Differential equations with fixed critical points (¥).
By F. J. Bureau (Lidge, Belgium)

Summary. - The object of this paper is to determine all the differential equations of the form
y=Rly, y. )

where E is a rational function ofgi and y, with analytic coefficients in «x, whose
general integral has no paramelric critical poinis.

I. Introduction.

1. One of the main subjects of Analysis is the integration of differential
equations, ordinary and partial. However, except for a few simple cases,
the integration is very difficult.

The theory of anmalytic functions in one or more complex variables;
initiated by CAUCHY, WEIERSTRASS and RIEMANN was applied by them to
the study of differential equations.

Subsequent researches gave important results which will be described
very briefly.

Consider a system of ordinary differential equations

(1) y=Fflx, ¥),

where y and [ are vectors in an n-dimensional space. Suppose that the
components of f are holomorphic in a neighborhood of z=x,, ¥ =19,;
then, the differential system (1) has one and only one solution y(x)=
Y@; Yo, %) such that y(ax,) = y,. This fanction y(x) may be continued analyti-
cally and gives rise to an analytic funcfion of «, the singular points of
which have to be determined.

When (1) is linear in y, the results are as follows:

i) the singular points of y(xr) are among the singular points of the
coefficients of the system; thus they are fixred and determined directly by
the equations;

(*) This research has been sponsered in part by the Office of Scientific Reseach, OAR
through the Buropean Office, Aerospace Research, USAF.
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#t) the set of all solutions of (1) is a linear vector space so that the
dependence of y(x) on the initial values is known.

Suppose that x=uw, is a regular singular point in the sense of L.
Fuonss. Then the analytical character of the integral in the neighborhood
of x =, is completely determined by the indicial equation and accordingly
is given by a set of constants which are easily obtained from the given
system.

2. More complicated circumstances arise when (1) is not linear in y. In
general, it is not possible to recognize if a given value wx, of « is regular
or singular for y(x); the analytical character of y(x) at x, may depend on
the value y, of y(x,). Moreover, the singular points of y(x) may be para-
metfric (or movable) i.e. may depend on y,; they may also be algebraic or
transcendental, or even essential points and may be isolated or not.

Therefore, the following problem initiated by L. FuceS as a conse-
quence of his researches on linear differential equations is of importance:
to determine all the equations

) Ry, y, x)=0,

where R is a polynomial in y and y with analytic coefficients in x,
whose integral has no parametric critical points. In the neighborhood of
every movable singularity, y(®) must be single-valued. To abbreviate, we
shall say that an equation of this type is stable together with its integrals.

This problem was considered by ABEL and JAcOBI when

B=y — (1 —y)(1 — Ky,

(% a constant) and by Brior et BouQUEr when R is independent of x.

The solation of this problem was given by L. Fucus, POINCARE and
PAarNLEVE and is as follows: the integral of the stable equations (2) are
determined algebraically, or by quadratures, or depend on a RICCATI equa-
tion. Consequently, they are reducible to classical (ranscendents, ie. to
algebraic and elliptic functions or to functions defined by linear differential
equations.

3. To define new transcendental functions, one must therefore consider
differential equations of higher order. However, new complications appear,
of which the most serious is the possible existence of parametric transcen-
dental or even essential singular points. For instance, in the latter case,
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y(x) comes arbitrarily close to any complex value in every mneighborhood

of x, so that lim #y(x) is not uniquely determined.
=y

Few and inconclusive results were obtained by Prcarp and Mirrac-
LEFFLER concerning stable equations of the second order. PAINLEVE was
the first to attack successfully this problem and to overcome the difficulfies.
To this effect, PAINLEVE has

i) to obtain a set of necessary conditions for the absence of parametric
critical points;

ii) to show that the necessary conditions thus obtained are or are not
sufficient.

Consider for instance the equation
3) y= R, y, »)

where R is a rational function of y and y, with analytic coefficients in
x. In order to obtain a set of mecessary conditions for stability, PAINLEVH
introduces in (3) by a suitable transformation of y and x, a parameter ¢ in
such a way that the new equation has the same fixed critical points as (3)
and is integrable when e==0. Then y(x, ) may be developed into a series
of ascending powers of e,

Y, &) = yolx) + egn(x) + *yal) + ...

the coefficients of which are also single-valued and determined by quadra-
tures; the conditions that these functions be stable are necessary conditions
for the stability of (3).

This method was used by PAINLEVE and GAMBIER to determine all the
stable equations (2). The result is as follows:

The stable equations (2) are integrable in terms of classiecal transcen-
dents or may be reduced by a transformation

b
(4) u——-zg%_}'—:—d, 2 = ¢(r),

where a, b, ¢, d, 9 are analytic functions of x, to one of the six cano-
nical equations in the following:
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TaBLE 1
I1. _éj:Gyz»i—m,

I2. y=2¢°+ay-+ a,

15 j=Y_ Y, W+S B, y_Jr

Yy

14 ¢ 2+ J+4m+2(:n~—oe>y+

Q*@

N NS

29 'y x
. 111 1y, (1 t 1.
16-9—§@+g:i+ymﬁﬂ"£+;:i“m_ﬂy

Yy —Hy—a)f | e ye—1) (w-—1>]
T P >2{"F +w~n'*u~w ’

o, B, v, 3 are constants.

As was shown by PAINLEVE, the integrals of the equations of Table 1
are not reducible to classical transcendents (except possibly for particular
values of o, B, v, 8 and thus define new transcendental functions.

4. - The method used by PAINLEVEH, although theorefically simple, im-
plies intricate calculations. Because of these difficulties and because of the
great number of cases that have fto be cousidered, PAINLEVE found only
three equations of Table I (namely 1. 1, 2, 3); the three other equations
were discovered by GAMBIER.

The method of PAINLEVE may also be applied to equations of order
higher than two; however. the intricacies increase with the order of the
equation.

To reduce these difficulties to a minimum, another method will be
developed in this paper; it will systematically avoid, as far as possible,
any integration of systems of linear differential equations and will reduce
the. problem to elementary algebraic processes. This method was initiated by
the author in 1939; a few examples were given at that time [l.al®.

{*) Numbers in brackets refer to the Bibliography.
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The ultimate purpose of the actual theory is: to find out if a given
equation of the form (3) is stable and if so, to integrate this equation.

To solve this problem, one may write all the equations (3) obtained from
the canonical equations by a transformation (4). However, this new Table
of equations is far too extended fo be written in full. According o GAMBIER,
certain sub-classes give rise to more than ome hundred equations.

Fortunately, our method associates with each given equation, a small
number of integers, easily determined and giving immediately the corre-
sponding sub-class; to perform fthe infegration, one has only to refer to
the appropriate paragraph of the paper. The situation is thus similar to the
theorem of FucHs in case of regular integrals of a linear differential
equation.

Finally, we observe that our method applies also to equations of order
higher than two, not necessarily linear in the derivative of higher order.
This will be the subject of another paper.

I. Statement of the problem.

1. Let @ be a complex independent variable and ¢ a complex parameter.

Let 4 =, ..., yn) be a set of functions satisfying the system of ordinary
differential equations

d
(1.1) Ez: Ax; y; &)
where 4 =(4,, ..., 4,) is a given vector-function of x, y, ¢, holomorphic

within a certain domain D confaining the point

* = To, y=y0=(?/g7 sy yz)) e=0.

When ¢=0, the system
dy .
(1.2) = Az, y; 0)

is called the reduced (or non perturbed, or undisturbed) systemm correspon-
ding to the perturbed system (1.1).

It is known that the system of differential equations (1.1) admits a
unique solution yz) = ylx; e)=y@®—x; #,; &) which is holomorphie
within a certain domain containing the point ., 4, e =0 and which
reduces to y, when @ = x,.

Annali di Matematica 30
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On using a theorem of PoOINCARE, basic in perturbation theory, one
may wrife

(1.3) y(@) = yar; & = viw) + El wy()e?

where o(m)=(v, ..., v,) is a solution of the reduced equation

dv
This solution v(x)depends on n arbitrary constants ¢, .....c,, (for instance
Y1, .., ¥n) and is holomorphic for certain values of these constants ¢, when
x varies along a curve L joining two points of the domain D.

On setting the matrix

(1.3) Bw; o= (G20,

a'vk

one may write

Al v+ OE‘.O ePu,; ¢) = A(w; v; 0) 4 e [Bla; v)u, + Cyoe; vl

p==1

[e's) k
—{—k_Z_z%{B(a;; V)i -+ Cplee; v, e, oy #y 1)l

where Cylow; v, #,, ..., #z_;) is a vector with components depending ounly
on the components of the vectors v, u;, .., #p—y.

Therefore, #; is a solution of

d
(1~7) c'l% = Blw; v)ur 4 Ok(w: Uy Uyy ooy g1

k=1, 2, ..).

The solution of this non homogeneous system of linear differential
equations may be obtained by the method of variation of parameters when
the solution of the homogeneous system

du
(1.8) %—_*B(ac, V) %

is known.
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Moreover, 1f o(x: ¢), (6 =061, ..., C4), i the general solution of (1.4),
depending on the arbitrary constants ¢;, ..., ¢,, one has

d dw LU
(19) %E—-—- B(x, Q))‘EE’ (k-—— 1, aiey ’n)
ov v . . .
8o that e’ T 3. Mre linearly independent solutions of (1.8).
1 n

2. Classification of singularities. - The solution y(w)=ylwx— 2, 9,; €
of (1.1) together with the series obtained by analytical continuation defines
a funetion — call it again gy(w) — which is a solution of (1.1) and in which
%o, Yo appear as parameters. This function g(x) may have singular points
depending or not on the initial value 9, of y. Those singular points of y(x)
independent of g, are called fiwed or inirinsic singular points of y(x) or
of the differential equations (1.1); those singular points of y(x) which
depend on g, are known as the movable or paramelric singular points of
the ditferential equations (1.1).

‘When the integral y(«) has no parametric critical points (i.e. branch
points or essential singularities), then we sayithat y(ac) is a stable intégral
of (1.1); when the differential system (1.1) has only stable integrals, we say
that this system is sfable. In the other cases, the differential system and
the corresponding integrals are wunsiable.

The following problem fhen arises: to find necessary and sufficient
conditions in order that a given system (1.1) be stable.

To solve this problem, the following theorem is essential:

General theorem of stability: If the gewneral solution of ithe differentiol
system (1.1) is single-valued in x for all values of ¢ in D except possibly
e =0, then i will also be single-valued in x for e =0. Moreover, the coef-
ficients wu,(x), (p=1, 2, ...), of the series (1.3) are also single-valued.

To prove this theorem, consider in the x-plane, a closed path L begin-
ning and ending at x,, on which y(w, ) is analytic. Let u,(x) be the first
of the functions wv(a), uy(x), (p =1, 2, ...), which takes on fwo (or more)
values at a,; then, one has

Y, €) = (@) 4 ety 4 ... LUy 0 P lu, 4 cuy g 4.0
= Yl(w, 5) + e? Yg(x, 5).

When e is small enough, the values of Y,(a; ¢) are very near to the
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values of u,(x); therefore, if u, () is multi-valued at x,, then Y,(x, ¢) is
also multi-valued at x,. Furthermore, the number of values of y(x, &) at @,
is not less than the numbers of values of any of the fanections wv(x), ux(x),
k=1, 2, ..), at z,. Consequently, if y(w, ¢) is single~valued in x, then the
functions o(w), u.{w), k=1, 2, ...) are also single-valued-

The method initiated by P. PAINLEVE to solve the problem breaks up
into two parts. First, a set of necessary conditions for the absence of para-
metric critical points is obtained and a set of equations satisfying these
necessary conditions is derived; second, it is shown by direct integration or
by using an appropriate method that these parficular equnations are stable.

To obtain the necessary conditions, a parameter ¢ is introduced into
the differenfial system under consideration, in such a way that the new
system has only fixed ecritical points and is integrable when e=0. The
functions v(w), u,(w) are solutions of systems of linear differential equations
and thus determined by quadratures. The conditions that their parametric
branch points are fixed give rise to necessary conditions for the stability of
the given system.

The necessary conditions thus obtained enable one to simplify the given
system; the same method is again applied until no further necessary condi-
tions of stability are obtained.

This method, theoretically simple, requires heavy and tedious calcu-
lations.

To avoid these combersome calculations, another method is developed
in what follows; it systematically avoids, as far as possible, any integration
of systems of linear differential equations and reduces the problem fto
elementary algebraic processes.

II. The theorems of stability.

3. In the next paragraphs, we shall apply the general theorem of stabi-
lity to variouws important particular cases; fthe resulfs thus obiained will
prove very useful in what follows.

Throughout this paper, we denote by dots differentiations with respect
to the independent variable w.

Let k=0 be an integer and 430 a constant.
TaroreM 1. - In order that the equation

3.1) gy = A

be stable, it is necessary and sufficient that k=0,
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Indeed, the general solution of (3.1) is given by
(3.2) Y=g+ Al — @)

where «, and gy, are arbitrary conmstants; it is clear that y(x) defined by
(8.2) is stable if and only if 2 =0.

TaroreMm 1. - In order that the equation
(3.3) y = Ay*

be stable, it is necessary and sufficient that k<< 2.

Indeed, the general solution of (3.2) is given by
B4 Yt =>0—kd@—x) + ¢,

where a, and ¢ are arbitrary constants. In order that y(x) defined by (3.4)

be stable, it is mnecessary and sufficient that 1-7{3:«:?% where % is an
integer; then %k <2.

TaeoreM 1I1. - Let Ply) be a holomorphic function of y in a neighbo-
rhood of y=0. In order that the system of differential equations

(3.5)

be stable, it is necessary

i) that k=0 or 1;

i) and if k=1, thal A:l——;l@, where n=0 4s a positive or ne-
gative infeger or n—=oo(i.e. A=1).

Indeed, set

Y = e = g, -+ *u, - ...,
z = efy = ehvy, + P, - L
the differential system (3.5) becomes
=k,

who = Av*[1 + P(ew)].
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It then follows that w,, u,, v,, ... satisfy the following equations
=0, wbv,=Av}, wy=1,;

therefore, if @, b, ¢ are arbitrary constants with fhe vestriction that
bc =0, one has

b%¢

) =10, w(r)= m) ’

% bk bR
wa(0) 2/ vt = 419 b — dolw —a)’

21
In order that u,(x) be stable, it is necessary that k=0 or 1.
Now, suppose k=1 and set w=0a -4 ¢l, y—ceu, 2 =2, where a is a

constant. Substitution in (3.5) gives

du_, &

T 7 = Az*{1 -}- P(eu)].

When e=0, one finds the reduced system
(36) —-— =2, U G = A%

The function u(f) defined by (3.6) satisfies the equation

d*u du\?
w g =4[ )
and implies:
1) if A=1, u=ett%;

il) of A=s=1, u=/(c -} ct)/a—4,;

¢ and ¢, are arbifrary constants. Therefore, in order that u(f) be stable, it is

1iA:n, where n =0 is a positive or negative
integer [note that n —=oco gives 4 =1].

necessary that 4 =1 or
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5. ~ In this and in the next paragraphs, let p denote a constant, 2= 0
an integer, P(x; #) a polynomial in 2 of degree <k — 2, and Hyw; #; w),
(=1, 2, ...), a polynomial in . Further, we suppose that h(xw;z), Hiwx; z;u)
are holomorphic functions of 2z in a neighborhood of z=0 and that P(x; 2),
h(x; 2), H{w: z; w) are analytic functions of x in a given domain D.

We consider the differential system

{ 2 =14 2P(x; 2) + 2*n,
(6.1) .
( o == pu -+ h(xw; ) + 2Hy(w; z; u),
concerning which we have the following basic theorem:

TeEOREM IV. - In order that the differential system (5.1) be stable, it
is necessury

i) that p be an integer, positive, negative, or zero,
il) and if p=0, that hax; 0)=0.

Proor. - Set =0 }-¢l, 2 =cv; aeD is a constant.
Substitution in (5.1) yields

%} =14 ewP(a + ¢ 1; cv) - *otu,

/U% —_—‘pu + h(a + Et; 817) "I"‘ E/UHl(a, —I— Et, 8/0; u’).

When ¢ =0, one finds the reduced system

dv du

(5.2) a= 1, w» ai = b -+ Bia; O).

Suppose p==0. Then the general solution of (5.2) is

o=t —b, ulty= ot — p — "% 0,
b and ¢ are arbitrary constants.

In order that wu(f) be stable, it is necessary fthat p be an integer, posi-
tive, negative, or zero.
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Now suppose p =0; the non perturbed system (5.2) becomes

dv du

%_1, v a—f—_:h(a; 0)

whose general solution is
v(f)=1¢t—0b, u{t)=c-+ hio; 0)lg(t —b),

where b and ¢ are again arbitrary constants. Therefore, in order that u(f)
be stable, it is necessary that h(a; 0)=0; because a € D is arbitrary, this
condition becomes h(x; 0)=0.

6. - In what follows, we shall apply our basic theorem IV to the diffe-
rential system

z=1 4 2u,

(6.1) :
zu=pu + ax; 2)+ 2H(x; z; u),

where p is an integer and h{w, 2), Hy(w, 2; u) have the properties indicated
above [see § D].

When p is a negative integer, no condition for stability follows from
theorem IV,

Suppose p >0 and set
(6.2) u = P(x; z) 4 #%v,

where v is an unknown function and P(x; 2 is a polynomial in 2z of
degree p—1 whose coefficients will be determined later on.

Substituting in (6.1), one finds
g=142P(w; 2) + 22+
so that, from (6.2), it follows that
w= Q@; 2) 4 & 4 p v - P Hya, 2; v);

Q(x; 2) is a polynomial in 2 of degree <p—1; Hyx; #; v) has the same
properties as Hy(w, z; u).
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Now, one may write
Hx, 25 w)= Hy(x, z; P - 2Pv);
= R(x, #)+ 2PHy(w, 2; v);

E(x, z) is a polynomial in z of degree == p -—1 and is an analytic function
of x; Hiw, #z; v) has the same properties as H,(z, #; u). Then, the second
equation (6.1) becomes

Py = E(x; 2) + 2P Hyx, 2; v),

where H,=— H,— H, and

Ew; 2y=pP; 2)—2Qw; 2)+ Ww; )+ 2R(x; 2)

is a polynomial in z of degree p.

Suppose that we determine the p coefficients of the polynomial Pa; 2)
in order that E(w; 2)= l{x)??; then, the differential system (6.1) becomes

=14 2P(x; 2) + 2P+,
6.3) )
2 == l(w) + zH o, z; v).

Then the condition for stability, {{z) =0, follows from theorem IV,

It is clear that when /(a)=0, the system (6.3) has a unique holomorphic
solution z(x), v(x) such that #(a,)=0, v(@,)=1v,, where v, is an arbitrary
constant.

Note that the condition ()= 0 is also sufficient in order that the
general solution of the differential system (6.3) have no branch point in ax,.
Therefore, no additional condition for stability can be obtained by the pre-
ceding method; its efficacy is exhausted.

7. - It is particularly easy to dispose of the above method when p is
small. For future use, it will be useful to consider the values p =0, 1, 2, 3.

Suppose that the second equation of (6.1) is written more explicitly in
the form

2u == pu 4 Ay 4 Az - 4,27 + 427 3 ...
1.1

+ w(Bz -+ By + ...) 4 keu®,

Annali di Matematica 3
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where the A;/s and Bjs are analytic functions of 2 and % is a number
independent of .

i. p=0. The condition for stability is 4,=0.

#. p=1. Set u=a --2v, where a is fo be determined lafter on.
Substituting in (7.1), one obtains the two relations

\ & + Ao —_— O,
(7.2) .
( o= A, + aB; 4+ ko’
On eliminating o, it follows that the condition for stability is-
(7.3) Ao+ 4y — AoB, + kA =0,

i) p=2.8et u=oa 4 Bz 4 2*v, where o and B are to be determined
later on. Substituting in (7.1), one obtains the three relations

20 4 Ay == 0,
(7.4) a =8+ 4,4 B, + ke?,

B = A, + aB, + BB: + 2k — L)af.

To obtain the condition for stability, one must eliminate « and {§ from
this set of equations.

w. p=3. Set # = o -} g - yz® -} 2% ; the same method gives rise to
the four relations

Ba - 4y =0,
o=28 + 4, + aB, + ka’,
B==1 4 4>+ aBs + BB, + (2k — 1)ap,
| v=4s+aBs+ BB+ 1By + ( — 1) (B* + 2ay),

from which the condition for stability follows by the elimination of «, B, y.
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In general, the process of elimination is complicated. Fortunately when
applied to particular equations, the condition for stability is, in most cases,
readily obtained and easy to work with. Examples will be given later on.

III. Applications.

8. = To find all the stable equations of the form

where P(y), Qy) are polynomials in y independent of x.
i. Q) is a constant or has only simple roots.

Let y==a be a root of Q) of multiplicity k¥ =1. The equation (8.1)
.is equivalent to the differential system

“Azz

(8-2? Y=2, P= L 1+ gy)]

where A is a constant and g(y) is a holomorphic function of y in a
neighborhood of y =a and such that g(a)=0.

According to theorem III, a necessary condition for this system (8.2) to

1
be stable is k=1 and A=1 or l—ﬁ, where #==0 is a positive or

negative infeger.

#. Let a,, .., a, be the p simple roots of ¢(y). Denote by A, the

residue of g%i at y=a,; one has A, =1 or A, =1— "i, where mn,=E0
R
is a positive or negative integer (cf i). Then (8.1) may be rewritten as
w2 Ay
8. =y X ———— 4B
83 i=u| 8 e+ B,

where R(y) is a polynomial in y.

Now, set y =wu""; equation (8.3) becomes
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According to theorem 1II, =0 must be a simple pole of B(u) so

that %& R ( ;,5 ) =0b - O(u), where b is a constant. Therefore, the polynomial

BR(y) = Z——l— 0(;}) is identically zero.

Moreover, it follows from theorem I1I that

(4
AIZAk

k==1
. 1 . - .
is equal to 1 or to 1— » where n =0 is a positive or a negative

integer.

9. Tt follows from the preceding paragraph, that to obtain all the stable
equations of the form (8.1), one has to find the set of integers u, n,,

(=1, ..., p) different from zero and satisfying the equation
2

9.1) 3 (1_i)=1_¥.
k=1 Ny n

Note that » and n, may be infinite,

i) Suppose A=1 or n =o0; then
§ (1__ 3_):1
=1 Ny
or
1 L __p.
p——l——ﬁ-{-...—{—%é é,
therefore p < 2 and

b) ng, My = My = 2.

ii) Suppose 4 ==1; then 4=1— %S 2. Because

1 1
— —_— — <<
Apy=1 nk22’ one has p < 4.

[

a) p=4; then A=2 A=, k=1, 2, 3, 4, 1ie.

b

N=— 1, =0y == 0= N, =2
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b) p=0; then 4, =0, k=1, 2, 3, 4.

¢c) p=1; then A=4,=1— }%, # is an integer ==0, 1.

1 1 1
= 2: = Ll i ive.
d) p=2; then " +n2 1 =0 so that » is negative
On setting # = —m, m >0, one has
11 1
9.2) —f—to=1

m Ny .

~whose solutions are
(3:3:3); (274;4)7 (2:3>6)’ (2,2,00), (17 , — %),

where # is an integer.

1 1 1 1 3
—_ 3: - == — —_ —_—— < —
e) p=3; thenn n1+n2+n3 2_2 2<0
and » is negative. On sefting # = — m, m > 0, one. has
1 1 1 1 1
t—9_ - __*t_ >
(9.3) " Ny Ny N 2

[note that m,==1]; therefore m =1 or 2.
It m=1, equation (9.3) reduces to (9.2) with m = #n,.

If m =2, one has n, =n,=mn, =2. Note that %, > 2 is impossible

1

because in that case 1 <1 implies — +—1—> 1, an impossibility since n,,
n 2 Ny Mg

ng are different from 1. Thus the solation is unique.

Corresponding to the solutions of equation (9.1), there are nine possible
types of equations of the form (8.1). For convenience, we set

a ¢ e [}
A=—", C=——, EBE=-— QG=—2_
ay +b ¢y + d ey + f 9y +h

where a, b, ¢, d, e, [, g, h are constants and eventually zero.

The nine possible values of L) are tabulated below.

Q)
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TasLre IL
0; 4; A+ C;

A(l —}—%)4- C(l—%), n>1 an integer;

[SL1

4+ C+E; 5(4+ C+E);

2
A+30+m; 24101 B

bt DOl DD e

5 A+ C+E+ 6.

The corresponding differential equations are shown to be stable by
direct integration. Indeed, they are equivalent to

y=0,

y = K(ay + b),

y =Ki(ay + b)(cy + d),

y* = K(ay + by+cy + dy—,

y* = Klay + b)(ey + d)(ey + [,

y* = Klay + b(cy + dY(ey + )",

y* == K(ay + b)(cy + d)' (ey + [)’,

y* = K(ay + b (cy + d)f(ey + 1V,

y* = K(ay + b)(cy + d)(ey + ) (gy + h)

where K is an arbitrary constant. In what follows, K (and eventually H)

with or without a subsecript will denote a constant, not always the same.
The solutions of these equations are known and involve only elementary

or elliptic functions. Therefore, they are all stable; the given list exaustive.
These results will be used later on.

10. For future use, we need the following theorem.

Denote by o and b two constants, not both zero, and by %k and = two
integers. Suppose k= 1; let wn=0 be positive or negative and even-
tually infinity.
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TaeoreM V. - In order that the equalion

b
s

(10.1) gz(l_l)%+aﬂ.+

n y*
be stable, it is necessary that k=1 and n1.

Proor. - Note that equation (10.1) is invariant under the transformation
y = ¢e2,  =¢*{, where ¢ is a parameter; note also that under this frans-
formation, one has

1k d_ﬁ(: o= gk at

Y dy — dz’

Accordingly, we set

— gi—k
u=1y &y

’

then equation (10.1) is equivalent to the differential system

pady L ade_

de ™ u @_P(M)’

where

P(u):%—kﬂaumbug.

This system is also equivalent to the differential system

dy 1
B—1 Y —
(10.2) Y dw =’

; du
(10.3) Y ay = uP(u).

Suppose k> 1; then, the equation (10.3) has a solution # ==h, where
h==0 is such that P(h)=0. Then, from (10.2), one has do =hy**dy and

k
yk=ﬁ(06+(}),

where ¢ is an arbitrary constant; this function y(o) is not single-valued.
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Suppose k=mn=1; then, equation (10.1) is equivalent to the diffe-
rential system

(10.4) gzi, yit + aw + bu? = 0.

Set x=—¢t, u=cv where ¢ is a parameter; then, the differential system
(10.4) may be rewritten as

d 1 dv
dlti::t}’ Y 4 + ev(a - bew) = 0.

We may now apply the general theorem of stability. To do this, y(f),
v(t) are developed as series of ascending powers of the parameter . If a,,
Yo, v, are arbitrary constants, one finds

x —x
Y=Y+ y ° + O(),
2 m—"x() 9y s
v:vo—aav;1g<y0+ a )4—0(3')11‘0&:{:0,
0
v = vy — b0} lg(yo + ”_@ w")+ 0(c%) if @ =0.
0

It then follows readily that the differential system (10.4) and the equa-
tion (10.1) are not stable. Our theorem is proved.

IV. - The equation y= Rux, y, 9).
11. ansider the equation
(11.1) y= R, y, ¥),
where R(x, y, y) is a rational and irreducibile function of y and y, with

coefficients analytic in . Our purpose is to find all the stable equations
of the type (11.1).

The equation (11.1) is equivalent to the differential system

(11.2) y==z, 2= R, Y, @)
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Let w,, yo be particalar (arbitrary) values of =, y; let z2=a(x,, ¥, be
a pole of order m >0 of E(x,, ¥, 2)

Set 2 =u 4 ax, y); then, in a neighborhood of x,, the differential
system (11.2) may be rewritten as

g= # -+ afx, y);
(11.3) _
u=u""Plx, ¥y, u),

where Pz, 4, ) is a holomorphic function of =, y, # such that
P(an Yo, O):t:O

Let ¢ be a parameter. On setting
(11.4) =y ePt, y=1yo+ etw, wu=c"y,

the differential system (11.3) becomes

12 W — oo - aly 4 ¥, o + o)

(11.5)

eI mtD—pym %} = P(x, -+ eP1, 9y, + e, £70)

$0 that, assuming p=g¢q, p==r@m -+ 1), r=1, one obtains

%—? = a(x, + £PL, Yo + Pw) -+ ev,
(11.6)
dv
p™ = Plx, + ¢?t, y, -+ Pw, =v).

When e =0, one finds the reduced system

dw dv
a:“(wo, Yo)s 'UmZg:P(xo’ Yo5, 0);

for this system to be stable, it is necessary, according to theorem I, that
m == 0.

Therefore, R, ¥, ) is a polynomial in y of degree s; let us write

R(x, y, ) = Ro®, y) + Bilx, )y + ... + Rilee, 1) y*

Annali di Matemalica 32
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To determine the value of the positive infeger s, observe that the equation
(11.1) is now equivalent to the differential system

'S y: 2,
(11.7) ,
| 2= Rx, 9) + -+ Rilw, )2,

On setting
(11'8) &L == o + eﬁts ¥Y=1% + 30%, A= 8..7‘,0?

one obtains

du
g—pt+r —
¢ dt v
(11.9)

E(s—1w~p3_/§ = R (o ", 4o+ eup® + O(e).

When g —p+r=0,(—1)r—p=0,r=1,1ie, p=s—1, g=s5—2,
one finds the reduced system

du dv
ar =V g = Beles yov*;

for this system to be stable, it is necessary, according to theorem 1I,
that s < 2.

Therefore, in order that equation (11.1) be stable, it is mnecessary that

R(x, y, y) be, with respect to y, a polynomial of the second degree.

For convenience, we shall write equation (11.1) as

(11.10) y = Alx, y)y* + B, yyy + Clw, v,

where A4, B, O, are rational functions of y with coefficients analytic in .

12 The next step in our investigation is to caracterize the functions
4, B, 0, regarded as functions of y. Precisely, we shall show that

i) All the poles of A(x, y) regarded as function of y are simple;

ii) The poles of B, y) and O, y) regarded as funclions of y are
included among those of A(x, y) and are simple:
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iii. Let D(x, y) be the least common denominator of the partial

fractions of A(x, y). Then, the degrees of the polynomials %Eacm’—zg and
2
}('}J((z: 3)) in y are at most 4 and 6, respectively.

ProoF oOF i) - Set ®=w, -+ ef, where x, is arbitrary; equation (11.10)
becomes

a7 dy\*
T = Aot ot ) + 06

In order that the reduced equation

2

dy___ ' (dyz
W—A(wo, Y) gﬁ)

be stable, it is necessary that A4(x,, y) be identical to one of the nine types
enumerated above [see § 9, Table II]. Because «, is arbitrary, the a, b ¢,
d, e, f, g of these nine types are now to be regarded as analytic functions
of -«; these functions may eventually be identically zero or constants.

Now, set
. _ cy + d
P P T ey T eyt
_af—be cy+d

Y= of—de ay+b

according as A(x, ) coincides respectively with the first type of § 9,
Table II, or the second, or the third, or the fourth, or with one of the
other types; then, one finds that A(x, y) may be assumed to be one of the
following eight distinct rational functions

Tapre II1

i. 0;

1.
3

Y

if.

, »>1 an integer;
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bt
RIS
i (e L b

In viii, H may be a constant (=0, 1) or may depend on x; in the
latter case, on taking a new variable /== H(x), one may suppose that H(x)
coincides with .

[As an example, we verify the result for u = where a and b

1
ay + b’
are analytic functions of «x; then,

) 1w

y=— - L+ M, w,

. L/n 2w -

== 4 (=) + M wi Pl )

where M, N, P are rational functions of # with coefficients analytic in .

Therefore, the equation

. ?‘/2 )
Y=o b T B@ vy + C(x, y)
assumes the form

i =" 4 Bua, wi+ O, u)

where B,, (, are rational functions of # with coefficients analytic in .
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Note also that the third type of § 9, Table II is now considered as a
special case of the fourth type (for n = ooj].

Proor orF ii. - Let y=oa(x) be a pole of order § of A(x, y), of order
E of B(x, y), and of order [ of C(x, ). One has j=0 or 1; we suppose
that at least one of the integers k& and [ is greater than j. On replacing
y -+ alx) by y, one may assume oafx)=0..

In a neighborhood of the pole y=0, equation (11.10) may be written as

o .
az.1) i="]1— 1 + 0|+ % (B, 0+ ow)
1
+ :,7[0(90, 0) + 0],

where n==0 is a positive or negative integer which eventually may be infi-
nite. Note that =1 when j=0.

Now set y==cu and
i. =+ e when [ =2 -1,
ii. @ =+ e*2{ when =2k — 1.

Then, equation (12.1) becomes

u:(lmh)%“'*‘aﬁ'-I— O(E), when l<2k"—‘1,
?:’;_1__1>@+ + Ofe), when I >2k—1
—_ 970 %' %g > g ’

—~+a%+%+0@, when [=2k —1;

here, a = B(x,, 0), b = C(x,, 0).

The reduced equations are contained in

b

uzk——l

(12.2) iim(l-«-%)gf—}-a%—k

[if a==0, k is necessarily a positive integer; if @ =0, one has 2k —1={
where [ is a positive integer].
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In order that equation (12.2) be stable, it is necessary, according to
theorem V, that k=1 and wnZ=1. This proves ii.

Proor orF iii. — The result ii is essential for it enables one to give
upper bounds for the degrees of B and C. Indeed, let D(x, ) be the least
common denominator of the partial fractions of A(x, y), i.e. (see Table III),

Dix, y) =1y for ii, iii,
=yy—1) for iv — vii,
=yly— )y — H) for viil

Then, one may write

Mz, y)
D(x, y)’

_ N, 9)
D(x, y)’

B(x, y) = Cx, y)

where M(x, y) and N(x, y) are polynomials in y of degrees i» and n,
respectively, with coefficients analytic in .

On making the substitution y = u~*', equation (11.10) becomes

w="r {2 _ L Y| (m, -1—)]4— B(m, l)is_- C(m, 1)uz
u u u u u
Now, we consider two cases according as to whether 4 =0 or 4=0.

i. 4=0. Then, u =0 is a simple pole for the coefficient of u* so
that necessarily m <1, n < 3.

ii. 44=0. On taking into account the various fypes of A(x, y) given
above (Table III, i-viii), one sees that w =0 is still a simple pole of the

coefficient of u?; therefore, if ¢ is the degree of D in y, one has
m=qg-+41, n<g-+3

Thus, ¢ << 4, m =4, n <6. More precisely, if A4(x, y) coincides with
one of the types i-viii (Table III), the degrees (m, n) are (1,3) for i, (2,4)
for ii and iii, (3,5) for iv-vii, and (4,6) for viii.

18. The above method enables one to obtain in a simple manner condi-
tions of stability which restrict the form of the coefficients 4, B, C of
equations (11.10). To obtain other necessary conditions for stability, one must,
according to PAINLEVE, introduce a parameter e info the equation and
develop the solution y(x, ¢) of the new equation as a series in powers of e.
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As we have seen, the coefficients of this development are determined by
quadratures; the conditions that their critical points are fixed are necessary
conditions for stability. This method must be applied to all the poles of A(x, y) and

to y =oco. [For y =oo, one may set y:% or use the transformation

y:u/e]
However, to avoid the numerous and arduous computations involved in
the method of PAINLEVH, we shall use another, more simple method.

14, The values of y for which the general existence theorem of CAvucHY
does not apply are y =oo, 0, 1, H(#=0, 1), or  (according fo fthe type of
the equation). In the following paragraphs, we shall consider particularly
the case y—=oc; the other cases may be settled directly or by appropriate
substitutions of the independent variable.

In a neighborhood of y = oo, one has

M (x, ¥ M,
Diw, )= W T “T D
(14.1)
N{%, ?i) — 3 2 Nl
| D(m’ y) —by +bly +b2y +b3+ ﬁ?

where M,, N, are polynomials in y, each degree of which is less than the
degree of D, and where the a's and b&'s are analytic functions of .

Further,

(14.2) Aw, y =1 +0 (;—)

where the constant 4 has the following values
0 (type i); 1 (type ii); 1 — "’ # > 1 an integer (type iii);

(14.3)
(types iv, vi, viii); % (type v);é (type vii).

[N

1 .
These values correspond to 4 =1 — © an integer, where % has the

following values
n =1 (type i); n =oco (type ii); n > 1 (type iii);

(14.4)
n= —2 (types iv, vi, viii); » = —3 (type v); n =—6 (type vii).
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Then, equation (11.10) may be rewritten as

. - INE: 10 -
w3 g=[a+ o )|+ ay+ a0 ) i+ b+ by O

Let us now determine necessary conditions for the absence of para-
metric critical points for the equation (14.5). To do this, suppose that in a
neighborhood of = a,, one has

sx)

(14.6) ylx) = "

where 7 > 0 and s(xo)==0; s(x) is a holomorphic function of .
Substitute y(@) given by (14.6) into (14.5) and note that

o) = — T (14 O — ),
R p—

First, suppose that alw,) or blw,) is not zero; then, the dominant terms
.. .2 .
arise from y, %, yy, y* and are respectively proportional to

(@ — @)™ % (o —w)”"T, (e — )T, (6 — @)

Therefore, to obtain an identity at least two of the numbers » 4 2,
2r 1, 3r must be equal; this gives r =1.

Second, suppose that a(x,) and bz, are both zero; then the dominant
y
terms arise from y, %, y, y* and are respectively proportional to

(@ —2) T2, (— )" (X)), (@ — X

so that # == 2.

15. Suppose r=1 and set

)

4

(15.1) y= 2, z=14 ue



F. J. Bureav: Differential equations with fized, etc. 257

For convenience and for future reference, we note the following formulas

(15.2) @}:=~§E~Z(@a-—§),

(15.3) y:—.z—f 82<3u-24)—2(7:c-_u2—~-{-%§u),

(15.4) yy:—g-i_if(u_g),

(15.5) gz_%_u_;_g,

wo e =s 2
B R [

in addition,
(15.7) A@, =4+ 06);

[use Table IIIj;

(15.8) %43 afg +0() when az0,

= a, + 0() when o = 0;
N s 1

15.9) S=bs+o0 (;) when b0,

=55 +0()) when b=0
Set
(15.10) P=bst—as+ 4+ 2,
(15.11) p=3—24+4 as.

Annali @i Matematice
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Introduce y(x) given by (15.1) into the equation (14.5) and rewrite the
resulf as

(15.12) 2 = — §+pu + Mz, 2) + 2H(x, 25 u),

where h(x, z) and H(x, #; u) are analytic functions of x# and holomorphic
functions of # in a neighborhood of #=0;. H(x, #; ) is a polynomial in u.
Now, we determine s by setting P=0; it then follows from theorem IV
that a necessary condition for the equation (11.10) to be stable is that p be
an integer.
These conditions will determine the possible values of a and b.

16. Consider the relations

(16.1) bs* — as — 1 — - =0,
n
2
(16.2) p=1-+ " + as,

where p must be an integer.

i. Suppose b=0 and a==0; then as+1+:—@.~:0 andp:%. In

order that p be an integer, one must have =1 or = oo, 8o that
(16.3) n==1, p=1, as+2=0;
(16.4) n==oo, p=0, as-+1=0.

ii. Suppose ¢ =0 and b==0; in order that p=1 +9—22be an integer,

one must have n=2, 1, — 2 or co. Therefore, the following cases arise
(16.5) n=1, p=3, bs¥—2=0;

(16.6) n=2 p=2, 2bs—3=0;

(16.7) n=—=-—2 p=0, 2bs’—1=0;

(16.8) n=oo , p=1, bs¥=1.



. J. Bursau: Differential equations wilh fived, cte. 269

iii. Suppose ab==0. On eliminating s between (16.1) and (16.2), one
obtains

2y, 1
(16.9) b(p—l—;ﬁ):a ( .._.1.;),
Taking into account the value of b given by (16.9), one rewrites (16.1) as
1 L, 2\? 1 A
(p-wﬁ)as — (p— 1 —h> as—-—(l +%)(p—— 1— ﬁ)__O.

This equation determines the product as; its roots are

(A4 DHmp —n—2)

2
p-——l—ﬁ and —

n(np — 1)
so that [cf. (16.2)]
b,
2
L+otTe=1 pt24n_
pn—1 ¢

Therefore, the integers p and ¢ satisfy the Diophantine equation

(16.10) pH+q+n+ 2=pon.

The integral solutions of (16.10) are given in Appendix I and determine
all the distinet possibilities that we shall have to consider later on.

These possibilities are given below together with the corresponding
relation (16.9) and the related values of p and s.

nw=1
(16.11) a=0, b0, p=3, bsf¥—2=0;
(16.12) a0, b=0, p=1, as4+2=0;
p=0 , as=— 3,
(16.13) 9% 4+ a*=0,
{ p=—3, as=—6;

, as=—1,

=
(16.14) b= a?, )
[ p=5 , as=2.
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o OO
(16.15) a=0, b0, p=1 b —1=0;
(16.16) 040, b=0, p=0, as-+ 1=0.
@22.

g p=0, nas=—(n-2),
{16,17) b(n + 27 4+ na*=0,
fp=—m+%n%=—m+nm+m

??,::.2.

) S p=1, as+41=0,

(16.18) 2b = o,
( p=>5, as—3=0;
(16.19) o=0 b0, p=2, 2bs*—3=0.
n=3.
’3 p=1, Bas=—2,
(16.20) 3a* = 2b,
f p==3, 3as=4.
n ==
p=1, 5&8:—-—2,
(16.21) 5a* = b,
p=2, Das=
N oo e 2
(16.22) =0, b3=0, p=0, 2bs°=1.
0 =—3.
p=1, 3as=2,
(16.23) b = 3a?
p==0, 8as+1=0.
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7= — B,

p=0, 3as=—2,
(16.24) 8b — 3a*

p=4, 3as=10.

17. Now suppose r=2; then a(®)==0, bx)=0. Set

(17.1) y:t(z—f), z= 1+ us
so that
: 2t ¢ i

(17.2) i=—— (2w —7),

- 6 2t 3 O .
7.3 y-;+;(%—2ﬂ~%ﬁw+%u—%~ﬂu%

IS 2\, 2 4 2 {
I A ik LR R (RS EE

2 nit T n) 28 n

Introduce y(x) given by (17.1) into the equation (14.5) and rewrite the
result as (15.12) with

(17.5) P=bi—2_",
V]

4

(17.6) p=1+4_.

Now, we determine #a) by setting P=10. In order that the equation
(11.10) be stable, it is necessary that p be an integer; we suppose p=0.
The only five distinct possibilifies are

7.0 0= oo, p==1. bi=2

(17.8) n=1, p=5, bi=286;
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(17.9) n=2 , p=3, bhi=4;
(17.10) n=4 , p=2, bi=3;
(17.11} n=—4, p=0 bi=1.

When n is an arbitrary integer, one has also to consider the case
a=b=b =0

18. We have also to take into account the values y =0, 1 or .
For y=0 [resp. y=1], one may set y=wu"" [resp. y—1=u""] and
use the results of the preceding paragraphs.

One may also proceed in a more direct manner. For instance, for
y =0, one may set

(18.1) y=s8 z2=1-+uz

so that

z)=8+SZ(u+§),
(18.2) o
é=2é+su+sz(is+2§%+§—f—u2)

and use the above method.

In what follows, we shall have to consider (possible) movable poles [or
zeros or unities] of order one or twoj; to abbreviate, we use the obvious
notations P1, P2 [or Z1, Z2 or U1, U2] and for example, speak of an equa-
tion of class (P1, Z1, Ul) to signify an equation having (possible) movable
poles, zeros and unities, all of the first order.

To continue our investigations, we must consider separately each of the
eight types of equations corresponding to the eight possible values A4z, %)
[see Table ILI, i-viii].

Observe also that to obtain canonical forms for the stable equations,
it is often most convenient to use a transformation [call it T(A, p, ¢)]

(18.3) yloe) = Ay + px), =)

which does not alter the main features of the equations considered
[Mx), p(e), ¢(x) are analytic functions of x; in some cases, one has Ax)=1,
pw) =0 or o) =ux].
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For convenience, and future use, we note the following formulas where
2
primes denote differentiations with respect to f, i.e. u’zgt—u, u”=%,

& y=Ju + dou + p,
(18.4) L . . .
| =+ @+ 2w+

When p =0, one finds

.y N 2 . A .
y—?j:—:)\cp (u —u—>—|-()\——— i—)u—l—)\c\ou.

<

Throughout the remaider of this paper, we denote by a, b, ¢, d, e, f,
g, b, k, I, with or without subscripts, analytic functions of «, (not always
the same) and by H and K, with or without subsecripts, (arbitrary) constants,

(not always the same). Moreover, we set A =; , @ =% g0 that
¥

)\2

)

AppENDIX [.
The Diophantine equation p -1 g+ n+ 2 = pgn.

19. The problem of finding all the possible types of stable equafions
(11.1) depends on the problem of finding all the integral solutions of the
Diophantine eguation

(19.1) p+q+n+2=pgn
We suppose n=1 or w=—2, —3 or —6 and p = 0.
i. »=1. Equation (19.1) is
(19.2) p+qg+3=pq

When p=0, one has ¢=—3; when p—1, equation (19.2) has no
soluntion.
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Suppose p = 2. Equation (19.2) may be rewritten as

(19.3) }1(1 + g) =1 ;

so that ¢ >0; we may even suppose ¢=2 because when g=1, equation
(19.8) has no solution.

Since
1 3
1 —Zp=1+4 -,
(1—gp=1+]

one finds p =<5; there are four cases to consider, i.e. p=2, 3, 4, b.
It is readily seen that for p =4, equation (19.2) has no integral solution.
There remain the three distinct solutions

p=2, qg=5; p=3, ¢=3; p=5, ¢=2
Therefore, when % =1, the only integral solutions (p, q) of (19.2) are
(194) (07 —“3)7 (275)7 (373)5 (5a2)

ii. n==occ. Equation (19.1) reduces to pg=1 and has the only
integral solution p=1, ¢=1.

iii. = 2. For p=0, we have g=—(n -4 2).
Suppose p > 0; equation (19.1) rewritten as
/11 2 1
it =) =1—===0
ot atim) = —m>
shows that ¢=1.
From (19.1), it also follows that

1 1, 2 1y .
Zz+h+q7f‘(1_§%)p’

since n=2, q=1, qn=2, one has p =b5. Thus, we have to consider
five possibilities, namely p=1, 2, 3, 4, 5.

. . 1. 1,38
@. p=1; the equation (19.1) is now ;z+g—z+@_1 and has been

considered in i; its only distinct integral solutions are

(n, g)::(oo, 1)7 (572)7 (373)7 (2)5)'
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4

=2 and has only the two
ng

b. p=2;equation (19.1) becomes Z}; + é +

integral solufions
(m, @ =(5,1), (2,2).

c. p=3; equation (19.1) becomes %+é+%=3 and has only the
integral solution (n, ¢)=(3,1).

d. p=4; equation (19.1) has no integral solution.

1 -

e. p=">5; equation (19.1) is :E-f-é—}—é%:'o and has only the integral
solution (n, ¢) = (2,1).

iv. n=—2; equation (19.1) is p + ¢+ 2pg =0 and its only integral
solution is p=10, ¢=0.

v. m= —3; equation (19.1) is p4 g+ 3pg=1 and has only the
two integral solutions p=1, ¢=0; p=0, ¢=1

vi* n=—4; equation (19.1) is p+ q -+ 4pg =2 and has only the
two integral solutions p=0, ¢=2; p=2, ¢=0.

vii. #=—6; equation (19.1) is p+ q 4 6pg=4 and has only the
two integral solutions p=0, ¢=4; p=4, ¢=0.

We summarize the distinet integral solutions of (19.1); we give the
values of n and the corresponding values of (p, ¢)

n { ®» 9
oo 1, 1

1 2, b; 3, 3
2 1, 5; 2, 2,
3 1, 3

5 1, 2

—2 0, 0

—3 0, 1

—4 0, 2

—6 0, 4

n=2 0, —mn+2)
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V. Equations of the type A(x, y)=0.
20. Set
(20.1) F, y)= oy + ey* + fy +g.

The stable equations of this type are of the form

(20.2) y=F(x, y),

(20.3) y =ayy + F(x, y),

(20.4) Y= ayy — g: v+ Flw, ),
(20.5) y =by* + F(x, v),

(20.6) y=ayy + o’y + F(x, y).

Equation (20.2) has parametric poles of the second order (P2); the
other equafions have movable poles of the first order (Pl). Therefore, the
stable equations of the type A4(x, y)=0 may be restricted to five distinet
equations which may be represented symbolically by

P2, p=5; P1, p=1; PL, p=0, p=-—3;
Pl, p=3, p=3; Pl, p=2, p=>.

Equations (20.2-6) belong to the type
(20.7) y = ayy + by’ + F(x, y).

The general transformation [see (18.3)]

(20.8) y=MNo)u + p@), t= o)

does not alter the form of equation (20.7) which becomes

w’ = Auu' + Bu®+ Cu' + Eu® -+ Fu -+ G,
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where A4, B, C, E, F, G are given by
oA =a), ¢*B=>5b\
9C=(c+ ap— 2\ — D),
(20.9) ©*E == [a) + 3bip + )],
P F=a(Ap—+p) + 2ep + o\ +f+ 3bu2—g,
X" G = app. + bp® + e + ep® + fu + g — p.

21. Equation (20.2). - We explain the particulars of our method on this
equation which is of class P2.

According to section 17, sef

21.1) g:'if), z=1+ uz.

For equation (20.2), one has n=1 and es=6, p=>5 [see (17.8)].

It follows from (20.9) that a fransformation y=—Aiu may be chosen
go that s==1, i.e. e=26; equation (20.2) gives

) 3
(21.2) s == bu 4+ ¢ — gz—“(]—:—+cuz+2zuz.
To apply our main theorem of stability (theorem IV), we must set [see
section 6]

(21.3) nw = P(x, z)+ v,

where P is a polynomial in ¢ of degre 4. To determine its coefficients,
we derive from (21.2), (21.3), five relations; a sixth relation giving the
condition for stability is then deduced from theorem IV.

To simplify the problem, it is most convenient to transform equation
(20.2) by a general transformation T'(A, p, ¢) info an equation of the same
form for which ¢=f=20. This is always possible, for one has fo determine
L 1, ¢ so as to satisfy [see (20.8)] E=6, C=0, F=0; then X, ¢ are
given by

§+/\—2®=0, c—2A — D=0
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and are determined by quadratures; p is determined by

5
Bep—{—c/\—i—f-—-i =0.

With these simplifications, our problem is readily solved.

Indeed, equation (20.2) becomes
y =6y + g(x)
and (21.2) reduces fo
zu = bu ——g 2* - 2zu’.
Now, set # = az®+ Pz* + 2°v and determine « and B by da=g, 48 =g;

the condition for stability is then § =0 (theorem IV) so that glw) =0 or
g(we) = Kw + H.

The stable equations (20.2) are thus reducible to
(21.4) y = 6y* + Kz + H.

By trivial changes of variables, this equation may be brought into one
of the following canonical forms

i. when K=H =0,
(21.5) y = 6y’;
ii. when K=0, H==0,
. , 1
(21.6) y="6y"+5;
iii. when K0,
(21.7) y = By’ + .
Equations (21.5) and (21.6) may be integrated by means of elliptic func-
tions so that their general integral is a one-valued function of x. Equation
(21.7) is not integrable in ferms of classical transcendents; its solution is

one of the new transcendents discovered by P. PAINLEVE. (see table I;
equation I.1).



¥. J. Bureav: Differential equations with fized, cte. 269

22. We consider now equations (20.3-6) all of class Pl.

Equation 20.3. - Set y=§gz@ where s(x) is given by as+ 2=0; note

that p = 1. A transformation T(X, », v = &) may be chosen so as o secure
a=—2 (i.e. s=1), and e=c.

Then, one has
ou = u — fz — gz° + cuz + zu’.

On setting u =¢2v, one obtains the conditions for stability f=0.
The stable equations (20.3) are thus reducible to

(22.1) y=—2y+cy+9)+g
and are equivalent to the differential system
z=142¢% v=cv—g.
The general solution of (22.1) is given by

w= y +
where
%} =W+ g.
Therefore, w is determined by quadratures and y is given by a RiccaTr
equation; (22.1) is thus stable.

23. Equation (20.4). - For this equation, p =0, as=—3; p=—3,
as = — 6. We have only to consider p=0 since a negative p does not
result in a condition of stability. Through a transformation 7T'(A), one may
may assume ¢ =—3 and s=1.

The associated equation in u is
=0c—e— [z — g&* -+ cou - zu’

which gives the condition for stability ¢ =e.

The stable equations (20.4) are of the form
(23.1) y=—38y—y +cw+v)+y+9

On setting y:%, this equation reduces to the linear equation of
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the third order
23.2) D—c0—fo—gv=0

which was investigated by E. Vessior [ba].

24. Equation. (20.5). - We have p=3, bs* = 2. A transformation T(%, p, )
may be chosen so that b =2 (iie. s==21) and e=c¢=0.

Indeed, one has to determine A, p, ¢ by (set again = A, g_—: D),

B =2¢? ¢c—2A\ — D=0, 3bpe=0;

A and p are given by quadratures through
b
5—[—2,/\——2(1):0, c—2A — 0 =0.
With the values assumed for b, ¢, e, equation (20.5) becomes

(24.1) ¥ =29 +Fy + g.

Note that equation y= 2y° may be integrated by means of elliptic
functions. Indeed, on multiplying by #, this equation may be brought to

v =y + K.
The associated equation in w of (24.1) is
(24 2) ou = 3u — fo — gsz* + zu’.

Now, set

u=fz+ vz’ 4 v

and defermine § and y by
B=1 B=v1—gs;
the condition Ffor stability is y=0. Therefore, f- 2gs=0; because

s ==t 1, this relation splits up into f=0, g ==0. Hence, = Kwx + H; g
is also an arbitrary constant (say K,).
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The stable equations (20.5) are thus reducible to
(24.3) y=2y"+ (Kx + H)y + K.
When K =0, this equation becomes
(24.4) y=2y'+Hy+ K,

and is aft once integrable in terms of elliptic functions.
‘When K==0, trivial change of variable brings (24.3) into the canonical
form

(24.5) y=20" + oy + K.
This equation is not infegrable in term of classical franscendents; its

solution is one of the new ftranscendents discovered by P. PAINLEVE (see
table 1; equation I.2).

25. Equation (20.6). - One has p=2, as=—1 and p=>5, os=2.
A transformation T(A, p, @) may be chosen so that a=—1, e=c=0.
Indeed, one has fo determine A, p, v by

ar=—g¢, c+4ap—2\—P=0,

al +3bp+e=0
or by

g+/\_@=.»0, c+ap—2A —®=0, e+t aA -+ 3bp=0;

these equations have one and only one solution.

Equation (20.6) assumes the form

(25.1) y=—yy+9 +fy+g;

the associated equation in T

(25.2) eu = (3 — s)u — fz -—-’g 2 - zut
Note also that the equation

y=—yy+9
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may be integrated by means of elliptic functions. Indeed, on setting

9+ > =v, one obtains y= g and then v = v

a. First, consider p =2, s=1; the equation (25.2) becomes
(25.3) 2 = 2u — [z — g2° + 2ul.
On setting w = Bz 4 2°v, one obtains the relations

B:f) Ssm——g

and hence the condition for stability f -4 g =0.
To simplify the notfations, we set

(25.4) f=— 12V, g=12V.
b) It follows from a, that the stable equations (25.1) are of the form
(25.5) Y= —yy + " — 12Vy + 127.

- Now, consider p =05, s=-—2; the condition for the stability of (25.5)
gives rise to a condition on V.

The equation in w associated with (25.5) is

su = Du + 12Vz + 6 Va? + 2u’.
On setting
u =Bz + v2* + 32° 4 ez* + 2%,

one obtains the relations
4=—12V, B=6V+ 3,
Y=25’ é+BY:5?

e+ v+ 280 = 0;

these relations easily give
B=—3V, yv=—3V, 5::——-2 vV,

£ == — g V+9VV
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and hence the condition for stability

Ve 1272 —12VV =0

or
Az .. .
Py (V—6V5H=0
and finally
(25.6) V=6V"4 Ko+ H.

Thus, the stable equations (2b.1) are of the form (25.5), where V is a
solution of (256.6), i.e., an elliptic function or a solution of the irreducible
Painlevé’s equation I.

c. That the equation (25.5) where V is given by (25.6), is really a
stable equation remains to be shown. To do this, we employ a method
which shall often be used in what follows.

Observe that the stability condition corresponding to p =2 (see a) is

readily obtained and brings equation (25.1) to the form (25.5). Moreover,
one has

y=-, z=1+4z2u, u=—12Vzs+ 2%

. | .
80 thatg:-—»;ﬁ-u; it then follows thatg 4+ y=u 1is regular at the
parametric poles corresponding fo p==2 and has simple poles at the
parametric poles corresponding fo p=2>5.

Accordingly, set

(25.7) y-+y'=v;

v has double poles at the parametric poles corresponding to p=>5; it is
thus expected that the stability condition for V is connected with equation
(20.1).

Indeed, the equation (255) is equivalent to the differential system

Q‘i_ Y=,
(25.8) . .
v=uoy — 12Vy 4- 12V,

Hence, v is a rational function of ¥, ¥ and, vice versa, y is a rational
function of v, v; therefore, if y is stable, v is also stable and conversely.
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On eliminating y between the relations (25.8), one finds

(25.9) v=0*— 12V0 4 12V
write §+ Y= Y and use the logarithmic derivative of y:"q_j___—_,}g_g )

y’
The transformation v —6V=6w brings (25.9) into the canomnical form
[see § 21]

w="6w"++ V— 672
in order that this equation be stable, one must have [see (21.4)]

V=6V*+ Kz -+ H

and
(25.10) w = 6w® 4+ Ka -+ H.
Therefore, the general solution of
y=—yy+ 9y —12Vy 4127,

where V is a particular solution of (25.10), is

- w—V
(25.11) Y=oy

w is a solution of (25.10) distinct from V.

26. To sum up, the following set of equations may be considered as a
set of canonical equations of the type A(x, )= 0.

i y=0;
ii. P2; p:5

a. Q:Gyz—{—K

integrable by elliptic functions;
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b. y =6yt
not integrable in terms of classical transcendents;
iii. Pl; p=1
y=—2y+cy+9)+yg
integrable by quadratures;
iv. Pl; p=0.
y=—3— +cw+v)+l+g
may be reduced to a linear equation of the third order;
v. Pl; p=3, 3.
a. y=2¢y'+ Ky + H
integrable by elliptic functions;
b. y=2y+wxy + K
not integrable in terms of classical transcendents;

vii Pl; p=2,5.

?/:’—y?/ + 9 — 12Vyy + 127,

where V; is a solution of ii, ¢ or ii, b.

Integration:

where V and V, are distinct solutions of ii, @ or ii, b.
In iii and iv, ¢, f, g are arbitrary analytic functions of .

To obtain the most general stable equations of the type A(x, y) =0, one
has to use a general transformation 7(%, u, ¢), where A, 1, ¢ are arbitrary
analytic functions of .
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VI. Equations of the type A@, y)= ;

27. The stable equations of this type are of the form

" y'z . @', s bs
9 - Ap— J s
(27.1) y—y =y + @y + by +y + Flx, y),
where
27.2) Flx, y) =y +by* + by + b,;

the a's and b's satisfy conditions to be given later on.
The substitution yv =1 transforms the equations (27.1) into an equation
of the same form, namely

"2

. v . v b .
(27.3) v——g:%m)—kaé—bﬁ——;}—i—aw—bs’vszzv«bl;

therefore, the stability conditions corresponding to the parvametric zeros
of ylx) may be deduced from the stability conditions produced by the para-
metric poles, according to the table of equivalence

) a a, Ay b by b, bs by
(’U) (12 61;1 a - b4 I b3 - bz — bl - b.

The transformation g = AMx)u, ¢t = ¢(x) does not alter the form of equa-
tion (27.1) which becomes

2

“”_Z‘ = Au'n —{—Az::% + Bu® 4 %—}— 4" 4+ Byu® 4+ Byu 4+ B,

IR

where on setting A =z, one has

pd =a), ¢di=a, -7

¥

, Aod,= ay,

¢*B = b @B, =b 4 aX, ¢*By=Dby+a: A — A,

A9?By = by + az \, A%?B,=0b,.
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To simplify the problem, one may chose A, ¢ so that @,==b,=0. [One
has only to defermine A, ¢ in order that

P = 9, A — o —b=0].

28. The general solution of (27.J) may have simple or double parametric
poles and simple or double parametric zeros; we consider these cases
separately.

i. Double parametric poles. - One has @ =b = 0. The transformation
__8(@)

y=— #2=1-4 uz, where s is given by b,s =2, changes (27.1) into
. 2 & a , 1 s .
zu__u-}—é&;zlgs—}-sz 23(w2§+63)z
——stiz 7 +a—82-z"'u.

Because p =1, one sets u —=2v and finds the condition for stability

2 2
c—?:? lgs=0 or E%}—z lg b, =0 (note that b,s =2) and finally

(28-1) bl = H;_BKI“".

ii. Double parametrie zeros. - One has a,=b,=0; according to the
table of equivalence, the condition for sfability is

(28.2) by = HyeKox,

iii. Simple parametric poles. - Set y:Z, 2=1-4 uz, where s is

given by bs*—as—1=0 and p =1 -4 as; equation (27.1) becomes

. . . 2
(28.3) zu:pu—-bls—as+Az—(a2§+bs>§-é: s % u
with
d? a,

1t follows from (16.15) and (16.16) that we have to consider two cases
according as to whether a =0, b0 or a0, b=0.
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a) a==0, b==0; then p=0, as 4 1 =0. The condition for stability
is bls—_}—aézO or

(28.5) by = a.

b) a=0, b==0; then p =1, bs*=1. Set u =a -+ 2v in (28.3); the
condition for stabilify is given by

a=6s, a=A4d,

or by

(28.6) 0% (bs) = A.

From bs*=1, it follows §==¢b""", e ===1 and from (28.4) and (28.5),

d e 1 d .y
Ea*i—:c b]_b 2-——‘2‘%élgb+8&2b12
or
d d?
(28.7) ax bib—12 == q,b—1/2, i lgb=0
so that
©8.8) b= Heke,

iv. Simple paramefric zeros. - From iii @, b and the table of equi.
valence, we easily obtain the following conditions for stability.

a) a0, by=0; p=0, a5+ 1=0. The condition for stability is
(28.9) by + a, = 0.

b) a:=0, bF0; p=1, bs*+ 1=0. The condition for stability is
given by [see (28.6))

a

d? a
(28.10) d (bss) + W1g8‘+ ;= 0.

29. It follows from the preceding paragraphs that the stable equations

of the type A(x, y)=-, may be restricted to six distinet equations which

1
y
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may be represented symbolically by

(P2; Z2); (P2; Z1, p=0 or p=1);
(29.1)
{ (P1, p=0; Z1, p=0 or p=1); (P1, p=1; Z1, p=1).

Indeed, the other equations are deducible from one or the other of the
equations (29.1) by setting y = u—'. We consider separately each of the
equations (29.1).

30. P2; Z2. - One has a =0 =a,="0,=0. The conditions for stability
are given by (28.1) for P2 and by (28.2) for Z2.
The equation is

"2

(30.1) y —z— = Hye"®y* -+ Hiel=
and is a particular case of the irreducible equation III (see table I).

31. P2; Z1, p=0. - One has a=b=056,=0, a,4=0. For P2, the con-
dition for stability is given by (28.1). For Z1, p =10, this condition is given
by (28.9). Set @,=gq, b, = — g and write the equation

. g :
311 — =g~ Hek%y? e g,
(31.1) y— =a, + 0y —g

Now, define y = Au, where A is given by AHek® =1 and set 7= % ;

then because r = %—%, (31.1) becomes
31.2 h—if——r%t—]—uzwi
) . u )

For convenience, set r = K and v= ; equation (31.2) is equi-

valent to the differential system

v R .
- — =9 U= U.
u+u ’
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On eliminating # between these relations, one finds v+ B=wv so

that v is determined by the RIcoaTI equationv 4+ B =é v*H,. Therefore, u is
stable.

32. P2; Z1, p=1. - One has a=b=a,=0, b,40.
For P2, the condition for stability is given by (28.1).
For Z1, p=1, one has s = b,~*2¢, e = 2= ¢ so that (28.10) becomes

d 1 &
— p,—Vep, — = —
qw 0T T g g 180 =0

and
b4 = H462K2x, b3 - H36K2$-
Equation (27.1) is written
(32.1) y——%: HyeFey?  HeKe % p2Kur

and is a particular case of the irreducible equation III (see table I).

33. P1, p=0; Z1, p=0. - One has b =b,=0, aa,3=0. The conditions

for stability are b,=a, b+ a,=0 [see (28.5) and (28.9)] so that the equa-
tion takes the form

"2

) .y y o
(33.1) ] y_ayy—]—azy—i—ay Qs .

Integration. - It is easily seen that :'q—ayZ:'v is regular for the
poles P1, p=0; the equation (33.1) gives

b+d2=g<v+az)

or v a,= Ky. Therefore, equation (33.1) is equivalent to the differential
system

y—ay=wv, v+ a,= Ky
so that y is determined by the RICCATI equation

y=ay*+ Ky — a.
and is stable.
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34. P1, p==0; Z1, p=1. - For P1, one has a4 0, 6=0, as+1=0
and the condition for stability is b,=a.

For Z1, one has b,4=0, b,8° -} 1 = 0; a transformation y— Ay enables

one to assume b,=-—1 or s==1; the condition for stability is then
63+a=0-
For convenience, set b;==¢q so that @4=—q, b= —q; the equation

then assumes the form

. - Y .. 1 .
54‘1 Yy —" = — — e — 2 .
(64.1) Y 9 99y 9 @y +q

The transformation yu =1 brings this equation to

22

(34.2) ii»—-;é =——’q%+u3-~qu2+é

which belongs to the class (Z1, p=0; P1, p=1).
To integrate the equation (34.1), observe that
Y o0 1
v== —
y TW— T
is regular for the parametric poles and for the parametric zeros correspon-
ding to s=1.
Equation (34.1) is equivalent to the differential system
g+ — 1+ =y, yo="v.

On eliminating y between these relations, one finds
v+ —qv—qu="0
and v is a solution of the RICOATI equation
. 1,
v + g U —qu= H.
Set v =2 ot then # is a solution of

ib—qv;u--;—fw:o.
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Therefore y(x) is determined by

L v _w W

v
yrl=- =
v w w

and is stable.

35. P1, p=1; Z1, p=1. - One has a =a,=0, bby3=0. According to
(28.7) and (28.8) and the table of equivalence, the conditions for stability are

for P1: b = He2K®, p, = H,eX=;

tor Z1: by, = HpeKe b= Hel®,

The equation is
P - ,yz L] K, 3 2 H4
(35.1) y— }I=~H192 12 y° 4 HpeXwy® - Hopel - i ez,

A transformation y — Ax)y. where X is defined by Xefi—%® —=1 and
m by K, + K,=2m, brings equation (35.1) into the form

"2

(35.2) - = 62’”“( Hy' -+ %) o Hyy + Hy).

Now, we consider two cases according as to whether m =0 or m=0.
i. m =0. The equation (35.2) is

2

v H
(35.3) j 3= Hy o+ Iy’ +

and may be integrated by a process which may be considered as a method
of “variation of parameters”. As this method will be used often later on,
we shall explain its particulars on equation (35.3).
el .2 .
The general solution of y——% == 0 is y=wuy where u is an arbitrary
constant.

Suppose now that « is a function of y and substitute y=uy into (35.3);
one obtains

. H
wy = Hy° + Hy* + H, + —yf
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or
du . H, H,
oy =Hy+Ht
Therefore,
2 .
= H1y2+ 2H2y —_ _.[L[F' —— E; + H;.
Y Y

Finally, y(x) is given by

(35.4) = Hy* + 2Hy" + Hyy' — 2Hyy — H,

and is an elliptic function of x; thus, y(x) is stable.

ii. m==0. A linear transformation on x transforms equation (35.2)
into

. '2
35.5) y— L= o(mg + ) + oottt + )
this equation is not integrable in ferms of classical transcendents and is
equation IIT of Table L

mao
A transformation t=cp(a:)=€,)—y—&— brings equation (35.2) into the other

canonical form

= “ :’/-2__ y 3 1:-__{} _1__ 2
(35.6) ?/"‘y_—_' p + Hy’ + ” +mm(sz -+ Hy)

[Note that H,H,==0].

36. To sum up, the following sef of equations may be considered as a

set of canonical equations of the type A(x, y)= }/ .

ii. P2; 71, p=20, y_§:r§+y2_r

reducible to a RIccATI equation;
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iii. P1, p=0; Z1, p=0.
"_f.... . ?j‘ o -
Y=y —ayz/+a2y+ay 2
reducible to a Riococarr equation;
iv. P1, p=0; Z1, p=1.
Y —

Y .o 1 -,
— = — o —
” wy — ,— Y + 9

reducible to two RICCATI equations;

v. P, p=1; Z1, p=1.
b 92 3 e 2
Ay -
Y=y y+y+@y +7

integrable by elliptic functions;

. ?)f_z . § e
y—y—e”(a@/ +2)+ eG4 1)
or

. Y ?ﬂi 3 § ___1_._ 2
Yy— =yt A g G

where the constants «, B, y, 5 may eventually be zero; m=0 is also a
constant.

{
VIL. Equations of the type A, y):(l _g) ;
37. The stable equations of this type are of the form
(B7.1) é-*(l-* 1>’éﬁ=wm}+az?—) +by° + b} Flw, u)
n/ Yy Y Y
where
(87.2) F(w, y)= oy + by +ibay + bs;

the ao's and b's satisfy conditions to be given later on.
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The substitution yv =1 transforms equation (37.1) into an equation of
the same form, namely

" 1\ v* . b
(87.3) ’U—-—(l -I-ﬁ)%:(a/zv -+ o, +g)v“‘“b4vg“bsvz‘_bzv—b1w{);

therefore, the conditions for stability corresponding to the parametric zeros
of y(x) may be deduced from the conditions for stability produced by the
parametric poles, according to the table of equivalence

@): n a o b b, b, b bs
('U): —n az al a — b4 . bs —_— bz - b1 - b

This table shows that without loss of generalify, we may restrict »n fto
be positive, and accordingly do so.

The transformation y=— A(x)u, { = ¢(x) does not alter the form of equa-
tion (37.1) which becomes

4,
U

B,

u”—(l — 11@) g:(/m + 4.+ )u’+ Bu® + Byu* -+ By -+ By -+ W

where

M:m%éA:mmzA—Q,w&zm,
¢*B="0b)%, 9 B,=b\ + al,
‘ . . 1,
@Bz:bz‘{‘“x/\‘—/\—;&/\;

Ag?By=bs + a;\, MN¢*B,=1b,.

For future use, we also note the following system of equations equi-

valent to equation (37.1); on sefting y = -Z, z==1-+ uz, one has

o0 = g(l + }b{—as——bsz)—}-(l —{—2+as)u

zz 3

‘ . 2 b
(37.4) "*‘051“613"“003—'7;2+AZ“(3)3+&2§)—-—- i

S s?

2 s a
—I—(m— - §) zu+§zzu+§;u2

n s
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with

(37.5)

Two equations corresponding to one another by the transformation
yuw =1 are not considered as distinct; therefore, we have only to consider
four classes of equations represented symbolically by (P2; Z2), (P1; Z2),

(P2; Z2), (P1; Z1).

‘We consider each class separately and summarize the various stability
conditions already obtained above (see § 17) with tables where the corre-

s 1) &2 s
e e

sponding values of p are also indieated.

P2; 72 - For

P2, one has a=50=0 and for Z2, a,=b,=0. The

various cases to be considered are given in the following table:

" P2 | P || zZ2 I P
n by =0 — b; =0 —
2 bi==0 3 b, =0 —_
4 b0 2 by =0 0
4 b, =0 — b0 0

Thus, the stable

Ei

E4

where

equations of class (P2, Z2) are of the form

“ 1\ o2
y'—'(l'—" ;@)Z_zF(w: :’/)5

. 192_“ ,
y"“éy'ﬂbly +F(w; y);

. 3?/2 2 P
y—'i?}—_"bly +63+E(w7 .l]),

. gy'z_
ymiz‘[““ba"‘F('w; y)’

Flz, y)= ax?} + by .
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P1; Z2. - Because of the double parametric zeros, one has a,=b,= 0;
in addition, we have also to consider, for n==0, ;=0 and for n =4, by==0.
The various cases to be considered are given in the following table:

n_ | P | P | 2 | »
7 na® 4 bn + 2°=0 0, —(n+42) b,=0 —_
2 af=2b 1, 5 by =0 —
2 a=0, b0 2, 2 by =0 —
3 3a%=2b 1,3 by =0 —
5 5a*=10 1, 2 b, =0 —
4 at 4 9b =0 0, - 6 by == 0 0

Thus, the stable equations of class (P1; Z2) are of the form

- i 2- . __.n_ai— .
. 1 -

E6 y—-ég--—-ayy—}-gf—f- Fx, y),

) . 1 42

B1 y— §§~=by3+F<m, )
. 9 u? . 38

ES8 y—-g%~~=wyy+ 5 @Y + F(x, ),
' 492 . 2,8

E.9 Y=g, = WY Ty + Fa, y),
. 3:1/2 . az \

E.10 y——ié—:ayy—g‘y +b: + Flz, y),

where

Flx, y) = ay + by + by .
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P2; Z1. - We assume % > 0. Because of the double parametric poles,
one has a=050=0. The various cases to be considered are given in the
following table:

" P2 P2 | Z1 P
N2 by=20 — nal + (n— 2%, =0 0, n—2
0w=2 b, =0 — a; =0, bF=0 0,0

4 b0 2 a4+ b, =0 0, 2

2 bl“‘-—-FO 3 a2=0, b‘;:f:O 0, O

Thus, the stable equations of class (P2; Z1) are of the form

E.11

E.12

E.13

.14

where

. 1 g',z— Z{ naz ,
y_wb_ﬁi“%g"@;%@+mexm#ﬁ
- 142 B

y—é%;—:j—{_F(w! y);

. 3 ) a :
ﬂ_g*%@_%+ay+ﬂﬁm

4y Ty
1y b
—5 g =0+ e ),

Fle, y) = awy + bay + bs.

P1; Z1. - The various cases to be considered are given in

the
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following table:
" { P1 E P H Z1 P
nk?2 | nt+n+2h=0|0, —(n+42)) | na;+ n—2,=0| 0, n—2
2 a*+8 =0 0, —4 0,=0, b,3=0 0,0
2 a*=2b 1, b t,==0, b0 0,0
2 a=0, b3=0 2, 2 =0, b,4=0 0,0
3 307 = 2b 1, 3 a4 b,=0 0, 1
) Ba*=b 1, 2 5a% 4 9b, =0 0, 3
Thus, the stable equations of class (P1, Z1) are of the form
- 1\ o as\ - na’ na;
E15 —(1_—_)~=(m _u) _ s M
y Wy =\ Ty T Y T m—ay T
+ Flx, y),
. o 1 :1’,.[2 - . a? 3 b4
E.16 Y=g, =W —g ¥+ @)
~ . 13;2,._ .t , . by
B.1T Y=gy =yt gy + S F@ )
E.18 PR LI
. 2 y y 'y Al
. 2y ( a2> -3 3a2
E.19 — 5= =\0 — 5 0*y* — — + F(zx, y),
Y3y Y+, )ty gy TH®Y
. Ay ( a2>~ ba:
E.20 — T =la — Sa*y* — =~ + Flx, 9),
Y= 5y y+y y + ooy 9y+ (@, ¥)
where

Fe, y) = awy + by® + by + bs.

Annali di Matemotice

n
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Comparing the values of p for P1 in the tables (P1, Z2) and (P1, Z1),
one is led to study together the equations E.6 and E.17, E7 and E.18, E8
and E.19, E9 and FE.20.

Theorem IV gives additional conditions for stability. We always begin
by considering the smallest values of p.

38. Equation E.1. - Using a transformation (A, ¢), we may assume
&, = by = 0. Then, equation H.1 is

2

(38.1) y-—(1—i)§_o,

its general solution is given by y=(Kx + H)* and is stable. On setting
y =¢", equation (38.1) reduces to z==0.

39. Equation E.2. - For P2, one has p=23, bs=4; by a transfor-
mation (A, ¢), one may assume @, =0, b =4 or s=1.
Now, set y =z z=1-+ uz and determine u by

b
zu=3u—z)~22+ su’,

To obtain the condition for stabilify, set u = Bz 4 v2* + #*v and deter-
mine B, v by

4@:627 B:Ya '%—'—'""0;

therefore, v is a constant and b, = Kx - H.
The stable equation E.2 is thus of the form

(39.1) §~%%=4y2+(Km+H)y.

According to the values of K and H, one finds one or the other of the
three following canonical equations.

o. K=H=0. The equation

.1y
39.2) y = ég,J‘ 1 4y

may be integrated by the method of variation of parameters.



F. J. Bureau: Differential cquations with fized, etc. 291

One finds
¥ = yly* + K);

thus, y@) is an elliptic function and is stable.
One may also set y=2* and determine z by z=2¢"

b. K=0, H30. A linear fransformation on « reduces (39.1) to

) . 1P
(39.3) v=3 Z; + 442 + 2.

This equation may be integrated by the method of variation of para-
meters. One finds

¥'= 4y’ + y + Ky);

thus, y(x) is an elliptic function and is stable.

One may also set y=—2¢* and determine z by ¢ = 2*+ 2.

c. KH=4=0. A trivial change of variable brings equation (39.1) to
(39.4) =1 L 4y oy

which on setting y=2* becomes
7= 22° - w2,

i.e. equation II of Table I.

40. Equation E.3. - For P2, one has p=2, b)s=3. By a transfor-
mation (A, ¢), one may assume a,=0, b,—=3 and s=1. Now set y==2"7%

2=1-+ uz and determine u by

. 1
U = 20 — 3 (bo2 4 bg?®) 4= ; u°.

We obtain the condition for stability by setting # =z + 2’0, where

2="5,, f=0;

therefore, b, = 2K.
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For Z2, we have according to the table of equivalence, p=0, bys+1=0.
2

Set y:j—, #=1-+uz and determine u by

._ s (s _bs .8 ,.s 2,

The condition for stability is s=0 or b,=H.

The stable equation E.3 is thus of the form
(40.1) Y= i ?y; + 8y* + 2Ky + H.

The general solution of (40.1) may be determined by the method of
variation of parameters. One finds

y* =4[y’ + 2Ky* — Hy + K.y
or on setting y == 2%
# =2z K& — H + Kyz;

thus, y(x) is an elliptic function and is stable.

41. Equation E4. - By a transformation (}, ¢), we may assume
o, = b, = 0. There is no condition for stability for P2.

For Z2, one has p==0, bs + 1=0; the condition for stability is
§=0 or by=K.

The stable equation E.4 is of the form

34

(41.1) Y == iy -+ K.
If K=0, we have a particular case of (38.1); y(x) is stable.
If K=#0, set y=— Ku and find the canonical equation
3u
u == 1 —1;‘ -— 1.

The general solution may be determined by the method of variation of
parameters or by sefting # =¢°. One finds 2z22=¢2"—1 and upon diffe-
rentiation z=0. Therefore, y@) is stable.
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42. Equation E.5. - By a transformation (X, ¢), we may assume
@t = b, = 0. Then, the equation E.D is

. Ny . na® \
y“(l‘“;b)gj——“yy“'myz@/"i"bly-

The only condition for stability is produced by P1, p=0, nas +
+n+2=0 and according to (37.4) is

m+®+2=0

or
n .
b1 = m a.
The stable equation E.5 is of the form
. Ny - na® noo-

where o is an arbitrary analytic function of .
To integrate (42.1), note thaf

noy

N

42.2) y_ no
Y
is regular at the parametric poles. Then v is given by

- 1
v+ =0 or v= (}}_—I—:—E;
therefore, y is determined by the BERNoUILLI equafion

% nay’

Y=o xmY T axe

or on sefting y= ;}] , by the linear differential equation of the first order

hw na

m+H+n+2:O'

w +
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On setting (x -+ Hyw = W, one obtains

W+ 2@+HW=&

+
thus, ylx) is stable.

More generally, suppose that @, and b, are not identically zero. Then,

the condition of stability corresponding to P1, p=20 is

a4 — 00 — _n_j;.? by =0
and gives b,.
The equation KE.D becomes
. 1\ o . . na’

To integrate this equation, determine again y by
w L
v=_; w is given by
. . b
w-—alw——%2w=0,

and u is a solution of the BERNOUILLI equation

. w ne
y=n_y+ T3

n

On sefting y::%—, one finds

therefore, u and y are stable.

42.2)

a — a;0)y° + boy.

and sef

43 Equation E.10. - Both P1 and Z2 give a condition for stabilify.
For Pl1, we observe that the condition a*4 9b=0 is idenfical to the
condition given for equation E.5 where % =4. Then, p=0, 2as +3=10

and by a transformation (A, ¢), one may assume a,=0, 4 = —

The condition of stability is &, =0.

2

§amd s ==1.
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For Z2, on using the table of equivalence, one has p=10, 14 bss=0;
the condition for stability is s=0 or b= K==0.
Thus, the stable equation E.10 is of the form

P

. 3y |
(43.1) y"@%=—~§yy—1y‘“‘+bzy+1€,

where b, is an arbitrary analytic function of «.

To integrate (43.1), observe that it is equivalent fo the differential
system

:L}—}—ygzg’c)y,

y= 5
21}+/¢)2——b2.

On eliminating y between these relations (consider %) , one obtains

v+ 800 + v° — by — é(bz + K)=0.

This is an equation of type A(x, y)=0 and class Pl, p=0 [see § 23,

eq. 20.4]; on setting v:%, it reduces to the linear equation

i — by — & by E)w=0.

Therefore, y is stable.

B

Remark. - We may also choose (A, ¢) such that a,=b,, a = —
[GAMBIER, [3.a], p. 28, eq. 2]; then, one finds fhe equation
I TR Y P
Y=4y 2W g To,0tvitry+g

where ¢ and r are arbitrary analytic functions of wx.

This equation is equivalent to the differential system
Y+ y* = 2vy,

y|20 4 o2 — %vmr =gq.
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On eliminating y between these relations, one finds

Ny y SQ 3 3Q 2 Q {.12 Ly -q.‘}’
'U+3’U’U—"QQ’U+’U — gé‘v ~—<-2~é——(-l§+'r)’v—§<r+q——q—)—0.
On setting v::j%, this equation of type A(x, y)=0 and class PI,
p =0 reduces to the linear equation
w:ﬁgw—}— ui—wf—{v‘r)a;v—{—]i %—l—qw—g’f w
2 ¢ 2 q)

44. Equation E.11. - Suppose n==2 and consider the equation

g_(1 _ 1)1‘;’?:
(44.1)

y na,

&“m‘l‘%f’/‘!’bzy*{‘ba-

=,

For P2, there is no condition for stability.
For Z1, one has

NS = — (B — 2), p=0;
nas = — 2) n— 1), p=n—2.
A transformation (A, p) may be chosen such that a,=0, a,= — ?}—;:——2- .

The eondition for stability for Z1, p=0, (s=1) is then b, =0.
Equation E.11 is then

(44.2) g_..(1...1)?_;i=_w’f:_?@_i T by,

where b, is determined by the condition for stability for Z1, p=mn — 2,
s=1—mn. [Set y= %} in (44.2)]. To obtain this condition (call it condition 4),
set # = P, _a(2) -+ 2"*U and write n — 2 linear equations.

For instance, suppose n=4; then

zé;=2u+bzz——-2u2.
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On setting u =Bz + 2°U, one finds B — b,=0, f=0 and hence the
condition for stability b,= K. .
y 1
o

To integrate (44.2), observe thatJ is regumlar for the parametric

zeros Z1, p =0 and set
y =14 ny;

then, v is given by the RiccATI equation

. , 1
v 40 = " b,

. ?}J . bz . . .
or if v= o by w= ) Accordingly, y is given by
dw
w"

y=WﬂK+f

If w(x) has a simple parametric zero (x = @), then ylx) = (r — @,)s(x); for
yx) to be stable, b, must satisfy the condition of stability A4.

45. Equation E.12. - Consider the equation

2

b4 -
:é]— +a1y+bzy+b3.

<

.1
(45.1) Y-3;

G

For P2, there is no condition for stability.

For Z1, one has according to the table of equivalence, 268+ 1 =0,
p=20, 0.
1 .
é ’
then the condition for stability for Z1 is a;- b8 =0 or, because s =1,
a, = b, = 0.

The equation FE.12 is then

A transformation (A, ¢) may be chosen such that b,=0, b,=—

1

. 1?'/2_~
(45.2) y—éy_*_'ég/

and may be integrated by the method of variation of parameters. One finds

v =y, n= ?z; -4 2K and hence
(45.8) ' =1 2Ky.

Annali di Matematico 38
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On differentiating (45.3), one obtains y = K and
K a
45.4) ya) = 5 «° + K + Ks;

therefore, y(x) is stable.
On substituting »(x) given by (45.4) into (45.3), one finds K:=1- 2KK,.

46. Equation E.13. - For P2, one has p=2, b,s=3; a transformation
(A v) may be chosen such that 0,=—=0, b=3 and s=1. The equation
giving # is fhen

- 1 b P
EE VR T

To find the condition for stability, set u =0z 2°v and obtain

2B =b,, @ = by,
For convenience, set b, = — 12¢, @, = 6¢; then, equation E.13 becomes
. o Y \ 36¢*
(46.1) yw[]@—&z;j—#% + 12qy 4 bs — g

For Z1, one has p=0, 12¢gs +1=0; p=2, 12¢s=3.

From the table of equivalence, one finds that # = —4 andtbhatfor p =0,
the condiftion for stability is

bes — 65 + 58-;, =0;

because s=—~£.~, one has b,= — 12¢.
12¢

The condition for stability corresponding to Z1, p=2, determines q.
Indeed, becanse 4gs =1, one deduces from (37.4), the equation

46.2) on=2u—20 4 4o 12922 — L ouw -2
q 2q 4
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with

_ i, 3
A—_7.+Z:TZ' +12q.
q q
To find the condition for stability, set w=—=a 4 Bz 4 2’0 into (46.2);
one obtains

a=2, =22 % 134, f—129—28¢
¢ q g

so that, on eliminating §,

¢ =12¢* + 129¢

or
(46.3) g = 6q¢° } Ko + H.
Therefore, the stable equation of this class is of the form
(46.4) =37 L 6p? oy 12gy — 12— 202
4y Y g’

where ¢ is a solution of (46.3).
To integrate (46.4), we use a method which gives also the values of g.

Observe that y - 12¢ is regular for the parametric zeros corresponding to
p = 0. Therefore, the equation (46.4)-is equivalent to the differential system

| j+12¢ = —2uy,
( 8y = — 2v 4 v — 12¢

which shows that v is stable if y is stable and conversely.

On eliminating y between these relations, it is readily seen that v is
determined by the equation

D= — w0 + v* — 12¢qv + 12¢

which is of type A(w, ¥)=0 and class P1, p =2 and 5 [see (25.5)].

For this equation to be stable, it is necessary that q satisfies (46.3); the
general solution of the corresponding equation is then given by

L
b=t=t,

where V is a solution of (46.3) distinct from g. Therefore, y is stable.
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According to the values of K and H, one finds one or the other of the
three following canonical equations.

. K=H=0. Then (46.3) is ¢=26¢* or ¢*=4¢"+ K,.
When K; =0, one has ¢=(x 4 K,)~%; a ftrivial change of variable
(x + K, —x) brings equation (46.4) fo

. . 8y 129 12y 172 144
46.5) =4yt St e ay

When K,=30, one has g=p(x; 0, K,) where p is the well known
elliptic function of Weierstrass; equation (46.4) is then

36 p*

. 3qp . -y .
(46.6) y=‘1?7+3y +6p§ + 12py —12p —

b. K =0, H==0. Then q=86q*+ H, ¢* =4¢°+ 2Hq 4 H,; therefore,
q =plx; —2H, H,) and (46.4) has the same form as (46.6).

¢. K=0. On using a trivial change of variable, one may assume
K=1, H=0 so as to reduce (46.3) to ¢ ==6¢°-- x.

47. Equation E.14, - For P2, one has p=3, bs=4 and for Z1,
p=0, 2bs°+1=0. By a transformation (A, 9), one may assuome b, =4

and b4=—%.

First, we consider Z1. The condition for stability is a,-- bss =0,
s==1 go that a,=0, b;=0.

For P2, one has s=1 and
o == 3u — % b2 - iz"’-{—zuz.
To obtain the condition for stability, set # = Bz + y#* 4 #°v and find
B=b, B=v, 7=0
80 that b,= Kz | H.

The stable equation F.14 is of the form

7.1 é=%§~+4y2+(Kw+H) ~2ly.
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According to the values of K, we have the following canonical
equations,

a. K=0. One has

. s 1
47.2) y= gy — gy T4+ 20y;

the method of variation of parameters gives

v =4y’ + 4Hy' + 2Hy + 1.

Therefore, y(x) is an elliptic function and is stable.

b. K==0. A trivial change of variables (Kx + H ——x, Ky —y) reduces
(47.1) to

S SR
(47.3) Y= 59 2y + 4Hy® — oy, H4=0.
To integrate (47.3), observe that g +$ =2 is regular for the para-

metric zeros corresponding to s =—1. The equation (47.3) is equivalent
to the differential system

S g):‘z@y——i,
( 4Hy = 20 + 20* + .

On eliminating y between these relations, one finds

1

2

v=20"+4 xv — 2H —

¢0 that v is a solution of a PAINLEVE equation IT (see Table I). Therefore,
y(x) is stable.

68. Equation F£.16. - Consider the equation

. 1y'2 - ar | by . . _
(48.1) Y=g, = —g¥ +§ + oy + by’ + bay + bs.

For Pl, one has p=0, as+ 2=0; there is no condition for stability
for Pl, p = —4.
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For Z1, one has 2b°+1=0, p=0, O.

A transformation (A, ¢) may be chosen such that ¢ =—2, b, = — -;

The conditions for stability are
fOI' Pl, al=b1;
for Z1, a, +bs =0, s ==1 and hence a; =0b; = 0.
Therefore, the equation (48.1) can be written in the form
2 3 1

. . ?!_—. o . . g’_,___

where [ is an arbitrary analytic funection of .

To integrate equation (48.2), observe that g—f—y is regular for the

y—1
Y

parametric poles Pl, p=0 and that is regular for the parametric

meros Z1. Accordingly, set

(48.3) y=—y + 1+ 2vy;

substitution in (48.2) gives
. . 1
(48.4) v vt=j(f— 1)

and y(x) is determined by the two RriccaTr equations (48.3-4).
To prove that y(x) is stable, set yzi—z; then from (48.3), one obtains
2w =mw — w and (48.4) becomes
21 = W — W+ 2f w
whence, upon differentiation,
W — 2fw — frw 4w =0.

Thus, w(x) is stable and also y(x).

L , one finds the conditions for

More generally, if a3 —2 and b, —3
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stability

& for Pl: 2b, = a — ao,;
(48.5) i )
| for Z1: by=0 and b, =2a,b,

On setting b,—=7r, the stable equation E.16 becomes

S O o . 1/ ar\ , . r
(48.6) 1—5?}—--—ayy+%y——'8—y +§(a/—‘%)y +bz?/+g-

49. Equation E.15. - Suppose n=2 and consider the equation

o 1\ 4 as)\ - na*
i—(1 =)y =(w+5)i - Gy -
(49.1)

2
na;

—m + ay 4+ by® + boy -+ bs.

Note that E.15 reduces to E.11 when @ =¥5,=0. One has

for P1:

( nas =—nm+2), p=0;

( nas=—m+2)mn+1), p=—mn-+2);
for Z1:

S na,s = —(n—2), p=0;

( na.s=mn—Nmn-—1, p=n—2

. w4 2

A transformation (A, ¢) may be chosen such that a:———-w—n—— and

ap == _r= 2. Then, equation (49.1) becomes

. g n+2 . n—2y

Y (1“?i>?] o n YT Ty
49.2

@JS 1 " 2
— = — gy - by’ + by + bs

n o Y



304 F. J. Bureav: Differontiel equations with fized, efc.

The conditions for stability are

for P1, p=0, s=1: a,=by;

for Z1, p=0, s=1: a, -+ b;=0;

for Pl, p=—(n 4 2), there is no condition for stability.

Now, set a,=b,= —b;=0b and b,=f; then equation (49.2) can be
rewritten

1\ 9 n4+2 - n—22y9
A e A
(49.3)
L Ty
no Yy

It remains to consider the condition for stability for Z1, p=n — 2,
s =1 —n; this-condition (call it condition 4) gives a relation between b
and f and their derivatives. To find this condition 4, set as usual

w = P, o) + #"2U
and apply our basic theorem IV.

For instance, counsider n =2 and n=3.

For =2, one has

2 3

. 1 .
=—2yy'—g~-—-2-&+b(y+y2~—i)+f@/

DOt =t
SIEE

§ —

and condition 4 is b =0; one finds equation E.16 (see 48.2).
For =3, one has

S YRS VRN S

Y=g, == gW— 3,5 "5, Ty —D+Ty
and

. 2 3

zu:u—*—fﬂb—l—(g-i—f)z-—gg——%—{—bzu—{—gzzu—-——zguzg

the condition for stability is

(49.4) 3b+f+-56—~662=0

and determines f.
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30.

-

0

Suppose that the condition 4 for stability has been defermined. To inte-

grate (49.3), sef

y=—y + 1+ my
so that

é+02xbv+%(f—%).

u w .
Now, set 3 = V= W and # are given by

. .1 9
49.5) W-M—%Onﬁw;&
(49.6) dwn%a-uza

The singular points of w are fixed, Liet x=ux, be a simple parametric

zero of w(x); then x=w, is a regular singular point (in the sense of

Fuons) of (49.6). Note that the roots of the corresponding indicial equation

are 0 and = - 1; therefore, u(x) may have a logarithmic term except if
a . certain condition (call it condition B) is satisfied. In this case, equation

(49.6) has two regular solutions

uy() == (@ — ao)" 1 4+ ...],

— (m s— wo)z
) = 1 4 50— ) + ..
. to which correspond respectively
_n+1
() == — “+ ey
% — %o
Yal0) = in +

Therefore, conditions 4 and B coincide and y(x) is stable.

50. We now recall the method used by B. Gambier to determine the

stable equations E.15. Set

. 1
- 2
(50.1) Y= — y*— i + nvy

Annali di Matematica
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and substitute into equation (49.3); then

®0  gforo—po— LA b nl,
To abbreviate, set
az—%, v=z7+%,
b n—1 ., [ n—2n+42

= Ta— Y " n T wm—1

P(e) =" + oz + B

so that (50.1) and (50.2) become respectively

(50.3) y=—y — —— + u + nay,
. % 2
(50.4) e+ PEl=— """

Hence, if yx) is stable, v(x) is also stable and vice versa.
On eliminating y between (50.3) and (50.4), one finds

s—f1 1 )éf_n(n—i)zé_ na - %—4;3'
- n—2/z n— 2 n—2% n-2sz
(50.5)
m—12 , nm— la , B 1
Tw—2% T T2 z—Bzsza_n—‘Z'E’
where
o, n—1 ., n—2n{ 2 n—2
Bz_“+%~—2a n__2 p_!_n__l?
. n
Bs_ﬁ+n__2a@.

Equation (50.5) is an equation of the type E.15 with % replaced by
#n— 2, Therefore, we have to consider two cases according as to whether
n is even or odd.
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a) n =2k Suppose n =4. The equation (50.5) becomes

(50.6) =

2? 9 2
2

9 o Lo B
—_ —dog — 58— — —(p 4+ .
622 w— 52 6az® — Bz — (B + 2af) 5,

DOl =

If 8.=0, this equation is stable and of the type Eb for n=2
[see 42.3].
If 840, equation (50.6) is an equation of the type E.16 [see 48.6]
and is stable if the condition for stability B 4 2af =0 is satisfied.
For n =2k > 4, repeated applications of the method give equations
of types E.D or E.16 and hence k distinct classes of stable equations.
b, n =2k 4 1. Suppose n==3. One has § =0 [see (49.4)].

For n=2k+41>3 and §=0, equation (50.5) is an equation of the
type E.11 (see 42.3) and is stable. If 33=0, repeated applications of the
method give again equations of type E.11 and hence % distinct classes of
stable equations.

51. Equations E.6 and E.17. - Consider the equation

2

(51.1) Y —

WS

) . oa b
=a/?/?/+“1y+62i Z/3+b1y2+bzy+bs+j-

BDO| =

If b,4=0, we have equation FE.17 and if by=050,=0 equation E.6.
Assume b,9=0. Then for Z1, one has p =0, 2bs* 4 1 =0, The con-

dition for stability is @, bes —|—Z=O so that b, =0, 2a, = bs For conve-

B
nience, set a1=q=;and b4=—72AHr2, where H is a constant. Note
that H =0 gives equations FE.6.

Now, consider P1; one has p=1, as=—1 and p=D5, as=3. By
a transformation (A, ¢), one may assume ¢ =—1 or s==1 when p=1;

then

su=u+q— b,— bz — be® + qeu + ;—uz.

To obtain the condition for stability, set # =« +4 2v and find

. az
«e=b—q, a=—b+ag+ 5
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therefore,

1 . .
(61.2) b, = 3 b —q¢)—b+q.

For P1, p =050, as =3, one has

2

za::5@o—{-q—{—3b1—baz-—%4zs+qzu -}—%ﬁi.

The condition for stability determined by this equation is complicated;
we use another method.
A transformation (A, ¢) may always be chosen such that b, 4 2a, =O0;
2

then, b, = — 2¢ and 52:3(4 + %‘) [trom (51.2)]. Therefore, (51.1) may be

rewritten as

.._13)2 ) R \ C T2 H?
(61.3) y~§y—-yy+qy+2y—-2qy+3<q+§—)y— g
Now, sei
(61.4) 12w:g)+y"’—3qy

and note that w is regular for the parametric poles corresponding to p=1
and has a double pole at the parametric poles corresponding to p =2>.

Equation (51.3) gives
w® — Hr?

(51.5) y=6"2
w— gw

so that (51.3) is equivalent to (51.4-b); moreover, w is stable if y is stable
and conversely.

On eliminating y between (51.4-D), one obtains
w = 6w* + (¢ + ¢*)w — 6Hr?

[observe that r=gqr, qw®— Hrr = q(w*— Hr?).

Because ¢ -+ ¢ = ; , one finds

ﬁ=6wz+;w—6Hr2.
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This is an equation of type A(x, y)==0 and class P2, p =5. To obtain

the canonical form of this equation, set 129:2 and w=v—g¢g so that
(51.6) v = 6v® + g — 69> — GHI

We have to consider two cases according as to whether B =10 or H4=0.

i, H=0; we obtain equation E.6. In order that (51.6) be stable,
g and v must be solutions of

(51.7) v =60 + Kz + K;.

It v, and v are respectively a particalar and the general solution of
(61.7), one has g=wv,, r=12vr and

’

L_L s s
y bw—uv)fde\ r

therefore, y(x) is stable.

ii. H=0; we obtain equation E.17. We may evidently assume H=1.
In order that (51.6) be stable, one must have

g g =6g° 4 6¢r* 4 K + K,
(51.8) )
( v="06v" 4+ K 4+ K.
Because = 12gr, one may write

gxr=06(g=£r}+ Ko+ K,;

therefore, if v, v,, v, are distinct integrals of (B1.7), one has g+ r=wv,,
g—1r=7v; and

/01"—'?']2
=v+ v, r=w—1v,, g=-——.
@1"‘@2
Moreover,
U U,
W=V — g
2 ?
V- 0 (U - 0
y—6 (v — o) v — o)

- "}1‘{"@}2 V1 02
o B g0

therefore, y(x) is stable.
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52. Equations E.7 and E.18. Consider the equation

. 1P . b
(62.1) .V*“g%:aly—f— by3'+bly2+bzy+bs+j;
if b,94=0, we have equation E.18 and if b;=5b,=0, equation E.7.
By a transformation (}, ¢), we may assume a, =0, b= g

For Z1, one has p=0, 2b,s°+ 1 =0. The condition for stability is
bes* +s=0, ie. by=0, s=0 or b= K=0.

For P1, one has p=2, s===k1 and
2 = 20 — b:8 — bz — by87° — b2 + Z ue.
To obtain the condition for stability, set # — a -+ 2z 4 2% and find
2 —bs =0, a=p—b+ -;‘— B=0
o that 2b,8 = — 4b, + b.b,, ie. b =0, 4b, = bb; or
b, = Kix + H, 8b, =10} -+ 8K,.

We have fto consider two cases according as to whether K,=0 or
K,==0.

a@. K;=0; then b,, b,, b, are coustants and one finds the equation
. . ijj 3 . , . K
(52.2) Y=2y +5 ¢+ 4Ky + 2K,y TR
Using the method of variation of parameters, one obtains

¥ = y* + 4K+ 4Ky + K + Koy ;

#(x) is an elliptic function and is stable.

One may also multiply (52.2) b 2@} integrate and take into account
y P J y g
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b. Ki30. Then, by a trivial change of variable, one may assume
by =42 and b, =2« -+ K,; the equation (50.1) becomes

_lyv 3 , , . K
(62.3) V=34 +5Y + dxy® 4 (22* + Kz)y‘{"gg

which is the equation 1.4 of Table I

For K=0, one obtains the corresponding stable equations E.7.

55. Equations E.8 and E.19. - Consider the equation

Bz
Y

2
3al

‘ o 2?/2 . 3 2,3 2
5.0 =gt =(a a7+ 0y by by b=

it a@,4=0, we have equation FK.19 and if u,=b,=0, equation ES8.

By a transformation (A, ¢), we may assume a:—-g. Then, one has
for P1: p=1, s=1 and p=3, s=—2;
for Z1: p=0, 3a,s=—1 and p=1, 3a,s=2.

The condition for stability for Z1, p=0 is

al—{-bss—-azé—}-ggzo

or
by = 3.0, — 3t
For convenience, let us write a,=1r, 30, = 2¢ so that
(63.2) by = 2gr — 3r.

For Pl, p==1, one has

2

s =1u + o, — by 4 20y — bs) — bez® — b2® + azu + a2u % .
The condition for stability is

. 1
ay — b, + o, — by — on(ay — b))+ 5

3 (@, — b =0.

To simplify the mnotations, we may assume b, 4 Da; =0, on using a
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transformation (A, ¢). Then 3b, = — 10¢ and

(53.3) b, =4q + r + g 7.

Equation (53.1) becomes

210

. - 2y
(53.4) Y- 3 3Jy+ qy+? tT 385w+

k|‘-

+bzy+bs—i:;',

where b, is given by (53.3) and b; by (53.2).

The conditions for stability for Z1, p=1 and Pl, p=23 are compli-
cated; we use another method.

Observe that y—}-y—étq is regular for the parametric poles PI,

p=1 and thatZ—{—%ls regnlar for the zeros Z1, p = 0. On seiting

y 3r
53.4' Y 4y 4g+ =
( ) y+u q+y

one obfains

2

(563.5) O=— g— — 2vq + vy.

Equation (53.4) and the differential system (53.4'-5) are thus equivalent.
On eliminating y between (53.4°-5), one finds

=§ v® 4 20%q 4+ dvg® — 2vq — 3rv;

this is an equation of type A(x, y) =0 which, on setting v = 3w —q),
reduces to the canonical form

(63.6) =2+ (3r — 2q — 2¢") w + ¢ + 2qq — 3rq
[see (24.3)]. For this equation to be stable, it is necessary that
3r — 2¢ — 2¢° = Ko -+ H,

q+ 2¢9 — 3rg=K,.
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On eliminating r between these relations, one obtains
(63.7) q = 2¢° + (Kx + H)g + K,
i.e. equation 12 of Table I; then,
(63.8) 3r = Ka + H + 29 + 2¢°

The stable equations for this class are of the form

-2

2 .2 .y 2
y'“g?f?/+gqy+"g}+gy“

a2

. 9
¥=3
(63.9)
10 . 8 T
— g o+ 4+ 50y e — =T,

where g is given by (563.7) and r by (53.8).
The general integral of (53.9) is given by

_w—g+nw—¢
y= —q ,

where g and w(d=q) are respectively a particular solution and the general
solution of (53.7).

To obtain E.8, one has to assume r =0. Equation (53:6) is then

w = 2° — g + ¢w + ¢ + 204;
for this equation to be stable, it is necessary fhat
(53.10) g+ =Kx+H

so that ¢+ 2g9=K.
The stable equation E.8 is then

v

. 2 2 .. 2. 2 10 ,
Y=gz, T3WTzWrgzy—gw+

(53.11)

+(4£1ﬂ-§ qz)y,

Anmoli di Matemalica 40
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where ¢ is a solution of (53.10). Its general integral is

=g =g
y= W~

b
where # is a solution of

w = 2w* — 2Kx + Hyw + K.

54. Equations E.9 and E.20. - Consider the equation

. 4 y'z . a,\ - s R 5&; .
Gh) G5 = oy ot )i S+ b by o+ b g
if @0, we have equation E20 and if a,=0b,=0, equation E.9.

By a transformation (4, ¢), we may assume o= — g . Then, one has

for Pl: p=1, s=1 and p =2, s:——g;

for Z1: p =0, ba,= —3s and p =3, ba, = 12s.
We consider the simplest conditions of stability.

For Z1, p =20, one finds

dzzaiafg—;gbs.

For Pl, p=1, one has
2 = U -+ @, — by + (@2 — by)g — b® — b2 + (ay +- azp)ou + Z .
On setting u = a 4 2v, one obtains
o4y —by =0,

é:agmbg“‘}‘al“—l‘g—“.

For convenience, on using a transformation (A, ¢), we assume b, - 14a, =0
and write

bty = —¢q, HBb, = 14q, a.=r.
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Hence, the conditions for stability are
for Z1, p=0: 3b, = — (qr -+ Br);

for P1, p=1: bzzr—-3g'[+—gq2.
Then, equation (b4.1) is

. 1 y y 4 3 14‘q 2
?]?/"'5(1?!“1‘7'?,'1‘5?/ +*5“."/

.

_4y
y“EQ-

[LU O]

(54.2)

-6 1, 1 . bt
Hr—sitge|v—g@+mm—3.

The conditions for stability for Pl, p=2 and Z1, p=3 give the
values of ¢ and #; because these conditions ‘are complicated, we use
another method .

Set

y s+ 07 = D
y TV T30tz =50

[Note that v is regular at the parametric poles P1, p =1 and at the
parametric zeros Z1, p =0 and has simple poles for Pl, p=2 and
Z1, p=23]. The equation (54.2) is equivalent to the differential system

. b N 5
y=—gw—y—3—gr,

On eliminating y between these relations, one finds
. : . a [ . D
v=— (v Qv+ v’} 3¢v° + (g—}-“?q mgr>v.

This equation is of type A{x, y) =0 and on setting v 4+ ¢ = w reduces
to the canonical form

A

W= -—w¢b+1@3+<2é—qz~— Lé‘)w-l—g}'—gé—}— grq.

o
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For this equation fo be stable, it is necessary that

2Q—q2—g¢= — 120,

(54.3)
. . 5 )
¢4—9q + 5 rg= 120,

where v, is a solution of

(54.4) V=6V*+ Kz -+ H.
From (54.3), one deduces

(54.5) 9 =—qq + ¢ — 120, + 120,.
The general solution of (54.5) is [see (25.5)]

V—

A 2,

where V(#=v,) is the general solution of (54.4); then,
5

r

(54.6) S =2, 4 12V—3 (

V—é1)2
V—uo/"

The general solution of (54.2) where ¢ and r are given by (54.5-6), is

where w(z=q) is the general solution of (54.5).
To obtain equation E.9, one has fo assume # = 0. Then, instead of

(54.3), one finds
20— =— 120, q—qq=12v,

80 that v, =K is a constant. The general solution of the corresponding
equation E.9 is
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where

W= —ww + w*— 12Kw,

2 =¢ + K.

1
y—1°

VIII. Equations of the type Alx, y):‘—;!}—i—

55. The stable equations of this type are of the form

55.1 :(“—' ) ]
(55.1) Y=oyt y=1)Y Tyu—0?Y Tyu—1)
where

M M,

—D'—ay+a1+ 1)_’

N . N,

=0+ by by + b+ 3

Mz, y), Nox, y) are polynomials of the first degree in y.

The values of y for which the general existence theorem of CAUCHY
does not apply are y =oco, 0 and 1.

If @ and b are not both zero, y(x) has simple parametric poles; if
a=5b=0, ylx) has double parametric poles.

If y@) has a simple paramefric pole, set y = Z, ¢=1-+4wuz and de-

termine s by (note that n = — 2)
2bs* — 208 — 1 = 0;

because p — as and must be an integer, one has a =0, b3=0.

If y(x) has a double parametric pole, one has o =b=0; because
p=—1, one also has b, =0.

To investigate the coefficients of M and N in a neighborhood of a
parametric zero, replace y by w~! in (55.1) so as to obtain

1%:(27%—%-——1—)3%;2-—%)"'1%(%, i)—zu-— +N(w,1) w

w—1 w) wiw— 1) w) wiw — 1)
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This equation has the same form as (55.1). Therefore, if y(x) has
simple parametric zeros, then Myx, 0) =0), No(x, 0)3=0; if y(x) has double
parametric zeros, then My, 0) =0, Ny, 0)=0 and the coefficient of Y
in Nz, y) is also zero.

To sum up, and changing the mnotations, equation (55 1) may be
rewritten as

LU LN ay—b
55.2) i= (gt =)0+ T iy — 10w, o)
where

, o g bk !
(55.3) Qx, z/)—ey—l—f+y2+y+(y_1)2+y__1-

Note that e =0 implies f=0 and that ¢ =0 implies % =0.

The transformation y=w~"' brings equation (65.2) to an equation of the
same form according fo the equivalence table

Yy a b e f g h k l
(w): b o g h e r k k—1
The substitution ¢ = ¢(x) transforms (b5.2) into

1
y—1

: Yy — 1
)y’2+rg7{<“—@>y-b+®}l- + %T}W’ Y
y— ? :

(1
y'=(g+

Observe also that y =1 does not play the same role as y =oo or
y = 0; accordingly, y =1 must be considered separately.

56. Parametric poles. ~ Set y = §, 2=1+4uz and determine s by
2
2es* =1; then p=0 and

g — 1
1 fade—1s+ 0@

s

U =

The condition for stability is

§s—1<as+@—fls?=0;
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therefore, s +as =0, (¢ — f)s*=1 and finally
(56.1) 6 = %ea,

Note that for P2, e=0 so that (56.2) still holds.

Parametric zeros. - From the equivalence table, one deduces at once
the conditions for stability

(56.3) g = 2bg,
(66.4) g+ h=0.
Note that for Z2, g =h =0 so that (56.4) still holds.

57. Parametric unities. - We have to consider separately the parametric
unities of the first order and the parametric unities of the second order.

For the parametric unities of the first order, set. y=1-+s¢, 2 =1 uz;
one has

(57.1) . . .
y:,s<zzl+u+2§+§z+2§zu+zu2),
s ' s s
1 1 1 .1 sz 8% .
ay —b a— b
“?]—1 “—‘a‘+ sz 3
k
Yy — 1) Qe y)=§5+k+1+(9+f+g+h+l)sz
(67.2)

+ e+ [ — g)s'2 + OF),
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Because of (56.2) and (56.4), one finds

it = 1 +“"b+i)+(1 +2= 0

2 S 8 8

(57.8)
+ Ay + Az + use 4 8) + 0(z),

[the coefficient of zu® is zero] where

s s k41
Ao=g+a+@—b 54+——,

§

s, s £ . 8
A1——§+a§+l—§+3+§2-

We determine s by setting

ety koo,

8 8

14

p=1-+ C—t:—b must be an integer. Therefore, in order that (55.1) be stable,

one must have one or the other of the following distinet possibilities
i. a—b40, k=0, p=0, s=b—a;
il. a—b=0, k0, p=1, &+k=0;
iii. a—b=0, k=0,

see (16.15) and (16.16); observe that #» = oo and change s into% .

Case iii corresponds to parametric unities of the second order.

When @ —b=0, one may assume @ =5b=0 [choose ¢ such that
p=ag].

To determine the condition for stability corresponding to double para-

metric wunities, observe that because ¢ =b=0, ¢ and g are constants
[see (56.1) and (56.3)]. The equation (55.2) is then

w=(Lo_1 \,e _ e Syt
614 §= (gt ) D]y — D+ S0 —n+ 7).
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Now, set y=1-+8" z2=1-+zu and determine s by 14 28=0;
then

o2

i+ (55 o
e = u -+ (.32 8)2 -+ 0(z%) -+ Ozu).
The condition for stability is
woos
§—~S—2=O or 8= Hek»
8 s

and finally,

(B7.5) [ = HeKe,

58. Because y —=oc and y =0 play the same role, we have to consi-
der the following nine distinet possibilities;

P2, 72 and U2 or Ul, p=0 or Ul, p=1;
P1, Z2 and U2 or Ul, p=0 or Ul, p=1;
Pi1, Z1 and U2 or Ul, p=0 or Ul, p=1.

‘We consider these cases separately and begin with the last three.

58. P1; Z1; Ul, p =0. - Equation (55.2) is

- (1 1 V., ay—b-
y”(2y y—l>y tpoT¥t

(38.1)

+ =Dty — D+ S — 9+

The condition for stability is 4,=0 or because s =5b-—a,
(58.2) b+d~—b+%(b2-—a"’)=0.
To simplify the notations, set
a=2¢ b=—2d, 2e=4q" 2¢g=r%
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then, from (58.2), (56.1) and (56.3),

‘ l=2[¢"— d'— ¢ —d],
(58.3) . .
? q=2cq, r-+ 2dr=0.

Equation (58.1) may be rewritten as

N 1 1 e 2(Cy+d) (y_l)z 2 r’
y—(@+y_1>y+ y—1 Y+ 3 (qy~§)

(68.4)
+ 26— & — ¢ — d)y.
To integrate equation (58.4) observe that

c+d)
y—1

_ Yy 2
'u_y_1+

is regular for Ul, that v 4 qy is regular for P1 and that v 4 qy + 2(c + d)
is regular for Z1. Accordingly, set

y  2+ady, ,
58.5) T Ay =— 2w
on substituting in (58.4), one finds
y—1__ _1%} + 2wd
(58.6) 4y = 4wt

[write y = — 2n(y — 1) — 2(c + d)y — gyly — 1)].

The differential system (58.5-6) is thus equivalent to the equation
(68.4); if y is stable, w is also stable and conversely.

On eliminating y between (58.5) and (58.6), we obtain an equation for
w. For convenience, set

A=mw-+42dw, B=4n?— ¢
g0 that

B (44
Y=Fxia Y7 T TBf4a
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Now, rewrite (58.5) as

2w _

g+@w+2w+m+@w~n—~g—o
and observe that
B — 84w = — 4Bd;
then
(B8.7) B4-44 4 44q+ 2Ad —c)(B+44)=0
or
W= — 2000 - @ F a0’ + agw + a,

i.e. an equation of type A(x, y) =0 and class Pl, p =1; thus, w and y
are stable.

To integrate (58.7), observe that because ¢ = 2cg, one also has

- )
Aq = qw + 2dgw :d—w(qw) + 2(d — ¢)qw;

hence, on sefting
47 = B 4 44 4+ 4qw

,r2

=4\w+w+wg+2d)—7|,
(58.7) becomes
Z=2@c—d)Z.

Therefore, Z is determined by Z = Kqr aud w by a RiccAaTI equation.
59. Pl; Z1; Ul, p = 1. ~ Equation (55.2) is

(59.1 i =(o-+ ) vy — D e — 1 + T — )
1) ¥ =g, %m1y+Jy Yy w( Y

Eo 1
w—4Y+y—1]

4~

where e and g are constants.
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One has k340, p=1, #4+k=0 and
o =u + Ao + Az + suz + 0@)

[the coefficient of zu® is zero]; fhe condition for stability is

dk+2 s _
c—i—ob[ 2s _§+S}—O
or
d s d (k-2
3=0 ol E )=
Therefore,
(69.2) 8 == Hekx
and k--2] 4+ 28°= K;s or
(59.3) 20=Ks —"=K;s+4 k.

Now, we consider two cases according as K; is or is nof zero.
i. K;=0; then s, k, I (and e, g) are constants.
Equation (55.2) is

y—1
yz

. /1 .
(59.4) y=g§+mew+wy—nkw~n+Hl +

H, 2H,
+oT |

y—1)

This equation may be integrated by using the method of variation of
parameters; one finds

: H H o
Y= 2@’@!—-1)2[@— -gf—y_fi—-(y_s

1)24-&}.

As a particular case, one has

N 1 1 "2
y_(@+y—1)y

whose integral is y = th*( Hx 4+ H,).
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ii. K,9¢. By a transformation {= ¢(x), one may assume e¢5* =1
and k =2H¢#, = H{*+ H; hence, on writing again « instead of ¢,
one has

{5

(59.5)

z@f(y‘f“l)'

+ Hyxy + Hx y—1

This is the irreducible equation 1.5 of Table I. Indeed, a transformation
{ == ¢(x) brings this equation to

/

i=(gt ) -+ U +3)

¥y oy €' x Yy
(59.6)
Hy |, Hyly +1)
+ o + wy———l

60. PI1; Z1; U2. - Equation (55.2) is

1

60 §=(g+,—

it oty — ey =0+ L —y+ L),

where e and g are constants.

The condition for stability is ! = He%® [see (57.5)]. Hquation (60.1) is
thus a particular case of (69.4) or (59.5).

61. On using the preceding results, the other cases are readily disposed of.
P2; Z2; U2. - One has, for P2, e=f=0; for Z2, g=h=0; for U2,

a=b="F=0. Equation (565.2) is
61.1) /;'——(1-;- LR TP

with the condition for stabilify != HeX®; (61.1) is a particular case of
(69.4-5).
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P2; 7Z2; Ul, p =0. - Equation (55.2) is

ay —b

y—ivtu

. 1 1 \.
2 =g+ —y
612 v=(g;+ ;)" +
and is a particular case of (58.1).

P2; 22; Ul, p=1. - Equation (55.2) is

613 i =g+ )i+ (g )
and is a particular case of (59.1).

Pl; Z2; U2. - Equation (55.2) is

: .- i 1 . A
(61.4) i =gy =i + 90— D)oty = 0+ L |

where e is a constant. This equation is a particular case of (60.1).

PL; 7Z2; Ul, p =0. - Equation (55.2) is

_ . /1 1y —p .
{61.5) y:<@+y—:f>y2+%g—-—l y+yly—1)

ety =1+,

where e =2ea. This equation is a particular case of (D8.1).
P1; Z2; UL, p = 1. - Equation (55.2) is

- 1 1y, ol k {
6L6) G =(g o) sy — Doty = D+ o o]

which is a particular case of (59.1).

2
IX. Equations of the type Az, y) = 3

62. The stable equations of this type are

. 21 1\, .
(62.1) v=3 [, +;=7) ¥ + P vy + 30w — 10, v)
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where
(62.2) P,y =ay+2— - +d,
y y-—1
94 f g k l
2. - P, -
(62.3) =z, v) ey+y2 (y—1)2+h+y+y__1'

The values of y for which CAvcHY’s general existence theorem does
not apply are 0, 1, oo,

The transformation y = #~* [resp. ¥y =1 — w)] changes y =0, c», 1 infto
u =oc, 0,1 [resp. w =1, oo, 0] and brings equation (62.1) to an equation of
the same form according to the equivalence table

(y): a b ¢ d e f g h k l
(u): b o —c¢ dic f e g k h —Il—g
w): —aoa ¢ b at+d e g [ —e—h I k

Therefore, the values y =0, 1, co play the same role.

Note also that the transformation defined by (1 —y)u =1 brings equa-
tion (62.1) to an equation of the same form according to the table of
equivalence

(y): 7] b ¢ d e f g h E l
(u): c —a&¢ —b atbtdyg e f ! —h—e —f—%k

The solution y(z) of (62.1) has simple parametric poles if ¢ and e are
not both zero; y(z) has double parametric poles if a=e=0.

Suppose y(x) has a simple parametric pole. Set y:Z, 2 =1+ uz, where
8 is given by 863"‘—&8———3:0; then # = —3 and p:é—{—as.

In order that y(x) be stable, one must have e=a® and p=0,
308 4+1=0 or p=1, 3as=2.

It y(z) has a double parametric pole and is stable, thenp:-wé 80

that h ==0. [Note that when a=—=e=h =0, y(z) has in fact parametric
poles of the third order].
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To sum up, according to the equivalence tables, one has
for P1: e=a*; for P2: a=e=h=0;
for Z1: f=b*; for Z2: b=[f=k=0;
for Ul: g=¢*; ftor U2: ¢=g=1=0.

Therefore,

2

. b ¢ k l
(62.4) Qa, y):"a@/"l‘gg—"—“l—)g—l—h"l“?;"l‘y—l,

(y —

where h=—=0 if a=0; k=0 if 6=0; 1=0 if ¢=0.

The transformation #=—y(x) brings equation (62.1) fo

025 =3[,y )y (P 0 - i>@+3y<i ) G, ;

on choosing ¢ such 9 =dyp, one may assume d=0.

63. Because y =o0, 0,1 play the same role, we have to consider only
four distinet possibilities, namely

(P2; Z2; U2), (P2; 22; Ul), (P2; Z1; Ul), (P1; Z1; U1).

Equation (62.2) corresponding to (P2; Z2; U2) is

. 2711 1 ‘y

for one may assume d =0 by a proper choice of ¢. Then, y is given by
vt = Ky'y— 1)%;

y(z) is thus an elliptic function and is stable.

[On setting 2y = 1 4+ u, one has w® = K(u*— 1)?].

For the other cases, at least one of a, b, ¢ is not zero. We may assume
¢4=0. Indeed, the transformations y=wu, y=u""', y=1—u and their
products 3 :u——l. Y= 1 Y =

w ’ 1—a #— 1
of the same form, and according to the equivalence tables, commute a, b, c.
We consider first the equation (P1; Z1; Ul).

bring equation (62.1) to equations
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64. For a simple pole of y(x), set y:i, #==14uz and note that
s 2 .
P, y)=a_+d-+(b—0  + 0&)
Qz, y) = o Z—l— h4(h 1) ng 0(2%);

then, substitute in (62.1), determine s by 3@282—6{S—§=O and set

p::é-{—a;s so thaf

st = pu+ A+ Be+ Ouz — 5 o’ + 0@,

where

2:9 2 : < 3
'35_3_S+d_“8+3(“ — h)s,

_d (s 1s2 2 45 b—ec 8
B= (5 — a5 —aetag T —dg HR0 ko0,

i. Suppose p =0, 3as +1 = 0. The condition for stability is 4 =0 or
(64.1) I+ ala + d) —a = 0.

From the equivalence tables, one has the two ofher conditions for
stability corresponding to Z1, p=0 and Ul, p =0 respectively

\ E+bb+c+d—b=0,
(64.2) : ‘
| 14ca+b+c+d—c=0.

ii. On using the relations (64.1-2), we shall reduce our problem to
another of the same type involving an equafion with only two singular
values 0 and oo. To do this, observe that the parametric zeros and the

parametric poles of y(x) are poles of the first order for g; hence, the sin-

gular values of g are oo and the value corresponding fo y = 1.
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y

Now, g—-3ay is regular for the parametric poles Pl, p = 0; y

+32
Y

is regular for the parametric zeros Z1, p =0 and ?—; — 3¢ is regular for

<

the parametric unities Ul, p = 0. Therefore, z — Jay - i 3¢ is regular
for P1, p=0; Z1, p=0; Ul, p=0.
Accordingly, set

(64.3) g — Sa(y — 1)+ 3b (1 - ?_i) + 8¢ + Bv

and substitute in (62.1). For convenience, set first

gz Sa(y — 1) 4 3w

and find
y 2 bw
w=w+ 2a 4 d)w m —ac -+ 1

=)o rra )

1{2@2—-cw-—02];

then, write

w=v+c+b-— b
Y
80 that
Q(v)
64.4 —l =
(645 Y v— P’
where
Pw) =" 4 2a + 2b + 2¢ + d)v,

(64.5)

Q) = 2v* 4+ 3cv.

Equation (62.1) and the differential system (64.3-4) are thus equivalent;
if y is stable, v is also stable and conversely.

To determine v, one has to eliminate y between (64.3) and (64.4). To do
this, rewrite (64.3) as

3w+ 0
y— 1

g’_—i"”,l =3a(y—1)+

+3a+b+c+w),
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take the logarithmic derivative of (64.4) and observe that

3wv+eo 1 1 )
Qv) “{;+2v+80’
then
v—P+8aQ wv43c P g btod
v—P  20+3c 20+ 3 v—@+bte—d,

i.e., v is a solution of an equation

(64.6) b= ﬁs“c + Blz; v)o 4 C; v)

of type A(x; v) :%}.

To reduce (64.6) to a canonical form, set

U= v+ —?;—6,
(64.7) o =2a+Db)—c+d,
3¢ 3¢
(64.8) B=38da+b)+ " e+2)—F
80 that

é-P:ﬁ-—ugmom-f—ﬁ,

Ow) = 2u (% — %C-) .

A simple calculation shows that

&:%+?i;i+(a+b+c+2cz)zi+3(b—a——c)uf
(64.9)

+ul it 9a0—§— et d| 48t rohrm—i— L.

Now, the transformation {=¢(x) brings equation (62.1) to (62.5). If u
is replaced by wo(x), (64.3) and (64.4) remain invariant if the coefficients
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of (621) are replaced by the corresponding coefficients of (62.5). If o) is

chosen so that 29 = (a4 b+ ¢ + 2d) ¢, and if w is to be stable (and thus
also y), then equation (64.9) musf reduce to the canonical form [see § 52,
eq. E.7 and E.18]

T I
where D, E. F are given by (52.2) and (52.3).

Therefore, to determine a, b, ¢, d, one has
(64.11) a = 2a -+ b) —c + d,
(64.12) B8 = 3c(a + b) + %E(c + 2d) — i;,
(64.13) G+b4c42d=0,
(64.14) 3b—c¢—a)=4D,

. Se

(64.15) oc-}—9a0-f3———7(o+d)= 2E,
(64.16) f=0,
(64.17) p=PF.

Set 3c = 2W. Then, from (64.12-13) and (64.17),
W, 2F
(64.18) 3a+b) = Q—W—{—W;
from (64.14) and (64.13) respectively,

(64.19) 3b—a)=4D 1+ 2W,

' .
3d = — (TV+ W + W ) .
Therefore,

W, F
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so that, from 64.15),

Wz
2w

F2

(64.20) W= R

+§W3 4+ ADW? + 2EW —

65. From the preceding, it follows that the stable equations of the
class (P1, Z1, Ul) are
- 2(1 1y, ( b
=l — o - —
y 3(y+y__1)y +lw+

¢
y—1

+d)y

b* c* k l
+ —Yley+ - pLC
Suly )[M’ y  (y—1p 4 y 3/—1}’

where

W F
— 2D — W, Sb_W+W+2D+ W,

==
I~

304 =

+

36 = 2T, 301:_(%4-%-{- W)
- a
h:a,-l—é(b—[—o——a),
. b
E=b—50+c—a)
2
Cc

Z=é—§w+b+m;

W is a solution of (64.20) and

3¢
i 2w (w _—f) 2w — W)
Y — —_ = = T
Y w—w —aw-+3 w—W—>w— W)w+W4a
because
B=F=(u+4+ W)W—W.
Therefore,

T w— W—w—W)aw — W @)

and is stable.



334 F. J. Bureau: Differential equations with fixed, ete.

66. Bemark. For P1, p =1, 3as = 2, one has

s =u 4 A + Bz + C’zu——-—;zuz 4 0@,
where

D:é—]-a-}-d so that a = aD, (see 64.1);

A:D—-—-%i—l, 30 = 3d — 6a — 2D,

B:—~1')~§D2—(2a—~—d)D+;a(b~—c—a)+8(h—k—~l).

The condition for stability is

. 2
A+B-AG~%-=O
or
dh 1 2 h
or

Aah — 2ak) -+ (0° + 21 — a*(b — ¢) + 2%k -+ 1) = 0.
There are two similar conditions for stability for Z1, Ul, namely
2Abk — 2kb) + (0* + 2k — b + ¢) + 2B — 1 — ¢*) = 0,
2cl — 2l) +- (¢* + 20 — 6*(b — a) — 2¢*(h + & + a* - b%) = 0.

These relations are not easy to handle and thus the reason why another
method was used.

67. P2; 7Z2; UL. Ope has a =h =0 for P2, b =%k =0 for Z2; the stable
equation for this class is

(67.1) i =gl ) Ha— )i+ s — )
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where

I =¢—c(c+ d)

We use the above method and assume ¢ -+ 2d = 0; then w is determined by
(64.10) and ¢ and d by (64.11-17). One easily finds

3¢=2W, W+F=0 2D+ W=0, 38d=—W,
o= — W, B=F, E=D*;

therefore,

W= — Fe— H.

Hquation (67.1) is then

3 y—ly*

- 2(1 L\ W y+1: wr oy 11,
y—3g+y—0 2yF+3'§17’
its general solution is

200w — W) _7%)—[—102—— Ww+ F
w-—nw+ Ww+F w—nd+Wot+F

y=1+4

_w— W ww — W)
o — W — w(w — W)

’

where w is determined by

3w3 2 24 F2

= w*
T 2w

68. P2; 713 UL One has a=h =0 for P2. The stable equation for
this class is equation (62.1), where a=h =0. We use again the above
method and assume

btc-2d=0 8c=2W.
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Then, one has
(68.1) W= W4+2DW—F

so that W is determined by a RicoaTi equation.
Moreover,

38b = 4D +2W, 3d=—2W— 2D,

and
2D -+ 2D* — F = 3E.

The stable equation is thus

i=3( §~}_T>92+(9—-v§3+d>@}+

2

b
Syly — 1) — 2 4%
oy )[?f —1 "y

where k=05 -+ bd, | =¢ + cd.

The general solution is given by (65.1), where W is a solution of the
Riccami equation (68.1) and where w is the general solution of (64.10).

Note that if W is replaced by —»—Z in (68.1), one obtains

w— 2ou — Fu =0;

if D=a and F= —2n, n an integer, this equation is satisfied by Hu(z),
the HERMITE polynomial of order sn.



F. J. Bureau: Differential equations with fiwed, ete. 337

X. Equations of the type A(x, ) ‘—'—‘2@ ?7'_‘1_“1)

69. The stable equations of this type are

- 31 1\, )
(69.1) §= 3y =)+ Fe vy + vy — 10w, 0)

where P(x, 9), Q(x, y) are given by (62.2-3).

The values of y for which CaucHY'Ss general existence theorem does
not apply are 0, 1, oc.

The solution y(x) of (69.1) may have simple or double parametric poles.

If y(x) has a simple paramefric pole, set y :S, z=1-+ uz, where s is

given by 2es*=1; then #=—2 (case vi), a =0, e5=0 and p = 0. Then,
substitution in (69.1) yields

. 3
zu:§—4——s—|—d+(e—h)s+0(z).

The condition for stability is thus

s‘—§+ds+<e—h>32:0

or, because 2es® =1,

s+ds=0  4e — hs*=3;
finally
(69.2) 2h e =0, e = 2ed.

If y(x) has a double parametric pole, then ¢ =e=10 and as a conse-
quence, k= 0.

Changing the notations and taking into account the relations- (69.2), we
shall rewrite equation (69.1) as

.3/ 1y- :
(69.3) i =4y =8+ P 0+ sy — D, 1)
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where
PHa, ) =at+ 20—,
’ y y—1
i g k A
w, ) = 4d@y— 1) +L— L T4 .
¥z, y) 2y )+y (y-—-l)2+y+y——1
Note that
(69.4) d = ad

according to (69.2); for Pl, one has d==0 and for P2, d =0.

The exceptional values y =0 and y =1 play the same role; indeed, on
setting y = 1 — w in (69.3), one obtains an equation of the same form accor-
ding to the equivalence fable

(y): a b ¢ a [ g k 1
(w): a ¢ b d g f 1 &k

It is readily seen that y(x) has simple parametric zeros if & and f are
not both zero and double parametric zeros if b =7 =0 and %k 4=0.

In agreement with the equivalence table, one sees at once that y(x) has
simple parametric unities if ¢ and g are not both zero and double parametric
unities, if ¢=g=0 and I3=0. Therefore, we have to consider only six
distinet possibilities namely

(P2; z2; U2), (P2; Z2; UY), (P2; Z1; U1),
(P1; Z2; U2), (P1; Z2; U1, (Pl; Z1; U1).

‘We begin by considering the case (P1; Z1; Ul).
Furthermore, note that a transformation ¢ = ¢(x) brings equation (69.3) to

=3yt N prg g —8Y LW =D
v =3y o)+ e 0= e

70. Suppose that y(x) has simple parametric zeros. Set y = sz, e=1-4uz
so that

PH@, 1) = 2+ a + o+ o5z + OF)
r

s

0w, v) = L+ L g+ )+ 58 — 29 — ) — %39 + 1)+ 06,
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On substituting in (69.3), one obtains

- 13 b f 1. b
(70.1) zu—-g(@‘*‘g*g)*%(ﬁ—l—g)u—{—/l—[—O(z)
where
_ s k f }s 3s
Now, determine s by
f 3 __
£ 10

then p:—é-{—gmust be an integer. Therefore, according to Appendix I, vi

substitute s with s—')], one finds
b

(70.3) f=b

and

p=0 264+s=0; p=2  2b=38s
For Z1, p =0, the condition for stability is 4 =0, s = — 2, i.e,,
(70.4) k= 2b— 2bla + b + ¢

In agreement with the equivalence table, one obtains for Ul, p =0, the
condition for stability

g= 925
(70.5) .
! =2¢—2¢(a + b+ o).

71. Before considering the case Z1, p =2, we find the condition of
stability for Z2.

For a double parametric zero, one has

(71.1) b=f=0 k=0
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On setting y = s¢°, 2 = 1 4 uz, one finds

C " 4
a——y—r«iza—l—c—{—csz -+ Oz%,

P, v) = —; —(l+9+4d2)+ 0

and
-1 k 1s
z“:%(l”‘g)‘l‘“‘f‘C—Qg“f“ 0(z).

[Note that p = 0},
Determine s by s = k; because p =0, the condition for stability is

(71.2) k= 2ka + c)

For a double parametric unity, the condition for stability is, according to
the equivalence table,

(71.3) c=9g=0, 10, I[=2a-+b.

72. P1; Z1; Ul. We have d3=0 for Pl. On using the conditions (70.3-5),
we reduce the problem to another one involving an equation with only one
singular value, namely co.

To do this, note that g-{—%{) is regular for Z1, p = 0 and that T«-ﬁ is
regular for Ul, p =0 {set 1 — y = s¢ and note that § = — 20. We don’t pay

pa,ri;ieular attention to P1 because one ought to consider ¥ + with s =

1
_—4d’ —+4dy is regular for a set of parametric poles and &—4(}3/ is

regular for the other set of parametric poles].
Now, set

y + 2b
] 1—y

on substituting in (69.3), one finds

@y — 1)v* — d®) = v — aw.
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Hence, the differential system

(72.1) ¥ = 2b( — 1) + 20y — doyly — 1),
. v—aw
72.2) Y ~1= ;=

is equivalent to equation (69.3); if y(x) is stable, v is also stable and conversely.
To determine v, eliminate y between (72.1-2). To do this, set

v—av=A, v —d* =B

and note that d = ad [see (69.4)] and

B —2v4 = 2aB;
then,
A=2a+b+ 04 +2v—1b+ 0B
or
(72.3) v = (Ba + 2b + 2000 + 20° + 2c — bp* +-

+ [@ — 2a(@ + b + ¢) — 2d%v + 2d%(b — o)

i.e., an equation of type I [see equation 20.5 and § 24].

Now, by the method used in type §(§+y_}—_1> [i.e., a proper choice of

%], one may assume
(712.4) 3a +4+2b+2c=0
so that, on sefting ¢ — b = 3D, one may rewrite (72.3) as
v = 20° + 6Dv* + (a + o* — 2d%v — 6Dd>
The transformation v = w — D brings this equation to the canonical form

(72.5) w = 2w* 4 (& + a* — 2d* — 6D*)w +
+ D 4 4D — (@ + a* — 2d3)D — 6Dd>.

In order that w be stable, equation (72.5) must be identical to

(72.6) V=27 L SV+T
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so that
72.7) a4+ a* —2d* — 6D* = S,
(72.8) D+4D* — (@ + o — 2d)D — 6Dd* = T.

On using d = ad, one obtains from (72.7) and (72.8) after simple calculations

(72.9) d—2d° — Sd — 6D%d = 0,

(72.10) D —2D* — DS — T— 6Dd* = 0.

From (72.9-10), it is elear that D —d = V; and D + d = V, are solutions
of (72.6); therefore, on using (69.4) and (72.4), one finds

94 = V, — V, 40, a:gz——gl,
210 ' 1 S sy
=Ll =l ~_3 ="
D""‘3(G b)—z(vl'i" Vz); b-!'-G-—- 9 Vz_‘V:L

The general solution of equation (69.3), where

f =0, g=17d,
(712.12) . ‘ .
k= 2b -+ ab, ! = 2¢ + ac,

is thus given by

w—D—aw—D)  2V—V,—V,—a@V—V,— V)
w—D—dyw—D4+d) AV — VY V—Vy) ’

(72.13) 2y—1=
where V is the general solution of (72.6); therefore y is stable.

78. P2; Z1; Ul. For P2, one has d = 0; then (72.2) becomes

0 — av
vt

(73.1) 2y — 1 =

On eliminating y between (72.1) and (73.1), one finds again (72.3), where
d=0.
The method used above shows that w defined by v=w—D, 3D=c—b,
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3a -+ 2b - 2¢ = O satisfies
W= 2w+ (@ + a* — 60w + D + 4D* — (a + a*)D.
In order that w be stable, this equation must be identical to (72.6) so that
(73.2) a+at—6D =S,
(73.3) D4+4AD*—@+a?D=T.
Hence, D is a solution V, of (72.6) and @ is given by the RICOATI equation

a4 a*=S8+46V:
or by the linear equation (set a .-.—.Z).

(73.4) =S+ 6Vu.

The general solution of the corresponding equation (69.1) is given by
(72.13) and is stable.

4. P2; 72; U2. Because d =k =1=0, the stable equation for this class is

. 1 1 \. )
(74.1) y = 2(3/ + g:*l)yz + ay.

By a transformation ¢, one may assume @ = 0. The solution of (74.1) is
given by

vt = Ky'ly — 1)%;

therefore, y(x) is an elliptic function and is stable.

76. P1; Z2; U2, The stable equation for this class is

.- 371 1 ‘. . . ;f ] 1 )
@50) G =3(;+ )it @+ sy — DAy — D+

By a transformation ¢, one may assume a =0; consequently, d, k, ! are
constants.
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To find the solution of (75.1), set y == w~* and obtain

o .11 3 - ) I
(75.2) ka%'f-m——_—l)}w +(1@~—1}I4d (;0—1)-{-}%_.;?7__1 .

The solution of

e 3 y
w = %4‘4—(’“—]90

is
(75.8) w? = Knw — 172,

On using the method of variation of parameters, one determines K as
a function of w by

aK 2 {fld2

!
dw ™~ (w— 1" w—e(z—w)'l‘k“w-—l}'

Now, set w =1+ u* and FH(u)= K(1 4 «°); then,

dR _ 4

1—w 1
du

ey P

and

{ 44*
e’l{(u):4[lm —l—;t-]-r-_?_%q.ﬂ).

Thus, # is an elliptic function and y(x) is stable.

76. P1; Z2; Ul. For convenience, we slightly change the notations and
replace a by 2a in P*(x, y). Then, the conditions for stability are

i. for P1, d = 2ad,
ii. for 72, b=f=0, k=0, k= 2k20 + ¢),
iii. for U1, I = 2¢ — 2¢(2a + ©)

so that it remains only to consider the conditions for stability for Ul, p=2.
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Equation (69.3) may be rewritten as

. 3/1 1 -, c .
(76.1) y=1<g+§:‘i)y +<2“'m)y+
o=ty — 1 — St
w v y—1 "y y—1
Now, set
(76.2) y:2cy—4dy(y-—1)—2@(y»—1)

and substitute in (76.1); on taking into account the values of d and 7, one
obtains

(76.3) %’2 =204 20" — 4ot c+dw Lk

On eliminating y between (76.2-3), one finds

. Ot 2 4F k7 -
v—%_-—{gv-f—Z(d—a)——?—{—g—v}.v—&
@64) + 20 —(20—2d— 2P\ _[1OF L ypo 1 9a)oiile o
3 3 3 3
8 A

where £ —=a ¢ 4 d.
This equation (76.4) is of type III and class E.19; to obtain a canonical

form, we use the usunal method (see § 53) and assume b, -+ ba, = O (notations
of § B3), i.e.,

(76.5) ¢+ 3a =0.
Then E=d — 2a, k = — 2ak so that (76.4) may be rewritten as

I 2 . 2 . k- 2 10
(76.6) ’?f—g;————g’m’“g(“-i'd)’v*‘%”+g’b“3+§(“+d)’vg—

k . . 8 ] 2 . k2
—ztdotd—z@+dlots@tdh+k—g

Annali di Matematica 4
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According to (53.4), set
g=—@+d, r=-—
then, equation (76.6) becomes

, .20 2. 2. gy 2. 10 3r?
(76.7) @mg—i)——_‘gﬂﬁ+3qv+7"{}+gv —gqﬂ '—l—bzv"l—ba""‘“?')_“!

where

bzzng-—}—f%-/:ld, 53:2q7‘~3;‘.

For v (and y) to be stable, one must have (see § 53)

q = 2¢° + (Kw + Hyqg + K,
3r = K -+ H + 2q + 2¢°;

the general solution of (7V6.7) is

@_15)—-{1»}-1@2——412
- w—q

(76.8)

’
where w is a solution of

q=2¢° + (Ko + Hyq + K,.

77. P2; Z2; Ul. For P2, one has d = 0. The stable equation for this class is

.3 1y ¢\ - k l c?

where
k= 2k2a + ©),
1 =2¢— 2(2a + ¢).
The solution of (77.1) is obtained on setting
y = 2cy — 2oy — 1)

and is given by (76.7) and (76.8), where ¢ = —a, r= —g.
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1

2
XI. Equations of the type A(x, y) Engi—g@_ i

78. The siable equations of this type are

2 1

78.1) i = |+ 319" + P i+ v — D3, )

where P, y), Q(x, ¥) are given by (62.2-3).

The values of y for which CAUcHY’'S general existence theorem does
not apply are 0, 1, co.

The solution y(x) of (78.1) may have simple or double parametric poles.

S

If y(®) has a simple parametric pole, sel y=_, # =1+ uz, where s is

given by es® — as — ?‘; =0 and p= g -+ as; then n =6 (see 14.4, case vii)

and 8e == 3a°. Accordingly, y(x) may have two families of simple parametric
poles corresponding respectively to p—=0, 3as=—2 and p=4, 3as = 10.
Then, substitution in (78.1) yields

. o1s 1 :
zu:gg_z—s+d-as+(e—h)s+ O(z).

The condition for stability for p =0 is thus
(78.2) o = 3@ — g a® — 3ad.

It y(x) has a double paramefric pole, then ¢ =e=0 and as a consequence
h=g [see § 17].

Consider now y = 0; the parametric zeros of y(x) may be simple or double.

If y(x) has a simple parametric zero, set y=sz, z2=1+ uz in (78.1)
and determine s by

Then

- (1 b 25 s bs f—k
zu=(3+§)u—g§—§+c+d+§-+7—+0(5).

1 .
Because p :g—}-g must be an integer, one sees at once [see § 16; note



348 F. J. Bureau: Differential equation; with fized, ctc.

that % = — 3] that f=3b* and that y(x) may have ftwo families of simple
parametric zeros corresponding respectively to p=20, s +3b=0 and p=1,
28 = 3b.

The condition for stability for p =0 is

(78.3) k:Sb-%h—%w+m.

If y(x) has a double parametric zero, then b=7f=0 and as a conse-
quence k=0.

Finally, consider y =1; the parametric unifies of y(x) may be simple or
double.

It y(x) has a simple parametric unity, set y=1- sz, g=1-42u so
that (78.1) yields

- 11 ¢ g c
z“—;(g~g~—.s—z)~—§u+z10+o<z>,
where
. s 2 l—g
Ao—~§+38+@+b+d+—'§*'
. 1 ¢ g ¢ .
Now, determine s by é——g—g—zz(}; because p=—7 must be an inte-

ger, one has ¢=0, g=3=0, s=2¢ and p==0, 0. The condition of stability
is then 4, =0 and according to s*= 2g,

2, - s __
38 Al —g=0, g._-0»—}-b+d

or
(78.4) 3l +g=0,
(78.5) g=29c+b+d).

If y(x) has a double parametric unity, then c=g=0 and consequently
1=0.

Note that ¢ is always zero. Because of the asymmetric role of y =0, 1,
oo, one has to consider eight distinet possibilities, namely

(P2; Z2; U2 or Ul); (P2; Z1; U2 or Uly;
(Pl; Z2; U2 or Ul); (P1; Z1; U2 or UL).
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The conditions for stability are given above except for Pl, p=4 and
Zl, p= 1.
We begin by considering the case (P1; Z1; Ul).

79. P1; Z1; Ul. On using the conditions for stability already obtained
in paragraph 78 and, for convenience, changing ! into 3/, one may rewrite
equation 78.1 as

b=+ 5| o+ o+ )i+

. Jo® oo 0? 31
(79.1) + 3yly — 1 {*8-?/ + 7 + W —17 1)2] -+
k 3t
+ yly — 1)[}& “l‘i,;‘l‘?‘/—*i]’

where h, k and g are given by (78.2.3-5) respectively and where
(79.2) 9A+g=0.

Now, we reduce the problem to another one involving an equation with
only one singular value, namely y = co.

To do this, note that g-—%y is regular for Pl, p=0 and that y—{——

is regular for Z1, p = 0; accordingly, set

.8
(79.3) y= g yly — 1)+ 3bly — 1) + 3oy

and substitute in (79.1). For convenience, set first

(79.4) y=3by — 1) + 3wy
and find
79.5) oy = [1 + w——] " O+ &+ agmy -+ ably — 1) +

31 a o
+(?y’”‘"1){8?/+( })Z+?_#—"2~+
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then, write

(79.6) m=5u—1+v
so that
.t 3 [v
Now set
a+b+d=—r
(79.8) A =20 —v* + 2rv — 2,
B ="+ 2l;

then, according to (79.2) and (79.5-8), one obtains
(79.9) [ = — 2r,
3B
(79.10) Y — 1_~:4~-
To eliminate y between (79.3) and (79.10), rewrite (79.3) as

v
y—1

¥ ol 3a
g":=3§+3b+3”+§“(?/—1)+

and note that

(79.11) B —vAd=@w—2rB;

then v satisfies

@012 G=—vit o~ 26—{-2@:}—{‘2(@——@-&—? o —

— i'—}-%(@-{—%)fr——?l + 29»2}@-3(00—@&

To integrate this equation of type I and class p=2, p=>5 [see (20.6)],
set v = w — ¢ and determine ¢ so that the coefficient of w be three times
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the coefficient of #?; one finds

(79.13) q_—_--—§<9”—9>,

(79.14) W= — ww + w* + (%“ + Z + d) (B + w?) + O + C.,

where C,, C. are independent of w.

2
By the method already used for the equations of type 3(54*?/—1«—1) [i.e.

a proper choice of ¢; see § 64], one may assume

(79.15) ?g+2+ d=0

so that
Y9o=—10(g+r), 9 =42¢—7),
C=q—3¢ — @+ qr—r>—2,
(79.16) ) .
C:=q+ 2¢° + (r + rq — " — 20)q | 6lg + 2rl.
If equation (79.14) is to be stable [see § 2D.c], one may have
(79.17) O, =—12V,, (,=12V,,
where V, is a solution of

(79.18) V=6V + Kx + H;

equation (79.14) is then

(79.19) W= — ww + w* — 12V, 4+ 12V, .
Now set
(79.20) A = — &

and observe that, because of (79.9),

(79.21) stsr=0, s+sr—r)=0;
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one has

S+ qr —r* —2) = —§ — gs + §°;
then, from (79.16-17), one deduces
§ = — 8q — sq — 12V;s + s* ++ 3s¢",
qg=—qq—ss —12Vig + ¢" + 3s°¢ + 12V,
so that ¢ + s and ¢ — s are solutions of (79.19). According to § 25.¢, one has

_Vs—-—ffl _Vz—vl
Q+8_V3“-V1, Q"S—Vz_vl’

where V,, V;, V,; are distinct solutions of (79.18),
The solution of (79.1) is given by

y-—l: : 3({0 “S) ’
20 — ¥* + 2rv - §°
where r:-—g, v ==w —¢q and where
weV—=V:
A

is a solution of (79.19).

80. We now consider the other cases.

i. P2; Z2; U2, The equation is

. 2 i ‘Y .
o =yt v+

A transformation a — ¢(x) may be chosen so that d=0 [set 0= do];
then, the integral of (80.1) is given by

(80.2) ¥ = Ky'ly — 1),

where K is as usual, an arbitrary constant. Therefore, y(x) is an elliptic
function of = and is stable.
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ii. P2; Z2; Ul. The equation is
80.3) y= {3 ! +d — T
(80. yh—%+2w_)J y— Y;

by a proper choice of the transformation « — ¢(x), one may suppose d =0,
hence [see 78.4-5) g =0, g = — 3, I a constant.
To integrate (80.3), where d *=0, set yy=w"; then

- 1 ,
w= [ 4 5w — 1)} +Sl MT — [

or on setting w = 2°

/,2

, It l
[%+2@ J TF—1 3%

The integral of this equation may be obtained by the method of variation
of parameters. To this end, set

7 = az* — 1)K (2)
and determine K(z) by

dK 2ld( 2
______ 28 —1

so that

2 = K,2(z° —1)—%

where K, is an arbitrary counstant. Therefore, z(x) is an elliptic function
and w(x) is stable.

81. P2; Z1; U2. The equation is (78.1), where a =h=1=0, i.e.,

1

o i=[gtay gl (oo 4|

where k is given by (78.3).
‘We use the notations of paragraph 78. According to (79.4), set

9 == 3bly — 1) + Svy

Annali di Matematice 45
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so that [see (79.10)]

3v* ]
Q — v* — 20+ dw

(81.2) y—1=

By a proper choice of & — ¢(x), one may suppose b -} 4d = 0; then,

(81.3) 4g=38b, r-4+q¢=0,
(81.4) v=w—g,

(8L.5) w = —ww + w* + O + Co,
(81.6) 0, =2¢— ¢ =— 12T,
SL.7). Cr=q— qq=12V;.

Differentiation of (81.6) and comparison with (81.7) show that V, is a
constant; therefore, equation (79.18) reduces to

(81.8) V=6V:+ H.
On setting ¢ =—2 %, one sees from (81.6) that @ is determined by
(8L.9) 0 =3V7,0.

The integral of (81.1) is given by (81.2) and (81.4), where

(81.10) W=

in (81.10), V, the solution of (81.8), is an elliptic function.

82, P2; Z1; Ul. The equation is (79.1) with a =h =0, i.e,

.79 1 1. (b - : 31
s20 =gt gyl (G a)i ks =[G+ g |+

+ k(y — 1) + 3ly.
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Using again the method of paragraph 79, one finds

qQ+r= 07
(82.2) 0, =20 —q¢* + 2= — 12V,
(82.3) C,=q—qq+ 2lg =12V,

g0 that
3q — 3qq + 2i + 21¢ =0.

Because [ = 2ig [see (79.9)], one also has

(82.4) q—aqq+2lg=0

so that C.=0 and V, is a constant; therefore, equation (79.18) reduces to

(82.5) V=6V + H.

Now it follows from (82.2) and (82.4) that

(82.6) q—3qq + ¢ —12V,g =0.

On setting ¢ = —
third order

O,

82.7) Q=12V.Q
and ! is given by
(82.8) 1g* =K,

where K, is an arbitrary constant.
The integral of (82.1) is given by

v* 4 21
y—1=3_2F :
20 — v* — 2qv— 21

14
V=W —q, WZV——VJ

where V, the solution of (82.5), is an elliptic function.

, equation (82.6) becomes the linear equation of the
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83, Pl; Z2; U2. The equation is (78.1) with b=f=k=g=1=0, i.e,

. 2 1 “y . o @ 2
(83.1) y:[@—i——ézy—:ﬁ}y“ﬂay+d)y+5%y(y——1)+

Sy At

We again use transformation (79.3) and find

2

(83.2) g—lm= "

20 -+ 2rv — V*
with # = —(a + d). Now sef
(83.3) V=W —q, 2q=r
g0 that
(83.4) W= — ww 4+ w* + O + Cs,
where

0= —q—q =—12V,.
C.=q+ 299.!:12?15

V, is solution of (79.18). 0
Therefore, the integral of (83.1) is given by (83.2-3-4), where q.-.:@ is
given by

Q=12V,0.

84, P13 725 U2. The stable equation for this class is (79.1) with b=
=f=k=0, ie,

. ]2 1. _ >
G4 y:{@ﬂLg@t_‘ﬁ]yzHay-l—d>y+3y(y~—-1>i%—-y+(-~—yill);}-

We use again (79.3) and find

3(v* + 20

Y 20— v* - 20r — 21
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with

(84.3) r=—(a -+ d, [ = — 2.
Set

(84.4) U= — (g, 2q=r

so that

(84.5) W= — w4+ w* + Cw + C;,

where

(84.6) C=—q— @+ 2=— 12V,

84.7) 0. = q + 2qq + 8lqg = 12V, ;

V, is a solution of (79.18).
On eliminating ! between (84.6) and (84.7), one obtains

q + 69q + 4¢° — 48V — 12V, = 0.
Or, on setting 2 =@,
0= —3QQ — Q°+ 48V,Q + 24V,.
This equation is ‘of type I and class p =20, p=— 3 [see (20.4)]; by the

transformation Q:% , it reduces to

U—4a8V,U— 24V,U =0
From (84.3), it follows that [U®? = K,, where K, is an arbitrary constant.

The integral of (84.1) is given by (84.2-4) with ¢ = u

U
85. P1; Z1; U2, The stable equation for this class is (79.1) with =0, i.e,,

(85.1) ,@}—l ‘*‘2@, }y +(a>y+ +d>y+y(y—1)l82g+3bz+h+
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We again use the same method, One has

(85.2) y—t= i:]—[;-Q_r-v .
On sefting
(85.3) V=W — g,
one finds
(85.4) W= — wiw + w4+ O + C,
where
(85.5) Ci=q—38¢—(r+qr—r)=—12V,,
(85.6) Co=gq + 2¢° + (r + rqg — r3)g = 12V;

V. is a solution of (79.18).

On eliminating  + gr — #* from (85.5-6), one sees that g is a solution
of (85.4). Further, on setting

@—r=7
in (85.5), one obtains
U—qU— B¢ —12V)U =0
which determines # when ¢ is given.

The integral of (85.1) is determined by (85.2-3).

XII. Equations of the type A(x, y) :—;(; -+ yh%-—l + y”“__‘l‘“ H)

86, The stable equations of this type are

Nz, y) ’
Yy — Uy — H)

g1 j=L4 o4 1 Mz, y)

y  y—1 @/—*H)_}'y(y"n(y——H)y_l"

where M(x, y), N(x, y) are polynomials in y of degrees 4 and 6 respectively;
H is a constant distinet from 0 and 1 or H = x.
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For convenience, we rewrite equation (86.1) as

2

-yl 1 1 b c d :

(86.2) y———@(@'{—?ﬁ—}‘rg{)‘{‘[@!—f—%“}‘y—y 1+y H}%”{"
e f 9 k l w

+ yly — Dy — H) [gzw(y i + oy — Hy +h + @7‘1‘?‘]—“-3 r"gl’

where @, a,, ..., m are analytic functions of .

The values of y for which CAUucHY'S general existence theorem does
not apply are y=oc, 0, 1. H.

If @ and h are not both zero, y(x) has simple parametric poles: if o=
=h =0, y(x) has double parametric poles.

If ylx) has a simple parametric pole, set yzg, z2==1-+4 uz. According
to (14.4), one has » = — 2 and hence [see (16.22)]
(86.3) a =0, h &0, p =190, 2hs® = 1.

The corresponding condition for stability follows from

zia:z—l—al——(lc—{—l—{—m)s—{— 0@)
and is
g—i—al—(lﬁ—{—,l-}—m)SzO

or, because 2hs* =1,

(86.4) E+l4+-m=0
and
(86.5) §+ =0 or B =2ha,.

If y(x) has a double parametric pole, one has @ =h =0 and thus
E414+m=0 (see § 17).

The values y==0, y=1 play the same role; the transformation y=1—w
brings equation (86.2) to an equation of the same form according to the
equivalence table

(o) : H a a, b ¢ d e f g h k A "
wy: 1—H —~a an4+a ¢ b —d —f —e g b —1 —k —m-
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If y(x) has a simple parametric zero, set y==sz, 2=1-uz; then (86.2) gives

1/1 b eH b
~%~;<'2+8‘+”§{)+§%+Ao—¥*0(%‘),
where

: 1 d : k
fo= = (14 it mtomgbi—t0+ B+ H

[according to (86.3), one has a = 0]
Now determine s by

1,86 eH
because p ==Z must be an integer, one concludes that

b=9, e0, p=70, § - 2eH == 0;

the condition for stability is 4, = 0 or because s* = — 2eH,
$ d  H
(86.6) —§+a1—}—c——§+kw§_—0.
Because s* = — 2eH, one hasg
(86.7) k= O,
dy e H
(36.8) 20t o) =S+

1f y(x) has a double parametric zero, then b=e=%k =0, [see § 17].
According to the table of equivalence, one obtains the conditions for stability

for Ul: ¢c=0, f4=0,
(86.9) 1=0,

d ‘ o
(S610 ot oty Syl =g

for U2: c=f=1=0.
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87. We have to consider two cases according as to whether H is a con-
stant or H = .

Suppose H is a constant distinet from O and 1. The transformation
y = H(1 — v) brings equation (86.1) to an equation of the same form according
to the table of equivalence

(y): H a ay b ¢ de f g h k I m

w): 1—i —aH oH -+ a, —

d >
i i g —e —f hH* —mH —kH — IH

|
SRS

[Note that y =0, 1, H correspond to v = 1, 1—%, 0 respectively].

Therefore, y — H plays the same role as y =0 or y = 1.
The conditions for stability for H follow readily from the preceding
paragraph; one obtains

for HI1: d=0, g0,
(87.1) m =0,

b oa— )=,
(87.2) H(al e 1)_g,

for H2: d=g=m=0.

Moreover, a transformation x — ¢(x) may be chosen so that a, =0 [set
¢ = a, @] It then follows that e, f, g, h are constant or eventually zero {see
(86.5-8-10); (87.2)].

The stable equation of the type considered is then

. _?Lzl 1 1)
87.3)y = 2(y+y7~ i +y—vﬂ)+ Yy — 1)y — H)

s
y Yy —1y

g
—+h
tg—mt
where e, f, g, h are constant.

To integrate this equation, we use the method of variation of parameters.
One obtains

PR L S
¥ = 2yly — )y H){K*’hy y T y—1 9_H]’

where K, is an arbitrary constant; this equation shows that y(x) is an elliptic
function and is stable.

The result holds if one or more of the constants e, f, g, h is zero.
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88. Suppose H =« Taking into account the conditions for stability
already obtained for y=occ, 0, 1 [iie. a =b=c¢=0, k=1l=m=0], one

may rewrite equation (86.1) as
1 d \ -
=) ey

i
y—1

2

(88.1)

w{“ﬁ

/1
=3l

)

+y<y—~1><y—w)[?%— _— z+h]

¥ — @)
Set y=w sz 2= 1-+2u; equation (88.1) yields

144

2U =

e (L4 87+ 2001 + 5) + 2t — Vg + T 4 A@) + 00

where

1
+5

_ o8 s g
(83.2) Alw) = —2§+<a1 ds—2)+(2m~. n? 4

+ 1t [288+ L+ 93+ 5|

Determine s by

(88.3) (1 - s+ 2d(1 + 8) 4 2x(x — 1)g = O
and note that

1
(88.4) p= js;.‘@l

must be an integer.
Elimination of s between (88.3-4) gives

(83.5) <1+d+1) +2d(1+ + )—f—?m(ae—~1)g:0.

Taking into account the value of g given by (88.5), one rewrifes (88.3) as

T R

so that
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363

The integers p, g satisfy the Diophantine equation

p+q+2pg=0
S0 that p:q:O.

Accordingly,
(88.6) d=—1,
(88.7) =1 — 2xx— l)g.

The corresponding condition for stability is A(x)=0 or
. 1 1
s 1 1
(88.9) “‘§+a1+£_n+m:0
From (88.7-8) and (88.9), one obfains

(88.10) a, =0, s=0.

Therefore, 1 — 2x(x — 1)g or x{x— 1)g is a constant and

1—-K

where K is an arbitrary constant.
The values of h, e, f are now given by (86.5-8-10) and are

kl - kz f‘—‘ ka )
o —17 T aw— 1P “Pw—1)

where k., k,, k; are arbifrary constants.
The equation is then

- gL 1 1 1
(88.13) y:%‘(&j+y~1+ _x)_(%_ac

Yy — )y — x)
+ Quc*(oc — 1) [ (g —

ki, ks, ks, k. are again arbitrary constants.

(88.12) b=

miﬂé+

2
At e

(y — x)f

Bl — 1) (1 — kol — 1)}

That the equation (88.13) is stable has been shown by PAINLEVE' Kqua-

tion (88.13) is the irreducible equation 1.6 of Table L.
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