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ABSTRACT. This paper discusses the roles played by anticipation, belief, and motivation 
in two young children's problem solving activity. It is argued that a solver's beliefs and 
motivations are intimately related. The analysis also identifies an increasingly global 
hierarchy of anticipations corresponding to specific conceptual structures or problem 
representations, heuristics, and beliefs. Analogies drawn from the philosophy of science 
and from the field of artificial intelligence are used to illustrate that the discussion of the 
two children's behaviors may have some generality. 

Few papers have captured the interest and imagination of  the mathematics 
education community more than Erlwanger's (1973) case study of  Benny. 
Erlwanger's exemplary analysis highlighted the need to consider children's 
beliefs about the nature of  mathematics when attempting to make sense of  

their mathematical behavior. For many mathematics educators, Benny 
became a prototype for children who view mathematics as a collection of  
isolated, figurative rules. 

In the years after Benny, several theorists have emphasized the importance 

o f  children's belief systems (e.g., Confrey, 1982; Schoenfeld, 1983; Silver, 

1982; Skemp, 1979). Schoenfeld, for example, argued that problem solving 
behavior is constrained by "the set of  beliefs one has about the discipline, 

the environment, the task, and oneself - the beliefs that, in essence, deter- 
mine the context within which one selects and deploys the cognitive resources" 

(p. 3). Skemp has called the process by which belief systems are constructed 
and modified metalearning. The products o f  metalearning serve to constrain 

the problem solver's anticipations and expectations. 

In the following sections, anticipation and expectation are considered from 

a cognitive and metacognitive perspective. Descriptions of  the problem solving 

activity of  two of  six children who participated in a recently completed two- 
year teaching experiment are included to clarify the discussion. Both children 
were beginning first graders when the experiment commenced. The analysis o f  

anticipation and expectation is then related to the two children's motivations 
for engaging in mathematical activity. 

C O G N I T I O N  AND A N T I C I P A T I O N  

Anticipation plays a prominent role in Piaget's theory o f  cognition. For example, 
"anticipation is nothing other than a transfer or application o f  the scheme 
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�9 . . to a new situation before it actually happens" (1971, p. 195). And 

again, 

anticipation.., can be fully explained by processes of transfer or inference based on 
previous information, in other words, on the application or generalization of schemata 
which were originally nothing but simple causal series and feedbacks. (p. 194) 

For Piaget, the conceptual structure builds up when giving meaning to a prob- 

lem embodies an implicit response. 

A stimulus is really a stimulus only when it is assimilated into a structure and it is this 
structure which sets off the response. Consequently, it is not an exaggeration to say that 
the response is there first, or if you wish, at the beginning there is structure. (1964, p. 15) 

In other words, the structure of a problem for the solver is determined by the 

schemes into which it is assimilated. The ensuing problem solving activity can 

then be viewed as an attempt to fill out or express this structure in a specific 

situation. Consider, for example, Tyrone's solution to the sentence _ + l 1 = 30. 

He reasoned, "Ten and eleven is 21, eleven and eleven is 22, twelve and eleven 

is 2 3 , . . . ,  eighteen and eleven is 29, nineteen and eleven." Tyrone anticipated 

that if he iteratively increased the first addend and the sum by one he would 

eventually solve his problem. This iterative relation was embodied in the 

collection of related schemes that constituted his concept of addition. 1 

As we all know too well, in many problem solving situations, initial antici- 

pations lead us into difficulties. However, because the solver has attempted to 

express an initial conceptual structure, she has additional experiences upon 

which to reflect. This provides the solver with an opportunity to abstract novel 

relationships and thus to modify or elaborate (Silver, 1982) the initial struc- 

ture. This is illustrated by Scenetra's solution to a task in which the first three 

of a row of nine squares were covered. Scenetra was instructed to count back- 

wards to find how many squares were covered. She counted the six visible 

squares "9, 8 , . . . ,  4" and then continued "3, 2, 1, zero" while pointing over 

the cloth. However, as she was not sure how many squares were covered, the 

teacher asked her to count again. She counted the visible squares "9, 8 , . . . ,  4" 

and then continued "3, 2, 1" while pointing to the cloth with one hand, each 

time wiggling a finger of her other hand. She then looked at the three fingers 

she had just wiggled and answered, "Three". Scenetra introduced a novelty 

into her counting activity when she counted backwards for a second time; she 

intentionally recorded her backward counting acts over the cloth. After she 

had been prompted to count again, she reflected on her prior counting activity 

and segmented it into parts corresponding to counts of the visible and of the 

covered squares. In this way, she elaborated the initial meaning she gave to the 

task - that of performing a single sequence of backward counting acts. 
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In general, the relationship between the conceptual structure built up 

when giving meaning to a problem and the activity of expressing that struc- 
ture is dialectical in nature. The structure delimits possible problem solving 

activities while reflection on the activity provides an opportunity to reorgan- 
ize the conceptual structure. The resulting structure then constrains subse- 

quent problem solving activity. In short, by doing something, by attempting 
to express a conceptual structure in a specific situation, the problem solver 
explores anticipations about possible ways of solving the problem. 

The notion that problem solving involves making one's anticipations work is 
supported by analyses of the activity of  scientists. For example, Knorr (1980) 
concluded that the "bright ideas" which precipitated investigations conducted 
by a group of biochemists were potential or unrealized solutions rather than 

hypotheses or ex ante conjectures. 

Hypotheses are tried against data, with the ultimate goal that they stand up as either true 
or false.. .  Unrealized solutions are not tried against data; instead they are made to work 
by scientists who are actively engaged in constructing the results anticipated in the solu- 
t ion.. .  Unrealized solutions do not eliminate problems, search processes or outright 
failures from the process of research. But they do turn the open ground of unresolved 
research problems into the dosed program of a production line. (p. 38) 

The "bright ideas" or anticipations of both the scientist and of the child 

solving mathematics problems are constrained by current cognitive structures. 

A second, more encompassing system of constraints delimits anticipations 

about both the sorts of problems to be encountered and the types of methods 

to be used in mathematical situations. These constraints are considered in the 

following section. 

METACOGNITION AND ANTICIPATION 

As the two-year teaching experiment progressed, it became increasingly 
apparent to the research team that the children's behaviors could not always 
be fully accounted for solely in terms of an analysis of the children's arith- 
metical concepts (Cobb, 1983a, b). In particular, children to whom similar'- 
concepts were attributed sometimes behaved in radically different ways when 
they solved specific tasks. Using Erlwanger's analysis of Benny's mathematical 
behavior as a paradigm case, the conceptual analysis was complemented by an 
analysis of the children's beliefs about the activity of doing mathematics. These 
beliefs constituted global, encompassing frameworks within which the children 
gave meaning to and attempted to solve problems. 
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Problem Solving Methods 

Scenetra's and Tyrone's solutions to a wide variety of  tasks indicated that, by 
March of the first year of the teaching experiment, they had constructed 
similar concepts of addition. In one session conducted during this month, both 
children engaged in an activity in which they transferred marbles from one of 
two cups to the other. Scenetra was soon able to say how many marbles were 
in each cup and how many there were in all after a marble had been transferred 
without having to count. She explained, " 'Cause every time you say something 
it'll be eleven." She could also generate the next of a sequence of compensating 
addends in certain highly specific situations (e.g., eight and one, seven and 
two). However, the lack of generality and flexibility of these solutions indi- 
cated that they did not carry numerical significance for her. Instead, she relied 
on forward and backward number word sequences (e.g., the number word that 
comes immediately before "eight" and the number word that comes immediately 

after "one"). 
Tyrone appeared to be less competent than Scenetra when he attempted to 

solve these tasks. On one occasion, Tyrone made the following array with the 
teacher's help as he repeatedly transferred one of twelve marbles. 

12 0 
11 1 

10 2 

0 12 

The teacher then asked several questions using the terms "up" and "down" to 
investigate whether Tyrone might notice that the two sequences of addends 
formed forwards and backwards number word sequences. For example: 

T: Five (points to the "5" of "'5 7") goes down by one (points to the 

"4" of "4 8"), what does seven do? 
Ty: Across (points to "5" and then "7" of "'5 7"). 

The terms "'up" and "down" were not significant for Tyrone. His gesture from 
"5" to "7" suggests that he represented the transfer of a marble from one 
collection to another (he frequently made similar gestures when he explained 
his solutions to other tasks). 

The possibility of relying solely on a superficial number word sequence did 
not seem to occur to Tyrone. His apparent incompetence when compared with 
Scenetra was a product of  his expectation that he could create meaning by 
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structuring experience in terms of his arithmetical concepts. In other words, 

Tyrone experienced difficulties because his beliefs were more in harmony with 
those of the mathematician. There was no indication that he consciously 

rejected number word and numeral regularities. The possibility of solving 

these and other tasks by relying on such superficial regularities did not occur 

to him. His belief that the activity of solving mathematical problems involves 

relating concepts rather than number words was implicit. 

The suggestion that some of Tyrone's beliefs about methods for solving 

mathematical problems were implicit is consistent with contemporary 

philosophy of science. There is a consensus that the scientist's actions are 
guided by a largely implicit contextual framework, be it called a paradigm 

(Kuhn, 1970), a research program (Lakatos, 1970), or a research tradition 
(Laudan, 1977). In fact, Laudan explicitly characterized scientific activity as 
contextual problem solving. These frameworks serve to set up contexts within 

which the scientist formulates and attempts to solve problems. 

In the absence of a paradigm or some candidate for a paradigm, all the facts that could 
possibly pertain to the development of a given science are likely to seem equally relevant. 
(Kuhn, 1970, p. 15) 

Tyrone, for example, anticipated that he would be able to solve the task by 
constructing relationships between numbers. Scenetra, in contrast, focused on 
number words and numerals. 

One caveat seems to be in order when drawing an analogy between children's 
mathematical belief systems and Kuhn's notion of a paradigm. For Kuhn, a 

paradigm was a shared world view or, better, a consensual domain (Maturana, 

1978) cooperatively constructed by a community of scientists. A paradigm is 

thus an abstraction which captures the compatible aspects of individual 
scientists' idiosyncratic belief systems. With the children, however, it is the 

idiosyncracies as well as the similarities that are of interest. 

It is not claimed that children's beliefs about problem solving methods are 

always implicit. The following observations were also made during March of 
the first year of the teaching experiment. It will be recalled that similar 

concepts of addition were attributed to Tyrone and Scenetra. Tyrone typically 

related successive tasks in which an addend was increased or decreased by one 

or two with relative ease (e.g., 12 + 4, 12 + 5, 12 + 7). However, Scenetra 
solved similar sequences of tasks independently. On one occasion, for example, 
she counted to find, in order, 10 + 2, 10 + 4, lC + 3, 10 + 4, 10 + 3, 10 + 4, 
10 + 5. An incident which took place two weeks later clarified the situation. 
Scenetra was told that nine cookies were hidden by one of two cloths and that 
sixteen were hidden beneath both cloths. She miscounted and said eight were 
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hidden. After  she had wri t ten the sentence 9 + 8 = 16 on a chalkboard,  the 

teacher presented a similar task with eight cookies hidden under one cloth and 

16 in all. 

S: 8, 9 . . . . .  16 (sequentially puts up eight fingers,) wait,  8, 9 . . . . .  

16 (sequentially puts up eight fingers,) I t 's  still eight. 

T: What do you think it should be? 

S: (Simultaneously puts up nine fingers) This many. 

T: Why? 

S: I don ' t  know. 

T: Why should it be nine? 

S: 8, 9 . . . . .  16 (sequentially puts up eight fingers.) I t 's  still eight. 

T: Write that  one on the board.  

S: (Writes 8 + 8 = 16.) This one 's  wrong (points to 9 + 8 = 16.) 

Scenetra did not  look at the sentence on the board before she counted for the 

second time, which indicates that she expected the answer to be nine before 

she counted.  It was as though she thought that  she was not  supposed to use a 

previous answer. She strove to give the appearance that  she was solving each 

problem independently o f  her preceding solution. The only exceptions occurred 

when the teacher either implied or actually manipulated objects when he 

presented successive tasks (e.g., transferring a marble from one cup to another).  

Scenetra's failure to relate certain tasks did not  seem to reflect inadequacies 

in her mathematical  knowledge. Instead, it was a consequence of  her explicit 

beliefs about the legitimacy of  certain methods.  As early as the middle of  first 

grade, she seemed to have reflected on her experiences o f  doing mathematics 

and anticipated that  the teacher would consider her dishonest or naughty or a 

cheat if she related tasks. This analysis is compatible with the Findings of  

Baroody,  Ginsburg, and Waxman's  (1983) recent study. They asked first, 

second, and third grade students to find the following sequence o f  sums: 6 + 7, 

6 + 8, 6 + 9 , . . . ,  6 + 15. They concluded that  failure to relate successive 

tasks 

does not imply that the principle is not known. For example, some children might have 
refrained from using their knowledge of principles to short-cut computation because they 
felt it was "cheating". Indeed, a number of children seem to have interpreted looking 
at the used pile and using a short-cut as "naughty" . . .  One girl, on questioning, exclaimed, 
"I cheated on that one. I looked over here" (at the used pile). This attitude seemed to 
persist despite the efforts to counter it. (pp. 167-168) 

Scenetra's and Tyrone 's  implicit and explicit  beliefs about the activity of  

doing mathematics constrained their expectat ions and thus had a profound 

influence on the ways in which they went about solving problems. While these 
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beliefs did not determine the methods the children used, they did seem to 

constrain what the children might do in specific situations. These beliefs also 

appeared to influence what could count as a problem. 

Problems 

Towards the end of the second year of the experiment, the teacher asked 
Tyrone to solve 46 -- 13 = _ after he had found that 44 -- 11 was 33 by count- 
ing backwards. He gave 35 and then 31 as answers, which indicated that he did 
not coordinate increases in the subtrahend and the minuend. The teacher then 
placed 4 5 - - 1 2 = _  between 4 4 - - 1 1 = 3 3  and 4 6 - 1 3 = _  and Tyrone 
replied, "34". The exchange continued: 

T: Do you want to do some multiplication problems? 

Ty: No (motions for the teacher to leave the subtraction sentences.) 
45,44 . . . . .  33 (sequentially puts up fingers,) it's the same thing. 

T: Do you know why it's the same thing? 

Ty: (Shakes his head.) 

T: What would 45 take away 12 be? 
Ty: 44, 43 . . . . .  33 (sequentially puts up fingers.) 

T: They're all 33. 

Ty: Why? 

Tyrone was not satisfied when he had found that all three tasks had the same 

answer. Given his belief that doing mathematics involved constructing relation- 

ships between numbers, this number word regularity was something that had to 

be explained. It was a problem for him. Scenetra, in contrast, was usually con- 

tent if she found a way of getting correct answers (i.e., answers that the teacher 
accepted). The identification of  a number word regularity did not give rise to a 
new problem but instead terminated her problem solving activity. 

The two children's general beliefs about mathematics were constructed by 
reflecting on and thematizing past experiences (cf. Greene, 1971). These beliefs 
embodied the anticipation that future experiences would fit the theme. Tyrone, 
for example, frequently used a known sum or difference when he attempted to 
fred an unknown sum or difference. He did not seem to "notice" these relation- 
ships fortuitously or accidently. Instead, he appeared to actively search for 
opportunities to use these types of methods. The dominant theme which 
guided his mathematical activity was the achievement of a relational rather 
than an instrumental understanding (Skemp, 1976). Scenetra rarely related 
tasks or used a known sum or difference. Mathematics was, for her, an activity 
in which one finds unrelated rules for solving unrelated problems. The dominant 
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theme was to get the correct answer. The means was completely dominated by  

the end. The sole criterion by  which she usually judged a method was whether 

or not  it yielded a correct answer (i.e., she received appropriate feedback from 

the teacher). The question of  understanding why a particular method worked 

or broke down did not  arise. The crucial differences between Tyrone's  and 

Scenetra's problem solving behaviors are captured by  Silver's (1982) conten- 

t ion that  

a person who believes that there is an underlying structure to mathematics and that this 
structure is more important than surface details will approach the study of mathematical 
material quite differently than a student who does not hold this belief. (p. 21) 

Heuristics and Subcontexts 

Thus far, the discussion has focused on the general, global contexts or frame- 

works which constrained the children's expectat ions and anticipations. 

Weizenbaum (1968) made the following observation when he analyzed the 

process o f  conducting a conversation: 

In real conversation, global context assigns meaning to what is being said in only the most 
general way. The conversation proceeds by establishing subcontexts, sub-contexts within 
these, and so on. (p. 18) 

The same can be said of  the process of  solving a mathematical  problem. As 

Minsky (1975) put  it, 

At each moment one must work within a reasonably simple framework. I contend that 
any problem that a person can solve at all is worked out at each moment in a small con- 
text and that the key operations in problem solving are concerned with finding or con- 
structing these working environments. (p. 119) 

The framework consti tuted by  general beliefs about  the activity o f  doing 

mathematics is so global that  it is difficult to explain how the problem solver 

constructs and elaborates specific conceptual structures when solving par- 

ticular problems unless one appeals to the not ion of  subcontext.  When the 

problem solver operates in a subcontext ,  the focus is narrowed and anticipations 

and expectat ions are more specific. This can be exemplified by  considering any 

of  the heuristics most frequently used by  college level mathematics students 

(Schoenfeld, 1978). For  example,  students who use the ftrst heuristic on 

Schoenfeld's list, draw a diagram, temporari ly  focus exclusively on this objec- 

tive. They anticipate that they will be able to construct  a diagram and, further, 

that  this will facilitate the solution. As Silver (1982) put  it, "we can view many 

of  P o l y a ' s . . .  heuristic suggestions as metacognitive prompts"  (p. 21). The 
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heuristic embodies anticipations about the appropriateness of  operating in a 

particular subcontext. We then have an increasingly general hierarchy of 
anticipations corresponding to conceptual structures built up when giving 
meaning to specific problems, heuristics, and global beliefs about mathematics. 

Wimsatt (1981) argued convincingly that many of the heuristics that guide 
the activity of the scientist are not consciously formulated principles. Although 
awareness of one's heuristics is undoubtedly advantageous, an "agreed reduc- 
tion to rules will not prevent a paradigm from guiding research" (Kuhn, 1970, 
p. 44). Several implicit, elementary heuristics seemed to guide both Tyrone's 
and Scenetra's problem solving activity. Tyrone frequently searched for 
opportunities to use a known sum or difference when he solved arithmetical 
sentences. If he was unable to construct an appropriate relationship, he often 
solved the task by counting without prompting. For example, when he could 
not relate 44- -  11 = 33, 45 -- 12 = _ ,  and 46 - -  13 = successfully, he 
spontaneously solved 46 -- 13 = _ by counting backwards (cf. the protocol 
given to illustrate what could count as a problem for him). 

Scenetra's heuristics were of  an entirely different kind. When she had a 
genuine problem (i.e., she could not use one of her routine methods) she fre- 
quently focussed on superficial features of  a problem statement or a sequence 
of answers. She was also less flexible than Tyrone. Once in a subcontext, she 
found it difficult to change methods. This is illustrated by the following 
observations. By February of the second year of the teaching experiment 
Scenetra could solve two-digit addition and subtraction tasks mentally (i.e., 
without paper and pencil). However, she frequently experienced difficulties 
when she attempted to solve non-routine problems. On one occasion, for 
example, the teacher asked Scenetra to fired how much bigger 31 was than 29. 

T: What have I done here? (Points to "29" and then "31".) 
S: Added one more. 

T: How many did I add? 
S: 13. 
T: How many did I add to go from 29 to 31? 
S: (Shakes her head.) 
T: How much bigger is this than that? (Points to "31" and then to 

"29".) 
S: One. 
T: No. 
S: 13. 
T: No 
S: Eleven. 
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T: How much bigger is 3 l than 29? 
S: Nine. 
T: No, you count from 29 to 31. 
S: 29, 30 . . . .  two. 

Ten and one were heterogeneous arithmetical objects for Scenetra. She could 
not view one ten as ten ones. Consequently, she had great difficulty in relating 
numbers in different decades. This exchange demonstrates that she was locked 
into the figurally based meanings she gave to number words. She did not 
anticipate that she could give an alternative meaning to "29" and "31" until 
she was directed to count. In the exchange, she was unable to modify one of 
her algorithms. However, the possibility of  operating in an alternative sub- 
context did not occur to her. Perhaps this lack of flexibility reflected her focus 
on ends rather than means, the dominant theme which guided her problem 
solving activity. She would be less likely than Tyrone to reflect on her activity 
and evaluate the progress she made as she attempted to solve a problem. 

The discussions of Tyrone's and Scenetra's problem solving behaviors 
suggest that the heuristics the problem solver employs are compatible with her 
global beliefs about mathematics. The application of a heuristic delineates a 
subcontext within an encompassing context implicitly defined by the general 

beliefs. Consequently, the solver's general beliefs would seem to constrain the 
types of heuristics that he or she can construct. If  general conceptions of  the 
nature of mathematics do play this crucial organizing role, the implications for 

mathematics educators interested in teaching problem solving would seem 
obvious. For both the scientist who makes a paradigm shift and for the child 
who reorganizes beliefs about mathematics, "criteria of judgement are changed, 
including criteria of what is to count as a problem and what is a solution to a 
problem" (Barnes, 1982, p. 11). Unless attention is given to students' general 
beliefs, many might well persist in their attempts to construct instrumental 
rather than relational knowledge. As a consequence, they might well interpret 
heuristics as rigid, prescribed methods to the detriment of both their continu- 
ing learning and, as suggested in the next section, their enjoyment of math- 
ematics. (See Cobb, 1983b, for a discussion of children's reorganization of their 
belief systems.) 

MOTIVATION 

As the two-year teaching experiment progressed, the affective aspects of the 
children's behavior became increasingly significant to the research team. Terms 
such as persistence and confidence were used to characterize Tyrone's behavior. 
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Scenetra, in contrast, lacked confidence, became upset easily, and rarely took 

the initiative. These characteristics seemed to be related to the children's 
beliefs about the activity of doing mathematics. Silver's (1982, p. 22) specu- 
lation that "belief systems may prove useful in explaining.. ,  perseverance or 
dissatisfaction in problem-solving episodes" would therefore seem to have 

some substance. 
Nicholls' (1983) analysis of motivation suggests possible links between beliefs 

and characteristics such as persistence. He distinguishes between two forms of 
motivation - ego-involvement and task-involvement. An ego-involved child is 
motivated by a desire to look smart or to avoid looking stupid. "The child is pre- 

occupied with herself - with avoiding looking stupid - rather than with learning, 
understanding, or finding o u t . . ,  learning, as such, is not valued. Learning is 
not an end in itself" (p. 213). This form of motivation is compatible with the 
dominant theme that guided Scenetra's problem solving activity. She strove to 

get correct answers but understanding per se was not her goal. She was not 
perturbed if her solutions were instrumental rather than relational in quality. 

There were just a few occasions when Scenetra did show some concern about 

the methods she used to solve problems. The following episode occurred 

during March of the second year of the experiment when Scenetra was in 

second grade. 

The teacher investigated whether Scenetra could use a known sum to find 
an unknown sum by making the sentence 34 + 11 = _  directly underneath 

34 + 9 = 43. Scenetra gave 45 as her answer and explained that she had used 

her version of the standard algorithm. She said that she could not use the 

preceding sentence and became visibly upset when the teacher urged her to try 

and solve a subsequent task by relating known and unknown sums. The teacher 
and the witness of the session inferred that Scenetra regarded the relating of 

known and unknown sums as an immature way of solving problems. She might 
well have interpreted the teacher's requests as derogatory comments about her 
competence. The teacher then posed tasks by asking Scenetra to guess how the 
witness would solve the problems. Since the questions were phrased as, "Can 
you guess what Marva would say?" or "How would Marva do this one?", 
Scenetra could attribute any implications of incompetence to the witness 

rather than to herself. After a hesitant start, Scenetra related known and un- 
known sums in a variety of ways and seemed to enjoy the remainder of the 
session. For example, she was asked to find 32 + 15 immediately after she had 
incorrectly concluded that 34 + 14 = 49. 

T: 

S: 

How would Marva do this one? 

(Holds her hand horizontally and moves them up and down) . . .  48. 
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T: 

S: 
T: 
S: 

How did Marva do it? 

How many did you add on and take away, how did Marva do it? 
She took away two and added on one more. 

This relatively sophisticated solution indicates that Scenetra's initial refusal to 
relate tasks was not due to inadequacies in her concept of addition. Rather, it 
seemed to reflect her concern that she should not appear incompetent. 

This episode also illustrates the tendency of ego-involved children to 
compare their performance with that of  their peers when they judge their 
competence. The method of relating known and unknown sums was immature 
when compared with the algorithms she knew were used by other children in 
her class. Consequently, Scenetra felt that she would look stupid if she used 
this method. 

The contention that Scenetra was ego-involved is compatible with the 
personal way in which she interpreted failure. "In ego-involvement, failure is 
more likely to occasion the question, 'Am I stupid?'" (Nicholls, 1983, p. 216). 
Failure did not give rise to new problems or to questions of  what she could do 
differently in order to succeed. Instead, it led to self-doubts about her compet- 
ence. It is therefore not surprising that she readily gave up when things did not 
work out fairly quickly. The project staff frequently had to cajole and entice 
her to continue working on a task. As Wertime (1979) put it, "the problems 
which we tackle are deeply involved with our self-esteem" (p. 193). Persistence 
entails the risk of further failure, and Scenetra was not prepared to gamble 
with her self-esteem in this way. In general, Scenetra did not seem to view the 
problems she constructed as her own; it was as if they were, for her, obstacles 
that the teacher placed in her path. Problems were threats to her self-esteem 
rather than challenges to her intellect. 

In contrast to the ego-involved child, the task-involved child is motivated by 
a desire to understand or to make sense of experience. This, it will be recalled, 
seemed to be the dominant theme that guided Tyrone's problem solving 
activity. Nicholls suggested that task-involved children judge their competence 
relative to their previous levels of performance or understanding rather than 
relative to the performance of  others. Such children do not have to do better 
than others in order to feel competent. Instead feelings of competence result 
from the gaining of insight and the achievement of relational understanding. 
Furthermore, insight or learning is an end in itself rather than a means of 
demonstrating superior ability. Tyrone seemed to genuinely enjoy "playing 
around with numbers." The activity of solving problems was an end in itself 
rather than a means to the end of appearing to be smart. 
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In contrast to Scenetra, Tyrone often initiated activities. For example, 
during the f'trst session in which multiplication was introduced, he repeatedly 
asked the teacher to present the task 20 x 20. The teacher did so and Tyrone 
found the product by counting by twenties on his fmgers. It was as if he 
sought tasks which provided him with a suitable intellectual challenge. Tyrone 
also seemed to be able to cope with failure. This was illustrated by the pre- 
viously described exchange in which successive subtraction tasks were pre- 
sented by increasing both the minuend and the subtrahend. Tyrone failed 
when he attempted to relate successive tasks. However, he refused to give up 
even though the teacher gave him the option of initiating an alternative 
activity. Instead, he counted to find each of the differences without prompting. 

Tyrone's initial failure did not give rise to self-doubts about his competence. 
Instead, it led to a new, more demanding intellectual challenge. Unlike 
Scenetra, who viewed difficulties as threats to her self-esteem, Tyrone seemed 
to view difficulties as opportunities for fresh insights. This intrinsic desire for 
conceptual mastery was also manifest in his attempts to understand problems 
even after he had given correct answers. This contrasts sharply with Scenetra, 

for whom a correct answer provided a means of  escape from incompetence. 
Tyrone's confidence was such that, on several occasions, he told the teacher, 
"You don't help me no more!" when the teacher attempted to give assistance. 

In summary Tyrone's and Scenetra's beliefs about mathematics and their 
concomitant expectations seemed to be intimately related to their motivations 
for engaging in mathematical activity. The manner in which the two children 
seemed to judge their competencies seemed, in turn, to be influenced by these 
motivations. Their beliefs and motivations also seemed to influence the way in 
which they dealt with failure, their confidence, their persistence, their willing- 
ness to take the initiative, and the manner in which they achieved satisfaction 
in problem solving situations. 

CONCLUSIONS 

Scenetra's and Tyrone's case studies suggest that children's mathematical 
problem solving behavior can be viewed as an expression of an increasingly 
general hierarchy of anticipations. At the most global level, the two children's 
implicit and explicit beliefs about mathematics constrained their expectations 
and anticipations about the sorts of experiences they would have in mathemat- 
ical situations. These anticipations delimited both what could count as a problem 
and what could count as an acceptable method of solution. They also seemed 
to constrain the sorts of  implicit and explicit heuristics the children employed 
and could therefore be used to give at least a partial explanation of the flexibility 
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of the children's problem solving behavior. In terms of specificity, the next 
level of  anticipation involves the application of heuristics. A heuristic can be 

viewed as a metacognitive prompt (Silver, 1982) which delimits a subcontext 
within which the child anticipates she can elaborate and solve the problem. The 
most specific anticipations are embodied in the conceptual structures or prob- 
lem representations built up within heuristically constrained subcontexts. 
Children explore these anticipations when they attempt to express structures 
in a particular situation. 

As can be seen, each level of anticipation constrains lower level antici- 
pations. However, it would be misleading to suggest that the problem solving 
process proceeds in an orderly, top-down fashion. In particular, the solver 
must give an initial meaning to the problem before applying a heuristic. 
This meaning can then be elaborated within the resulting subcontext. Further, 
the child who switches flexibly from one subcontext to another by employ- 
ing a variety of heuristics backtracks and questions a general anticipation 
after having explored within-subcontext specific anticipations. Finally, 
children are able to reorganize their general beliefs about mathematics. 
Tyrone, for example, did so during the teaching experiment. This would 
seem to be a bottom-up rather than a top-down process. In short, the explor- 
ation of any level of anticipation can have consequences for anticipations 
at any other level, although the more global anticipations are the most 
stable (cf. Erlwanger's attempts to help Benny reorganize his beliefs about 
mathematics). The contention that cognition cannot be compartmentalized 
into independent pieces receives support from both philosophical (Barnes, 
1982; Quine, 1964) and practical (Hofstadter, 1980; Winograd, 1973) 

sources. 
The case studies of  the two children suggest that children's beliefs about 

mathematics might be related to their motivations for engaging in mathematical 
activity. Scenetra's ego-involvement was compatible with her focus on ends 
rather than means and her belief that mathematical knowledge was primarily 
instrumental in quality. Tyrone, a task-involved child, strove to achieve 
relational rather than instrumental understanding. 

From the constructivist perspective, children build up knowledge in order 
to resolve contradictions and inconsistencies in their mathematical experiences. 
In other words, the construction of knowledge is the result of an attempt 
to make sense of experience and to restore stability to mathematical reality. 
One would therefore expect that a task-involved child would make faster 
and more sound conceptual progress than an ego-involved child. In this regard, 
it is interesting to note that, during the last few months of the teaching 
experiment, Tyrone made certain constructions involving his concepts of ten 
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and mul t ip l ica t ion  and division wi th in  one m o n t h  while  Scenetra  t o o k  over 

three m o n t h s  to  make  similar progress. 
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N O T E S  

I To avoid distracting from the main theme of the paper, a detailed analysis of the 
children's concepts of addition and subtraction will not be presented. 
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