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ABSTRACT / An ecological data base for the San Jacinto 
Mountains, California, USA, was used to construct a 
probability model of wildland fire occurrence. The model 
incorporates both environmental and human factors, 
including vegetation, temperature, precipitation, human 

structures, and transportation. Spatial autocorrelation was 
examined for both fire activity and vegetation to determine 
the specification of neighborhood effects in the model. 
Parameters were estimated using stepwise logistic 
regressions. Among the explanatory variables, the variable 
that represents the neighborhood effects of spatial 
processes is shown to be of great importance in the 
distribution of wildland fires. An important implication of 
this result is that the management of wildland fires must 
take into consideration neighborhood effects in addition to 
environmental and human factors. The distribution of fire 
occurrence probability is more accurately mapped when 
the model incorporates the spatial term of neighborhood 
effects. The map of fire occurrence probability is useful for 
designing large-scale management strategies of wildfire 
prevention, 

On the average, some 250,000 wildland fires occur 
in the United States each year on federal, state, and 
private lands. Most of  these fires are quickly con- 
trolled by the planned local protection forces at rela- 
tively small size. However,  a significant number  ex- 
ceed the ability of  the initial attack forces to contain 
them and escape to cause substantial damage  to natu- 
ral resources and proper ty  and loss of  life. In order  to 
minimize this threat  o f  loss f rom wildfires, fire man- 
agers must be able to plan protection strategies that 
are appropr ia te  for individual local areas (Cbou 
1991a). A prerequisite for this planning is the ability 
to assess and map  for broad areas the local potential 
for a major  fire to occur (Chou 1991b). Based on such 
geographic information, managers  can establish pri- 
orities over the area for prevention activities to reduce 
the risk of  wildfire ignition and spread, as well as for 
the allocation of  suppression forces to improve the 
probability for initial attack to control fires that do 
occur in areas of  high concern. 

In  this article, fire occurrence probability is de- 
fined as the probability for major fires to occur in an 
area. Mapping fire occurrence probability requires 
sophisticated spatial analyses because major wildland 
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fires result f rom complicated spatial processes that 
are driven by various factors, such as vegetation, to- 
pography,  and weather. H u m a n  factors such as forest 
management  activities, prevention measures,  fuel 
treatment,  residential patterns, and recreational activ- 
ity also affect the potential for major  wildland fires. 
The  distribution of wildland fires is fur ther  affected 
by neighborhood effects, i.e., each area affects, and is 
affected by, its sur rounding areas (Chou and others 
1990). For instance, two areas of  identical environ- 
mental and human  conditions may be of  different  
degrees of  fire occurrence probability if one is sur- 
rounded by high-density chaparral  and the other  is 
sur rounded by bare ground and lakes. 

In order  to map fire occurrence probability, it is 
necessary to construct a probability model of  fire oc- 
currence based on variables that are significant to 
fires. Such a complicated task can be accomplished 
effectively using the modern  technology of  geo- 
graphic information systems (GIS) (Lowell and As- 
troth 1989, Chou 1992a). In general, a GIS is an orga- 
nized system of  computer  hardware,  software, and 
geographic information, designed specifically tor or- 
ganizing and analyzing the complex spatial relation- 
ships among  multiple components  of  significance 
(Environmental  Systems Research Institute 1987). 

As environmental  conditions vary f rom time to 
time, maps of  fire occurrence probability may not re- 
main useful for a long period of  time. For instance, 
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Fioure 1. The San Jacinto 
Ranger District, San Bernar- 
dino National Forest, Califor- 
nia (7.5-minute quadrangles). 

the fire occurrence probability of  an area drops to 
zero immediately after  a burn  and adjacent areas en- 
joy a decrease in fire potential due to neighborhood 
effects. Fire occurrence probability also changes peri- 
odically in response to variations in local weather con- 
ditions or seasonal events. The  ideal model o f  fire 
occurrence probability must be flexible enough for 
frequent  updat ing of  current  conditions. Frequent 
updat ing of  fire potential requires a well-designed 
data base and a GIS. 

Since 1985 we have used a G1S to construct a data 
base with multiple variables related to wildland fires 
in the San Jacinto Mountains in southern California. 
In this study, we used this data base to test different  
models for the explanation and prediction of  wild- 
land fires. The  distribution of  fire occurrence proba- 
bility was mapped  based on the estimated parameters  
of  the best-fit model. 

Study Area and Geographic Units 

The  study area is the SanJacinto Ranger  District of  
the San Bernardino National Forest, 150 km east of  
Los Angeles, California. The  data base is organized 
into 14 USGS 15-min quadrangles (Figure 1). T h e  
well-recorded history of  fire activity provides the data 
necessary for testing probability models of  fire occur- 
rence (Figure 2). In the fire activity coverage, the 
areal extent of  major  fires that occurred between 
1911 and 1984 (file data, San Bernardino National 
Forest) are digitized into polygons, coded with years 
of  burns. 

The  diversity in environmental  and human  condi- 
tions makes this area an ideal area for wildland fire 
management .  Vegetation is dominated by highly 
f lammable chaparral ,  especially on steep terrain. Less 
f lammable open stands of  desert  chaparral  cover the 
arid eastern margin of  the study area. Conifer  forests 
cover highest elevations and basin floors. Land own- 
erships include national forests, large private hold- 
ings, and Indian reservations. 

The  first step for building a model of  fire occur- 
rence is to define geographic units according to ex- 
plicitly specified criteria. Two criteria are considered 
in this study. First, geographic units must represent  
areas of  homogeneous  surface in terms of  a character- 
istic that is meaningful  to wildland fires. Second, there 
must  be a sufficient number  of  geographic units for 
valid statistical testing. With these concerns, the vege- 
tation coverage is most appropriate ,  among  the exist- 
ing data layers, for defining geographic units. Each 
polygon delineated in the vegetation coverage repre-  
sents an area of  relatively homogeneous  vegetation 
type. 

Vegetation was mapped ,  using standard aerial- 
photo interpretation procedures  (Minnich 1987), 
f rom l:20,000-scale color aerial photographs  pro- 
vided by the San Bernardino National Forest. The  
original vegetation coverage is organized into three 
data layers that are not mutually exclusive--shrubs,  
oaks, and conifer forests---coded into 24 species listed 
in Table 1. Delimitation of  vegetation polygons within 
each layer was based on species dominance. Figure 3 
shows the composite vegetation coverage that was 
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Figure 2. Fire activity between 1911 
and 1984. Shaded polygons show ar- 
eas that were burned at least once 
during this period. 

[ ]  Burned Areas 

0 IQ km 

Table 1. The vegetation classes 

Group Dominating species 

Conifers 
BD 
cj 
CP 
JP 
LL 
PM 
PP 
t,Q 
WS 

Oaks 
QA 
Qc 
QK 

Shrubs 
AG 
BA 
BC 
CH 
CS 
DE 
DC 
GB 
MC 
ME 
RS 
TC 

l"seudot.suga macrocarpa 
Mixed conifer forest/PinusjeJ/reyi 
Pinus coulteri 
Pinus jeffreyi 
Pin,~ contorta/Pinus flexili.~ 
Pin~ monophylla 
Mixed conifer forest/P, ponderosa 
Pit, us quadrifolia 
Abies concolor/Pinl**~ lambertiana 

Quercua agrifolia 
Quercus chrysolepis 
Quercus kelloggni 

Agriculture 
Barren 
Chaparral/bedrock 
Chamise chaparral 
Coastal sage scrub 
Desert scrub 
Desert chaparral 
Great Basin sage scrub 
Mixed chaparral 
Meadow 
Red shank chaparral 
Timberland chaparral 

generated by overlaying the three layers and reclassi- 
fying the 24 species into eight major categories 
adapted to National Fire Danger Rating fuel models 
(Deeming and others 1977), i.e., six vegetation types 
plus water and bare ground. The  composite vegeta- 
tion coverage is henceforth refer red  to as tile base 
coverage, and the 803 polygons delineated in the base 

coverage define the geographic units for analysis 
throughout  this study. 

Extracting Data for Analysis 

As explained below, environmental factors ex- 
tracted from the data base and processed for analysis 
include temperature,  precipitation, and the expected 
period of  fire rotation due to vegetation type. 

Tempera tu re  data were obtained from mountain 
station reports of July maximum temperatures (se- 
lected to represent conditions when fires are most 
likely to be active) and interpolated by altitude based 
upon mean radiosonde profiles taken by the National 
Weather Service Station at San Diego (Chou and oth- 
ers 1990). All stations, regardless of terrain, were near 
3~ above ambient temperatures controlled for alti- 
tude due to superheating. The  coverage of  July maxi- 
mum temperature  was created by assigning mean 
sounding temperature  to altitude contours plus 3~ 
(Figure 4). To  obtain the data of  the temperature  
variable, TEMP, we first constructed a composite cov- 
erage by overlaying the base coverage and the cover- 
age of  July maximum temperature.  Then ,  from the 
composite coverage, we calculated the mean tempera- 
ture of  each geographic unit by averaging with areal 
adjustment the values of  different  temperature  zones 
within the geographic unit. 

Th e  coverage of annual precipitation is con- 
structed by contouring the reported data of  existing 
weather stations (Figure 5). For large areas without 
stations, precipitation is interpolated from terrain 
based on the available data of existing weather sta- 
tions. Tile interpolation assumes that precipitation in- 
creases with elevation on windward slopes and de- 
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0 10 km Figure 3. The composite coverage of 
vegetation. 

0 10 km 
I=igure 4. Isotherms of July maxi- 
mum temperature (isotherms in de- 
grees Centigrade). 

creases on leeward slopes due to rain shadows and 
that winds aloft are largely from the southwest and 
west-southwest (250-220 degrees) during winter cy- 
clonic storms that provide the major sources of  pre- 
cipitation in the study area (Minnich 1984). This line 
coverage is converted into a polygon coverage and 
then overlain onto the base coverage to generate a 
composite coverage of  vegetation and precipitation. 
From the composite coverage, the variable of  precipi- 
tation, RAIN, is obtained by averaging with areal ad- 
justment  the values of  different  precipitation levels 
within each geographic unit. 

Fire rotation period is defined as the mean time 
between burns, i.e., the time needed to burn an area 
equivalent to the vegetation area (Pickett and White 
1985). Based on the assumption that fuel types are 

closely related to burn  propensity, the general vegeta- 
tion categories are translated into fire rotation period 
weights listed in Table 2. The  fire rotation weights 
were defined according to estimated rotation period 
based on fire re turn periods of  chaparral vegetation 
in San Diego County and adjacent nor thern Baja Cal- 
itornia, Mexico (Minnich 1989, Minnich and Dezzani 
1991). A larger rotation weight, ROTA, is associated 
with a higher degree of  burn  propensity. 

Three  human factors were extracted for analysis: 
structures, roads, and trails. Human  structures were 
digitized from the USGS 7.5-min topographic maps 
edited in 1981. Each dot in Figure 6 denotes the loca- 
tion of  a building, a campground,  or a lookout tower. 
Using a GIS function for identifying nearest features 
and calculating the shortest distance, the variable 
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Figure 5. Isohyets (in centimeters) of 
annual precipitation. 

0 10 km 

Table 2. Vegetation and fire rotation weight 

Rotation 
Code Vegetation period Rotation 

1 Oaks 50 years 1.0 
2 Firs 50 years 1.0 
3 Open pine 50 years 1.0 
4 Grass 100 years 0.5 
5 Chaparral (H) 50 years 1.0 
6 Chaparral (L) 200 years 0.25 
7 Bare ground Infinity 0.0 
8 Water Infinity 0.0 

BUILD, the nearest distance from each geographic 
unit (defined from the base coverage) to a building, is 
obtained. Likewise, the variable CAMP, which de- 
notes the nearest distance from each geographic unit 
to its nearest campground,  is derived. 

Roads and trails were also digitized from the topo- 
graphic map (Figures 7 and 8). For each geographic 
unit, the nearest road or highway is identified by re- 
lating the coverage of roads and that of trails to the 
base map. A variable, ROAD, is then defined by calcu- 
lating the Euclidean distance between the geographic 
unit and its nearest road or trail. 

Modeling Fire Occurrence Probability 

In building the model of fire occurrence probabil- 
ity, the approach adopted in this study is one of  mini- 
mum complexity. The  model structure is made as sim- 
ple as possible without losing forecasting accuracy. 
Since model building involves sophisticated analytical 
procedures, the main concern is to avoid building a 
model too complicated for practical applications. We 

started with a basic model, which contains only the 
minimum environmental and human factors. Spatial 
factors were added only it" the basic model failed to 
generate satisfactory results. 

The Basic Model of Fire Occurrence Probability 

The  logistic model is suitable for modeling the 
probability of  fire occurrence (Donoghue and Main 
1985, Martell and others 1987, Chou 199{)). Formally, 
the logistic model of  fire occurrence probability can 
be specified as: 

EXP (Ui) 
P i -  

1 + EXP (Ui) 

where Pi denotes the probability for a fire to occur in 
the ith geographic unit. 

This model ensures that the probability of  fire oc- 
currence in each geographic unit, determined by the 
quantity U, has a value between zero and one. A larger 
U denotes a greater propensity to burn and is associ- 
ated with a higher degree of  fire potential. According 
to the logistic function, when U approaches the posi- 
tive infinity, the probability approaches one and im- 
plies a definite burn in the next period. As U ap- 
proaches the negative infinity, the probability drops 
to zero, indicating that the geographic unit will not 
burn. 

The  probability of  fire occurrence is not equivalent 
to probability of ignition because not all ignitions de- 
velop into major fires. Some fires may be put out 
quickly by effective suppression action, while others 
may burn out on their own due to lack of  fuel. It 
follows that for an ignition to develop into a major 
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fire, the human  and environmental  factors must  favor 
the spread of  the fire or at least not suppress it. 

The  quantity of  U is specified by the explanatory 
variables that represent  environmental  and human  
factors meaningful  to fire occurrence. Based on data 
extracted f rom the San Jacinto data base, a basic 
model of  fire occurrence was specified as: 

Ui = [30 
+ I3jAREA/+ [39PERIi + [3~BI,DGI 

+ [34ROTAi + [3sCAMPi + [30ROADi 
+ [37TEMP~ + [3sRAIN~ + e 

where AREA/is  the area of  the ith geographic unit; 
PERIi denotes the per imeter  of  the geographic unit; 
BLDGi measures the distance between the centroid 
location of  the ith geographic unit and its nearest 

building; R O T A  i is the variable of  expected rotation 
period determined by vegetation; CAMPi is the dis- 
tance between the geographic unit and the nearest 
campground;  ROAD/ represents the distance be- 
tween the geographic unit and the nearest road; 
TEMP i denotes the average July max imum tempera-  
ture in the geographic unit; RAIN/ is the average 
annual precipitation in the geographic unit; e is a ran- 
dora er ror  term; [3j is the pa ramete r  for t he j t h  vari- 
able in consideration. 

Coefficients of  the parameters  were estimated us- 
ing the stepwise logistic regression (LR) p rogram of  
BMDP (University of  California, Los Angeles 1987). 
A chi-square (• test was used to identify the variables 
that are statistically significant to the explanation of  
wildland fire occurrence. T h e  final structure of  the 
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Figure 8. Trails were digitized from 
the USGS topographic maps. 
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Table 3. Basic model of fire occurrence 

Log likelihood = -473.001 

Goodness of fit chi-sq (2*O*LN(O/E)) = 946.002 
D.F. = 794 

P value = 0.000 

Goodness of fit chi-sq (Hosmer-Lemeshow) = 9.026 
D.F. = 8 

P value = 0.340 

Goodness of tit chi-sq (C. C. Brown) = 2.672 
D.F. = 2  

P value = 0.263 

Maximum PCE = 68.12 

Term Coefficient SE Coe f/S E 

AREA 0.2327E-07 0.145E-97 1,60 
PERI 0.1232E-03 0.341E-04 3.62 
BLDG 0.3288E-04 0.547E-04 0.602 
ROTA - 0.2160E-02 0.491E-03 - 4.41) 
CAMP -0.1995E-04 0.218E-04 -0.916 
ROAD -0.9282E-03 0.559E-03 - 1.66 
TEMP 0.3070 0.424E-01 7.23 
RAIN -0.7312E-02 0.881E-02 -0.830 
CONSTANT -7.778 1.50 -5 .20 

probability model  incorporates  only the explanatory  
variables that  are statistically significant. 

T h e  results o f  the basic model  are listed in Table  3. 
In  the stepwise logistic regression, the cri terion for  a 
variable to enter  the model  was intentionally set loose 
in o rde r  to obtain the est imated parameters  o f  all 
variables for  fu r the r  comparisons,  regardless o f  each 
variable's significance level. T e m p e r a t u r e  (TEMP), 
the variable o f  fire rotat ion per iod (ROTA),  and pe- 
r imeter  (PERI) are significant in explaining the distri- 

but ion o f  wildland fires. Tile m a x i m u m  percentage  
correct  estimation (PCE) o f  this model  is 68.12. How- 
ever, all the • statistics indicate that the model  is not  
satisfactory and modifications are needed.  

Figure 9 shows the distr ibution o f  fire occur rence  
probability based on the basic model .  Only  the vari- 
ables that  are statistically significant were employed.  
Geograph ic  units are classified into thee levels o f  fire 
potential:  less than 50%, between 50% and 80%, and 
greater  than 80%. T h e  map  shows that the spatial 
distr ibution o f  fire occur rence  probability, as de- 
scribed by the basic model ,  is domina ted  by large par- 
cels o f  great  fire potential.  T h e  spatial pat tern,  appar-  
ently biased toward greater  values o f  fire occurrence  
probability, is consistent with the statistics in suggest- 
ing the need  of  modificat ions on model  specification. 
T o  refine the model ,  ne ighbo rhood  effects must  be 
incorpora ted .  

Measuring Neighborhood Effects 
by Spatial Autocorrelation 

Neighbo rhood  effects can be evaluated by statistics 
o f  spatial autocorrelat ion.  Spatial au tocorre la t ion  
measures  the degree  to which the distr ibution of" a 
spatial p h e n o m e n o n  is corre la ted with itself. A posi- 
tive spatial autocorre la t ion  exists if the occurrence  o f  
one  event o f  the spatial p h e n o m e n o n  u n d e r  consider-  
ation tends to attract similar events to take place in its 
ne ighborhood ,  which usually results in a clustered 
pat tern  o f  distribution. I f  the occurrence  o f  one  event 
o f  the spatial p h e n o m e n o n  tends to prevent  similar 
events f rom occur r ing  in the immedia te  ne ighbor-  
hood,  which results in a scattered o r  un i fo rm  pat tern  
o f  distribution, then the p h e n o m e n o n  displays a neg- 
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Figure 9. Probability of fire occur- 
rence estimated from the basic 
model. 

ative spatial autocorrelation. It is also possible that 
neither of  the extreme types dominates the distribu- 
tion, which results in a relatively random pattern of  
distribution. In this case, the spatial autocorrelation is 
insignificant. 

Moran's I coefficient (Moran 1948), the earliest de- 
veloped statistic for spatial autocorrelation, is adopted 
for evaluating neighborhood effects. The  I coefficient 
is a function of  spatial autocovariance standardized by 
variance and spatial arrangement,  such that 

N ~ ,  W#.(X i - X ) ( X  i - ~) l = - -  
Y~Ew o ~ ( x i  - ~)2 

where N is the number  of  geographic units; X i is the 
observed value of  variable X for the ith unit; W~j is a 
zero-one  weighting function of  contiguity which 
equals one if the ith unit and the j th  unit share a 
common boundary, and equals zero otherwise. Ac- 
cording to Cliff and Ord (1981), the expected value of  
Moran's I under  the assumption that the random vari- 
able X is normally distributed is 

E ( I )  = 1/(1 - N) 

The  expected value is always negative and approx- 
imates zero as the number  of  polygons approaches 
infinity. The  variance is 

N 2 S l  - N S  2 + 3 ( ~  W~)-) 2 
VAR(I) = (]~]~Wo)2(N 2 -  1) 

where 

S, = (1/2)~Z~z(W6 + Wii )  2 and Sz = E( 'ZWi j  + "ZWji) 2 

Table 4. Spatial autocorrelation of fire activity 

Variable Moran's I Z value 

Binary 0.203 8.441 
Areal-adjusted 0.380 15.806 

The  standard normal deviate, Z, based on the 
mean and variance of  Moran's I, is suitable for testing 
the significance of  spatial autocorrelation, such that 

Z = [I - E(I)I /KI  

where dt denotes the standard deviation o f / .  
Spatial autocorrelation was evaluated for the distri- 

bution of  both previous fire activity and vegetation. 
The  rationale is that a significant level of  spatial auto- 
correlation of  fire activity illustrates neighborhood ef- 
fects in the distribution of  wildland fires. The  spatial 
autocorrelation in the distribution of  vegetation must 
also be evaluated because it is assumed that the kind of  
vegetation determines fuel buildup rates. 

The  spatial autocorrelation of  fire activity is evalu- 
ated by measuring the record of  fire at two different 
scales, the nominal scale where a binary code of  
burned or not is applied to each unit, and a ratio scale 
where the percentage of  burned area in each unit is 
calculated. Table 4 indicates that fire activity is posi- 
tively spatially autocorrelated, i.e., past five activity in 
adjacent areas tends to increase the probability of  fire 
occurrence in geographic area being mapped.  Fur- 
thermore  the autocorrelation is more evident when 
fire activity is measured in the ratio scale, which is 
consistent with the finding of  a previous study on the 
relationships between spatial autocorrelation and 
map resolution (Chou 1991c). An important  implica- 
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Table 5. Spatial autocorrelation of vegetation 

Vegetation 
type Moran's I Z value 

Conifer 0.067 4.795 
BD 0.127 9.207 
CJ 0.077 5.537 
CP 0.036 2.630 
JP 0.329 23.678 
LL 0.328 23.937 
PM 0.116 8.373 
PP 0.467 33.699 
PQ 0.075 5.412 
WS 0.291 20.964 

Oak 0.278 19.971 
QA 0.109 7.883 
QC 0.287 20.635 
QK 0.356 25.609 

Shrub 0.361 25.900 
AG 0.000 0.149 
BA 0.058 4.191 
BC 0.528 38.332 
CH 0.28~t 20.441 
CS 0.000 0.061 
DE 0.194 17.020 
DC 0.249 17.956 
GB 0.179 13.045 
MC 0.493 35.387 
ME 0.186 13.425 
RS 0.288 20.683 
TC 0.526 37,863 

tion o f  the results is that  a spatial t e rm to represent  
ne ighbo rhood  effects is needed  in the construct ion 
o f  fire occur rence  models.  

Spatial autocorre la t ion was also evaluated for  vege- 
tation. Table  5 lists the results for  24 vegetat ion 
classes. All three general  classes illustrate a positive 
spatial autocorre la t ion which is statistically significant. 
Fu r the rmore ,  shrub classes have the highest  level o f  
spatial autocorrelat ion,  i.e., shrubs tend to fo rm clus- 
ters thereby increasing the degree  o f  fire potential.  
T h e  results clearly suggest  the need  o f  incorpora t ing  
a spatial te rm of  ne i ghbo rhood  effects in the model  o f  
fire occur rence  probability. 

Modeling Fire Occurrence with 
Neighborhood Effects 

T o  incorpora te  ne i ghbo rhood  effects in the fire 
occur rence  model,  we def ine a term NBR as the ratio 
o f  the n u m b e r  o f  b u r n e d  adjacent  units to the total 
n u m b e r  o f  adjacent  units. Add ing  this term, the mod-  
ified model  becomes: 

Ui = I~0 + [31AREAi + [32PERIi + I3~BLDGI 
+ 134ROTAi + [35CAMP i + 136ROADI 

+ [37TEMP i + [38RAIN i + [39NBR i + e 

Table 6. Modified model of fire occurrence 

Log likelihood = -390.090 

Goodness of fit chi-sq (2*O*LN(O/E)) = 780.181 
D.F. = 793 

P value = 0.621 

Goodness of fit chi-sq (Hosmer-Lemeshow) = 14.661 
D.F. = 8 

P value -= 0.066 

Goodness of fit chi-sq (C. C. BROWN) = 26.739 
D.F. --- 2 

P value ~ 0.000 

Maximum PCE ~ 78.58 

Term Coefficient SE CoeffSE 

AREA 0.5682E-07 0.155E-07 3.65 
PERI 0.3037E-03 0.49 IE-04 6.18 
BLDG 0.8500E-04 0.609E-04 1.40 
ROTA -0.3039E-02 0.566E-03 -5.37 
CAMP -0.8642E-05 0.244E-04 -0.355 
ROAD -0.5499E-03 0.632E-03 -0.871 
TEM P 0.2859 0.463E-01 6.18 
RAIN -0.1988E-01 0.100E-01 -1.98 
N B R 5.902 0.616 9.58 
CONSTANT -12.40 1.75 -7.11 

where  notat ions are identical to those in tile basic 
model .  T h e  est imated coefficients and  statistics o f  the 
modif ied  model  are listed in Table  6. T h e  PCE in- 
creases to a much  h igher  level o f  78.58, c o m p a r e d  to 
that o f  the basic model .  All the X 2 statistics are statisti- 
cally significant, suggest ing that the model  is satisfac- 
tory for  explaining the distr ibution o fwi ld l and  fires. 

T h e  compar i son  between the log likelihood o f  this 
table and that  o f  Table  3 indicates that  the improve-  
ment  over the basic model ,  due  to the inclusion o f  
NBR, is statistically significant. Fu r the rmore ,  the high 
significance o f  the spatial te rm suggests that  neigh- 
b o r h o o d  effects play an impor tan t  role in the distribu- 
tion o f  wildland fires. This f inding has two impor tan t  
implications for  wildfire rrmnagement.  First, the ex- 
planation and  predict ion o f  fire occur rence  must  take 
into considerat ion the n e i g h b o r h o o d  effects o f  spatial 
processes. As such, models  o f  fire occurrence  proba-  
bility mus t  incorporate ,  in addit ion to envi ronmenta l  
and  h u m a n  factors, a spatial term that represents  
ne ighbo rhood  effects. Second, effective spatial strate- 
gies o f  wildfire m a n a g e m e n t  can be developed by uti- 
lizing the advantages  o f  ne ighborhood  effects. For  
instance, a p lanned  burn  applied to a location o f  max- 
imum ne ighborhood  effects can be much  m o r e  effec- 
tive than that applied to ano ther  location (Chou 
1992b). 
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Figure 10. Probability of fire occur- 
rence estimated form the modified 
model. 

In this modified model, the variables that are statis- 
tically significant include the spatial term of  neighbor- 
hood effects (NBR), fire rotation weight (ROTA), 
temperature  (TEMP), perimeter (PERI), and area 
(AREA). Among them, perimeter and areas are ad- 
justing factors to take into account the varying size of  
geographic units. I f  geographic units are divided into 
smaller units of  similar size, these two variables may 
become unnecessary. 

Again, only these significant variables were em- 
ployed in constructing the spatial distribution of  fire 
occurrence probability based on the modified model 
(Figure 10). Tile pattern apparently removed the spa- 
tial bias due to large parcels of  great fire potential 
depicted in Figure 9. The  differences in the spatial 
pattern of  fire occurrence probability between these 
models have important  implications. First, since 
neighborhood effects play an important  role in the 
distribution of  wildland fires, the explanation and 
prediction of  fire potential must take into consider- 
ation the effects of  such spatial processes. The  distri- 
bution of  fire occurrence probability can be more ac- 
curately mapped when the model incorporates, in 
addition to environmental and human-related fac- 
tors, a spatial term of  neighborhood effects. Maps of  
fire occurrence probability are especially useful for 
identifying critical zones of  fire potential and assign- 
ing priority to areas of  special concern. Second, the 
design of  effective management  strategies of  fire pre- 
vention must consider neighborhood effects of  each 
preventive measure. Comparisons between Figure 9 
and Figure I0 suggest that the probability of  fire oc- 

currence for large parcels of  great fire potential can 
be reduced by carefully implementing a preventive 
treatment which generates wide spread neighbor- 
hood effects. Operational methods for evaluating dif- 
ferent  strategies of  wildfire prevention based on 
neighborhood effects are available (Chou 1992b). 

Conclusion 

In a previous study based on the data for the Idyll- 
wild Quadrangle,  Chou and others (1990) compared 
different spatial weighting functions in order  to con- 
struct a model of  large fire occurrence probability. 
This study includes the entire San Jacinto Ranger Dis- 
trict and deals with a data base much larger than for 
the Idyllwild quadrangle. In this analysis we show that 
the model building and spatial analyses can be applied 
to a district of  practical significance and the results can 
be empirically useful for wildland fire management. 
The  methodology developed in this study is especially 
usefid for empirical applications in three areas. 

First, areas of  great fire potential can be outlined 
from the map of  fire occurrence probability. Figure 
10 shows parcels of  great fire potential where the fire 
occurrence probability is greater than eighty percent. 
For fire managers at the San Jacinto Ranger District, 
this map is useful for delineating target areas tbr con- 
sideration of  major preventive treatments. Further- 
more, using a GIS, the fire manager can overlay the 
map of  fire occurrence probability with another  map 
showing features of  major concern. For instance, if 
the protection of  an endangered species has high pri- 
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ority, overlaying the map of  fire occurrence probabil- 
ity onto the map of  that species allows the manager to 
identify critical zones of  great fire potential that pose 
a threat to the endangered species. 

Second, the paranteters estimated from logistic re- 
gressions are useful for evaluating impacts of differ- 
ent variables on the overall fire danger of  the entire 
district. Using the model, one may evaluate the possi- 
ble change in fire occurrence probability in response 
to any proposed treatment. For instance, the applica- 
tion of a planned burn to a parcel of  great fire poten- 
tial will not only minimize the fire potential of  the 
burned parcel but also reduce the fire occurrence 
probability of the adjacent parcels due to neighbor- 
hood effects. The extent to which a planned burn will 
affect the whole district can be estimated from the 
spatial term of  neighborhood effects. 

Third, a proposed plan of fire prevention may con- 
sist of  a combination of  several tasks. Using the model 
of  fire occurrence, one can evaluate both the total cost 
of  the plan and the expected effectiveness in reducing 
the fire potential of  the entire district. Alternative 
strategies can be evaluated objectively and the strat- 
egy of maximum cost-effectiveness can be identified 
(Chou 1992b). 

Applications of  the model of fire occurrence re- 
quire that the model be sufficiently flexible for fre- 
quent updating in response to changes in environ- 
mental, human, and spatial conditions. Each time 
major changes occur in such conditions, the data must 
be updated and the model be tested for most current 
estimation of  parameters. In this regard, we suggest 
that additional efforts be made in updating the data 
base and expanding the model. Since data entry is the 
most time-consuming and labor-intensive part of con- 
structing any comprehensive data base, updating usu- 
ally starts after the database is completed. As the data 
base of  this study was recently completed, we are now 
ready to obtain additional data and enter them into 
the database. Most importantly, the fire activity since 
1984 must be entered into the data base and incorpo- 
rated in the model to account for the changes due to 
these fires. 

Furthermore,  the model of fire occurrence can be 
expanded by including additional variables that are 
relevant to fire behavior and management.  At least 
two variables must be considered: one that relates lo- 
cal winds to topography (Zack and Minnich 1991) and 
another that reflects the existing preventive treat- 
ments. Once these data become available, the same 
procedure of model building can be carried out again 
and a more accurate distribution of  fire occurrence 
probability can be obtained. 
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