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The surface tension of liquid 4He is determined from the frequencies of mi- 
cron wavelength capillary waves. The extrapolated zero temperature value, 
G = 375 + 3 # J m  -2, is in agreement with the pioneering static capillary 
rise determination but 6Uo higher than the more recent surface tension grav- 
ity wave measurements. Flow in the meniscus in this latter experiment is 
shown to mimic a surface tension correction to the dispersion relation there 
used which is of the same sign and magnitude as the discrepancy. 

1. I N T R O D U C T I O N  

The surface tension a of liquid 4He is a fundamental quantity for surface 
and interface properties. The variations of cr with temperature have been 
extensively studied and measured with high accuracy. 1'2 Up to 0.7 K, these 
experimental measurements are well explained by the ripplon contribution 
to the surface free energy as first proposed by Atkins 3 in 1953. Surprisingly, 
the absolute value of cr at T=0  remains poorly known as the principal de- 
terminations, the capillary rise method of Zinov'eva and Boldarev, 4 giving 
~r = 378 # J m  -2 and the surface tension gravity wave method used by Iino 
et al, 5 giving cr = 354 # J m  -2, exhibit a significant 6% difference. This large 
discrepancy has recently taken on greater importance with the growing in- 
terest in the problem of wetting on weak-binding substrates, in which the 
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contact angle and tile wetting temperature are directly related to a. 
Within this context, a clarification of the experimental situation appears 

necessary. The new determination of cy presented in this paper would seem 
to satisfy the conditions for accuracy and reliability. The analysis of our 
own data  has led us to- present also a critical examination of the previous 
experiments. 

2. E X P E R I M E N T A L  S E T U P  

The experiment was originally designed to study ripplon propagation 
in the micron wavelength range; the experimental cell is shown in fig. 1 of 
ref.[6] and the methods are described in detail there. 

Tile measurements are clone on a superfluid film covering a horizon- 
tal array of interdigital capacitors (IDC's) which consists of interlocking 
fingers, of width 2 # m  separated by 2 #m, patterned in chromium on a 
monocristalline sapphire substrate. This geometry defines a fundamental 
periodicity of wawflength A0 = 8#m = 2rr/ko in tile (x,y) plane. Each finger 
is 2 mm long and the total IDC array consists of 1000 fingers. 

The structure is also used to manipulate tile liquid using the dielectric 
ponderomotive effect. When it is biased with a constant voltage VDC, the 
electric field around the fingers at tracts  the dMcctric helium. The equilib- 
rium thickness d(x) of liquid above the capacitor satisfies 9 

( h + d )  ( ~ - l ) e 0 E 2  ~4 ~ 2 
2pg da ~ Vz,y d = 0 (1) 

E is the electric field just below tile liquid surface, g the acceleration due to 
gravity, p and e tile helium density and dielectric constant and a the surface 
tension (p = 145 kgm -a,  e = 1.057 at OK). The parameter  ~, describing the 
substrate to liquid helium van der Waals (vdW) interaction is approximately 
0 .7#m and h ~. 8turn is the distance of tile capacitor plane above the bulk 
helium surface. 

The periodic potential produced by the IDC may be expressed in terms 
of the fundamental wavevector k0 = 27r/A0 by 

V(:c, z) .= VDC ~ ap sin((2p + 1)kox)e -(2p+1)k~ 
,from which we may write the electric field intensity to order a2 : 

E2(x ,z )  = koV~)c(a 2 2 + 9al2e-4koz + 25a2e-8koz)e-2koz 

+ k~V~c(6aoa I + 30ala2e-4k~ -4k~ cos(2k0x) (2) 

+ k~V2c(lOaoa2)e -6k~ cos(4k0x) + . . .  

The coefficients ap a r e  determined by the basis cell of the structure. For 
finger width equal to separation, a2n+t = 0 and a0 ~- 1/2. 
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The first term in Eq.(2) induces a uniform increase of the equilibrium 
depth do of the liquid which can be varied from the vdW film thickness to a 
few microns by scanning VDC. 

The oscillatory term in Eq.(2) deforms the liquid surface for a discrete 
set of wavenumbers 2nko. It has been shown 6 how this allows one to excite 
capillary waves using an AC voltage VACe i~;t applied in addition to the bias 
voltage, VAC << VDC; the bias controls the depth do, whereas the oscilla- 
tory component of the ponderomotive force ((x VACVDCe i~t) excites surface 
waves at an angular frequency ~. If it coincides with the angular frequency 
of capillary waves on the film at wavenumber k = 2nko, constructive interfer- 
ence leads to resonant creation of waves. A capacitance bridge measurement 
(fig. 2 of ref.[6]) shows a resonance in power absorption and an anomalous 
dispersion at this point. 

Irrotational surface excitations of an inviscid incompressible fluid of 
uniform depth do propagate according to the dispersion relation: 

J ( k ,  do) = (pg' + ~k 2) k tanh(kd0) (3) 
P 

[ t~4 (e-1)e~ OEz ] (4) 
gl = g 1+ 3~-~ - 2pg Oz z=go 

Here gr is a gravity-like term incorporating vdW and electrostrictive forces. 
In the present experiment, we concentrate on the two harmonics n = 1 

and n = 2 corresponding to ripplon wavelengths A1 = 4 #m and A2 = 2 #m. 
At the high wavenumbers of the present experiment, the surface term ak  2 
in Eq.[3] is dominant. The resonance frequency then becomes a very direct 
measure of the surface tension a. The small corrections due to finite depth 
and to gr will be considered below. 

3. A N A L Y S I S  OF D A T A  

Our experimental procedure makes it useful to write directly the fre- 
quencies in terms of VDC and to extract from the asymptotic behaviour of 
w(2nko, do(VDc)) the value of w~(2nko) in the bulk limit. 

For that  purpose, we consider the kdo >> 1 limit. As do and t~4/d 3 are 
both negligible compared with h, the equilibrium film thickness equation (1) 
becomes: 

h - (~ - 1 ) ~ 0 . 2  2 , , 2  - 2 ~ o d o  
Igoa 0 V DCe (5) 2pg 

Using this to write OE~/Oz, in the large depth limit Eqs.(3,4) become : 

w2(k, do) = (pg' + ak2)k(1 - 2e -2kd~ (6) 
P 



568 P. Roche .  G .  Deville,  N.  J .  A p p l e y a r d  a n d  F. I. B. W i l l i a m s  

g' = 2gkoh (7) 

Combining (5) and (6) the dispersion relation can be expressed in terms of 
Vz)c instead of do: 

2n 4n ] 
w(2nko, VDC) = w~(2nko) 1 - ((e - 2pghl~okga~ .}'~ VD~ ] (8) 

Woo(2nko)2 = (pg, + cr(2nk0)2) 2nko (9) 
P 

This variation of w with VDC provides an accurate way of determining 
woo(2nko) from the linear extrapolation VD~ n ~ 0 of the plot w(2nko) ver- 
sus VD~ ~. Figure (1) shows that Eq.(8) is satisfied over a large interval of 
Vlpc and leads to a precise determination of woo(2nko) without further as- 
sumptions. We used the fact that a given structure allows us to measure 
two modes with wavenumber exactly in the ratio 2:1. 
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Fig. 1. resonance frequencies for A = Ao/2 and Ao/4 (Ao = 8#rn) versus 
VD~ and VD~ respectively. The asymptotic  values w~(2k0) = 510kHz and 
woo(2k0) = 1426kHz are deduced from these curves. 

Precise measurement of the two asymptotic frequencies as explained 
above leads to independant determination of the two unknown quantities g' 
and a, the large surface term being obtained with bet ter  relative accuracy 
than the small gravity like term. We point out that our technique can 
provide the temperature variation of cr at least in the low temperature  region 
(T < 700 rnK), where the ripplons are not overdamped. 6 
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Fig.(2) shows our measured  t e m p e r a t u r e  var ia t ion of cr to agree well 
wi th  the Atkins  r ipplon  con t r ibu t ion  law, 7 which we then use to e x t r a p o l a t e  

to zero t empera tu re .  This  leads us to the T --+ 0 value : 

�9 (7 = 375 # J m  -2 
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Fig. 2. Var ia t ion  of the surface tension with  tempera ture .  The  poin ts  are  
deduced  from the resonance frequencies of the n=2  mode at  fixed d e p t h  and 
at  various t empera tu re .  The  fllll line represents  the Atkin ' s  law. 

The  measurements  were per formed with  4He purified by the heat  flush 

m e t h o d  (Xa < 10 -8)  and  it was shown in two different ways tha t  there  was 
no effect of 3He condensa t ion  at  the  surface : Any 3He condensa t ion  at  low 

t e m p e r a t u r e  should decrease or. The  fact tha t  the surface tension agrees 
fair ly well wi th  the  Atkins  law as shown in Fig.(2) (monotonic increase wi th  
decreasing t empera tu re )  is an indica t ion  tha t  we can rule out  any effect of 
isotopic con tamina t ion  at  the  4He surface. Second, upon purpose ly  add ing  
3He to the  cell up to X3 = 3 10 -a ,  we d id  not observe any change on the  
r ipp lon  frequencies at  low t empera tu re .  This  feature seems to indica te  tha t  
the  t r a n s p o r t  of aHe through  the superf lu id  4He film l inking the free surface 
to the  thick film is very slow and thus tha t  the 3He a toms ac tua l ly  never 
reach the region above the bias IDS, even after  a wait ing t ime of one day. 
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4 .  D I S C U S S I O N  O F  E R R O R  S O U R C E S  

The three determinations give 

a = 378 • 5 #Jrn -2 
a = 354 4- 0.4 # J m  -2 
a = 375 4- 3 # J m  -2 

Zinov'eva et al 4 
Iino et al 5 
Present experiment 

We first examine the various sources of error involved in our experiment 
and then we will discuss the expected accuracy in the previous determina-  
tions. In our  experiment neither the absolute value of the gravitat ional  ac- 
celeration g nor that  of the vdW constant n is relevant as their contr ibutions 
to the error are entirely negligible. The fundamental  wavenumber k0 is a ge- 
ometrical  factor which was first determined in the early stages of fabrication 
of the structure.  It was also independently measured by optical diffraction 
from the grat ing formed by the I.DC. At room temperature,  we measured 
k0 = (784.0 • 1)ram - t .  This vahm becomes k0 = (784.5 • 1)rnm - I  near 0 K 
according to the thermal expansion of monocristalline sapphire. Uncertain- 
ties in the resonant frequency result from the width of the resonance. For 
the A = 2#m  mode, this width was less than 2 kHz, in good agreement with 
the expected quality factor defined by tile length of the structure.  5w/w is 
taken to be conservatively 2 10 -a, including the error arising from tile ex- 
t rapola t ion to w0r Summing all these independent  contributions gives the 
error estimate. 

In the static capillary rise experiment of  Zinov'eva and Boldarev, the 
rise h of  the liquid in the capillary is s imply related to the diameter  b of 
the capillary by pgh = 2a/b. The liquid level can be measured within a 
few micrometers  giving a 5h/h accuracy of the order of 5 - 10 -a. The  main 
difficulty comes from the determinat ion of  the diameter b of the capillary. 
It can be non uniform or not reproducible from run to run (as pointed out 
by Atkins and Narahara  1 ) due to possible contaminant  remaining after tile 
tempera ture  cycle. An accuracy ab/b of the order of 10 -2 seems reasonable. 
Then,  this kind of experiment yields ( ia /a  ~ 10 -2 which is comparable  to 
the absolute fluctuation of cr from run to run mentioned in ref.[1]. 

I t  is more difficult to unders tand the 6% discrepancy with the recent 
determinat ion by Iino et al. 5 The disagreement is so much greater than 
est imated statistical error that  one must  look for a more fundamental  cause. 

Their  approach was to measure with high accuracy the resonance fre- 
quencies of  successive surface wave modes in a cylindrical box. Using the 
usual dispersion relation for a flat surface of  liquid of uniform depth d : 

w 2 = gk tanh(kd)(1 + k2l 2) (10) 

they deduce the capillary length lc = v/7/pg by measuring a set of 3 cor- 
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responding modes at each of 2 different depths on the hypothesis that the 
wavenumbers are the same. Thus, with no assumption about how the {k} 
are related to the radius R, it is possible to deduce Ic (and {k} and the two 
d). They argue that any meniscus effects are thereby eliminated by hypoth- 
esizing that  the sole effect of the meniscus is to change the relation between 
wavenumber and radius and that this effect is independant of the depth. 
The procedure looks beyond reproach. 

We argue differently : that the meniscus has no effect on the wavenum- 
ber but that  it changes the dispersion relation, in such a way as to imitate 
a reduction in surface tension. 

The argument is simpler to present in rectilinear geometry; although 
numerical factors are slightly different in circular geometry, the physics is 
the same. We consider a box with infinite length in the y direction and 
vertical wails in the z direction at x = - R  and x = +R.  The surface of the 
liquid is described by the equation z = r/(z) + d + ~(x, t) where d is here 
the uniform depth, r/(x) the meniscus shift closer to the walls and r t) tile 
deformation due to the excitation. If r is the velocity potential, eigenstates 
of this box are 

r = Ck cos(kx) cosh(kz) (11) 

with k = nTr/R. The resonant wavenumbers are not affected by the meniscus 
as the continuity equations are satisfied on tile walls and at the bottom. 
From the continuity equation at the surface we write Ck = ~k/k sinh(kd) to 
express the energy per unit length of the mode in the form 

1 A ,r 2~-2 ~ = 7; + vk = z a k ~  + ~ v , k ~ k  (12) 

where 7~ is the kinetic energy, Vk tile potential energy and 3-4k the hydro- 
dynamic mass. The potential energy 

Vk = ~(~k 2 + pg)~R (13) 

is not modified by the meniscus to first order. The kinetic energy 

1 
f+R  [sinh(2k[d + r/(x)]) - 2kr/(x) cos(2kx)] dx (14) = gPkCk2 -R 

on the other hand is modified to order k212c by the fluid velocity in the extra- 
volume enclosed by the meniscus. As the extension of the meniscus is of the 
order of lc near the walls and klc << 1, we can consider that  cos(2kz) ~ 1 
and the kinetic energy becomes 

~ -  2ktanh(kd) 1 +  - -  4~R (15) 
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This correction to the kinetic energy resulting from the motion of liquid 
in the volume of the meniscus can be interpreted as a correction to the 
hydrodynamic mass 

pR + (is) 
.s -- k tanh(kd) 

It will be noted that it is only because the velocity is vertical in the meniscus 
region that  the increment is simply the extra mass contained under the 
meniscus. In the Iino experiment, the depth of helium in the box is such 
that  tanh(kd) ~ kd and the hydrodynamic mass correction modifies the 
dispersion relation to perfectly mimic a surface tension effect. 

w~ = gktanh(kd) [l + k2l~(l - R) ] (17) 

The analysis procedure used by Iino then extracts not l~ but /~(1 - d/R). 
Using the values quoted by the authors, d ~ 0.6 mm and R = 12 ram, they 
would have determined 0.95a instead of or. This is roughly the observed 
discrepancy. Our goal is not to find the exact bias but only to point out that 
a precise determination of a cannot be made without taking into account 
the meniscus effect which depresses tile apparent surface tension. It does so, 
however, in a way which is proportional to the surface tension itself, so that 
the relative behaviour with temperature,  for example, is unchanged. 

5. CONCLUSION 

The present new experimental determination of the surface tension of 
4He at low temperature is made in conditions where the surface tension 
strongly dominates gravity. The high quality factor of the resonances and 
the accurate independent determination of the wavenumber lend confidence 
to the absolute value of the surface tension at low temperature. Setting the 
helium film thickness with ponderomotive forces offers high stability and 
reproducibility of the system and confident determination of the asymptotic  
bulk capillary wave frequencies. The result is in clear agreement with the 
pioneering capillary rise determination. It  is of considerable interest that  the 
ab initio functional density calculation 1~ is in excellent accord with this new 
determination. We believe it is important  too in providing a precise start ing 
point for the growing field of helium wetting. 
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