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A b s t r a c t .  Neurophysioiogical studies of  the nuclei 
of the tractus solitarius (NTS) and adjacent regions 
have provided a partial understanding of the inte- 
grative brainstem network underlying swallowing 
and related functions such as respiration. The NTS 
Is also richly endowed with an abundance of neu- 
ropeptides and other neuroactive substances, but 
Only limited information is available on their influ- 
ences on neurons involved specifically in swallow- 
Jrlg. Since dysfunction of these neurophysiological 
and neurochemical regulatory mechanisms in the 
NTS region may be important in pathophysiologi- 
cal Conditions such as dysphagia, increased aware- 
ness of and focus on these mechanisms are war- 
ranted. This paper outlines recent neurophysiologi- 
Cal and neurochemical data that provide informa- 
tion on the afferent inputs and neurophysiological 
PrOperties of neurons in NTS and adjacent caudal 
brainstem regions implicated in swallowing, respi- 
ration, and respiratory-related reflexes. 

Key Swallowing - Neurons - Solitary tract - W o r d s :  

europeptides - Regulation - Respiration. 

SWallowing is a complex reflex event that reflects 
the Synergistic bilateral activity of several muscles. 
Although this reflex is a "primit ive" one in the 
sense of its manifestation in most animal species, 
the large number of  muscles involved and the com- 
l~lex integration required between the alimentary 
and respiratory muscles result in this reflex being 
One of the most complex events even in higher ani- 
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reals. The alimentary function of  swallowing has 
long been acknowledged by virtue of its vital role 
in ingestion, but it is now also recognized as a 
protective reflex of the airway [14]. This duality 
of reflex function (i.e., alimentary and respiratory) 
underlies the need for complex coordination and 
interplay between the various muscles involved. 

Muscles innervated by several cranial nerves 
(e.g., V, VII, IX, X, XI, XII) participate in swal- 
lowing, In addition, muscles innervated by inter- 
costal and phrenie motoneurons are involved and, 
in some cases in which additional bracing of the 
tongue base and mandible arc needed (e.g., some 
patients with cerebral palsy), muscles supplied by 
the cervical motoneurons may also be recruited 
into action. The recruitment of additional muscles, 
abnormal muscle activity, or lack of coordination 
between muscles is reflected in several dysfunc- 
tional states of  swallowing. These clinically mani- 
fested disturbances are in large part related to 
changes in the peripheral (i.e., sensory) inputs and 
central neural mechanisms normally involved in 
the appropriate coordination and orchestration of  
the swallow synergy. A growing body of evidence 
points to the likelihood that many dysphagic con- 
ditions could be a reflection of pathophysiological 
alterations in the neurophysiological mechanisms 
controlling swallowing and in the neurochemical 
processes that underlie these mechanisms. We shall 
consider here some of the neurophysiological and 
neurochemical substrates implicated in the initia- 
tion and regulation of the swallow synergy. We 
will focus especially on the role of the nuclei of  
the tractus solitarius (NTS) and adjacent brain- 
stem regions in these processes, and integrate our 
own findings with those of others who have also 
provided important knowledge of  the neural mech- 
anisms underlying swallowing and related func- 
tions such as respiration. 
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Our reason for focusing on the NTS relates 
to its vital role in the neural substrate of  swallow- 
ing. Swallowing can be reflexly or volitionally ini- 
tiated, and its reflex initiation can be produced 
by stimulation of  peripheral regions particularly 
supplied by the glossopharyngeal (IX) nerve and 
superior laryngeal nerve (SLN), a branch of the 
vagus nerve. These reflex sensory inputs, as well 
as projections from higher brain centers involved 
in the volitional initiation of  swallowing (e.g., cere- 
bral cortex) have direct access to the NTS region. 
The NTS is a bilateral structure that constitutes 
an integral relay and integrative brainstem center 
intimately involved in autonomic control and in 
the regulation of  visceral function [see for review 
1, 2, 3, 5-7]. Thus, the NTS is involved not only 
in a variety of  reflex functions of the upper alimen- 
tary and respiratory tracts including swallowing 
but also in such diverse functions as cardiovascular 
regulation, respiratory control, and taste. The NTS 
and its subadjacent region contain neurons that 
contribute to each of  these various functions and, 
as reviewed in the Discussion (see below), recent 
research suggests that this region constitutes at 
least part of  the neural substrate of the central 
pattern generator necessary for the initiation and 
orchestration of  the swallow synergy. Many of the 
neurons in this region show physiological proper- 
ties consistent with a role in swallowing and in 
the necessary coordination with other vital func- 
tions such as respiration. Moreover, recent re- 
search has also revealed that the NTS is a site 
of  particular concentration of several neurochemi- 
cal substances (e.g. amino acids, neuropeptides, 
biogenic amines) and a role for at least some of 
these has been demonstrated in the initiation and 
control of swallowing and related activities. Thus, 
in any consideration of  the biological basis of  swal- 
lowing and dysphagia, it is essential to examine 
the neurophysiologicai and neurochemical mecha- 
nisms operating in the NTS region. 

The objective of our own experiments has 
therefore been to determine the chemical sensitivi- 
ties of  neurophysiologically identified single NTS 
neurons, in order to relate these to information 
on neural pathways containing specific chemical 
mediators of synaptic transmission as well as with 
the types of  transmitter receptors located in the 
NTS. The experimental approach involved insert- 
ing a microelectrode into the vicinity of the NTS 
and recording the electrical activity of  one single 
neuron at a time. This extracellular activity is man- 
ifested as neuronal action potentials, and the fre- 
quency of  action potentials (i.e., the discharge rate) 
reflects the level of  excitation of  the neuron. Respi- 

ratory neurons were the focus of  these investiga" 
tions because they constitute an electrophysiologi" 
cally identifiable group of  neurons and they can 
be influenced physiologically by a number of ma- 
neuvers. In addition, however, other types of neu- 
rons in the vicinity of  the NTS were also studied, 
including a population we have termed reflex inter" 
neurons. These neurons do not share the phasic 
spontaneous discharge that characterizes respira" 
tory neurons, but they all do respond in a similar 
fashion to vagal (e.g., SLN) and IX sensory inputs 
and have been implicated as interneuronal ele- 
ments in brainstem pathways underlying upper ali- 
mentary tract and respiratory reflexes such as swal- 
lowing [for review see 2, 8, 9]. 

Chemical mediators of  synaptic transmission 
selected for study in our experiments were gluta" 
mate, y-aminobutyric acid (GABA), serotonitl 
(5-HT), as well as the peptides substance P, enke- 
phalin, angiotensin II, vasopressin, and oxytocin' 
The rationale for this selection is presented in the 
Discussion section, along with further evidence itn" 
plicating these ncuroactive chemicals in NTS rune" 
tion. To study the chemical sensitivities of  the sin" 
gle neurons, the technique of  microintophoresiS 
was used, in which small quantities of  a selected 
chemical can be applied into the local vicinity of 
the neuron whose activity is being recorded. ThuS, 
the micropharmacology of  a neuron can bc studied 
in situ. 

Methods and Results 

Only a brief description of the experimental approach will b.e 
given here. The interested reader is referred for more detal~ 
to previous publications [10-16]. 

Animal Preparation 

Experiments were carried out on adult cats anesthetized with 
~t-chloralose (60 mg/kg), i.v.) throughout the experiment�9 Fe~" 
oral arterial pressure, percentage end-expired CO2 concentrad 
tion and rectal temperature were monitored continuously an I 
maintained within normal physiological limits. Each aninaa 
was paralyzed with pancuronium bromide and ventilated arti6" 
cially by a respiratory pump. The head was placed in a stereo" 
taxic frame and the medulla exposed to allow the stereotaxie 
introduction of the electrode for neuronal recording and micro7 
1onto hores~s ,n the vlcmlt of t ft a0d �9 P . . . . .  y he right NTS. The le ' 
right vagus and superior laryngeal nerves were exposed for sU~" 
sequent electrical stimulation (0.1 5mA, 0.1 2ms. constant 
current). 

Electrodes 

Multibarreled micropipettes were used for neuronal recording 
Seven glass capillary tubes were assembled and drawn out under 
heat to yield an overall diameter of the drawn end of 5 10 fir0. 
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The central barrel was filled with 2.7 M NaC1, and was used 
for recording. Peripheral barrels could be filled with any combi- 
nation of solutions of the chemicals listed above; thus, each 
chemical agent could be ejected by the application of a small 
13C Current to the appropriate barrel. 

Recording and Classification o f  Neurons 

Neurons in histologically confirmed sites in the NTS wcrc iden- 
tified on the basis of their functional properties as being eithcr 
respiratory neurons or presumed reflex intcrneurons. Respira- 
tory neurons showcd a spontaneous rhythmic discharge in syn- 
ehrony with respiration (monitored by simultaneous recordings 
of phrenic nerve activity). The rcflcx interneurons showed no 
rhythmic activity but could be orthodromically excited at a 
short latency by vagal or SLN stimulation. In addition to thcsc 
tdwn o major groups, other neurons wcre also recorded in the 

orsa[ column nuclei dorsal to the NTS (these neurons re- 
Sponded at short latency to electrical and tactile stimulation 
of only the ipsilateral fore- or hindpaw) and in the rcticular 
!ormation subjacent to the NTS (these neurons had widespread 
)nputs and responded to electrical or tactile stimulation of tooth 
Pulp, facial skin, and SLN). The effects of the chemical agents 
on these particular neurons are described elsewhere [11-14]. 
RecOrded activity of a neuron was displayed on oscilloscopes 
(for observation and for photographing selected responses) and 
Was also led through a gated mean frequency meter to a pen 
recorder that provided continuous display of the neuron's  activ- 
)ty. The effects of the iontopboretically applied chemical agents 
Were then assessed on the spontaneous or evoked activity of 
the neuron and each agent was applied at least twice to ensure 
~ht[atil~n observed effect of the agent on the neuron was repro- 

[e. 

In iontophoretic studies, in which the chemical sensitivities 
of the neurons were determined, an effect of an applied ncu- 
roaclive agent was considered to be a gcnuine response if it 
Was reversible in time, reproducible, and not mimicked by the 
ejection of Na + through another  electrode barrel. When a re- 
Sponse was observed, it was usually examined at various levels 
~f CUrrent application to ensure that the magnitudc of the re- 
Sponse varied directly with the amount  of current applied. Due 
!o the stringent criteria we applied to consider an effect a genu- 
ine response, and to the variable nature of the activity of most 
central neurons, more neurons were tested with each neuroac- 
tire agent than are reported. Only those neurons considered 
tu~ yield unequivocal results, including those considered to be 

naffected by the agents, are included in this report. With the 
exception of one expiratory neuron that was excited by gluta- 
~i ate, all respiratory neurons fired in phase with phrcnic nerve 

~senarge and were therefore classified as inspiratory, 

respiratory neurons and the phrenic nerve could be depressed 
by SLN stimulation at 10 Hz; this depression is probably re- 
lated to the apnea that characteristically occurs during swallow- 
ing elicited, for example, by such SLN stimulation. 

Neurons classified as r~[lex interneurons were found inter- 
spersed in the NTS among respiratory neurons, These inter- 
neurons showed no rhythmic respiratory-related activity but  
could be excited by vagal and/or  SLN stimulation, with mini- 
mum response latencies in the 3 6 ms range. Approximately 
one-third of these neurons exhibited spontaneous discharge, 
but this activity was unrelated to phrenic nerve activity. 

Characteristics o[" Response to Glutamate 

Glutamate generally had an excitatory effect on neurons in 
the vicinity of the NTS [11], characteristic of its actions on 
neurons throughout  the central nervous system [17]. Excitation 
consisted, typically, of a rather abrupt increase in activity in 
response to application of 1 30 nA of negative current through 
the barrel containing glutamate. The onset of the excitatory 
response occurred within 1 2 s of current onset, excitation per- 
sisted throughout  the period of application, and the response 
ended within 1 s of the end of current application. In the case 
of neurons responding to electrical or mechanical stimulation 
of sensory inputs (e.g., SLN), glutamate also increased the 
probability of the appearance of an evoked response and tended 
to decrease the latency of the first evoked action potential. 
The magnitude of the response varied directly with the amount  
of ejecting current and was approximately the same to each 
of a succession of similar applications. 

Respiratory neurons, we were interested to discover, pro- 
vided the exception to this generality. In addition to those ex- 
cited by glutamate, about  half of the respiratory neurons were 
unaffected by glutamate application or were relatively insensi- 
tive. Thus, we documented 32 glutamate-sensitive respiratory 
neurons that were excited by 1 30 nA of current, while another  
26 respiratory neurons were glutamate-insensitive since they 
could not be excited. Excitation consisted of an increase in 
the number  of action potentials per respiratory burst, usually 
due more to a prolongation of the burst  than to an increase 
in the frequency within the burst. Only occasionally could a 
respiratory neuron be driven to fire throughout  the respiratory 
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General Characteristics o f  Neurons 
Res~ir - 
eh v atory neurons exhibited a spontaneous rhythmic dis- 
q~rge of action potentials in phase with phrenic nerve activity 

w20/min), and thus these neurons were classified as inspirato- ry ne . . . .  
,.. .urons. Thts rhythmic discharge continued when the pump 
was briefly turned off, demonstrat ing that the rhythmicity origi- 
nated from within the brainstem rather than from sensory affer- 
ent.s. [tOWever, an afferent input to some of the neurons was 
~dlcated by their excitatory response to sensory st imulation; 
at ust. neurons were excited by vagal and/or  SLN stimulation, 

mm~mum response latencies of 3-6 ms. These orthodromi- 
eally evoked responses did not follow vagal or SLN stimulation 
rates greater than 10 Hz. In fact, the rhythmic activity of these 

41I ,,,0,,= i 2 , .  .t..j L 
V P 6 0  VP 6 0  

Fig. I. Rate meter records Eom two neurons recorded from 
the nuclei of the tractus solitarius. Upper record shows effects 
on a single reflex interneuron of iontophoretic "application of 
glutamate (G) with I nA of current and similar application of  
substance P (sP) using 60 nA. Note the different time course 
in the effects of the two agents. Lower record shows the effects 
on a single respiratory neuron of iontophorctic application of 
vasopressin (VP) with 60 nA. Note the reproducibility of this 
response with repeated application of vasopressin, 
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cycle; that  is, the period of depression in the cycle usually could 
not be fully overcomc. 

Reflex interneurons were almost all excited by glutamate 
(23 of 25 testcd) (Fig. 1). Currents used were 1-60 nA, and there 
was no clear division into two groups as described above for 
respiratory neurons. Table I summarizes these effects. 

Characteristics of Response to GABA 

GABA depressed all NTS neurons tested, including 19 respira- 
tory neurons and 11 reflex interneurons. These neurons were 
particularly sensitive to GABA,  most being clearly deprcssed 
with 1-15 nA of current (maximum current required was 
45 nA). Responses were also rapid, with onset times of less 
than 1 s. Responses typically reachcd a maximum depression 
in 1 2 s and returncd to preapplication levels within I 2 s after 
the current was switched off. 

Characteristics of Response to Serotonin 

Typical of its effects elsewhere in the central nervous system, 
serotonin had variable effects on neurons in the NTS [15]. Cur- 
rents of 25 100 nA were used to eject serotonin. Of the respira- 
tory neurons tested thoroughly, 15 were excited, 2 were de- 
pressed, and 9 were unaffected. Excitation was typically slower 
than the responses to amino acids and consisted of an increase 
in the number  of action potentials for each respiratory burst. 
This increase started within 20 s of the onset of current applica- 
tion and continued to grow in magnitude throughout  the appli- 
cation. When the current was terminated, the number  of action 
potentials per burst usually decreased slowly, returning to pre- 
application levels over the next 30-60 s. The depressant re- 
sponses were also relatively slow. 

Of the 8 reflex interneurons tested, none were excited, 
4 were depressed, and the remaining 4 were unaffected. Depres- 
sion consisted of a decrease in spontaneous activity and/or  a 
decrease in the probability of a spike response to electrical stim- 
ulation of the vagus or SLN. The time course of the depression 
was roughly parallel to that observed with respiratory neurons. 

Characteristics of Response lo Substance P 

Substance P had slow excitatory effects on neurons in the NTS 
[11] that resembled the excitatory responses observed on single 
neurons in other structures of the central nervous system, in 
the case of NTS neurons, currents of 15-120 nA were custom- 
arily used. Of 27 respiratory neurons studied with substance P 
or with a structural homologue with similar effects eledoisin- 
related pcptide - 17 were excited; depression was never ob- 
served in response to the application of substance P. The re- 
sponse began in 15 30 s and consisted of an increase in the 
number of action potentials in the respiratory burst. In some 
cases this appeared to be due mainly to an increase in the 
duration of the burst, while in others it appeared to be due 
to an increase in the frequency of action potentials in the burst. 
Throughout  the current application period the excitation in- 
creased. When the current was stopped a slow return of the 
activity to preapplication levels was observed over the following 
60-90 s. Excitation also consisted of an increase in the probabil- 
ity of evoked responses to electrical stimulation of the vagus 
or SLN. 

Of the 9 reflex interneurons tested, 8 were excited. Excita- 
tion consisted of an increase in the probability of the appear- 
ance of an evoked spike and/or  an increase in the [Yequency 
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of discharge. The time course of" the excitation resembled that 
of respiratory neurons. 

Characteristics of Response to Enkephalin 

Clear results were obtained from 20 respiratory neurons. Fol- 
lowing application of currents of 16-80 hA, depressed responSeS 
werc seen with 9 neurons;  no effects were seen with the remain" 
ing neurons. This response was very slow and prolonged, even 
in comparison with the response to substance P. In 4 cases, 
the response to enkephalin was tested with the la-opiate receptor 
antagonist,  naloxone, which produced partial or complete re- 
versal of the response to iontophoretic application of enkepha" 
lin [I 5]. 

Of the 5 reflex interneurons tested thoroughly 4 were de- 
pressed and the remaining neuron was unaffected. The time 
course of the response was similar to that described for rcspira" 
tory neurons. 

Characteristics of Response to Angiotensin H 

Eight of 27 respiratory neurons were excited by angiotensin I1 
(currents were 3 0 1 0 0  hA) and none were depressed. The re- 
sponse consisted of a slow increase in activity, similar to that 
observed with substance P. 

Reflex interneurons were excited in a similar manner: of 
the 8 tested, 5 were excited [16}. 

Characteristics of Responses to Vasopressin and 
Oxytocin 
Approximately half of the respiratory neurons tested with 
30-60 nA of vasopressin (N = 21 ) and/or  oxytocin (N = 16) were 
excited. This effect was slow in onset and prolonged in duration' 
In some cases the excitation was great enough to induce phase" 
spanning in respiratory neurons [12]. 

The reflex interneurons that were excited (4 of 6 tested with 
vasopressin; oxytocin was not tes ted)exhibi ted  a somewhat 
slower response, which typically reached its peak about 30 s 
after the end of application and required up to 2 min for full 
recovery. 

Discussion 

Physiological Mechanisms 

S w a l l o w i n g  d e p e n d s  o n  a b r a i n s t e m  n e u r a l  sub" 

s t r a t e  t h a t  i n t e g r a t e s  p e r i p h e r a l  s e n s o r y  i n p u t s  a~ad 

c e n t r a l  n e u r a l  i n f l u e n c e s  a n d  p r o d u c e s  t h e  seque0." 
t i a l ,  a l l - o r - n o n e  p a t t e r n  o f  e x c i t a t i o n  a n d  inlaibt" 

t i o n  m a n i f e s t e d  in  t h e  v a r i o u s  g r o u p s  o f  m o t o n e U "  

r o n s  t h a t  s u p p l y  t h e  m u s c l e s  p a r t i c i p a t i n g  in  this 

c o m p l e x  s e n s o r i m o t o r  r e f l ex .  B y  v i r t u e  o f  i ts  re" 
c e i p t  o f  a f f e r e n t  i n p u t s  f r o m  s e v e r a l  c r a n i a l  ne rves  

a n d  c e n t r a l  n e u r a l  s t r u c t u r e s  a n d  t h e  o r g a n i z a t i o ~  

a n d  c e n t r a l  c o n n e c t i o n s  o f  i t s  n e u r o n s ,  t h e  N T  

p l a y s  a n  i n t e g r a l  r o l e  in  p r o d u c i n g  t h e  s w a l l o w  

s y n e r g y .  

Peripheral Afferent Inputs Triggering Swallowing 
In  m o s t  a n i m a l s  i n c l u d i n g  h u m a n s ,  s w a l l o w i n g  ca0  



I].J. Sessle and J.L. Henry: Neural Mechanisms of Swallowing 

Table I. Summary of predominant  effects (*) of neuroactive agents on single neurones in the NTS 
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Neuroaetive Agent Neuron Type Excitation Depression References 

Glutamate Reflex interneuron * 11 
Respiratory neuron * 11, 56 

GABA Reflex interneuron * this manuscript:  86 
Respiratory neuron * this manuscript:  87, 88 

Serotonin Reflex interneuron * 15 
Respiratory neuron * 15 

Substance p Reflex interneuron * 11 
Respiratory neuron * 11 

Enkephalin Reflex interneuron * 15 
Respiratory neuron * 15, 100 

Angiotensin II Reflex interneuron * 16 
Respiratory neuron * 16 

Vasopressin, oxytocin Reflex interneuron * 12 
Respiratory neuron * 12 

Aeetylcholine Respiratory neuron * 114, 134, 137 

Catecholamines Respiratory neuron * 112 
Purines 

ATp 
adenosine 

S~ 
TRH 

Respiratory neuron * 146 
Respiratory neuron * 146 

Respiratory neuron * 82 

Respiratory neuron * 149 

be most readily elicited from the pharynx and lar- 
Ynx. Cranial nerves IX and X are particularly in- 
Volved in innervating these peripheral regions. Tac- 
tile stimuli excite pharyngeal and laryngeal recep- 
tors and elicit swallowing, and in the epigiottic part 
.of the larynx, which is supplied by the SLN, water 
~ a  particularly effective stimulus [e.g., 4, 18-23]. 
l,roup II and III primary afferents in the SLN and 
-.K nerve appear to be primarily responsible for 
SUpplying these mechanoreceptors and chemore- 
ceptors and conducting their messages into the 
brainstem. Recent studies have also identified sev- 
eral neurochemical substances in some IX and X 
afferents, their cell bodies, and the tissues they sup- 
Ply [for review, see 24-26]. Although there does 
not Yet appear to be any correlation of  a particular 
.SUbStance or substances with particular afferents 
InVolved in swallowing, it would seem highly likely 
that afferents specifically involved in triggering 
swallowing contain one or more of these neu- 
r~ A wide range of neuroactive sub- 
stances has been described, and include several bio- 
genie amines and catecholamines (e.g., 5-HT, do- 
Parnine, norepinephrine), acetylcholine, and neu- 
r~ (e.g., substance P, enkephalin). Sub- 
Stance p is found, for example, in cell bodies in 
the nodose and Jugular ~anglia as well as in nerve 
Ubers - a ,~ ,~ in the upper respiratory and upper alimenta- 

ry tracts, and its distribution in the NTS is marked- 
ly decreased after vagal or IX nerve section, indi- 
cating its peripheral origin [e.g., see 24-27]. The 
presence of some of  these substances in primary 
afferents and in primary afferent terminals in the 
NTS suggests a role for them in synaptic transmis- 
sion or modulation within NTS, and might be re- 
lated to our findings of, for example, excitatory 
effects of  substance P on reflex interneurons as well 
as respiratory neurons within the NTS that can 
be excited by short-latency inputs from the SLN 
and vagus nerve. 

In many animal experiments, for expediency, 
electrical stimulation of  afferents of  cranial nerves 
IX and X has been used to elicit swallowing. Swal- 
lowing can be readily elicited by stimulating the 
SLN branch of the vagus. A particular feature of 
these SLN-induced swallows is the 10-30 Hz opti- 
mal stimulation frequency, which corresponds to 
the optimal tuning of NTS neurons driven by phar- 
yngeal mechanical stimuli [28; for review, see 1-3]. 
These SLN stimulation parameters are also opti- 
mal for producing a simultaneous and powerful 
cessation of respiration that normally is a neces- 
sary and invariant accompaniment of swallowing 
and that, it is interesting to note, may be particu- 
larly prolonged and in some cases irreversible in 
neonatal animals [see 2, 9]. This apneic response 
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was reflected in the present study in the suppres- 
sion of rhythmic activity in the phrenic nerve and 
NTS respiratory neurons that could be induced 
by 10 Hz SLN stimulation. Only limited informa- 
tion is available about the neurochemical mecha- 
nisms contributing to suppressive effects such as 
these on respiration, as well as to the excitatory 
events triggering swallow (see section on Neu- 
rochemicai Mechanisms). 

Brainstem Mechanisms. Some anatomical studies 
and brainstem lesioning experiments have indi- 
cated that the brainstem integration of swallowing 
primarily involves the pontine or rostral medullary 
reticular formation [e.g., 29-31], while other stu- 
dies suggest that the NTS and subjacent caudal 
medullary reticular formation are involved [8, 32, 
33]. However, the anatomical documentation of 
projections from an area of the reticular formation 
or NTS to several cranial nerve motor nuclei in- 
volved in swallowing does not a priori implicate 
this particular region in swallowing per se, since 
these motoneuron pools are involved in numerous 
other muscle synergies (e.g., mastication, cough- 
ing, gagging, licking). Moreover, results of  surgical 
lesion experiments are difficult to interpret since 
the lesions can have nonspecific actions and dam- 
age axons coming from or going to other areas 
of the CNS [see 2]. 

Electrophysiological experiments involving sin- 
gle neuron recordings in the brainstem have pro- 
vided more definitive evidence that at least the 
NTS and its adjacent regions are elements of the 
integrative brainstem network involved in swallow- 
ing. Some authors have referred to this network 
as the "swallow center" but, in view of its likely 
diffuseness, it might be better viewed as a central 
pattern generator. The precise functional organiza- 
tion of this central pattern generator is still unclear 
[e.g. 3, 8, 34], but electrophysiological studies in 
the last 15 years have provided some insights, at 
least as far as NTS and subjacent regions are con- 
cerned. As noted above, the NTS is the termination 
site of IX and X afferents involved in swallowing 
[for review, see 2, 35-37], and stimulation of this 
region as well as IX and SLN afferents can elicit 
swallowing. Neurons in and adjacent to NTS can 
be excited by IX and SLN stimulation at latencies 
consistent with the receipt by many of  them of 
monosynaptic IX and SLN inputs [8, 13, 28, 33, 
38-40]. In the present studies, we also documented 
that many NTS neurons could be excited by SLN 
stimulation at latencies consistent with a monosyn- 
aptic or disynaptic input. These neurons also re- 
ceive inputs from higher brain centers such as the 

cerebral cortex, stimulation of which can evoke 
swallowing [e.g. 31, 39, 41, 42]. The pioneering 
work of Roman, Jean, and their colleagues in Mar- 
seille have shown that many of  these NTS neurons 
are active during swallowing [8, 33, 39, 43]. The 
retention of such activity patterns in many of these 
neurons during muscle paralysis (to eliminate sen" 
sory feedback) suggests that their discharge pat- 
terns can be independent of sensory input and maY 
represent intrinsic neural activity involved in the 
drive to the various motoneurons active during 
swallowing. Three major patterns of neuronal ac- 
tivity have been documented (early, late, very late) 
depending on their temporal relation to the muscle 
activities of  the different phases of swallowing 
(oral, pharyngeal, oesophageal). Jean and col- 
leagues have reported that these neurons represent 
a neuronal group they have termed the dorsal med" 
ullary swallowing neurons; by anatomically and 
electrophysiologically defined connections, these 
neurons project to more ventral neurons near the 
nucleus ambiguus, which these workers refer to 
as the ventral medullary swallowing neurons. Al- 
though both groups are considered to be integral 
components of the swallow central pattern genera" 
tot, the ventral group in particular may have prO- 
jections to the cranial nerve motoneuron poolS: 
This supports the view that they may be comman0 
interneurons or premotor neurons for motoneU" 
tons involved in swallowing. 

Peripheral Modulation. It is generally considered 
that swallowing is relatively insensitive to sensory 
feedback and that once it is triggered, it will gO 
through to completion with little peripherally in" 
duced modification of its muscle activity patternS' 
However, it is now clear that under certain coxadi" 
tions the muscle activities can be modified during 
swallowing. For example, the rate of swallowing 
or the muscle activity patterns during swallowing 
can be altered by peripheral disturbances, differ" 
ences in bolus form and consistency, and presence 
or absence of saliva, and such sensitivity of the 
swallow synergy may have implications in pathO" 
physiological conditions affecting the alimentary 
and respiratory tract and in the training or relearN" 
ing of swallowing in clinical situations [see 2, 3, 
34]. In electrophysiological studies of NTS and ad" 
jacent regions, it has also been found that stinaula" 
tion of V afferents and especially IX and SLN af" 
ferents can exert facilitatory or inhibitory inllt~" 
ences on the responses of neurons in these regions 
to upper respiratory and alimentary tract excitatO" 
ry inputs [28, 38, 40]. Swallowing can also be rno" 
dulated by these IX and SLN inputs, as well as 
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by V inputs, for example, from lingual nerve 
and periodontal receptors [2, 3]. The facilitation 
of Swallowing demonstrated in some of these 
Studies by simultaneous stimulation of  several af- 
ferent inputs suggests ploys that might be adopted 
clinically in the treatment of some dysphagic prob- 
lems. 

The inhibitory effects of  IX and SLN afferent 
Stimulation on these neurons appear to involve 
Presynaptic inhibitory mechanisms, although post- 
Synaptic inhibitory mechanisms also probably con- 
!ribute [e.g., 44, 45]. In agreement with earlier find- 
rags [e.g. see 13], we noted in the present study 
that SLN stimulation at 10 Hz could also produce 
a POwerful inhibition of the rhythmic activity of 
most respiratory neurons. This is consistent with 
the observations that SLN stimulation can induce 
an associated depression of phrenic nerve activity; 
the apnea (see above) produced is a necessary ac- 
COmpaniment of swallowing to assist in the protec- 
tion of the airway. Thus, the inhibitory changes 
in activity that are a feature of  the respiratory mus- 
Cles, as well as the inhibitory phases that are seen 
Immediately preceding or during a swallow in 
many other deglutitory muscles [e.g., see 2, 3, 46], 
tnay be a reflection of these inhibitory effects that 
OCcur on neurons in the NTS region. Several of  ~ e neurochemicals outlined below (see section on 

euroehemical Mechanisms) would be potential 
candidates for the neurotransmitters or neuromo- 
dulators involved in these complex inhibitory inter- 
actions. 

The sequence of closely linked and closely 
timed excitation and inhibition ensure the coordin- 
ated and synergistic muscle activity patterns that 
Provide for efficient transit of  the bolus and protec- 
tion of the airway. The occurrence of inhibition 
may also filter out certain reflex effects that might 
Otherwise disrupt this orchestrated synergy [34, 46]. 
SUpPort for this view comes from findings that 
Peripherally evoked responses in some NTS neu- 
rons [33] and V brainstem neurons [34] are de- 
Pressed during swallowing, and that certain reflex 
behaviors and central neuronal responsiveness are 
depressed during other programmed motor behav- 
IOrs Such as mastication [47]. Alterations in neu- 
r~ and neurochemical mechanisms 
Underl m ulator influences rn Y' g these important mod �9 y ' 

ay. explain, at least in t~art, the swallowing diffi- 
CUlhes that occur in a number of central neural !~ sfunctional states. As the next sections point out, 

se pathophysiological conditions may also in- 
ve changes in modulatory influences and neu- 

UChemical mechanisms related to higher brain 
center inputs to NTS. 
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Central Neural Modulation. A number of cerebral 
cortical and subcortical sites project directly or in- 
directly to NTS, and their stimulation can initiate 
or modify swallowing [for review, see l 3, 8, 46]. 
As noted above, these inputs to NTS have clinical 
significance since deficits in swallowing and feed- 
ing behavior can result from dysfunction of these 
higher brain centers, such as in stroke, cerebral 
palsy, or parkinsonism [3, 48-50]. Stimulation of 
certain regions of  the cerebral cortex can initiate 
or facilitate the triggering of swallowing, and the 
documented cortically induced excitation of  NTS 
neurons is a likely mechanism effecting this behav- 
ior [e.g., 3, 31, 39, 41, 42]. Swallowing can also 
be modulated by subcorticai sites especially cen- 
tered in the hypothalamus, basal ganglia, limbic 
forebrain, periaqueductal gray, and cerebellum 
[e.g., 14, 31, 41, 51]. A pathway from the basal 
forebrain and involving the amydala facilitates 
swallowing and may involve the neurochemical do- 
pamine [41, 51]. Periaqueductal gray stimulation, 
on the other hand, can suppress swallowing (and 
coughing) as well as NTS reflex interneurons; the 
reversal of  the suppression by the opiate antagonist 
naloxone suggests that endogenous opioids may 
be involved in these particular modulatory influ- 
ences on swallowing [14]. Catecholaminergic and 
serotonergic mechanisms have also been impli- 
cated in some of  these central neural modulatory 
influences, and the following section outlines in 
more detail the neurochemical mechanisms that 
underlie the regulation of NTS neurons and swal- 
lowing, and how our present findings relate to 
these mechanisms. 

Neurochemical Mechanisms 

A general conclusion that may be derived from 
our studies on the chemical sensitivities of  NTS 
neurons is that at least for a number of putative 
chemical mediators of synaptic transmission, spe- 
cific responses can be elicited from NTS neurons 
by close application of these chemicals into the 
local vicinity of the neuron (Table 1). It is inviting 
to speculate, then, that each of  the chemicals so 
implicated is therefore a neurotransmitter. How- 
ever, before this latter conclusion can justifiably 
be drawn, it should be pointed out that neuro- 
scientists have come to accept that an effect or 
action on a neuron is only one of a number of 
criteria that must be satisfied before such a conclu- 
sion can be made with confidence. 

What follows is an outline of these criteria, fol- 
lowed by the available evidence on the principal 
chemical mediators that has accumulated to sup- 
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port the possible roles of these chemicals as a medi- 
ators of synaptic transmission in the NTS. These 
chemicals will be listed in the following order: 
those implicated as mediators of synaptic transmis- 
sion from primary afferent neurons conducting in- 
formation to the central nervous system (gluta- 
mate, substance P, calcitonin gene-related peptide, 
and somatostatin), those implicated in transmis- 
sion from local interneurons in or near the NTS 
(GABA, enkephalin, serotonin, and catechol- 
amines) and chemicals acting as mediators from 
fibers projecting to the NTS from distant struc- 
tures within the central nervous system (vasopres- 
sin, oxytocin, angiotensin II, acetylcholine). It will 
be apparent from this survey that despite a reason- 
able amount of evidence implicating these chemi- 
cals in synaptic transmission in the NTS, little di- 
rect evidence has been obtained linking them spe- 
cifically in swallowing. 

Criteria for Chemical Transmission. A synaptic 
transmitter should be located in the presynaptic 
nerve terminal, mechanisms for its synthesis should 
be present in its cell body, its release should occur 
in conditions known to activate the synapse, when 
applied exogenously it should mimic in the post- 
synaptic cell the effects of activation of the syn- 
apse, both the synaptic response and the responses 
to exogenously applied chemical should be blocked 
in a similar fashion by a selective antagonist, and, 
finally, mechanisms should exist in the region of 
the synapse to inactivate the chemical (so that its 
effect is limited in time) and to remove it or its 
metabolic products from the region of the synapse. 
Further details may be found in work by Werman 
[53] and McLennan [54]. 

Glutamate�9 Glutamate is one of the most ubiquit- 
ous neurotransmitters in the mammalian central 
nervous system [17] and particularly high concen- 
trations are found in the NTS [54, 55]. The fact 
that the concentration of glutamate in the NTS 
is markedly reduced after removal of the nodose 
ganglion or after section of cranial nerves IX and 
X [54, 55[ further suggests that its presence in the 
NTS is in primary afferent nerve terminals. Al- 
though glutamate has not been directly implicated 
in swallowing, our electrophysiological studies on 
NTS neurons indicate that its typically rapid and 
brief effects on reflex interneurons and respiratory 
neurons are consistent with a possible role as a 
fast-acting transmitter [11, 56]. Its release has been 
observed in the NTS in response to electrical stim- 
ulation of  the vagus nerve [57] and an uptake 

mechanism, to remove it from the synapse, exists 
in the NTS [58]. 

Its functional role has been tied to baroreceptor 
inputs to the NTS [59]. However, microinjection 
of small quantities of  glutamate or of glutamate" 
like agents into the NTS produces changes not only 
in cardiovascular parameters [55, 60] but also in 
respiration [60] and induces swallowing [61]. simi" 
lar microinjection of glutamate antagonists prO- 
duces generally opposite effects to those of  gluta- 
mate [62, 63]. 

Substance P. Of the peptides implicated in NTS 
function, this is the best documented. It is found 
in abundant quantities in the NTS, particularly in 
nerve terminals [64~66], including terminals of 
small-diameter vagal and IX afferents [27, 37]. our 
report of excitatory effects of  substance P on NTS 
reflex and respiratory neurons [11] and that of 
Morin-Surin et al. [67] demonstrated a delayed, 
slow, and prolonged excitatory response; the time 
course of this response is so different from the fast 
excitatory responses to glutamate that it seerOS 
likely that the peptide is serving a relatively slow 
function in synaptic transmission, possibly as a 
regulator of the efficacy of  the synapse, analogoUS 
to the role proposed for substance P in primary 
afferent transmission of  pain (nociceptive) affer" 
ents to the spinal cord [10] and brainstem [68]. 
Substance P appears to have specific receptors in 
the NTS [69] and although its microinjection haS 
no effect on heart rate or arterial pressure, it doeS 
have a profound modulatory effect on respiration 
[70, 71]. It is interesting that substance P releaSe 
has been detected in the NTS during hypoxia [72] 
and relatively high levels of  substance P have beeO 
detected in brainstems of victims of sudden infant 
death syndrome [73]. 

Calcitonin Gene-Related Peptide. Calcitonin gerl.e" 
related peptide (CGRP) is broadly represented in 
primary afferent fibres [74] and, in the NTS, is 
found in both cell bodies and nerve terminals [75]. 
It is found in all substance-P-containing primary 
afferents, but also afferents that do not contai0 
substance P [74]. Some CGRP receptors are in tlaC 
NTS [76]. It interacts with catecholamines in tlae 
NTS [77], and microinjection of a related peptide, 
calcitonin, into the rostral part of  the NTS prO" 
duces anorexia [78]. 

Somatostatin. Somatostatin, or somatotropin re" 
lease-inhibiting factor (SRIF), has also been inapli" 
cated in transmission from primary afferent fiberS; 
lmmunohlstochem~cal tratet' �9 ' , studies have demons " 
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.Somatostatin in primary afferent nerve terminals 
m the NTS [79, 80] and binding studies have dem- 
onstrated somatostatin receptors in the NTS [81]. 
Somatostatin depresses respiratory neurons, per- 
haps through an interaction with a cholinergic 
mechanism [82]. Although microinjection of  soma- 
tostatin into the NTS induces apnea [79] and 
changes in arterial pressure [83], its effects on swal- 
lowing or related reflex interneurons remain to be 
determined. 

GABA. Gamma-aminobutyric  acid (GABA) is an 
inhibitory amino acid with a widespread distribu- 
tion in the mammalian central nervous system [17]. 
GABA and the GABA-synthesizing enzyme, glu- 
tamic acid decarboxylase, are present in a popula- 
tion of NTS neurons [58, 84, 85], consistent with 
a role of GABAergic neurons as local inhibitory 
interneurons. A GABA uptake mechanism has 
also been reported in the NTS [58]. 

NTS neurons are inhibited by local application 
of GABA [86]. Denavit-Saubie and Champagnat  
[87] have shown a depressant effect of  GABA on 
brainstem respiratory neurons and a block of some 
of the periodic inhibitory input to these neurons 
by iontophoretic application of bicuculline [88]. 
Our electrophysiological data are consistent with 
these findings, except that we have shown its inhib- 
itory effects specifically on presumed reflex inter- 
neurons and respiratory neurons in the NTS. Mi- 
Croinjection of GABA into the NTS produces a 
number of effects, including respiratory depression 
[89], increased arterial pressure [90], and inhibition 
of the baroreflex [63, 91]. It has been proposed 
that GABA mediates the inhibitory effects on res- 
Piration and vegetative reflexes of muscle afferent 
fibers [92], as well as inhibitory hypothalamic in- 
PUts to NTS neurons [93]. 

Opioid Peptides. Morphine-induced respiratory de- 
Pression has been a well-known side effect since 
this drug came into use. The discovery in 1973 
of Opiate receptors and the subsequent discovery 
~ peptides with opioid properties pro- 
V~de an understanding of the mechanisms of this 
effect of morphine on respiration. Each of the three 
families of opioid peptides, the enkephalins and 
those derived from dynorphin and fl-endorphin, 
have been implicated in NTS function. For exam- 
Ple, the presence in the NTS of neurons containing 
enkephalin [94] as well as the precursor to enke- 
tPah.alin [95] and the presence of nerve terminals con- 

ruing enkephalin [79] implicate this type of  neu- 
ron as a local inhibitory interneuron. Several types 
of Opiate receptor have been found in the NTS 

[96, 97]. In studies in which selective activation 
of  these different types of receptor has been done, 
the varied nature of the effects that we and others 
have documented on respiratory neurons [15, 98, 
99] and reflex interneurons [15] in the NTS, and 
that others have seen on respiration [100, 101], sug- 
gests a rather specific type of regulation expressed 
by each of  the different types of opioid peptide. 

The precise function of opioid peptide-contain- 
ing neurons in the NTS remains to be clearly iden- 
tified, but they have been implicated in inputs to 
NTS neurons from sites in the periaqueductal gray 
and raphe regions [14]. They have been shown to 
produce an inhibition of respiration and related 
reflexes such as tongue protrusion, jaw opening, 
coughing, and swallowing that are in some cases 
reversible by naloxone [14]. As well as the well- 
known effects of  opiate receptor activation on res- 
piration, other functions appear to be regulated 
by opioid peptides in the NTS, including cardio- 
vascular function [102] and baroreceptor reflexes 
[91]. 

Serotonin. Serotonin, also called 5-hydroxytrypta- 
mine (5-HT), is uniquely localized to a group of 
nuclei, the raphe nuclei, in the midline of  the brain- 
stem [103]. Nerve terminals from these nuclei are, 
however, widely distributed throughout the central 
nervous system, and serotonin is therefore involved 
extensively in regulation of central nervous func- 
tion. Our electrophysiological data indicating a 
generally excitatory effect of  serotonin on respira- 
tory neurons and an inhibitory effect on reflex in- 
terneurons in the NTS [15] are consistent with an 
involvement of serotonin in the control of  respira- 
tion and respiratory reflexes [70, 104]. Changes in 
respiration and respiratory reflexes are produced 
by administration of serotonin agonists to the NTS 
[105, 106], and inhibition of serotonin breakdown 
potentiates the respiratory effect of  serotonin [106]. 
Serotonin-containing nerve terminals are found 
throughout the NTS [66], as are receptors for sero- 
tonin [107]. It is not surprising, therefore, that sero- 
tonin has been found to alter other functions as 
well. 

The precise role of  serotonin in swallowing is 
contested. While its administration into the fourth 
ventricle induces swallowing [108], microinjection 
into the region of  the NTS inhibits reflex swallow- 
ing by electrical stimulation of the SLN [109, 110]. 
On the one hand it has been argued that the excit- 
atory effects are likely to be nonspecific [61], while 
electrical stimulation of  brainstem nuclei contain- 
ing serotoninergic neurons inhibits reflex swallow- 
ing [14, 110]. 
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Catecholamines. This family of neuroactive agents 
includes norepinephrine, epinephrine, and dopa- 
mine. The NTS is recognized as one of the brain 
nuclei containing neurons synthesizing norepi- 
nephrine [103], and these neurons, because of the 
length of their axons, function primarily as projec- 
tion neurons from the NTS to other regions of  
the central nervous system. There is reason to be- 
lieve, however, that NTS neurons may also be 
under the control of  catecholamines in terminals 
of NTS neurons or neurons in other brainstem 
structures. Release of catecholamines has been de- 
tected from the NTS in vitro [111], and ctl- and 
~t2-adrenergic receptor types are located on neu- 
rons in the NTS [112], including ~2-receptors on 
presynaptic elements [113]. Terminals containing 
catecholamines are found in the NTS [84]. Cate- 
cholamines and their agonists have a predominant- 
ly depressant effect on brainstem respiratory neu- 
rons [114] and potentiate inputs to NTS from other 
regions [115]. Microinjection of catecholamines 
into the NTS produces changes in respiration [1141, 
gastric motility [116] and cardiovascular parame- 
ters [117, 118]. In experiments on the effects of  
catecholamines on rhythmic swallowing elicited by 
stimulation of the SLN, an inhibitory effect was 
produced by microinjection into the NTS of nor- 
epinephrine and the 0c-adrencrgic agonist, cloni- 
dine, as well as by microinjection of dopamine and 
its agonist, apomorphine [110]. In fact, it has been 
suggested that catccholamine effects are mediated 
possibly by a presynaptic action [119}. 

Vasopressin and Oxytocin. In view of the origin 
of these two neuroactive peptides in adjacent re- 
gions of the hypothalamus [24, 120, 121}, and the 
similarity of their effects on central neurons, they 
will be considered together here. Radioimmunoas- 
say and immunocytochemical techniques have 
demonstrated that vasopressin and oxytocin-con- 
raining cell bodies in the paraventricular nucleus 
of the hypothalamus project to NTS [120, 121] and 
vasopressin- and oxytocin-binding sites and termi- 
nals occur in NTS [122]. Our studies have indicated 
an excitatory effect on reflex interneurons and re- 
spiratory neurons in the NTS [12]. Thus, descend- 
ing vasopressin- and oxytocin-containing fibers 
may mediate excitatory inputs from the hypothala- 
mus to NTS reflexes. In fact, cardiovascular 
changes have been documented alter vasopressin 
or oxytocin was injected directly into NTS [123, 
124]. Pretreatment of  the animal with a vasopressin 
antagonist abolishes the pressor response elicited 
by subsequent vasopressin injection into NTS 
[123], and the application of antagonist directly 

into NTS decreases the response to electrical stim- 
ulation of  the paraventricular nucleus [125]. 

Angiotensin II. Best known for its peripheral ef- 
fects, angiotensin II has recently come to be recog- 
nized as also having central nervous effects, most 
likely as a chemical mediator of  synaptic transmis" 
sion. Angiotensin II immunoreactivity [24] and de- 
grading enzyme [126] are prevalent in the NTS. 
Binding sites [127] are also found in this region, 
perhaps on the terminals of  primary afferents from 
the vagus nerve [128]. In addition to our electro" 
physiological study demonstrating an excitatory 
effect of  angiotensin II on neurons associated with 
respiration and alimentary tract reflexes [161, mi- 
croinjection studies have also demonstrated preS- 
sor effects [129] and depression of baroreflexeS 
[130]. Intracisternal administration of angioten" 
sin II induces emesis [131], although the precise site 
of  action in this case is unknown. 

Acetylcholine. Acetylcholine is perhaps best known 
for its role in neuromuscular transmission and in 
synaptic transmission in the autonomic nervoUS 
system. However, it is also generally considered 
to be an important mediator of  synaptic transmis" 
sion in the central nervous system [17], including 
in the NTS where one can observe an acetylchO" 
line-synthesizing enzyme [132] as well as muscar- 
inic receptors [133]. Effects of  acetylcholine and 
related chemicals applied by iontophoresis to med" 
ullary respiratory neurons [114, 134] or microin" 
jected into the NTS [135, 136] have been variable, 
possibly due to the use of anesthetics that alter 
the responsiveness of NTS neurons to acetylchO- 
line [137; personal observations, 1989]. 

Purines. Adenosine-5'-triphosphate (ATP) was 
first implicated in sensory transmission in 1954 
[138], but has received little further attention until 
recently, when a synaptically mediated sensory i0- 
put to spinal sensory neurons was attributed to 
ATP and its metabolic product, adenosine 
[139-141]. Although purines influence respiration 
[142, 143] by an effect within the central nervotlS 
system [144], only recently has the NTS been imp li" 
cated in these effects. Adenosine uptake sites are 
found in the NTS [145]. Moreover, we have re" 
cently observed excitatory and biphasic effectS of 
ATP and depressant effects of  the adenosine pre- 
cursor, AMP, when applied to NTS respiratory 
neurons [146]. Microinjection of  an adenosine an~" 
Ioguc into the NTS depresses respiratory rate with 
a concomitant increase in tidal volume [147, 148], 
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Other  N e u r o a c t i v e  A g e n t s .  M a n y  other  neuroact ive  
agents are found  in the NTS.  Recent  reviews listing 
these agents include those by Kalia et al. [19], Ka-  
lia [37], Leslic [24], Eldridge and Mil lhorn  [104], 
and Muellcr  et al. [70]. Of  the large number  o f  
Such agents for which relatively little is known,  
SOme have, nonetheless,  been implicated in regula- 
tion o f  specific funct ions in the NTS.  Thus,  to cite 
a few, thyrot ropin-re leas ing  h o r m o n e  ( T R H )  has 
been shown to alter the activity o f  brainstem respi- 
ratory neurons  [149] and,  upon microinject ion,  
produces changes in respirat ion [150, 151]. Its ori- 
gin seems to be in neurons  project ing to the N T S  
from raphe nuclei [152]. Neuro tens in  is found  in 
cell bodies o f  the N T S  [153] and therefore  p robab ly  
plays a role in local regulat ion within the NTS.  
It produces respi ra tory  s t imulat ion [154] or  ap- 
neustic brcathing [155] as well as anorexia  [78]. 
l~o.mbesin, which has otherwisc been implicated in 
PrJmary afferent  t ransmisson [156], also produccs  
respiratory s t imulat ion [157, 158] and anorexia  
[78]. Atrial natr iuret ic  factor  (ANF) ,  which is 
found in the N T S  [159], as are receptors  for  A N F  
[160, 161], elicits changes in cardiovascular  pa ram-  
eters when adminis tered to the NTS [162]. 

Concluding Remarks 

Several obvious  conclusions may be drawn from 
this review. Most  painful,  perhaps,  is the gross lack 
of detailed in format ion  on the roles o f  neuroact ive  
chemicals in NTS  function.  Thus,  the role of  nearly 
all these neuroact ive  chemicals in swallowing pcr 
se is equally unclear  and virtually unexplored.  Our  
data indicating modu la to ry  effects on NTS  reflex 
interneurons (as well as respi ra tory  neurons)  pre- 
SUmed to serve in swallowing and related reflexes 
SUggest that  these chemicals may  have impor tan t  
functions in regulating the central  neural mecha-  
nisms underlying swallowing. However ,  considera-  
bly more  in format ion  is required,  especially on 
neurons specifically identified in mechanisms o f  
SWallowing. As in o ther  areas of  study, our  under-  
Standing o f  dysfunct ion  is also highly cont ingent  
on finding a suitablc animal model  to cxplore ex- 
0.erimentally. It is certain that  the control  mecha-  
nisms in the N T S  are complex,  even if this conclu-  
sion is arrivcd at only on the basis o f  the number  
of chemicals in thesc nuclei. All the evidence indi- 
Cates that this region o f  the brainstem is endowed 
With an unusual  abundance  o f  such chemicals. 

Another  obvious  conclusion is that the control  
~echanisms must  also bc extensive in their govern-  
lng of  the sensory in tbrmat ion  arriving at the NTS.  
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This can be assumed because o f  the wide range 
o f  effects that  may  be observed when the NTS 
is s t imulated,  either electrically or chemically.  Such 
diverse physiological  funct ions as arterial  pressure, 
respirat ion,  swallowing, emesis, and gastric motili- 
ty have been implicated. O f  course,  these funct ions  
are linked by the coord ina t ion  required for  day- to-  
day control .  It is clear, then, that a cer ta in  appar -  
ent over lap  in the chemical  basis o f  cont ro l  o f  these 
various physiological  funct ions is perhaps  the most  
efficicnt way o f  governing these functions.  More-  
over, dysfunct ion o f  these neurochemica l /neu-  
rophysiological  regulatory mechanisms in the N T S  
rcgion may bc impor t an t  in pa thophysio iogica l  
condi t ions  such as dysphagia.  There  is an urgent  
need tbr  an increased research focus on neural 
mechanisms within thc N TS  and adjaccnt  regions 
to clarify the processes under lying swallowing and 
pathophysiological  dis turbances o f  swallowing. 
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