Division points on curves.

by Serce Lane {a New York)

In memory of Guido Castelnuovo in the recurrence of the first centenary of his birth.

Summary. - 4 curve confained in o product of multiplicative groups passing through the
origin, and containing infinitely many forsion points is a subgroup. The analogous
statement on abelian varieties is discussed and reduced to an analogue of the irreduci-
bility of the cyclotomic equation.

Let 4 be an abelian variety, or a product of multiplicative groups (or a
group extension of these), defined over the complex numbers, say. Let I, be
a finitely generated subgroup of 4, and let V be a curve (subvariety of di-
mension 1) in 4, passing through the origin, say. When 4 is an abelian
variety, the MORDELL conjecture has been expressed as asserting that if the
intersection of V with 1y is infinite, then V is a group subvariety (ct. [2], [3]).
When A4 is a product of multiplicative groups, then I proved the analogous
statement in [2], [3].

A few years ago, MUMFORD asked me the following question :

If a curve in its Jacobian contains infinitely many points of finite period, is
the curve of genus 1? The same question arose in MANIN'S investigations of
the PrcArD-FuoHs equations [4]. At the time I did not see how to make a
conjecture which would include all the above statements, but now it seems
to me that one can formulate such a conjecture as follows: Let T' be the divi-
ston group of 1y, i.e. the group of points P on A such that there exisis some
integer n =1 (depending on P} such that nP lies in Ty. If the inlersection of
V with T is infinite, then V is o group subvariety. In other words, from a
diophantine point of view, when ome considered previously a finitely genera-
ted group, one may as well consider its division group. Taking Iy to be the
unit element of A4 yields the special case when I' consists of all points of
finite period on A.

‘When 4 is a product of multiplicative groups, then the conjecture admits
a particularly elemenfary formulation:

Let Ty be a finitely generaled mulliplicative group of complex numbers, and
let I' be the group of complex numbers z such that 2" lies in Ty for some n
(depending on ).
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Let fiX, Y) =0 be a curve in the plane (absolutely irreducible) passing through
the multiplicative origin, d.e. (1, 1) = 0. If there exist infinitely many elements
x, y €L such that f(x, y) =0, then the curve is actually a group, whence [ is
a polynomial of type aX™ +b¥Y"* =0 or X"Y™ + ¢ =0,

As a special case, one then has the statemenf: Lef g(X) be a rational
function, and assume that there exist infinilely many elements x €I’ such that
glx) €L. Then g(X) = cX" for some constant ¢ and some integer n.

When we take elements in I') instead of I, then of course this is a spe-
cial case of the theorem proved in [2]. For instance, the line

aX4bY=c¢c

with abc =0 has only a finite number of points with coordinates in TI.

Irara, SERRE, and TATE have shown to me how to prove the conjecture
in the case I' consists of roots of unity, and I shall reproduce here IHARA’S
and TATE’S proofs. (SERRE’S proof is similar to Tarr’s.) I shall then describe
a geometric interpretation for these proofs, and indicate how they lead fo
certain «irredueibility > criteria on abelian varieties, related fo recent work
of SERRE concerning the GALOIS group of division points of elliptic curves
over number fields [B].

§ 1. IHARA’S PROOF. - Let us begin with IHARA’S proof, given only for
a rational function. Liet ¢ be a rational function, and assume that there exist
infinitely many roots of unity { such that g{{) is a root of unity. Then g has
coefficients in some cyclotomic field. (Proof: Let F be the field obtained by
adjoining al roots of unity to the rationals, let K be the field obtained from
F by adjoining the coefficients of g. If K == F, there exists an igomorphism
o of K over F such that g° =g, and then g°, g take on the same values at
infinitely many roots of unmity, which is impossible). We may assume that
this field of coefficients of g is finite over Q, generated by a primitive m—ih
root of unity, say k= Q({..). After a multiplicative translation, we may also
assume that g(1) = 1.

Let {C,] be a sequence of roots of unity such that g({,) is a root of
unity, with n =mn,, n,, ..., n— oo, and each {, is a primitive n—th root of
unity. For each m, there exists an automorphism o, of Q({,) over Q such
that

Gngn == p2ri/n,
Extend o,, to F. Then
{529) (648n) = 0u(g(Cn))

is contained in the field Q({,., C.), and hence is a 2mn — th root of unity
(not necessarily primitive). For infinitely many #, the restriction of o, to &
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induces the same isomorphism on k. Taking a subsequence of {n}, and
dealing with a conjugate of g if necessary, we can assume without loss of
generality that for infinitely many » there exists an integer d, such that

g(ezm'/n) —_ ezm‘dﬂ/zmn .

The roots of unity e*r” approach 1 as n tends to infinite. Without loss of
generality, we may assume that 2nid,/2mnr approaches 0. We have (by the
mean value theorem):

l e2mid, [amn | ] — {g(ezm'/n) — g(l) I é G[ emifn ] }
for some constant C > 0, whence
[d./2mn| = C'|1/n|

for some other constant ¢’ > 0. This implies that the numbers d, are boun-
ded, and hence taking a subsequence of % if necessary, that they are all
equal to the same number. But then one concludes at once that there exist
infinitely many roofs of unity {{= e*"") and a fixed integer D such that

9oy = ¢P,

whence g(X)*” = XP identically, as was to be shown.

§ 2. Tare’s PrOOF. - Let f(X,Y) be an irreducible polynomial in C[X, Y],
and assume that there exist infinitely many pairs of roots of unity {=({, {)
sach that f({)=0. Then the coefficients of f lie in some field Q({,) =k,
generated over Q by a primitive m — th root of unity. (As before, one sees
this by considering conjugates of f over the field F obtained by adjoining
all roots of unity to the rationals).

Let n be the period of { (i.e. the least common multiple of the periods
of T, {"). Let d be a positive integer prime to n. There exists an automor-
phism ¢ of Q(§) such that of = {4 If in addition d =1 (mod ), then ¢ can
be extended to an automorphism of %({) inducing the identity on k. Then
f(§%) =0, so that { is a zero of f(X,Y) and also of f(X% Y%. But

(B 2 k] = o{n)/m.

Applying any automorphism t of () over %, we find that <{ is also a common
zero of these two polynomials, which have therefore at least ¢(n)/m zeros in
common. However, by BrzouT’s theorem, these polynomials have at most
(deg f)*d common zeros, unless f(X, Y) divides f(X% Y% . As soon as n is
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large enough, we can use the prime number theorem giving the existence of
of primes in arithmetic progressions to find a prime number d satisfying the
above conditions, such that d is much smaller than ¢(n). Hence we conclude
that f(X,Y) divides f(X% Y%, and it is then an exercise to show that
f(X, Y} = 0 defines a subgroup variety of C*X C* This concludes the proof,
which also shows that » is bounded in terms of deg f and m.

Note that we can avoid the congruence condition d=1 (mod m) by using
the following variation of TATE's argument. Let r = [k : Q]. We extend ¢ to
an automorphism of %(C). Then o” induces the identity on k, and

Grc — Cdr.

Then f({9) =0, so that { is a zero of f(X, Y} and also f(X%,Y?). We can
then argue as before, using only the lemma:

LEMMA. - Given an infeger s, there exists an integer n, such that for all
n > n,, there exists a prime number p not dividing n, such that p° = n.

Proor. -~ The worst case occufs when n is a product of distinet primes,
in which case the assertion is an immediate consequence of the fact n(N) is
of the order of magnitude of N/log N.

§ 3. ABELIAN VARIETIES. - We shall now see how this variation can be
formulated on abelian varieties.

Let 4 be an abelian variety, defined over the complex numbers, and let
V be a curve (subvariety of dimension 1) in 4. We assume that V contains
infinitely many torsion points. After a translation, we may assume that V
passes through the origin. Let % be a field of definition for 4 and V, finitely
generated over the rationals. We shall reduce the proof that V is of genus
1 to a statement analogous to the irreducibility of the cyclotomic equation.

Let m be an integer = 1. Let 1, : 4 — A be multiplication by m. As a
cycle, X, (V)= p- V™, where V" consists of all points max, with x€V.
Then p .V is algebraically equivalent to m®.V. If V4=V, then VNV
has at most m*deg V)* points, by a routine generalization of BEzoUT’s theorem.
(Cf. for instance [2], Lemma 4, Chapter IIL, § 3. We can view V and V™ as
divisors on their sum in 4).

If V=V, then X, gives an unramified covering of V over itself, of
degree m® and hence V is of genus 1, so is an abelian subvariety.

Let T be the group of torsion points of 4. We rednce the proof of the
conjecture in this case to the following hypothesis:

(*) Let A be an abelian variety defined over k. There exists an integer
1

¢ =1 with the following property. Let x be a point of period n on A. Lel G,
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be the multiplicative group of inlegers prime to n, mod n. Let G be the sub-
group of G, consisting of those integers d such that dc is conjugate lo x
over k. Then

(Gn:G) <o

To apply (¥), suppose that there exist points x, of period #, n-— oo,
lying on V. Let d be a positive integer prime to n. By (¥), there exists an
automorphism o of k) over %k such that cx = d"x, where r is a positive
integer bounded by c. Then

ox = d"x €V N V9,
Furthermore, if t is in the group of automorphisms of k{x,) over %, then
wdte €V N V4D,
If V474" we obtain the inequalities, using (*):

‘ﬂcﬁ) =< Number of points on VN V@ < d*(deg V).

We note that ¢(n) = n'* for sufficiently large n. By the lemma, taking d to
be a sufficiently small prime number not dividing #, we get a contradiction
as soon as # is sufficiently large, as desired.

At present, very little is known concerning (*). Recent work of SERRE
has been concerned with the size of the GALoIS groups of period points of
elliptic curves over number fields, and SERRE has ben able to prove «finite
index» property for most elliptic curves, when » is a prime power [b]. SERRE
also tells me that property (*) is true when elliptic curve has complex multi-
plication. Furthemore, if the elliptic curve has a transcendental j-invariant
over the rationals, then the truth of (*) follows from results of Ieusa [1].
Nothing seems to be known in more general cases.

§ 4. ArPENDIX. - We conclude by a remark concerning the exercise
about f(X% Y% made previously. Let G be a commutative group variety (in
characteristic 0), and let V be a curve on G, passing through the origin.
Assume that there exists an integer d > 1 such that for all x €V, the point
de also lies in V. (We write the group law additively). Then V is a subgroup
of @. Indeed, let p be a prime number dividing d. If %, is a field of defini-
tion for G and V, finitely generated over the rationals, we can embed %, in
a finite extension of the p-adic field Q,, and let k£ denote the compleiion of
the algebraic elosure of Q,. If x is a point of V, sufficiently close to the
origin, then dx lies in V,, and the points d”x approach O as n tends to
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infinity (for the p-adic topology on V,). Taking the inverse image by the
exponential map of a sufficiently small neighborhood U of O in V,, we find
on the tangent space at the origin that exp~'(U) has an infinite intersection
with a straight line, having O as point of accumulation. This implies that
exp~*(U) contains a small (infinite) subgroup, and hence that U contains a
small subgroup. Since V is a curve, this small subgroup is ZARISKI dense
in V, and hence V is a group, as was to be shown.
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