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A S Y M P T O T I C  I N F E R E N C E  F O R  A R ( 1 )  P R O C E S S E S  W I T H  ( N O N N O R M A L )  S T A B L E  E R R O R S  

J.  M i j n h e e r  (Leiden, The Netherlands) UDC 519.2 

This is the first of  several papers in which we consider problems related to the asymptotic distribution of  the least 
squares estimate of the parameter 7 in the A R(I)  model 

X~. - 7 X ~ -  l + :~: , k - 1 , . . . ,  n, 

where :k are independent identically distributed (i.i.d.) random variables in the domain of attraction of  a stable law. 
In w we give a summary  in the case :j: is in the domain of attraction of the normal distribution. In w we consider 
errors in the: domain of attraction of a (nonnormal)  stable distribution. In w we prove a result in the case of the 
completely asymmetric  stable distribution with a =/3  = 1. 

1. T h e  Caso ~ -  2 

In this section we consider the autoregressive AR(1) model 

Xk - 7 X k - l  + :k, (1.1) 

where r k = 1 , . . . ,  n, are i.i.d, random variables, X0 - 0 a.s. For a summary  in the case X0 ~- 0 a.s. and the case 
with a drift and trend see [13]. In the case :k has a stable distribution with c~ - 2 the random variable has a normal 
distribution. In this section we also consider random variables in the domain of at t ract ion of the normal distribution. 
The least-squares est imator of the parameter  7 is given by 

% - X :_1 X k X k - 1 .  
- k - 1  

( 1 . 2 )  

In the case :k is normally distributed the est imator  "~n given in (1.2) is also the maximum likelihood est imator .  AR.(1) 
models are studied in [9] with ek having a negative binomial distribution and in [1] for random variables with a Poisson 
distribution. See also [14]. 

1.1. T h e  case  17] < 1. In this case one speaks of "root outside the unit circle." In [2] it is called the stable case. 
Under the assumption that  the Ek's are i.i.d, and cr2(ek) < oo, it is proved in [2] that  for n 
limiting normal distribution. 

1.2. T h e  case  ]71 > 1. 
distribution for n , co. 

1.3. T h e  case  171- 1. 
rt ~OO 

This is called an unstable case. 

White  proved in [16] 

, c~ v/'n(q,~ - 7 )  has a 

In [16] it is shown that  (-~,,- v ) l ' r l " ( ' ?  - I)-' has a limiting 

, under the condition that  the random variables :k are i.i.d., that  for 

- v )  
"D 

1 1 

0 0 

where { W(t)" 0 < t _< 1 } is a Brownian motion. 
1.4. T i le  case  7n - 1 + hn -1 This case is called nearly nonstationary. 

instead of nearly unstable. The model is given by 

For obvious reasons we use this term 

J" Xn.k - 7,,X,,,k-~ + :,,.k, k - 

Xn,0 - O, a.s. 

,...,n, 
(:.3) 
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Now we have for n , cx) 

-(+. - v.) 
1 1 

0 0 

where {Y(t)" 0 < t _< 1 } is the Ornste in-Uhlenbeck 
For results for the AR(p) model see [12]. 

process. 

2. T h e  S t a b l e  C a s e  c~ r 2 

In this section we consider the models ( I . l )  and (1.3) in the case where the random variables eL are either i.i.d, with 
a stable distribution or i.i.d, and in the domain of a t t ract ion of a stable law. We apply the nota t ion of [10]. There 
exists a rather extensive l i terature on t ime series analysis in the case of errors with an infinite variance. For references 
see [7]. In [3, Example 12.5.2] we find a simulation of the AR(1)p roces s  XL = 0.7Xk_~ + ~k, k = I , . . . , 2 0 0 ,  and {ok} 
i.i.d. Cauchy distributed. They describe the performance of the es t imator  ~tn. 

We make the assumption that  eL, k = l , . . . , n ,  are i.i.d, and in the domain of a t t rac t ion  of the stable law 
F(- ;  a, p -  q), i.e., 

where L is slowly varying at infinity and 

P(l~kl > x ) -  x-~L(z), (2.1) 

for z , oo. Let 

P(r > z) 

P(l~kl > x) 
P(ek < - z )  

, p and P(l~kl  > x) ' q (2.2) 

and 

a. - i n f { z :  P(I~,I > ~) < " - ' } ,  a,, - i n f { = "  P(I~,~I  > ~) < ,',-' }, 

In [7, w it is shown 

p,~ - Eele21{l~,~21<a.  } . 

that  if Elet[~ - oo we have fi,,a~ t , oo for n , c~. In Theorem 3.3 they prove 

( s  ) a~ ~ E~,a~ ~ ~kek+, - -~ . )  v ,  (So,S~) 
k = l  k = l  

where So and S1 are independent  stable random variables. Random variables S0 and S1 have distr ibution functions 
F(- ;  c~/2, 1) and F(.  ; a ,  2p2+  2(1 _ p ) 2 _  1), respectively. This result is proved by using point-processes techniques and 
is independent of the AR model. Note remarks 1-3 in [7] at the end of w 

2.1. T h e  case  [7[ < 1. In [7, Example 5.3] it is proved tha t  

(n /  log ,.,)~/,,,(5,,, ..,,) z,, (1 - v2) ( I  - v~)-~/~&/So 
f o r  n - -*CxD.  

2.2. T h e  case  19'1 > 1. We can follow the proof of the result given in [2, 1.2] in order to ob ta in  a limit theorem for 

"Y-7 .  
In the following two cases we make the following third assumption:  

Er ~ 0, if c~ E (1,2),  

ek symmetr ic  at 0, if c ~ -  1. 

2.3. T h e  case  Ivl- I In [61 it is proved that  for n ~ 0 0  

-(4,,, - 7 )  
D 

1 l 

0 0 
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where X -  is the left-hand limit of the stable process X. 
2 . 4 .  T h e  c a s e  7n - 1 - h n - t  Theorem 1 in [4] gives for n pCX~ 

1 1 

0 0 

where Y(t) satisfies the stochastic differential equation 

d Y ( t )  - - h Y ( t )  dt + dX( t ) ,  Y(O) - O, 

i.e., Y is a stable Ornstein-Uhlenbeck process. In another paper we shall study 
processes. 

these stable Ornstein-Uhlenbeck 

3. Tai l  B e h a v i o r  o f  an  I n t e g r a l  

The tail behavior of the integral in the numerator  in the limit distribution in 2.3 is given in [15] in the symmetric  
case and in [l l] in the completely asymmetric  stable case with 0 < a < 1. The case c~ = / 3  = 1 is more complicated 
because the stability property in this case has the form 

d 
X , . , . -  el  + " "  + e,, - ne + ( 2 / n ' ) n  l o g n .  (3.1) 

In [10] we give limit theorems for sums of independent 
theorems for the completely asymmetric  stable process. 

In this section we state and prove our main theorem. This case 
notation as introduced in [I0]. 

random variables with this distribution. We also proved limit 

is excluded from Theorem 3 of [5]. We apply the 

THEOR.EM. Let T~ - 2 ~ = l  e k X k - 1 ,  where Xk is defined in (3.1) and e l , . . . , e k  are i.i.d. 
asymmetr ic  stable distribution function F(- ;  I, 1). Then 

with a completely  

P ( n -  2T~ / log n - log n > x) ,~ c x - '  for 

Consider the random variable Y with probability measure 

The r.v. 
distributed 

_ ,1" y-X, for y >_ 1, 
P ( Y  > Y) 

l, else. 

Y is in the domain of normal a t t ract ion of the law F(.  ;1, 1). y - l  
on (0, 1). Let Tn be the r.v. defined in the same way as T~ 

(3 .2 )  

Obviously we have that  is uniformly 
but  now ek has the same distr ibution as Y. It 

is easy to prove that  n - 2 ( l o g n ) - l ( T n  - T~) converges in probability to a(finite) constant  as n , cx). 
Using some arguments  from the t h e o r y o f  order statistics we obtain tha t  Tn has the same distr ibution as 

( u -  ' + v i -  ' + . . .  + u - - v c  . . . . .  , 

where V t , . . . ,  Vn-t are, given U - u, i.i.d, with a uniform distribution on (u, 1) and the r.v. U has density g with 

_ J" a ( l  - u) (•-t), for 0 < u < 1, 
g(u) 

l 0, else. 

The proof of the theorem is based on the expansion of the characteristic function of Tn. 
the density g of U as given in (3.3) we obtain 

Let ~On - ( l o g  n) 1/2 

(3.3) 

From 

P ( ~ "  < nU < ,p , , )~  1 -qa~"  for 

Thus we may restrict ourselves to values for u satisfying 

n -----~ OQ. 

Given U - u  we have 

- 1  < nu < qon. (3.4) 

/, . -  EV,  - ( 1  - l o g , , ) ,  EV1-2 --u -1 
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and 

0 ,2 '--" 0 , 2 ( V 1 - 1 )  ~,~, B 

We write V~ -l - I~ + 0,Yk. Then,  given U - u, 

--1 
f o r  U * (X). 

T,, - 2 u - t ( n -  1)/~ + (n - + + 2 r  + - Y: 
k = l  _ k = l  

(3.5) 

Using the central limit theorem,  the law of large numbers ,  and the boundar ies  for u as given in (3.4), we obta in  tha t  

12 

converges in probabil i ty to zero for n . ,  oo. The  subscript  V means  we take the expec t a t i on  or the variance with 
respect to the product  measure P(v, , . . . ,v ,_ , )  and fixed u. From (3.4) and (3.5) we have for n --c~, 

and 

n - 2 ( l o g n ) - l E v T n  ~ l ogn  

P r o o f  o f  t h e  T h e o r e m .  We consider 

0,2(Tn) ~ 4n2/~20, 2. 

h(t) = E exp { i t (n -  2T,~ / log n - log n) } - E u  E v  exp { i t (n-  2Tn / log n - log n) } 

- EU [{ E v  exp{ i tn  

Given U - u and t fixed we have 

-2(Tn - E v T n ) /  logn} } exp{ i t (n -2Ev .Tn /  log ,~ - log ,~) } ] .  

for n ---. oo. 

Ev exp{i tn-2(Tn - E v T n ) / l o g n }  - 

For the behavior  of h(t) for small  t we consider 

1 + O ( t 2 n - 4 ( l o g  

or  u s i n g  ( 3 . 4 ) a n d  ( 3 . 5 )  

- I  
n ~ n  

n - t ~ o ~  t 

e x p { i t ( n - 2 E v T n /  l ogn  - l o g n ) } ( 1  - u) '~-' du 

and also 

- 1  
n ~ n  

- -1  

e 2itCnu)-' (1 - u) n- t  du 

For the real part  of h(t) - 1 we consider 

/ 
- 1  

tp,t 

e2ity-le-Y dy. (3.6) 

The  first 

qOn ~ n  

( c o s ( 2 t y  l - l ) e  - y  d y  - fr162 - 

- t  1 

integral on the r ight -hand side of (3.7) is O(t ~) for t 

f -' l ) e  -~ dy + (cos(2ty) - l)e -y 

1 

y-2 dy. 

, 0 .  Using the well-known integral  for t > 0, 

(3.7) 
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O 0  

f 
0 

7rt l)dx - 
2' 

see [8, p. 334], we have for the second integral on the right-hand side of (3.7) for t > 0 the order 

-Trt + o(t 2 

for, respectively, t small and n , oc. 
For the imaginary part of h(t)- 1 we consider 

- ' )  + o(l) 

/ sin,2ty-l)e-Ydy- /sin,2ty-l)e-Ydy+ f sin(2ty)e -y 
- l  I I ~on 

- - !  

y-2 dy. (3.8) 

The first integral on the right-hand side of (3.8) is O(t) for t 
to 2t log((2t)-t) + O(t) for t I 0. Thus we have shown 

, 0. The second integral on the right-hand side is equal 

h ( t )  - 1 - ltl - 2 i t  log 12tl + error (3.9) 

for Itl--* 0. 
Estimation of the error in (3.9). Above we gave the error terms in (3.9) related to and appearing in the computation 

of the integral in (3.6). We still have to estimate 

Ev { t2n-4(log n)-2cr~ (T.) exp{ it(n-2T. / log n - log n)} }. 

For u in the range as given in (3.4) it follows that a~(T.)  ~ 4u-Xn2(logn) 2. Thus the error behaves like 

or for large n like 

- - !  

n -  l cp'~ t 

(nu)-le2it(nu)-L(1 - u) n - 1  du 

n- t t  2 f y-le2ity-te-rt dy. 
- - !  

We easily see that we can neglect this error. 
Finally we notice that the right-hand side in (3.9)(without error) is the exponent of the characteristic function of 

F( . ;  1, 1). Our assertion stated in the theorem follows from the tail behavior of F( . ;  1, 1) as given in [10, Theorem 2.1.7, 
Part II]. 
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