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The translational oscillations of  a sphere in liquid helium have been measured 
as a way of  studying superfluid turbulence. Experiments were carried out in 
the laminar flow regime for reference purposes, and good agreement found 
between measured and calculated quantities. In the turbulent region, the dis- 
sipation is Jound to be proportional to the square of  the velocity of  the sphere, 
as found previously by other workers. For high vibration amplitudes there is 
an increase in the hydrodynamic mass. This seems to scale with the superJluid 
fraction in a way that strongly suggests that the superJluM component plays 
an intportant role in the turbulent regime. 

I. I N T R O D U C T I O N  

The present work reports experiments done with a sphere which 
oscillates in liquid helium, down to a temperature where a significant fraction 
of the liquid is in the superfluid state. It explores the onset of turbulence 
in the superfluid, a subfield of the long standing problem of turbulence, and 
a subject of continuing interest. L 

The translational oscillations of a sphere have been studied recently by 
J~iger et al., 2 as a means of exploring the onset of turbulence in superfluid 
helium. The spherical geometry has the advantage of simplicity. In this case 
all relevant parameters have been evaluated for laminar conditions, and 
good agreement is seen between theory and experiment. Therefore the 
starting point is well known, and departures from it can be well evaluated. 
Jfiger et al. have used a magnetically levitated sphere of around 100 micron 
diameter which is part of a (non-linear) oscillator. In the present paper, 
results are shown which were obtained with a larger sphere, 7 mm in 
diameter, which is attached to a flexible stem, so that it is part of a linear 
mechanical oscillator. The linear oscillator is somewhat easier to analyze, 
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while results seem to indicate that the perturbation due to the presence of 
the stem can be neglected. This experiment has evolved from a previous 
version with a vibrating reed, designed for advanced undergraduates)  

The results obtained confirm those of Jiiger et  al., 2 over the tem- 
perature region where they overlap. As a new result, they show an increase 
in hydrodynamic mass in the turbulent regime. The fact that the oscillator 
is linear, and very stable in frequency ( A J T f ~ a  few parts per million) 
makes it possible to observe such effects. 

II. EXPERIMENTAL DETAILS 

The oscillator used in this study is a loaded cantilever, consisting of a 
flexible beam or stem of rectangular cross section, clamped at one end, and 
having a relatively heavy sphere attached at the free end as is shown in the 
inset of Fig. 1. The sphere is 7 mm in diameter. The whole oscillator, which 
is made of Be-Cu alloy, was turned on a lathe in one piece, and later, the 
stem which acts as the spring of the oscillator was filed to a rectangular 
cross section and to its final thickness of 0.3 mm. The stem is 2.5 mm long 
and 1 mm wide. 

The oscillations are driven and detected capacitively, and the system is 
maintained at resonance by amplifying, phase shifting and feeding back the 
detected signal. In this way, the active element of the oscillator consists of 
the loaded cantilever beam plus sphere which oscillates at its natural 
resonance frequency. The system has been described by Kleinman e t  al., 4 

for high-Q mechanical oscillators. The quality factor Q of our oscillator is 
3 • 103 when submerged in helium at 4 K and the resonance frequency is 
319.5Hz, with a reproducibility between runs of around 0.5 Hz. The 
driving and detection electrodes are disks 2 mm in diameter, located as 
shown in the inset of Fig. 1. The closest distance d between sphere and elec- 
trodes is around 0.1 mm. The voltage detected depends on this distance in 
a sensitive way, and is seen to change from run to run, presumably due to 
changes in d produced by thermal cycling. 

The experiment was carried out in a pumped helium bath and no 
special precautions were taken as regards purity. Temperature was regulated 
by controlling the helium vapor pressure by means of a rubber diaphragm 
controller. On the first run, a carbon resistance thermometer (Speer) was 
calibrated against the LT 58 temperature scale by measuring the helium 
vapor pressure by means of a high precision manometer, and thereafter the 
temperature was found by reference to the carbon resistance. 

Vibration isolation was achieved by hanging the relatively massive 
( 13 gm) sample holder by cotton threads. This simple arrangement is effective 
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enough to prevent the more troublesome vibrations transmitted through 
the cryostat. In an earlier arrangement, where the holder was rigidly 
attached to the cryostat, frequency stability was no better than one part 
in 10 4, while stability of a few parts in 10 6 was possible with the present 
setup. No attempts were made to reduce vibrations further since they did 
not appreciably alter the stability in frequency, however, there were small 
vibrations of the helium pressure ( ~  0.2 torr at a few hertz) associated with 
the pressure regulator. 
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III. EXPERIMENTAL RESULTS 

A. Laminar Regime 

Figure 1 (lower curve) shows the resonance frequency as a function of 
temperature. The 2-point can be seen clearly as the minimum of the inver- 
ted cusp. As will be shown below, the shape of this curve is determined 
essentially by the changes in density of the liquid helium, since for a sphere 
of the present dimensions corrections due to changes in viscosity are negli- 
gible. 

The effect of viscosity is seen, however, in the dissipation. This has 
been plotted in the upper curve of Fig. 1, which shows the dissipation term 
F as a function of temperature. It can be seen that there is a reduction in 
dissipation at temperatures slightly above the 2-transition (T~), and a large 
drop below it. 

In the temperature range explored here, the mean free path of the 
quasiparticle excitations is always much smaller than the sphere dimen- 
sions, so that we are always in the hydrodynamic regime. 

The response of an oscillating sphere immersed in a liquid of viscosity 
q and density p is well known. 5 For frequency of oscillation co the tbrce on 
a sphere of radius R is 

F=6:zRq 1+~ v+3rtR2p6 1+~-~ g (1) 

with 6 =  2 ~ p c o  the viscous penetration length. The first term (cz v) in 
this force is dissipative while the second (oc g), is conservative and is 
usually referred to as the "hydrodynamic mass" of the sphere. 

The equation for the damped oscillator has the usual form: 

M2 + 22 + K.v = A sin(cot) (2) 

J/iger et al. 2 have considered the changes in frequency and dissipation 
of such an oscillator with an additional force due to the presence of the 
liquid (given by Eq. 1), in the special case of the two fluid model of liquid 
helium. The change in frequency is given by: 

f o - f  1 pH~ + 9 6  P,v 
af  (3) 

fo 4 Pspl . . . .  8 R Pspt . . . .  

where f (=co/2~) is the measured frequency, f0=(1/2r0  x/K/M is the 
corresponding frequency in vacuum, PH~ is the total density of liquid 
he l ium,  Psphere the density of the material of the sphere and ~ the penetration 
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length. Because the waves described by (5 are a viscous phenomenon ,  
below T~, 5 must  be calculated by using PN, the density of  the no rma l  
fraction. Because we are dealing with a relatively large sphere, the value of 
5/R in this experiment  is always smaller than 10 3 and so can be neglected. 
It is then seen that  the frequency change Af is directly propor t iona l  to the 
density of the fluid. The density of  Cu-Be  is 8.23 gm/cm 3 and therefore 
Pspl .... is available so that  all the propor t iona l i ty  factors are known. A plot  
of  pH~ obtained from Eq. 3 and the da ta  in Fig. 1 is shown in Fig. 2. 
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Fig. 2. Upper curve: Measured density (open circles) compared to literature values (full line). 
Lower Curve: Viscosity from the literature (full line) and the present measurements (circles). 
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The dissipation is given, in this linear approximation, by 2 in Eq. 2. 
There are two terms in 2, one due to the liquid, 2L and one being due to 
the residual damping of the material, 2o. In general 2o <~2L, but in the 
superfluid regime 2o cannot be neglected. The expression for 2L has been 
calculated for the two fluid model 2 

2 L = O r ~ / , , R ( l +  R )  (4) 

where q,, is the viscosity of the normal component. In the experiment it is 
easier to obtain F = (2~, + 2o)/M. This, in practice is done by measuring a 
resonance curve at constant temperature T,~, and using the width at half 
maximum, which is a direct measure of F(To)J' In temperature sweeps, the 
amplitude of oscillation A(T) is measured lbr a fixed driving force, and 
because this amplitude is proportional to the quality tilctor Q = 27rJyF (in 
the high Q limit") we can obtain F(T) = F(To) A(T~,)/A(T). 

Because of the numerical values of radius and frequency used in this 
experiment, in Eq. 4, one can use the approximation ( 1 + R/J) ~ Rid to an 
accuracy close to 1%. Using this approximation: 

q = o);.v ( 5 ) 

The small changes in frequency due to the change in Young's modulus 
of the stem as a function of temperature, and the dissipation due to its 
internal friction (2.), were measured in a separate experiment, where the 
oscillator was kept in a vacuum, at a pressure smaller than 10 -~ torr. 

Using data for the density of the normal fraction Px obtained from he 
literature, ~" the measured viscosity is plotted in Fig. 2, compared to pub- 
lished viscosity values, m As can be seen, the agreement is also good. 

B. Non-Linear Regime 

The non-linear regime was studied by increasing the driving force at 
constant temperature and recording the amplitude and frequency response 
of the oscillator. Temperature stability during these runs was between 0.5 
and 0.2 mK. 

The displacement of the sphere is detected capacitively, as a change in 
voltage read by a Lock In amplifier. The voltage reading can be converted 
into a distance measurement by the following argument: 

The capacitance at the electrode C~ is proportional to l/x, where x is 
the distance between the electrode and the sphere. When the sphere moves 
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a distance 6x, the capacitance changes 6C~, = -C~ ,  6x /x .  Because there is a 
charge Q, on the capacitor, when the capacitance changes, a change in 
voltage r  appears on the electrode. On the other hand, 
Q~ = V m a s / C r o v ;  where VmAs_--230 V is the bias voltage applied to the 
electrode, and CTOT is a capacitance which includes not only Cr but other 
capacitances in parallel with the bias voltage, the main part of which 
corresponds to the cables which carry the signal to C,~. The ratio 
C~,/CTo.r~ 10 -3, estimated from the geometry of the detection capacitor 
and the nominal capacitance of the coaxial cables. Combining the above 
expressions one finds: 

Cvo-r c~V 
6 x = x  (6) 

Cc Vmas 

with x = 0.1 mm, 6x ~ 0.36/~m per mV of detected voltage. The velocity of 
displacement, in the simple harmonic motion approximation, which is 
satisfied throughout the experiment is v = co sin oJt, with v,~ = 2~rJ'(Sx, there- 
fore vo ~ 0.072 (cm/sec) per mV of detected voltage. The conversion factors 
have large uncertainties ( ~  40 % ), and moreover are not constant from run 
to run because of the changes in x produced by thermal cycling. For this 
reason, in the graphs the values of displacement are expressed in mV, and 
the conversion factors can be used to get a rough idea of the values of 
displacement and velocity. 

The amplitude sweeps at constant temperature are shown in Figs. 3 
where we have plotted the amplitude of the response (A) against the excita- 
tion voltage (Exc). This, with the above mentioned conversion factors is 
equivalent to a velocity (v oc A )  vs. applied force (Fo oc Exc), and shows 
the same behavior as found in the work of J/iger et al. A linear behavior 
is seen at low amplitudes, where Fo o~ v, and at higher amplitudes the force 
Fo cc v 2. Because the damping is always light, one can use the principle of 
energy balance -~6 to infer that the drag force is proportional to v 2, as 
expected for turbulent drag from dimensional considerations. 5 It was 
further confirmed that the drag force can be fitted by an expression of the 
type 

Fo = - y( T)(  v: - vo) - 2 ( T )  v (7) 

as was found in Ref. 2. The fits to a parabolic expression equivalent to 
Eq. 7 are plotted as full lines in Fig, 3. However, and in contrast to what 
is observed by Jaeger et al., 2 no appreciable hysteresis could be observed 
when increasing or decreasing the amplitude. This is probably due to the 



274 Javier Luzuriaga 

25 

20 

15 

A (mV) 
10 

-5 

I I I I I 

, %  

o 2.032 K 
O 1.878 K ~ ~.f4a"'~ ..~""~ 

320.88 ~ 2 ~  

~ 320.86 8 ~ .~%ooq8 ~ , r  

f 320.84 

320.82 
l , I i I , I , I 

0 2 4 6 8 10 12 

Exc (Vrms) 

Fig. 3. Amplitude of vibration as a function of excitation voltage. The ['vll lines are lits 
to Eq. 7 of the text. Inset: Frequency vs excitation voltage in semi-log plot. Squares 
correspond to T=2.032 K, diamonds T =  1,932 K, triangles T =  1.580 K, circles 
T = 1.397 K. 

higher level of the vibrations present in our cryostat due to the pressure 
regulator. For the same reason, the values of the velocity at which the 
turbulence sets in is probably an underestimate and lower than what could 
be measured in quiet conditions. 

On the other hand, the fact that the oscillator is linear in vacuum, 
allows the study of the frequency of oscillation when the turbulent fluid 
interacts with the sphere. 

The frequency remains constant at low amplitudes, but it starts to 
decrease at higher amplitude, with a maximum relative change of around 
3 x 10 -4, as is shown in the inset of Fig. 3. A semilog plot is used so that 
the constant frequency region, corresponding to the linear region in 
amplitude can be better appreciated. 

The Q value is rather high, being around 3 x 10 3 so that the correction 
in frequency due to damping (fdamped = f - t e e ( 1 -  l/Q2) 1/2 is of order 10 -7. 
For  similar amplitudes and with the sphere oscillating in a vacuum, no 
change in frequency is seen, so that effects due to imperfect elasticity of  the 
spring can be ruled out. Thus, the frequency shift is due to an increase in 
the hydrodynamic mass of the sphere above the value found for laminar 
drag. 
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At low amplitudes the frequency s  is constant  and fo oc x/~/M, but 
at higher amplitudes f oc x /K/M + AM where A M  is the added effective 
mass. F r o m  this, 

IS) 
M \ f /  

The change in mass has been plotted against the excitation voltage 
and is shown in Fig. 4, for three selected runs taken at different tem- 
peratures. It can be seen that  the effective mass increases linearly with 
excitation voltage (i.e., with the force applied to the oscillator) to a maxi- 
mum of 300 parts per million (ppm) at the highest amplitudes measured. 
The slope of  the curves is seen to increase when the amplitude sweeps are 
performed at lower temperatures. 

A plot of  these slopes as a function of  temperature is shown in the 
inset of  Fig. 4 and it can be seen that it roughly agrees with the tem- 
perature variation of  the superfluid fraction, shown as a full line in the 
graph. This suggests that the superfluid has an important  role in the 
turbulent regime, as was found to be the case in the analysis of the dissipa- 
tion by Jaeger et al. 2 
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IV. DISCUSSION 

Because of the link between superfluid fraction and slope of the A M / M  
curves it is tempting to attribute the apparent change in mass to vortices 
created in the superfluid wake that are accelerated together with the sphere 
because they are pinned in some way to its surface. 

The change in effective mass is proportional to the excitation voltage, 
and in the turbulent regime the velocity at which the sphere moves in the 
liquid increases as the square root of the excitation voltage. Although no 
obvious physical reason for this comes to mind, empirically, this means 
that the change in mass is proportional to the square of the velocity at 
which the sphere moves in the liquid, i.e., to the kinetic energy of the 
sphere rather than to its momentum. 

We can obtain a rough estimate of the critical velocity (v,) from the 
amplitude vs. excitation graphs. This gives v,.~0.14 cm/sec, and is of the 
right order of magnitude for a channel of width W~0.04 c m  7 ' m  much 
larger than the viscous penetration depth ~ ~ 0.001 cm. This is in contrast 
to the behavior fbund in rotating spheres, as discussed in the book by 
Atkins 7 and it therefore seems that (5 is not the length scale that is relevant 
for the onset of dissipation i.e. of the creation or growth of superfluid 
vortices. The estimated W is also much smaller than the radius R of the 
sphere, which is 0.35 cm. It therefore seems that the relevant length scale is 
set neither by R nor by W. 

However, comparison with the data of J/iger et al. shows that the criti- 
cal velocity times the radius have aproximately the same value in both 
experiments. In the present experiments, v~. ~ 0.14 cm/sec and R = 0.35 cm, 
therefore v,.R~O.O3cm2/sec. Jfiger et al. 2 the other hand obtain 
vc~4cm/sec  and R =0.01 cm, giving v , .R~  0.04 cm2/sec. Considering the 
uncertainties in the values reported here, the agreement is relatively good. 
Both the quantum of circulation and the Reynolds number scale with the 
product vR, so from this alone, it is not possible to rule out a contribution 
from the normal component to the onset of turbulence. 

There has been recent theoretical work which points out to the impor- 
tance of cavitation in setting the maximum (critical) velocity for non-dis- 
sipative superfluid flow. s The importance of the interaction of vorticity and 
bubbles in the liquid 9 has also been pointed out. The present work is 
limited to the vapor coexistence curve because of the cooling method used, 
but if the critical velocity of the oscillator could be measured as a function of 
pressure, these theoretical proposals could be experimentally tested, because 
cavitation depends on the hydrostatic pressure of the liquid. A modified 
form of the present experiment where pressure can be varied would provide 
such a test. 
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