 3.1 imply the uniform L.I.L. for the 
process in Eq. (4.6). Again, by the arguments in Theorem 3.1, the blocking, 
i.e., Eq. (3.7), holds for each 1 <<.j<<.d. So, the result follows. [] 

From Theorem 4.2, it is easy to get the following law of the iterated 
logarithm for compositions of Gaussian processes. 

Corollary 4.1. Let { X j ( t ) : t e  Tj} be a centered Gaussian process, let 
pj be a pseudometric on Tj and let wj, rj: (0, 1] ~ (0, oo) be functions, for 
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1 <<.j~d. Assume that  the condit ions in Theorem 4.2 are satisfied. Assume 
also that: 

(i) T I . . . . .  Ta_l = [ --M, M], where M is so large that  there is a 
~1 > 0 such that  

xj(~j(u) tj) 
l imsup sup wj(u)-~i-gog-~_l)l/2 ~M-~  a.s. 

for j =  2,..., d. 

(ii) r j(u) = wj+ l(u)(2 log log u-l)1/2, for j = 1 ..... d -  1. 

Then, with probabil i ty  one, 

y . . . . .  Xd(Td(U) td) . Td} 
wl(u)(2 log log u-l) 1/2 td~ 

is relatively compact ,  as u ~ 0 + ,  in l~(Td)  and its limit set, as u ~ 0 + ,  is 

Of  course, we could have taken absolute values, before taking a com- 
position, i.e., get a L.I.L. for X I ( I ' "  (IXd(rd(U) td ) l ) ' ' "  I)" Another  varia- 
t ion is when a Gaussian process is composed  with itself." 

Corollary 4.2. Let  {X(t):t>~O} be a mean-zero Gaussian process, 
let b > 0 and let 7 > 0, 7 ~ 1. Assume that  the condit ions are satisfied: 

(i) E[X(ut) )((us)] =u2rE[X(t)X(s)] for each u, s, t~>O. 

(ii) supo~<,~<1 IX(t)[ < co a.s. 

(iii) l i m , _  ~_ E[X(ut) X(t) ]  = E[X2(t)] for each t t> 0. 

(iv) Fo r  each s, t i> 0 

lim u-rE[X(s) X(ut)] = 0  
u ~ 0 +  

Then,  with probabil i ty  one, 

( X(lX(ut)l) } 
u?(2  log log u -  1 )~r + 1)/2" 0 ~< t ~< b (4.7) 

is relatively compact ,  as u ~  0 + ,  i n / ~ ( [ 0 ,  b ] )  and its limit set is 

{(~(I/~(t)l))0.<,.<~ : (~, fl) eK} 
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where K is the unit ball of the r.k.h.s, of the process {(X(s), Y(t)): 
0 <<, s <<, M, 0 <~ t <~ 1 }, { Y(t) : t e •} is an independent copy of the process 
{X(t) : t e R} and M 2 > E[X2(b)]. 

Moreover, with probability one, 

X(1X(ub)l) 
ur2(2 log log u - l )  (r+ 1)/2j 

(4.8) 

is relatively compact, as u ~ 0 +  and its limit set is [ - a ,  a] ,  where 

a := sup m(r)(1-rZ(m(b))-2)  1/2 a.s. (4.9) 
O<~r<~m(b) 

and m(t) = (E[X2Ct)]) m. 

Proof Assume that 0 < 7 < 1  (the case 7>1  is similar). Let 
r(u) = ur(2 log log u-l )  m. By Theorem 4.2 and the conditions checked in 
Corollary 3.1, in order to prove the first part of the claim, it suffices to 
show that 

E [ XQ:(u)s) X(ut)] ~ O, 
L (~(u)Fu~ J 

as u ~ 0 +  (4.10) 

for each s, t >t 0, and that 

and 

sup EIX(r(u)s)-X(vt)] ,~O [ [ as U --"~ 0 -'[-, (4.11) 
~'.<o.<., L (v(u)) rvr J l 

sup E[ X(r(v)s)--'-Y(u)t]] ,,~v~c. [ (z(v)) ~uy ~ 0  as u ~ O +  (4.12) 

for each s, t >t 0, where 1 < r < 7 -1 and 0 < c < 1. By hypotheses (i) and (iv) 

EF x(~(u)~) x(~t)q [ X(s)_X((u/~(u))t] --,o 
as u ~ 0 +  

Equations (4.11) and (4.12) follow by the same argument. 
To show Eq. (4.8), it suffices to show that 

{~( lH(b)l )  " (oq/~) E K }  = [ - -a ,  tr] (4.i3) 

860/8/4-12 
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Let ~ be the linear subspace of L 2 generated by { X(s) : 0 <<. s <~ M}.  Let 
be the linear subspace of Lz generated by {X(t) : 0 ~< t ~< b}. Then, it is easy 
to see that 

K =  {(E[X(s) #,] ,  E[ r( t )  # 2 ] ) o ~ , . . . 0  ~,.<~ : 

#, ~ ,  # ~ ,  e[#,~ + #~] ~< I} 

It follows from this that {~(lfl(b)l): (0t, f l )eK} is a symmetric closed 
interval. Hence, it suffices to show that 

sup{~(lfl(b)l) : (~, fl) inK} =tr  (4.14) 

Given #1 m ~1 and #2 e ~2 such that , 2 E[# i  + ~2] ~< 1, let oc(s) =E[X(s )  #1], 
let f l ( t )= E[X(t)  ~2] and let r = Ifl(b)l. By the Cauchy-Schwarz inequality 

r ~< re(b) "~2" 2 ~< re(b) 
(4.15) 

Ill, II 22 ~< 1 -- 11~2 II ~ ~< 1 - (m(b))-2 r 2 

and 

I~(r)l <<.re(r) II#x liE ~<m(r)(1 - m - Z ( b )  r2) 1/2 <~ a 

So, in Eq. (4.14), the left-hand side is smaller of equal than the right-hand 
side. Given 0 <<. r <<. rn( b ), if 

#l =(m(r))  -1 (1--(m(b))-2r2)l/2X(r) and ~2=rm-2(b)  Y(b) 

then o~(fl(b))=m(r)(1 - ( m - 2 ( b ) ) - 2 r 2 )  m. So, Eq. (4.14) follows. [] " 

Example 4.1. A mean-zero Gaussian process {X(t) : t/> 0} is called a 
fractional Brownian motion of order y, 1/2 ~< y ~< 1, if its covariance is given 
by 

E[X(t)  X(s)] =2-1(t2r+s2r--I t - -s l2e) ,  s, t>~0 (4.16) 

This process was introduced in Mandelbrot and van Ness. C13) It is very 
easy to see that previous corollary applies to this process, if 1/2 <~y < 1: 
given b > 0, with probability one, 

X(IX(ub)l) 
ur2(2 log log u - l )  (r+ 1)/2 

is relatively compact, as u ~ 0 +  and its limit set is [ - t r ,  tr] where 
cr = b r 2 y r / 2 ( y  + 1 ) - ( r +  1)/2. 
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