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The formulation by Dattagupta of the strong-collision model, describing the effect
on the perturbation function, G,(f) by the isotropic tumbling of an electric field gradient,
1s generalized to electric ficld gradients with no axial symmetry. The effect on the
perturbation function by strong collisions is compared to the effect of rotational diffusion
in the adiabatic limit. The comparison is carried out for decays with an intermediate
state of spin 5/2 and for non-axially symmetric electric field gradients. It shows that
the strong-collision model can be used for interpretation of PAC spectra of molecules
with correlation times between the adiabatic and the fast relaxation limits. The strong-
collision model is then used to determine the rotational diffusion of the cadmium
substituted copper,zinc superoxide dismutase at 3 °C and 25 °C from '''™Cd TDPAC
spectra. For these analyses, the model is incorporated into a conventional least-squares
fitting routine.

1. Introduction

The technique of Perturbed Angular Correlations of y-rays (PAC) is based
on the detection of the angular correlation of two y-rays emitted from the same
nucleus. Usually, this angular correlation is measured as a function of the time
between the two emissions (Time Differential Perturbed Angular Correlations
(TDPAC)). A detailed trcatment of the theory of PAC has been given by Frauenfelder
and Steffen [1]. Reviews with special emphasis on chemical applications are given
by Lerf and Butz [2] and Rinncberg [3].

One of the advantages of applying PAC to problems of a biological nature
or origin is that experiments can be carried out on molecules in aqucous solution.
Studies of the function of molecules under conditions that are close to in vivo
conditions therefore become possible. This, however, lcaves the problem of how to
account for the effect on the perturbation function by the Brownian rotation of the
molecules. For most biological work, the perturbation function must be known also
for molecules with a non-axial symmetric electric ficld gradient.

The most popular isotopes for biologically related work are !''™Cd, '"'In and
"8IHf. These all have an intermediate level of spin 5/2 and, therefore, we restrict
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oursclves to this case in the following. In aqucous solution, the molecules are
isotropically oriented. This means that instead of the perturbation function GR(r),
only the angular averages G,(t) are measured (for the mentioned isotopes, only
& = 2 has to be considered). For molecules reorienting slowly, the Debye model [4]
results in an analytical expression for G,(#). This is also the case for molecules with
a fast rotational diffusion, and in both limits this model can, therefore, be implemented
directly in conventional programmes for least ¥2 data analysis. For molecules with
rotational diffusion times in the intermediate region, it has been suggested by
Rinncberg {3] that the strong-collision model is uscd to interpolate between slow
and fast rotational diffusion. The model, however, lcads to an integral cquation that
can only be solved by iteration. In general, this will make data analysis too time-
consuming for most computers and scientists. It has been the aim of the present
work to investigate to what extent the strong-collision model and the Debye model
give the same results. Furthermore, we wanted to find a way of implementing the
strong-collision model in a conventional program for least-squares fitting. The
application is illustrated by the study of the rotational correlation of copper,zinc-
superoxide dismutase (Cu(Il),Zn,SOD) from ycast. This enzyme was chosen because
the static interaction of Cd** in the cadmium substituted cnzyme (Cu(1l),Cd,SOD)
is well characterised [5,6], and because the calculated correlation time is well into
the intermediate region.

In the case where the nuclei experiences no magnetic field, the interaction
of the nucleus with the clectric ficld gradient caused by the surroundings can be
characterised by the strength of the nuclear quadrupole interaction o, definced as:

127 |V, eQ|
Wy = et 1
0 40h M)

and the asymmetry parameter 7] defined as 1= (V,, -V, )/V,,. V,, is the ath diagonal
component of the electric field gradient in the principal coordinate system, where
V,, is diagonal and |V,, | 2 IViy 121V |, and O denotes the electric quadrupole moment
of the nucleus. Also, a Gaussian distribution of @, in the sample, described by the
rclative width 6 = Aw,/wy, is taken into account. These parameters describe the
interaction of the nucclus with the surroundings if the molecule docs not undergo
rcorientation.

2. Models describing molecular reorientation in liquids

2.1. THE JUMP DIFFUSION MODEL

The "Dcbye model” and the "strong-collision model” can be considered as
two cxtreme cases of the jump diffusion model. In the jump diffusion model, the
molccule rcoricnts by a scries of discontinuous jumps. Following the formulation
by Berne and Pecora [7], the assumptions are:
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(a) The jump takes place instantaneously.

(b) Successive jumps are uncorrelated in time with an average time 7, between
jumps. (The probability that a jump occurs between ¢ and ¢ + dris d¢/7,.)

(¢c) The dihedral angle between the two plancs defined by the orientation
vector u in two successive jumps is randomized.

2.2, THE STRONG-COLLISION MODEL

In this model, the distribution function of jump angles is uniform, c¢ach
collision leading to a complcte loss of memory of the original oricntation. The
advantage of this model is that it lcads to a simple form for calculating the perturbation
function, irrcspective of the corrclation time 7, (vide infra).

23. THE DEBYE MODEL

The case where the distribution function of jump angles is pcaked at small
angles corresponds to the Debye model. The Debye model [4] is based on the
assumption that collisions are so frequent in a liquid that a molecule can only rotate
through a very small angle before suffering a reoricnting collision. In contrast 10
the strong-collision model, the Debye model allows for asymmetric diffusion. The
diffusion is described by the rotational diffusion tensor 6,,. The body-fixed axes can
be chosen so that 6 is diagonal:

0. 0 O
6= 0 o, 0 | (2)
0 0 6,

For a spherical rotor (8,, = 0” = 0,, = 6), the corrclation time 7, is 7, = (6(/ + D)™
(8], where / is the moment of the tensor describing the measured quantity. In
general, [ will depend on the technique used to determine the rotational correlation.
In PAC cxperiments applied to isotropically oriented molccules, only even valucs
of [ are mecasured through the perturbation functions G,(¢t). For PAC utilising the
isotopes '"'"™Cd, ""'In or '8TH, the perturbation function G,(¢) is mcasured and the
corresponding correlation time of a spherical rotor is 7, = 1/66. This is also the casc
for fluorcscence depolarization, dynamic light scattering and NMR, whereas in
diclectric spectroscopy, [ = 1 and 7, = 1/26. A review of some of the techniques
used for studying the dynamics of thermal fluctuations in fluids is given by Berne
and Pecora [7]. The dependence of the correlation time on the technique is an
important contrast of the Debye model to the strong-collision modcl in which the
correlation time by definition is 7 for all moments.
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3. Effect on perturbed angular correlation of y-rays by molecular reorientation
3.1. THE EFFECT OF THE DEBYE-MODEL ON THE PERTURBATION FUNCTION

In general, the effect of the diffusion on the perturbation function will depend
on the oricntation of the diffusion tensor ;; with respect to the electric field gradient
tensor V,,. Here, only the influence of a spherical rotor on the PAC spectrum will
be treated.

This problem was solved in the extreme narrowing limit (wyT < 1) by Abragam
and Pound [9] for n = 0. In this limit, the perturbation function is:

Ga(=e 2897 pn-0; wpr<< 1. (3)

The effect on the perturbation function of a motion in the adiabatic
limit (wy7T > 1) has been treated by Marshall et al. [10]. This limit gives:

G, (=G, 1n=0; wpr> 1, (4)

where G5(¢) is the perturbation function for the static intcraction, This formula is
valid for 1 # 0 as well (appendix A). Marshall et al. {10] also treat the rotational
diffusion of the asymmetric top molecule in the adiabatic limit and, for the extreme
narrowing limit, draw attention to the proportionality of 1/T; (7, is the relaxation
time mcasured by NMR) and the decay constant of the angular correlation in PAC.
This means that the derivations by Huntress [11] for NMR are immediatcly applicable
to PAC. Of special interest for the present work is the result of a spherical rotor
and an asymmetric clectric ficld gradient:

_ 2 2

In the intermediate region (w,T = 1), no analytical expression cxists for the
perturbation function G,(z). A gencral formulation of the problem is given by Winkler
and Gerdau (12,13}, who solved the problem by solving the cigenvalue problem of
a 108 x 108 matrix (intermediate spin 5/2). For an axial symmetric clectric field
gradient, the dimension of the matrix reduces to 23 x 23. This formulation has been
uscd by Winkler [13] to calculate the perturbation function G,(¢) for n = 0 for a
number of different corrclation times.

3.2, THE EFFECT OF THE STRONG-COLLISION MODEL ON THE PERTURBATION FUNCTION

This modecl was first applicd to perturbed angular correlations by Scherer [14]
and Blume [15]. It lcads to a very simple cxpression for the Laplace transform of
the perturbation function
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Ge(p) = Jc”"Gk (9dt,
0

Crlp+1/1)
1= (/08 (p+1/7)

Gu(p) = (6)

where GJ(p) is the Laplace transform of the static perturbation function G9(z).
Wc have used the numerical technique for computation of G,(¢) proposed by
Dattagupta [16]. Dattagupta has used the above cquation to derive the integral
equation:
{
dG, (¢ .
2O __ |k 9()e ™ G- 1), (7)

dt

where A denotes the orientational decay constant defined as 1/7. K5(¢ ) is indcpendent
of A and, therefore, can be found by solving the above cquation for the known static
perturbation factor. An inspection of the proof by Dattagupta and Blume [17] shows
that this way of computing the perturbation function can be gencralized o include
cascs where 17 # 0 (sce appendix B).

The result of solving the above equation is shown for 7= 0 and 1 =04 in
fig. 1 for a number of different A. The correlation times are chosen such that
the result for 7 = 0 can be compared to the result obtained by Winkler using the
matrix method [13]. The (1 + n%3) dependence in 77 for fast rotations is seen in
fig. 1, where the perturbation functions for 7 =0.4 and n =0 almost coincide
at A = 25w,/2x, whereas 7 = 0.8 still can be distinguished from the two others.

33. COMPARISON OF THE EFFECT OF THE DEBYE MODEL AND THE STRONG-COLLISION
MODEL

In order to use the strong-collision model to interpret spectra measured on
molecules with a rotational correlation time between the adiabatic and the extreme
narrowing limit, it is nccessary to compare the results of the two models in the two
limits. This has been done by Lynden-Bell [18], who finds that thc two models
predict the same result in the fast rotational limit if 60 = 1/7. This is in accordance
with an / = 2 interaction, and is also valid for electric ficld gradients with no axial
symmetry. In the slow rotational limit, Lynden-Bell finds that for 17 = O the perturbation
factor resulting from the strong-collision model can be approximated by the Debye
model if 78 = 1/1.

We have computed the two models for ay 7= 12.5 for n € [0; 1]. The comparison
shows that in the range of wys between 0 and 16, the perturbation function based
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Fig. 1. Perturbation functions G,(t) for a nucleus of spin = 5/2 under the influence
of an electric quadrupole interaction randomly reorienting by strong collisions.
The perturbation functions are calculated for =0 ( yand 04 (----). In
addition, 1 = 0.8 is shown for A = Sawy/2m, 25,/27m and 100wy /27 (- ~ -).

on the strong-collision model can be approximated by the Debye model, giving
1/t between 7.160 and 8.28 depending on 1.

The largest deviation between the two modcls was found for an asymmetry
of about 0.8. This is shown in fig. 2 for @, = 100 Mrad/s and A = 0.008 ns™! in
the strong-collision model. The parameters of the Debye model were the same
except for the correlation time 7, which was varicd to give the smallest possible
integrated deviation between the two functions from 0 to 160 ns. This gave a
rotational diffusion of 1/7 = 0.006 ns~! for the optimized Debye model.

We do not expect to be able to distinguish the two modcls cxperimentally.
However, when used for data analysis, a soft transition between the two model was
uscd. As an additional test of the computational mcthod, it was checked that the
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Fig. 2. The strong-collision model (+) (A = 0.008 ns~!) is compared 1o
the Debye model () (A = 0.006 ns™') for @, = 100 Mrad/s, and 1 = 0.8.

strong-collision model gave the predicted result (eq. (5)) in the fast rotation limit
for all valucs of 1.

4. Experimental

The cffect on the rotational diffusion on thc TDPAC spectrum is illustrated
by Cu(11),Cd,SOD.

The experiments were carried out on the enzyme used by Bauer ¢t al. [19].
The apo-enzyme has been kept dehydrated in a refrigerator.

The radioactive ''"'"™Cd was produced as described by Bauer ct al. [5]. For
cach cxperiment, 3.2 mg of apoSOD was rcsolved in 1T ml 0.1 M MES (2(N-
morpholino) ethanesulfonic acid) buffer pH 6. To cnsure that all copper sites were
occupicd, this was mixed with 2.5 moles of Cu?* ions per mole of metal-frec SOD.
After at least 5 minutes, the solution was mixed with 0.25-0.5 moles of Cd?* per
molc of enzyme ('''"™Cd and carricr cadmium). The TDPAC spectrum of the enzyme
was then measured in 52% sucrose (w/w) at 3 °C + 1 °C (two cxperiments) and without
sucrose at 3 °C £ 1 °C (two expcriments) and at 25 °C = 1 °C, respectively. For the
experiments without sucrose, the enzyme was filtered (0.2 pm filter) before it was
mixed with the cadmium. This was done to remove possible aggregaltces.

The experiments were carried out on a conventional slow—fast sct-up using
four BaF, detectors with a diameter of 5.08 cm and length of 5.08 c¢m, arranged in
a plane at fixed angles 0° (1), 90° (2), 180° (3) and 270° (4). Eight diffcrent spectra
were collected: four which are forward in time and four backwards. After time
reversal and background subtraction, the following cxpression is derived:

\[W42'W31 —\[Wu - W3, N \/W24'W13—\/W23'W14

,  (8)
(szz - Wiy +2\fW41 LY \/W24 -Wis +2\/W23 -Wig

Ay G2 () =
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where W;; denotes the coincidence spectrum after background subtraction and time
reversal (only the first four spectra) of 150 keV y-rays in detector i and 247 keV
y-rays in dctector j.

The cffective amplitude A,,.; was about 10%. Before each experiment, the
spectromceter was time-calibrated and the time resolution was determined using a
Se source. The time resolution was about 1.9 ns. The temperature was controlled
by a Pelticr clement.

5. Data analysis

For data analysis, the rotational diffusion was divided into three regions:
In(Awy) £-2.5; =2.5 < In(A/wy) < 2.25 and 2.25 < In(A wy).
The modelling function for In(A/w,) € —2.5 was:

3 <2 T% 1252
Gy(y=cY Syi(me @ (Tgaa'+ ‘7‘>cos(w[t), (9)
=0

where 4 is the rotational diffusion parameter, S,,(1) denotes the n7-dependent amplitudes
of the four frequencies (the first frequency is 0), @/ is the ith (17 dependent) frequency,
T, is the FWHM (full width to half maximum) of the time resolution of the
spectrometer and 6 is the relative line width of the (Gaussian) distribution of
[requencies (wy). (For the definitions of w, and 7, please refer to the introduction.)
For In(A/w,) 2 2.25, the following modelling function was used:

w%kt
expl - ————
P A+282%kt

11+ 28%:
A

where k£ = 2.8 (1 + n%/3). This function is the result of folding cquation (5) with
a Gaussian distribution (width &) of nuclear quadrupole interaction strengths centered
at wy.

In the range where -2.5 < In(A/w,) < 2.25, the strong-collision model was
uscd. To solve the integral cquation for cach iteration in a least-squarcs fitling
routine would be too time consuming. Instead, the integral equation was solved for
200 valucs of wyt from wyt = 0 to wyt = 40; for 21 values of 77 from O to 1 in steps
of 0.05; and for 20 values of In(A/w,) ranging from -2.5 to 2.25 in steps of 0.25.
Both G,(¢) and dG,(¢)/dt were calculated for this 200 x 20 x 21 parameter sct. This
was then installed in the memory of a pVAX(II) computer, used for data analysis.

The perturbation function was then calculated by interpolation in wyt, 17 and
A for a given sct of parameters. The interpolation was a third-order polynomial

Go() =

(10)
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interpolation in wyt using G,(wyt) and dG,(wyt)/d¢ for the two nearest values of wyt.
This was followed by a second-order interpolation in 77, and finally a second-order
polynomial interpolation in A carried out on In | G,(wyt) | using the known exponential
dependence in A for small A (if G,(wgt) changed sign between the three A's involved,
the interpolation was carried out in G,(wgt)).

5.1 INCORPORATION OF FREQUENCY DISTRIBUTION

To keep the dimensions of the database low, the frequency distribution was
not introduced at this level. Instcad, the effect of the frequency distribution was
calculated by taking advantage of the fact that the frequency distribution mainly
cnters in the product of wyt. Neglecting the distribution in A/, the effect of the
frequency distribution was calculated by:

wol+3A

exp(—x2/242) - G)%awpt+x)dx

6 ax(0, -34A)
Gy “(wpr) = T : (1

exp(—x2/2A%)dx

max({0, wot~34)
where

72 @2
_ 070 2
A= \/8ln2 +(wotd)? .

G%°(1) is the corresponding perturbation function without frequency distribution and
with infinitely good time resolution. The advantage of this approach is that G9°(t)
has alrcady been calculated.

To cnsure a smooth y2 surface, the borderline between the use of the Debye
model and the strong-collision model was softencd by a lincar combination of the
Llwo models.

6. Results

The spectra are shown in fig. 3 and fig. 4. The result of the least-squarcs data
analysis of the sucrose spectrum was @g = 150.2 £ 0.4 Mrad/s, n = 0.25 £ 0.01,
A = 0.0070 £ 0.0007 ns~! and no frequency distribution. These valucs of @, and 7
were used for the data analysis of the two spectra shown in fig. 4. The least-squares
data analysis gave A = 0.093 £ 0.016 ns™' (25 °C) and A= 0.064 £ 0.007 ns™' (3 °C),
respectively.
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Fig. 3. TDPAC spectrum of Cu(II);Cd,SOD measured at 3 °C in 52%
sucrose. The full line shows the result of a least-squares fit. The
Fourier transform is shown for the data poinis (full line) as well as
for the fitted curve (broken line). The data points represent the average
of four experimental points. The bars indicate standard deviations.

Time [ns]

Fig. 4. TDPAC spectra of Cu(Il),Cd,SOD
measurced at 25 °C and 3 °C.
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The nuclear quadrupole interation of the sucrose experiment is, within the
experimental uncertainty, in agreement with the yeast Cu(I1),Cd,SOD nuclear quadru-
pole interaction stated in [S,6]. This shows that the procedure used places the cadmium
ions in the zinc site with the ncighbouring copper site occupied by a Cu(Il)-ion. The
corrclation times of the two cxperiments at 25 °C and 3 °C arc 10.7 £ 1.8 ns and
15.6 £ 1.8 ns.

7. Conclusion

If onc assumes that the enzyme can be approximated by a spherical
molccule of the same mass and a hydrated volume of 1.07 x 10> m*/kg (average
of several proteins [20]), the rotational correlation time can be calculated as:
T=(60)" = VE/(KT) [4], where V is the hydrated volume, £ is the viscosity of the
solvent and T is the absolute temperature.

Using the molecular weight 32000 and the viscosity of water (21], the calculated
values are: 12.3 ns (25 °C) and 24.2 ns (3 °C). The corrclation time measured at
25 °C without sucrose is thus in agrecement with the calculated value, whereas the
value measured at 3 °C is about 30% lower than the calculated value. The analyscs
of these cxperiments made the use of the strong-collision model nccessary, since
W, T 1s 1.6 and 2.34, respectively.

The above described method provides a mcans of analysing PAC spectra
from molecules with spherical rotational motion. The interpolation by the strong-
collision model between the slow and fast rotational diffusion regions may lcad to
an crror of about 20% in the interpretation of A. For quadrupole interactions without
frequency distribution, the use of the database docs not give cause to any slowing
down of the fitting programme. For frequency distributions of 7%, the programme
is slowed down by about a factor of 3 compared to the analytical expressions used
in the adiabatic region. If the frequency distribution is known for the probe, it might
be incorporated in the database to save time.

Instcad of using the strong-collision model in the intermediate region, it
should be possible to use the Debye model by calculating G,(¢) for a large but limited
number of A and 7. This is possible using the method of Winkler [13] forming and
solving the cigenvalue problem of a 108 x 108 matrix.

Appendix A

ROTATIONAL DIFFUSION OF A NON-AXIALLY SYMMETRIC QUADRUPOLE INTERACTION
IN THE ADIABATIC LIMIT

Following the proof by Marshall and Meares {22] but including clectric ficld
gradicnts of non-axial symmetry, onc has to cxpress the orientation of the clectric
ficld gradient by all three rotation angles, ¢, B and y. Furthermore, as the m-states
in the principal coordinate system arc not cigenfunctions of the (static) interaction
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Hamiltonian, these m-states have to be expanded on the eigenstates n of the Hamiltonian.
Equation (9) in [22] then generalizes to:

(G20 = YK + D(2K2 +1) Y (=12 Hmiems
nn’ my,mi,mf,
mi{”,ma,m3,m%,m3"

x ¢ (WEED | 3 Xn' | m3")" (n )"

oL KT K,
x(nlml)_m,l my Ny )\-m2 my N, (A1
x fP(Qo,Qo,z)D,il,mfmo)D;{,my(no)dao
x f P(S, Q0, )DL s (QDLs my ()R,

where P(£, Q,, t) represents the probability that the electric field gradient is oriented
in the direction € at lime ¢, given it was oriented in direction €, at time zero.
Using the expression of P(Q, Q, 1) [22]:

P(Q,Q0,0)= Y Y ()Y, (Qg)e ™™ (A2)
I,m

and following the procedure of Marshall and Meares [22], the integration over Q
Icads to the vanishing of all terms except K, = [ and K, = I. The exponcntial factor
exp(—t/7) (! = K= K;) can therefore be extracted. Performing thc summation,
¢q. (A1) then reduces to:

NN —1/ .
(GRIRZDav (., 1.4,8.6) = € ™G (1)8k,1 6k, 8v,0 6,0 » (A3)
where G, '(¢) is the perturbation function of the static interaction.

Appendix B

THE EFFECT OF STRONG-COLLISIONS ON THE PERTURBATION FUNCTION OF NON-
AXITALLY SYMMETRIC ELECTRIC FIELD GRADIENTS

The proof of the integral equation,
!
—J'KS(z‘)c‘“‘Gz(t—f)dt‘ (B1)

0

dGz([) _
de
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given by Dattagupta and Blume [17] and Dattagupta [16], is based only on the
assumption that n is 0 in the proof of

e A -1
vl=pu®b , (B2)

where the matrix elements of U° are:

. . 1 _ i .
(Iomolymy|U(p)|Igmy Iy my= in JdQI Jdte PlTomgle’ """ | Igmy)
b

x (Iymyle V" |Iymy), where dQ; = de, sinB; dB; (B3)

and D is the super-operator corresponding to any rotation operator D(a, f3, 7). The
symmetry of the electric field gradient is used to cxpress the electric quadrupole
interaction tensor Vj by:

v, = DU, B, 0)V,(DDY (e, B, 0), (B4)

where o and B rotate the coordinate system to the orientation, where the electric
field gradient is diagonal and with the principal component in the z-direction.
For non-axial symmetry, this has to be gencralized to:

v, = DO(a, B, pV,(DV) e, B, 1), (BS)

and the integration over all angles in eq. (B2) must be p_erfor_rrlled over all orientations
described by «, B and ¥ The matrix elements of DU°D then become:

_ A -1
Uomolim |DUpYD "|lomylimy)

oo

= LZ JdQIJdte_pl Z (Iomollmllbllonollnl)

8 n1no
0 npni

— ~_l .
X (Ignoly m \U(p)Honpdy ni )lonplynil D |lomylymy)

82 nyng

= L JdQIJdIC_p[ 2 (Iom0|D|10no)(11n1|D_1|11m1)
0

noni

x (Iono e [ Tony Xy nil €™ |1y my Xlong| D™ [Tomp YTy my| DIy nY)
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— dQ,Jdt P Uomo | D' D  Iomy Xy my | De™ V' D 1y my)
0

1 . DViD- . . ,
doy szc Piomo ¢ LY 1o mi Y my e PP om ), (B6)
0

where d€2; = do; sin 3, df3; dy;. This of course corresponds to ¢q. (B3), since there
is no difference between integrating over all orientations and all orientations rotated
by the angles «, B and 7.
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