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The formulation by Dattagupta of the strong-collision model, describing the effect 
on the perturbation function, G2(t ) by the isotropic tumbling of an electric field gradient, 
is generalized to electric field gradients with no axial symmetry. The effect on the 
perturbation function by strong collisions is compared to the effect of rotational diffusion 
in the adiabatic limit. The comparison is carried out for decays with an intermediate 
state of spin 5/2 and for non-axially symmetric electric field gradients. It shows that 
the strong-collision model can be used for interpretation of PAC spectra of molecules 
with correlation times between the adiabatic and the fast relaxation limits. The strong- 
collision model is then used to determine the rotational diffusion of the cadmium 
substituted copper, zinc superoxide dismutase at 3 ~ and 25 ~ from lllmCd TDPAC 
spectra. For these analyses, the model is incorporated into a conventional least-squares 
fitting routine. 

1. I n t r o d u c t i o n  

The  technique  o f  Per turbed  Angu la r  Corre la t ions  o f  ~'-rays (PAC)  is based 

on the de tec t ion  o f  the angu la r  corre la t ion  of  two ~'-rays emit ted  from the same  
nucleus.  Usual ly ,  this angula r  cor re la t ion  is measu red  as a funct ion o f  the t ime 

b e t w e e n  the two e m i s s i o n s  ( T i m e  Dif fe ren t ia l  Pe r tu rbed  A n g u l a r  Cor re la t ions  

(TDPAC)) .  A detai led t rea tment  o f  the theory o f  PAC has been g iven by Frauenfe lder  

and S te f fen  [1 ]. Rev i ews  with specia l  emphas i s  on chemica l  app l ica t ions  are g iven 

by  L e f t  and Butz [2] and R innebe rg  [3]. 
One o f  the advan tages  of  app ly ing  P A C  to p rob l ems  o f  a b iological  nature 

or  or igin  is that e x p e r i m e n t s  can be carr ied out on molecu le s  in aqueous  solution.  

Studies  of  the funct ion o f  mo lecu le s  under  condi t ions  that are c lose  to in v ivo  

condi t ions  there fore  b e c o m e  possible .  This ,  however ,  l eaves  the p rob lem o f  how to 
account  for  the e f fec t  on the per turba t ion  funct ion by  the Brownian  rotat ion o f  the 
molecu les .  Fo r  mos t  b io logica l  work ,  the per tu rba t ion  funct ion must  be k n o w n  also 

for  mo lecu l e s  with a non-ax ia l  s y m m e t r i c  electr ic  field gradient .  
The  m o s t  popu l a r  i so topes  for  b io log ica l ly  related work  are 111mCd ' 1 ~lin and 

181Hf. These  all have  an in te rmedia te  level  o f  spin 5/2  and, therefore ,  we restrict  
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ourselves to this case in the following. In aqueous solution, the molecules are 
I",N1N2f ,,~ isotropically oriented. This means that instead of  the perturbation function '-'~,~2 w ,  

only the angular averages Gk(t) are measured (for the mentioned isotopes, only 
k = 2 has to be considered). For molecules reorienting slowly, the Debye model [4] 
results in an analytical expression for G2(t). This is also the case for molecules with 
a fast rotational diffusion, and in both limits this model can, therefore, be implemented 
directly in conventional programmes for least Z 2 data analysis. For molecules with 
rotational diffusion times in the intermediate region, it has been suggested by 
Rinnebcrg [3] that the strong-collision model is used to interpolate between slow 
and fast rotational diffusion. The model, however, leads to an integral equation that 
can only be solved by iteration. In general, this will make data analysis too time- 
consuming for most computers and scientists. It has been the aim of the present 
work to investigate to what extent the strong-collision model and the Debye model 
give the same results. Furthermore, we wanted to find a way of  implementing the 
strong-collision model in a conventional program for least-squares fitting. The 
application is illustrated by the study of  the rotational correlation of copper,zinc- 
superoxide dismutase (Cu(II)2Zn2SOD) from yeast. This enzyme was chosen because 
the static interaction of  Cd 2§ in the cadmium substituted enzyme (Cu(II)2Cd2SOD) 
is well characterised [5, 6], and because the calculated correlation time is well into 
the intermediate region. 

In the case where the nuclei experiences no magnetic field, the interaction 
of  the nucleus with the electric field gradient caused by the surroundings can be 
charactcrised by the strength of the nuclear quadrupole interaction co o defined as: 

12JrlVzzeQI 
COo - ( 1 

4(}h 

and the asymmetry parameter 77 defined as 77 = (V= - Vry)/Vzz. ~a  is the a th diagonal 
component of  the electric field gradient in the principal coordinate system, where 
Vab is diagonal and I Vzz t 2 I ryy I -> IVy, I, and Q denotes the electric quadrupole moment 
of the nucleus. Also, a Gaussian distribution of  o) 0 in the sample, described by the 
relative width 8 = Aco0/co o, is taken into account. These parameters describe the 
interaction of  the nucclus with the surroundings if the molecule does not undergo 
reorientation. 

2. Models  describing molecular  reor ientat ion in liquids 

2.1. THE JUMP DIFFUSION MODEL 

The "Debye model" and the "strong-collision model" can be considered as 
two extreme cases of the jump diffusion model. In the jump diffusion model, the 
molecule reorients by a series of discontinuous jumps. Following the formulation 
by Berne and Pecora [71, the assumptions are: 
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(a) The jump takes place instantaneously. 

(b) Successive jumps are uncorrelated in time with an average time vo between 
jumps. (The probability that a jump occurs between t and t + dt is dt/'co.) 

(c) The dihedral angle between the two planes defined by the orientation 
vector u in two successive jumps is randomized. 

2.2. THE STRONG-COLLISION MODEL 

In this model, the distribution function of jump angles is uniform, each 
collision leading to a complete loss of memory of the original orientation. The 
advantage of  this model is that it leads to a simple form for calculating the perturbation 
function, irrespective of the correlation time z~ (vide infra). 

2.3. THE DEBYE MODEL 

The case where the distribution function of jump angles is peaked at small 
angles corresponds to the Debye model. The Debye model [4] is based on the 
assumption that collisions are so frequent in a liquid that a molecule can only rotate 
through a very small angle before suffering a reorienting collision. In contrast to 
the strong-collision model, the Debye model allows for asymmetric diffusion. The 
diffusion is described by the rotational diffusion tensor 0~j. The body-fixed axes can 
be chosen so that Oij is diagonal: 

= 
0xx 0 0 

0 0yy 0 

0 0 0z~ 

(2) 

For a spherical rotor (0= = Oyy = 0zz ; 0), the correlation time "r l is ~l = (0(1 + 1)l) -1 
[8], where l is the moment of the tensor describing the measured quantity. In 
general, l will depend on the technique used to determine the rotational correlation. 
In PAC experiments applied to isotropically oriented molecules, only even values 
of l are measured through the perturbation functions Gt(t). For PAC utilising the 
isotopes lllmCd, lllIn or 181Hf, the perturbation function G2(t) is measured and the 
corresponding correlation time of a spherical rotor is z 2 = 1/60. This is also the case 
for fluorescence depolarization, dynamic light scattering and NMR, whereas in 
dielectric spectroscopy, l = 1 and "r~ = 1/20. A review of some of the techniques 
used for studying the dynamics of  thermal fluctuations in fluids is given by Berne 
and Pecora [7]. The dependence of  the correlation time on the technique is an 
important contrast of  the Debye model to the strong-collision model in which the 
correlation time by definition is ~ for all moments. 
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3. Effect on perturbed angular correlation of y-rays by molecular reorientation 

3.1. THE EFFECT OF THE DEBYE-MODEL ON THE PERTURBATION FUNCTION 

In general, the effect of the diffusion on the perturbation function will depend 
on the orientation of the diffusion tensor 0ii with respect to the electric field gradient 
tensor Vab. Here, only the influence of a spherical rotor on the PAC spectrum will 
be treated. 

This problem was solved in the extreme narrowing limit ((.ooz << 1) by Abragam 
and Pound [9] for r/ = 0. In this limit, the perturbation function is: 

G2(t) = e -2'8 a'~176 r /=  0; COo'r<< 1. (3) 

The effect on the perturbation function of  a motion in the adiabatic 
limit (co0r >> 1) has been treated by Marshall et al. [10]. This limit gives: 

G2(t) = e- ' /~G~ 7-/= 0; COOT>> 1, (4) 

where G~ is the perturbation function for the static interaction. This formula is 
valid for 7/~ 0 as well (appendix A). Marshall et al. [10] also treat the rotational 
diffusion of  the asymmetric top molecule in the adiabatic limit and, for the extreme 
narrowing limit, draw attention to the proportionality of  l IT  1 (T 1 is the relaxation 
time measured by NMR) and the decay constant of the angular correlation in PAC. 
This means that the derivations by Huntress [ 11 ] for NMR are immediately applicable 
to PAC. Of special interest for the present work is the result of  a spherical rotor 
and an asymmetric electric field gradient: 

G2(t) = e -28  c~176 +rZz/3)', (-0o ~" << 1 . (5) 

In the intermediate region (coo'r-- 1), no analytical expression exists for the 
perturbation function G2(t ). A general formulation of the problem is given by Winkler 
and Gerdau [12, 13], who solved the problem by solving the eigenvalue problem of 
a 108 x 108 matrix (intermediate spin 5/2). For an axial symmetric electric field 
gradient, the dimension of  the matrix reduces to 23 x 23. This formulation has been 
used by Winkler [13] to calculate the perturbation function G2(t ) for r/ = 0 for a 
number of different correlation times. 

3.2. THE EFFECT OF THE STRONG-COLLISION MODEL ON THE PERTURBATION FUNCTION 

This model was first applied to perturbed angular correlations by Scherer [14] 
and Blume [151. It leads to a very simple expression for the Laplace transform of 
the perturbation function 
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oo 

Gk (P) = f e-PtGk (t)dt, 

0 

Gk (P) = ~o  (p + 1/ 'r)  , (6) 

1 - ( l / ' r ) ~ ~  + l / ' r )  

where (~O(p) is the Laplace transform of the static perturbation function G~ 
Wc have used the numerical technique for computation of  G2(t) proposed by 

Dattagupta [16]. Dattagupta has used the above equation to derive the integral 
equation: 

l 

dG2(t) _ (K~ - t ' )dt ' ,  (7) 
dt 

where 2 denotes the oricntational dccay constant defined as l/r. K~ ") is indcpcndcnt 
of  & and, therefore, can be found by solving the above equation for the known static 
perturbation factor. An inspection of  the proof by Dattagupta and Blume [17] shows 
that this way of  computing the perturbation function can be generalized to include 
cascs whcrc 77 ~: 0 (sce appendix B). 

The result of  solving the above equation is shown for 77 = 0 and 77 = 0.4 in 
fig. 1 for a number of  different A.. The correlation times arc chosen such that 
the result for 77 = 0 can bc compared to the result obtained by Winkler using the 
matrix method [13]. The (1 + 772/3) dcpendcnce in 77 for fast rotations is sccn in 
fig. 1, where the perturbation functions for r /= 0.4 and 77 = 0 almost coincide 
at ,~ = 25 co0/2Jr, whereas 77 = 0.8 still can be distinguishcd from the two others. 

3.3. COMPARISON OF THE EFFECT OF THE DEBYE MODEL AND THE STRONG-COLLISION 
MODEL 

In ordcr to use the strong-collision model to interpret spectra measured on 
molecules with a rotational correlation time betwccn the adiabatic and the extreme 
narrowing limit, it is necessary to compare the results of the two models in the two 
limits. This has been done by Lynden-Bell [18], who finds that the two models 
predict the same result in the fast rotational limit if 60 = 1/'r. This is in accordance 
with an l = 2 interaction, and is also valid for electric field gradients with no axial 
symmetry. In the slow rotational limit, Lyndcn-Bcll finds that for 77 = 0 the perturbation 
factor resulting from the strong-collision model can bc approximatcd by the Debye 
model if 70 = 1/~-. 

We have computcd the two models for COo'r= 12.5 for 77 6 [0; 1]. The comparison 
shows that in the range of  og0t between 0 and 16, the perturbation function based 
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Fig. 1. Perturbation functions Gx(t ) for a nucleus of  spin = 5 / 2  under the influence 
of an electric quadrupole interaction randomly reorienting by strong coll is ions.  
The perturbation functions are calculated for 7/ = 0 ( ) and  0 .4  ( . . . .  ). In 
addition, r I = 0.8 is shown for ,a. = 5 r .%/2n ,  2 5 ~ 1 / 2 a  and  100aJb /2 r r  ( - - - ) .  

on the strong-collision model can be approximated by the Debye model, giving 
l/'r between 7.10 and 8.20 depending on 77. 

The largest deviation between the two models was found for an asymmetry 
of about 0.8. This is shown in fig. 2 for (.o o = 100 Mrad/s and 7~ = 0.008 ns -x in 
the strong-collision model. The parameters of the Debye model were the same 
except for the correlation time "r, which was varied to give the smallest possible 
integrated deviation between the two functions from 0 to 160 ns. This gave a 
rotational diffusion of l/'r = 0.006 ns -1 for the optimized Debye model. 

We do not expect to be able to distinguish the two models experimentally. 
However, when used for data analysis, a soft transition between the two model was 
used. As an additional test of the computational method, it was checked that the 
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Fig. 2. The strong-collision model (,) ()t = 0.008 ns l) is compared to 
the Debye model ( -)  ()t = 0.006 ns -l) for o) o = 100 Mrad/s, and r/ = 0.8. 

strong-collision model gave the predicted result (eq. (5)) in the fast rotation limit 
for all values of r/. 

4. Experimental 

The effect on the rotational diffusion on the TDPAC spectrum is illustrated 
by Cu(II)2Cd2SOD. 

The experiments were carried out on the enzyme used by Bauer ct al. [191. 
The apo-cnzyme has been kept dehydrated in a refrigerator. 

The radioactive 111mCd was produced as described by Bauer c ta l .  151. For 
each expcrimcnt, 3.2 mg of apoSOD was resolved in 1 ml 0.1 M MES (2(N- 
morpholino) ethanesulfonic acid) buffer pH 6. To cnsurc that all copper sites wcrc 
occupied, this was mixed with 2.5 moles of Cu 2+ ions per mole of metal-free SOD. 
After at least 5 minutes, the solution was mixed with 0 .25-0.5  moles of Cd 2+ per 
mole of enzyme (lllmCd and carrier cadmium). The TDPAC spectrum of the enzyme 
was then measured in 52% sucrose (w/w) at 3 ~ + I ~ (two experiments) and without 
sucrose at 3 ~ + 1 ~ (two experiments) and at 25 ~ + 1 ~ respectively. For the 
experiments without sucrose, the enzyme was filtered (0.2/t in filter) before it was 
mixed with the cadmium. This was done to remove possible aggregates. 

The experiments were carried out on a conventional s low-fas t  set-up using 
four BaF e detectors with a diameter of 5.08 cm and length of 5.08 cm, arranged in 
a plane at fixed angles 0 ~ (1), 90 ~ (2), 180 ~ (3) and 270 ~ (4). Eight different spectra 
were collected: four which are forward in time and four backwards. After time 
reversal and background subtraction, the following expression is derived: 

A2effG2(t)= 4 W 4 2 "  I ' ~ ' 3 1 - ~ / W 4 1 "  W32 + ~ W 2 4 "  W 1 3 - ~ / W 2 3 '  W14 , (8)  

~/W42 . W31 + 23/W41. W32 #W24 �9 WI3 +24W23 �9 W14 
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where W~j denotes the coincidence spectrum after background subtraction and time 
reversal (only the first four spectra) of 150 keV y-rays in detector i and 247 keV 
y-rays in detector j. 

The effective amplitude A2crf was about 10%. Before each experiment, the 
spectrometer was time-calibrated and the time resolution was determined using a 
75Se source. The time resolution was about 1.9 ns. The temperature was controlled 
by a Peltier element. 

5. Data analysis 

For data analysis, the rotational diffusion was divided into three regions: 
ln(Mcoo) -<-2.5;  - 2 . 5  _< ln(Mcoo) -< 2.25 and 2.25 _< ln(Mcoo). 

The modelling function for ln(MCOo) < - 2 . 5  was: 

3 ( -c 2 tZ•Z ") 
_~,,2 ,o + T ) c o s ( c o i ' t ) ,  G2(/) = e-~t Z S2i(FI)e 161n2 

i=0 
(9) 

where X is file rotational diffusion parameter, S2i(r/) denotes the r/-dependent amplitudes 
of the four frequencies (the first frequency is 0), co," is the ith (7"/dependent) frequency, 
7- o is the FWHM (full width to half maximum) of the time resolution of  the 
spectrometer and 6 is the relative line width of the (Gaussian)distr ibution of 
frequencies (coo). (For the definitions of coo and 7/, please refer to the introduction.) 
For ln(MCOo) > 2.25, the following modelling function was used: 

COo*r 1 
exp X + 262k t 

G2(t) = , (10) 
I 2•2k t 

1+--- T -  

where k = 2.8 (1 + 7"/2/3). This function is the result of folding equation (5) with 
a Gaussian distribution (width 6) of nuclear quadrupole interaction strengths centered 
at COo. 

In the range where - 2 . 5  _< ln(Mco0) -< 2.25, the strong-collision model was 
used. To solve the integral equation for each iteration in a least-squares fitting 
routine would be too time consuming. Instead, the integral equation was solved for 
200 values of  coo t from mot = 0 to COot = 40; for 21 values of  7"/ from 0 to 1 in steps 
of  0.05; and for 20 values of ln(Mcoo) ranging from - 2 . 5  to 2.25 in steps of 0.25. 
Both G2(t) and dGz(t)/dt were calculated for this 200 x 20 x 21 parameter set. This 
was then installed in the memory of a/.tVAX(II) computer, used for data analysis. 

The perturbation function was then calculated by interpolation in COot, r /and 
X for a given set of parameters. The interpolation was a third-order polynomial 
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interpolation in O)ot using G2(O)ot ) and dG2((.oot)/dt for the two nearest values of foot. 
This was followed by a second-order interpolation in r/, and finally a second-order 
polynomial interpolation in ~ carried out on In I G2(COo t) I using the known exponential 
dependence in ~ for small ~ (if G2(oOot) changed sign between the three 2's involved, 
the interpolation was carried out in G2(cOot) ). 

5.1. I N C O R P O R A T I O N  OF F R E Q U E N C Y  D I S T R I B U T I O N  

To keep the dimensions of the database low, the frequency distribution was 
not introduced at this level. Instead, the effect of  the frequency distribution was 
calculated by taking advantage of the fact that the frequency distribution mainly 
enters in the product of  mot. Neglecting the distribution in Moo o, the effect of  the 
frequency distribution was calculated by: 

COot + 3,5 

G2aro(O)o t) ___ max(0, O.)ot- 3 ~) 

exp(-x2/2&2) �9 G~176 Oot + x)dx 

(.oot + 3 A 

f exp(-x2/2A2)dx 

max(0, mot - 3 A) 

where 

(11) 

a = 11/z'~176 +(rOot6) 2 . 
! 81n2 

G~176 is the corresponding perturbation function without frequency distribution and 
with infinitely good time resolution. The advantage of this approach is that G~176 
has already been calculated. 

To ensure a smooth Z2 surface, the borderline between the use of the Debye 
model and the strong-collision model was softened by a linear combination of the 
two models. 

6. Results  

The spectra are shown in fig. 3 and fig. 4. The result of the least-squares data 
analysis of the sucrose spectrum was (.o o = 150.2 + 0.4 Mrad/s, r /= 0.25 :t: 0.01, 
;t - 0.0070 + 0.0007 ns -1 and no frequency distribution. These values of  roo and r/ 
were used for the data analysis of the two spectra shown in fig. 4. The least-squares 
data analysis gave ,,1, = 0.093 + 0.016 ns -1 (25 ~ and ~,= 0.064 + 0.007 ns -1 (3 ~ 

respectively. 
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Fig. 3. TDPAC spectrum of Cu(II)2Cd2SOD measured at 3 ~ in 52% 
sucrose. The full line shows the result of a least-squares fit. The 
Fourier transform is shown for the data points (full line) as well as 
for the fitted curve (broken line). The data points represent the average 
of four experimental points. The bars indicate standard deviations. 
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The nuclear quadrupole interation of the sucrose experiment is, within the 
experimental uncertainty, in agreement with the yeast Cu(II)2Cd2SOD nuclear quadru- 
pole interaction stated in [5,6]. This shows that the procedure used places the cadmium 
ions in the zinc site with the neighbouring copper site occupied by a Cu(II)-ion. The 
correlation times of  the two experiments at 25 ~ and 3 ~ are 10.7 + 1.8 ns and 
15.6 + 1.8 ns. 

7. Conclus ion 

If one assumes that the enzyme can be approximated by a spherical 
molecule of the same mass and a hydrated volume of 1.07 x 10 -3 m3/kg (average 
of  several proteins [20]), the rotational correlation time can be calculated as: 
r = (60) -1 = V{/(kT)  [41, where V is the hydrated volume, ~ is the viscosity of the 
solvent and T is the absolute temperature. 

Using the molecular weight 32000 and the viscosity of water [21 ], the calculated 
values are: 12.3 ns (25 ~ and 24.2 ns (3 ~ The correlation time measured at 
25 ~ without sucrose is thus in agreement with the calculated value, whereas the 
value measured at 3 ~ is about 30% lower than the calculated value. The analyses 
of these experiments made the use of the strong-collision model necessary, since 
COot is 1.6 and 2.34, respectively. 

The above described method provides a means of analysing PAC spectra 
from molecules with spherical rotational motion. The interpolation by the strong- 
collision model between the slow and fast rotational diffusion regions may lead to 
an error of about 20% in the interpretation of ~. For quadrupole interactions without 
frequency distribution, the use of the database does not give cause to any slowing 
down of the fitting programme. For frequency distributions of  7%, the programme 
is slowed down by about a factor of  3 compared to the analytical expressions used 
in the adiabatic region. If the frequency distribution is known for the probe, it might 
be incorporated in the database to save time. 

Instead of using the strong-collision model in the intermediate region, it 
should be possible to use the Debye model by calculating G2(t) for a large but limited 
number o f 2  and q. This is possible using tile method of Winkler [13] forming and 
solving the eigenwdue problem of a 108 • 108 matrix. 

Appendix  A 

ROTATIONAL DIFFUSION OF A NON-AXIALLY SYMMETRIC QUADRUPOLE INTERACTION 
IN THE ADIABATIC LIMIT 

Following the proof by Marshall and Meares [221 but including electric field 
gradients of non-axial symmetry, one has to express the orientation of the electric 
field gradient by all three rotation angles, a, /3 and 7. Furthermore, as the m-states 
in the principal coordinate system are not eigenfunctions of the (static) interaction 
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Hamiltonian, these m-states have to be expanded on the eigenstates n of the Hamiltonian. 
Equation (9) in [22] then generalizes to: 

(GL'~(t)) = ~/(2KI + 1)(2K2 + 1) Y~ (_l)2/+ml +m~ 
n,n',ml,m] ,rn'(, 

m(",m2,m~.,rn~,rn'J" 

• e -(i/h)(E" -e")'(n I m~)(n'l  m:~")*(n[ m]')* 

I'm ' "'3( '' ' • (n' lm{") _ ~ ml N1 - m 2  m2 N 2 (A1) 

f 1 *I • P(~o,f~o,t)D~,,,r(f2o)DA,~,,,,~.(f~o)df~o 

*I I • P(f2, f2o,t)D~z,~(g2)D~'2,~.(~)ds 

where P(~ ,  f~0, t) represents the probability that the electric field gradient is oriented 
in the direction ~ at time t, given it was oriented in direction f~0 at time zero. 

Using the expression of P(fL ~o, t) [22]: 

P(~, f~o, t) = ~ Ytm (~)Yz~ (f2o)e (-t/T') 
l,m 

(A2) 

and following the procedure of Marshall and Meares [22], the integration over f2 
leads to the vanishing of  all terms except K 1 = l and K 2 = I. The exponential factor 
c x p ( - t / r l )  (l = K 1 = K2) can therefore be extracted. Performing the summation, 
cq. (A1) then reduces to: 

(GNtNztt•X KIK2 k ) /av  (a,fl, y,A,B,G) = e(-t/Z')Gl'(t)~Kll (~K21C~N1 0 ~N20 , (A3) 

where Gt'(t) is the perturbation function of the static interaction. 

Appendix B 

THE EFFECT OF STRONG-COLLISIONS ON THE P E R T U R B A T I O N  FUNCTION OF NON- 
AXIALLY SYMMETRIC ELECTRIC FIELD GRADIENTS 

The proof of the integral equation, 

t 

dG2(t)dt - f K ~  (B1) 

0 
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given by Dattagupta and Blume [17] and Dattagupta [16], is based only on the 
assumption that r/ is 0 in the proof of 

U ~ 1 7 6  , (B2) 

where the matrix elements of /3 ~ are: 
o o  a;j ( l o m o l t m l l U ~  = - ~  d~t  dte-pt(lomoleiV't l lom'o) 

o 

• ( l lm ' l l e - iV ' t l l lml ) ,  where dff2t = d a ,  sin/31 d/31 (B3) 

and L) is the super-operator corresponding to any rotation operator D(a, /3,  T). The 
symmetry of the electric field gradient is used to express the electric quadrupole 
interaction tensor V l by: 

V t = D(t)(a,/3, 0)V~(D(O)-1(a,/3, 0), (B4) 

where a and /3 rotate the coordinate system to the orientation, wherc the electric 
field gradient is diagonal and with the principal component  in the z-direction. 

For non-axial symmetry,  this has to be generalized to: 

V t = D(1)(a,/3, ~')Vij(D(l))-l(a,/3, )'), (B5) 

and the integration over all angles in eq. (B2) must be performed over all orientations 
described by a, /3 and 7:. The matrix elements o f /SU~ become: 

(lomo Ii m l[ D U ~ lom'oll m't ) 
oo 

l l d ~ " ~ t l d t e - p l E ( l o m o l l m l [ L ) [ l o n o l l n l )  
8~2 nl no 

0 n'on'l 

• (lonoll nl [U~ n'l )(Ion'oI1 n'llD-1llom'oll m'l ) 

oo 

1 8 7 ~  2 f df~t f dte-Pl ~., (lomolD ilono )(ll nl lD-1111ml no 

0 n'on'1 

x (Io no ]eiV'tllo n'o )(/1 rt~ [ e-iV'till nl )(Io n'olD -1 [lom'o )(11 m'l l Di l l  ni ) 
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o o  

1 fdntfdte-Pt(lomo 
87r 2 

0 

[DeiV'tD-l l lom'o)(ll mi [De-iV"D -1 111 ml ) 

1 f dg)l i 87r 2 
0 

dt e-P'(lorno [e i(Dv'D ~)' Ilom'o)(ll m] le-i(OV'D-br 1 ) ,  (B6) 

where d~2 t = do~ l sin fll dflt d ~ .  This o f  course corresponds to eq. (B3),  s ince there 
is no difference between integrating over  all orientations and all orientations rotated 
by the angles o~, fl and y. 

Acknowledgements 

Brd. Hartmann's Foundation is acknowledged for the ~VAX(II). This work 
was supported by the Danish Natural Science Research Council. 

R e f e r e n c e s  

[1] H. Frauenfelder and R.M. Steffen, Angular correlations, in: Alpha-, Beta-, and Gamma ray 
Spectroscopy, ed. K. Siegbahn, Vol. 2 (North-Holland, Amsterdanl, 1965), pp. 997-1198. 

[2] A. Left and T. Butz, Angew. Chem. Int. Ed. Engl. 26(1987)110-126. 
[3] H.H. Rinneberg, Atomic Energy Rev. 172(1979)477-595. 
[4] P. Debye, Polar Molecules (Dover, New York, 1929). 
[5] R. Bauer, M.J. Bjerrum, E. Danielsen and P. Kofod, Acta Chem. Scand., Ser. A 45(1991) No. 6. 
[6] R. Bauer, M.J. Bjerrum, E. Danielsen and P. Kofod, Hyp. Int. 61(1990)1201-1204. 
[7] B.J. Berne and R. Pecora, Dynamic Light Scattering (Wiley, New York, 1976). 
[8] L.D. Favro, Phys. Rev. 119(1960)53-62. 
[9] A. Abragam and R,V. Pound, Phys. Rev. 92(1953)943-962. 
[10] A.G. Marshall, L.G. Werbelow and C.F. Meares, J. Chem. Phys. 57(I972)364-370. 
[11] W.T. Huntress, Jr., J. Chem. Phys. 48(1968)3524-3533. 
[12] H. Winkler and E. Gerdau, Z. Phys. 262(1973)363-376. 
[13] H. Winkler, Z. Phys. A276(1976)225-232. 
[14] C. Scherer, Nucl. Phys. A157(1970)81-92. 
[15] M. Blmne, Nucl. Phys. A167(1971)81-86. 
[16] S. Dattagupta, Hyp. Int. 11(1981)77-126. 
[17] S. Dattagupta and M. Blume, Phys. Rev. B10(1974)4540-4550. 
[18] R.M. Lynden-Bell, Mol. Phys. 21(1971)891-9(X). 
[19] R. Bauer, I. Demeter, V. Haseman and J.T. Johansen, Biochem. Biophys. Res. Comnmn. 94, 

4(1980)1296-1302. 
1201 I.D. Kuntz and W. Kauzmann, Adv. Protein Chem. 28(1974)239-345. 
121 ] G.W.C. Kay and T.H. Laby, Tables of Physical amt Chemical Corrvtants, 12 ed. (Lxmgmans, Green, 

Lxmdon, 1959). 
[22] A.G. Marshall and C.F. Meares, J. Chem. Phys. 56(1972)1226-1229. 


