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Summary. - A curve contained in a product of multiplicative groups passing through the 
origin, and containing infinitely many torsion points is a subgroup. The analogous 
statement on abelian varieties is discussed and ~'educed to an analogue of the irreduci. 
bility of the cyclotomic equation. 

Let A be aa  abelian variety, or a product of multiplicative groups (or a 
group extension of these), defined over the complex numbers,  say. Let Fo be 
a finitely generated subgroup of A, and let K be a curve (subvariety of di- 
mension 1) in A, passing through the origin, say. When  A is an abelian 
variety, the MORDELL conjecture has been expressed as assert ing that i f  the 
intersection of V with Fo is infinite, then V is a group subvariely (el. [2], [3]}. 
When  A is a product of multiplicative groups, then I proved the analogous 
statement in [2], [3]. 

A few years ago, ~I~FORD asked me the following ques t ion:  

If a curve in its 5acobian contains infinitely many points of finite period, is 
the curve of genus 1 ? The same question arose in MA~I~'s investigations of 
the P~OARD-FUC~S equations [4]. At the time I did not see how to make a 
conjecture  which would include all the above statements, but now it seems 
to me that one can formulate such a conjecture as follows: Let Y be the divi- 
sion group of Fo, i.e. the group of points P on A such that there exists some 
integer n ~ 1 {depending on P) such that nP  lies in Fo. I f  the inlersection of 
F with F is infinite, then V is a group subvariety. In  other words, from a 
diophantine point of view, when one considered previously a finitely genera- 
ted group, one may as well consider its division group. Taking Fo to be the 
unit element of A yields the special ease when 1~ consists of all points of 
f inite period on A. 

When  A is a product of muItiplicative groups, then the conjecture admits 
a par t icular ly  e lementary  formulat ion:  

Let Fo be a finitely generated multiplieative group of complete numbers, and 
let f be the group of complex numbers z such that z" lies in Fo for some n 
{depending on z). 
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Let f(X, Y ) - - 0  be a curve in the plane (absolutely irreduciblet pass ing through 
the multiplicative origin, i.e. f(1, 1) - -  0. I f  there exist infinitely many  elements 
x, y C P such that f(x, y ) - - O ,  then the curve is actually a group, whence f is 
a polynomial  of  type a X  ~ + bY"  - -  0 or X ~ Y  'r' + c --  O. 

As a special case, one then has the s ta tement :  Let g(X) be a rat ional  
function, and assume that there exist infinitely many  elements x E F such that 
g(x,) E F. Then g ( X ) =  eX" for some constant c and  some integer n. 

When  we take elements in ]7o instead of 1 ~, then of course this is a spe- 
ciai case of the theorem proved in [2]. For  instance, the line 

a X + b Y = c  

with abe ~= 0 has only a finite number  of points with coordinates in Pc. 

]~t~ARA, SERRE, and TA~E have shown to me how to prove the conjecture 
in the case P consists of roots of unity, and I shall reproduce here I~ARA'S 
and TAPE'S proofs. (SERRE'S proof is similar to TAPE'S.) I shall then describe 
a geometric interpretat ion for these proofs, and indicate how they lead to 
certain ((irreducibility>> criteria on abelian varieties, related to recent  work 
of SERRE concerning the GALOlS group of division points of elliptic curves 
over number  fields [5]. 

§ 1. IKARA'S PROOF. - Let  us begin with IJ~AR_~'s proof, given only for 
a rational function. Let  g be a rational function, and assume that there exist 
infinitely many roots of unity ~ such that g(~} is a root of unity. Then g has 
coefficients in some eyclotomic field. (Proof:  Let  F be the field obtained by 
adjoining al roots of uni ty  to the rationals, let K be the field obtained from 
F by adjoining the coefficients of g. If  K +  F, there exists an i~omorphism 

of K o v e r  F such that g ~ g ,  and then g~, g take on the same values at 
infinitely many roots of unity, which is impossible).  We may assume that 
this field of coefficients of g is finite over Q, generated by a primitive m - - t h  
root of unity, say k--Q(~,~,).  After a mult ipl icative translation, we may also 
assume that g(1) - -  I. 

Let  {~}  be a sequence of roots of unity such that g(~,,)is a root of 
unity, with n - - n 1 ,  n~, ..., n ~ ,  and each ~ is a primitive n - - t h  root of 
unity. For  each n, there exists an automorphism ~,, of Q(~n) over Q such 
that 

(Yn~n "-- e2~i/n. 
Extend a,, to F. Then 

is contained in the field Q(~,~, ~n), and hence is a 2 r a n -  th root of uni ty  
(not necessari ly primitive).  For  infinitely many n, the restrict ion of an to k 
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induces the same isomorphism on k. Taking a subsequence of {n}, and 
dealing with a conjugate of g if necessary, we can assume without loss of 
general i ty that for infinitely many n there exists an integer dn such that 

The roots of unity e2~l ~ approach 1 as n tends to infinite. Wi thout  loss of 
generality,  we may assume that 2uid, /2mn approaches 0. We have (by the 
mean value theorem):  

for some constant C ~ 0, whence 

] d. /2mn]~ C'I i/nl 

for some other constant C ' ~  0. This implies that the numbers  d~ are bonn- 
deal, and hence taking a subsequence of n if necessary, that they are all 
equal  to the same number.  But then one concludes at once that there exist  
infinitely many roots of uni ty  ~(-~ e2~/") and a f ixed integer D such that 

g(~)~'~ = ~ ' ,  

whence g(X) 2~--  X D identically, as was to be shown. 

§ 2. TA~E~S PROOF. - Let  f(X, Y) be an irreducible polynomial in C[X, Y], 
and assume that there exist  infinitely many pairs of roots of unity ~ - -  (~', ~") 
such that f { ~ - - 0 .  Then the coefficients of f lie in some field Q ( ~ , J - - k ,  
generated over Q by a primitive m - - t h  root of unity. (As before, one sees 
this by considering conjugates  of f over the field F obtained by adjoining 
all roots of uni ty  to the rationals).  

Let  n be the period of ~ (i.e. the least common mult iple of the periods 
of ~', ~"}. Let  d be a positive integer prime to n. There exists an automor- 
phism a of Q(~) such that z~ -- ~ .  If  in addition d - ~  1 (rood m), then a can 
be extended to an automorphism of klt) inducing the identi ty on k. Then 
f{~a) - -0 ,  so that ~ is a zero o[ f(X, Y) and also of f (X  ~, ya). But 

[kI~) : k] ~ ~(~) / . t .  

Applying any automorphism "¢ of k(~) over k, we find that z~ is also a common 
zero of these two polynomials,  which have therefore at least ~(n)/m zeros in 
common. However ,  by BEZOUT'S theorem, these polynomials  have at most 
((leg f)2d common zeros, unless f(X, Y) divides f{X ~, ¥~j. As soon as n is 
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large enough, we can use the prime number theorem giving the existence of 
of primes in ari thmetic progressions to find a prime number d satisfying the 
above conditions, such that d is much smaller than ¢?(n). Hence we conclude 
that  f (X,  Y) divides f ( X  a, ya}, and it is then an exercise to show that 
f (X,  Y} -" 0 defines a subgroup variety of C*XC*.  This concludes the proof, 
which also shows that n is bounded in terms of deg f and m. 

~ote  that we can avoid the congruence condition d ~ 1 (mod m) by using 
the following variation of TA~r:~'s argument. Let r : [k : Q]. We extend a to 
an antomorphism of k{~). Then a ~" induces the identity on k, and 

Then f(~ a~)-'O, so that ~ is a zero of f ( X , Y )  and also f ( X  a~,ya~). We can 
then argue as before, using only the temma:  

LEM~A. - Given an integer s, there exists an integer no such that for all 
n ~ no, there exists a pr ime number p not dividing n, such that p ~  n. 

PRooF. - The worst case occurs when n is a product of distinct primes, 
in which case the assertion is an immediate consequence of the fact u(N) is 
of the order of magnitude of N/log N. 

§ 3. ABELIAN VArIEtIES. - We shall now see how this variation can be 
formulated on abelian varieties. 

Let A be an abelian variety, defined over the complex numbers, and let  
V be a curve {subvariety of dimension 1) in A. We assume that V contains 
infini tely many torsion points. After a translation, we may assume that V 
passes througt~ the origin. Let  k be a field of definition for A and V, finitely 
generated over the rationals. We shall reduce the proof that V is of genus 
1 to a statement analogous to the irreducibil i ty of the cyclotomic equation. 

Let  m be an integer ~ 1. Let  )~,, "A--~-A be multiplication by m. As a 
cycle, ),,~(V)--1~" V(",  where V ('~) consists of all points rex, with x EV. 
Then ~ • V "~ is algebraically- equivalent  to m ~ . V. If  V ~ V ~'~', then V (~ V ~'~ 
has at most m~(deg V}: points, by a routine generalization of BEzou:p's theorem. 
(Cf. for instance [2], Lemma 4, Chapter I I I , §  3, We can view V and V C') as 
divisors on their  sum in A). 

If V - - V  (~), then ),,, gives an unramif ied covering of V over itself, of 
degree m 2, and hence V is of genus l, so is an abelian subvarieiy. 

Let  I ' 
conjecture 

(*) Let 
c >~ 1 with 

be the group of torsion points of A. We reduce the proof of the 
in this case to the following hypothesis :  

A be an abetian variety defined over k. There exists an integer 
the following properly. Let x be a point of  period n on A. Let G,~ 
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be the multiplicative group of integers prime to n, rood n. Let G be the sub. 
group of G,, consisting of those integers d such that dx is conjugate to x 
over k. Then 

(G,~ : G) < e. 

To apply (*), suppose that there exist points x,, of period n, n ~ o o ,  
lying on V. Let  d be a positive integer prime to n. By (*), there exists an 
automorphism a of k(x) over k such that a~c----d"x, where r is a positive 
integer bounded by ~. Then 

ax - -  d~x E IZ N 1/(a~). 

Furthermore,  if • is in the group of automorphisms of k(x,,) over k, then 

~d'~s E V N V (a~. 

I f  V=4=17 ~ ,  we obtain the inequalities,  using (*): 

~(n) < Number  of points on V N V (a~) ~ d2~'(deg V) ~. 
c 

We note that ~ ( n ) >  n 1/2 for sufficiently large n. By the lemma, taking d to 
be a sufficiently small prime number  not dividing n, we get a contradict ion 
as soon as n is suff ic ient ly  large, as desired. 

At present,  very little is known concerning (*). Recent  work of SERRE 
has been concerned with the size of the GALOIS groups of period points of 
elliptic curves over number  fields, and S]~R~E has ben able to prove (<finite 
index >> property for most elliptic curves, when n is a prime power  [5]. SERRE 
also tells me that proper ty  (*) is true when elliptic curve has complex multi- 
plication. Furthemore,  if the elliptic curve has a t ranscendental  j - inva r i an t  
over the rationals, then the truth of (*) follows from results of IGUSA [1]. 
Nothing seems to be known in more general cases. 

§ 4. APPENDIX.- W e  conclude by a remark concerning the exercise 
about  f ( X  d, yd) made previously. Let G be a commutat ive group variety {in 
characteris t ic  0), and let V be a curve on G, passing through the origin. 
Assume that there exists an integer d >  1 such that for all xEV, the point 
dx also l ies  in V. {We write the group law additively). Then V is a subgroup 
of G. Indeed, let p be a prime number  dividing d. If  ko is a field of defini- 
tion for G and V, finitely generated over the rationals, we can embed ko in 
a finite extension of the p -ad ic  field Qp, and let k denote the completion of 
the algebraic closure of Q~. If  x is a point of Vh sufficiently close to the 
origin, then d~ lies in V~, and the points d ' x  approach 0 as n tends to 

Annat i  di M a t e m a t i c a  30 
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infinity (for the p -ad ie  topology on V~). Taking the inverse image by the 
exponential  map of a sufficiently small neighborhood U of 0 in Vh, we find 
on the tangent  space at the origin that exp-l(U) has an infinite intersection 
with a straight line, having 0 as point of accumulation.  This implies that 
exp-l(U) contains a small (infinite) subgroup, and hence that U contains a 
small subgroup. Since V is a curve, this small subgroup is ZARIS~X dense 
in V, and hence V is a group, as was to be shown. 
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