
Reliable C om pu t ing 1 (1) (1995), pp. 77 -91

A parallel interval method implementation
for global optimization using dynamic load
balancing
JERRY ERIKSSON and PER LINDSTR6M

During the past few years the interest paid to global optimization has rapidly increased. One of the
main reas(ms is the new tedmok~gy of para!lel computers which offer" computatkmal l~wer capable of
solving global optimization problems in reasonable time. The method studied in this work is based on
interval atmlysis which provides'a reliable way for solving the problem. Despite the fact that the method
contains a high degree of potential parallelism, it is not straight forward to'parallelize due to its irregular
and unpredictable complitational l~haviour. Thb paper deals with the problem of balan6ng the load
dynamically, I~th with respect to the quamity and to the qtmlity of the tasks. EITt~ient strategies are
pro~)sed and implemented on an lntd iPSC/2 hypercube. Since the sequential algorithm is used as a
ba~e it will be m,~lified to suit the paralld algorithm.

PeaArt3algaa napaAAeAbHoro HHTepBaABHOrO
MeTOha hZ_a rAo6aAbHO OIIWrtMHBalIrm c
ArlHaMw~eCKaM 6aaaacrtp0Bam eM Harpy3Krt
~ K . ~PHKCCOH, I"L AHHACTPFA~

TCtlCHIIC l|(~,le,'tHHX HCCKO,IGKXX .ICT l lHTepe~ K IIp~X~,ICMr c.1(~a.lbXOfi OIITIIMH3alIHII ~bICT~N} BO3p~-

CTa.I. O+lHa 113 (]CHOHHIdX I lpl lLIXX 3TI)FO - - HOBble TCXHO,1Orilil i lapa.l .~e.lbXhlX KOMIII~I()TC~)B+ (~)4L'CIIC-

q l l l~N) l l i l lC +'IOCTaTOHXyl) BMtlIIr MOl l lHO~b ~1~1fl p~ l l leXHf l ~,~Latl r,I(X~)~,IbH01 "] O I IT | IMX~I / i l l l

]a paaVMl l {~ llp~$klx. MeTO,'I, paCCMOTp~XHMI~ B [i a x x o l l oaC)OTC, (~ x o i ~ x X -'s IIXTepBa.lhXOM - '~xa. l i l$,

KOTOphil'l (~KIIeHIII~'IL~T Ha:|c~XI~I'I l l yTb] ~ l | l e X l i f l ~,'l--IsIx, HeCMr xa "kXatlllTe.abxyl() .~IO.III) IIOTCX-

Ill la,' lbHOrO llapa,l,]e+lll3Mil B 3T('IM MeTO,'te, el'() l la l~,1: te, ' l l laal l i lH Ii~+'ICTaB,'I~ii~"T CIX~.M)II l leTpllBl la, ' IbXylO

3~,'laLly ll3-:J~r Hepl~ry,l l l lpHol'o t l HCIIpI~,'IcKa3ycM(lro Xt),']~ BIJHI~|C,'ICHH~"L HacTo~ii l la~l ~.~[X)T~ p~CCMaTpII-

Y~K~I" II|:)(~+leMy ,IlIHaMIIH~..KOFO (*I~,'IIIHc14poII~.HH$1 HaIpV~Ki l C y~eTOM KaK KaHe~eTl~, TaK. I~1 KO,'I|tl~I~'CTi~I.

:~,'latl. []p~.' i , l i l lal l lTC~l : ~ K T t l B H h l C CTpaTcrxI ! p~l l leXl l~l II OIIIIChlI~CTC,Ii IlX l.~'~1,111::]~1111$1 Ha rl. l l lCpKy0~

lntd iPSCd2. Fhx:~o:~b~.y B Ka~IC'CTt.~ I.K'2xo,'llloro ilCIIO,lh3yeL~lrC~l IIOC,le,lOl~Te,"lbltbll"l a,' lrOpllTM, (i l l 6y: leT

M(I:|X(I:I l lUlI~)BaH , I-I"I"(I II(131M.I.111T IICllOdl~,~ll$~'l'b t~ro Kall. Ilap~,l,lC,~lbilblil.

1. Introduction
During the last two decades, a n u m b e r of methods for solving global opt imizat ion problems have

been proposed. O n e of the hardest issues for these p rob l ems is the computa t ional requi rements
that are very high. Fortunately, m o d e r n c o m p u t e r technology has m a d e significant progress

(~) J. Etiksson, P. LindstrSm, 1995

78 J. ERIKSSON t P. L|NDSTROM

The global optimization which has brough! the global optimization problem into new light.
problem is,

min f (x)

.~.t. l~ <_ xi <_. u , i = L 2 n .

In this paper, let I be the set of real compact intervals. A box is defined as a closed
rectangular parallelepiped whh sides parallel to the coordinate axes. In this paper, a box is
denoted with an underlined letter as in X where X E I" .

The method studied here for solving the global optimization problem is termed the. bttervtd
r,ethod, see [I, 7, 13, 15]. The method provides a reliable way for solving the global optimization
problem. It is based on an exhaustive search in a given box. The box is dynamically sub-divided
into smaller sub-boxes until they are manageable by different elimination phases. Throughout
the algorithm, all sub-boxes not yet examined are ordered in a priority queue so that the most
promising sub-box can be quickly extracted.

Here the interval method is implemented as a brtmch.4md-&mnd qdgoritln, which is an impor-
tant class of methods for solving optimization problems. Since the parallelism in brtmch.4tnd-bound
idgorithms is inherently irregular, it requires dynamic load balancing in its implementation on
a distributed memory computer. In this study, different decentralized dynamic load balancing
strategies are designed and implemented. The load balancers are based on both receiver and
sender initiated approaches. In many implementations in this area, the scheduler is only dealing
with balancing the load with respect to the quantity of tasks. In this paper, it is seen that it is
also important to consider the quality of the tasks.

Initially, in the parallel execution, the box is split into p sub-boxes, where p is the
number of processors. Since the original sequential algorithm does not include any initial
sub-division, it is not fair to compare execution time between the sequential algorithm and the
parallel algorithm. Instead, it is better to include an initial phase in the sequential algorithm.
Additionally, in situations when the Krawczyk method (the local minimum search method)
performs poorly a bisection is often too weak. A sub.dividing strategy based on the result of
the Krawczyk method that may split the box into more than two sub-boxes is proposed.

The paper is outlined as follows. In Section 2, the interval method is described. For the
readers who are unfamiliar with the interval method, an introduction to interval analysis and
a more detailed description of the interval method can be found in [16]. The modifications
to the sequential algorithm are given in Section 3. The parallel algorithm and its realization
are discussed in Section 4. Section 5 deals with the dynamic load balancing problem. Last, m
Section 6, the results and experiences are summarized.

2D The sequential algorithm
The algorithm is based on an exhaustive search in the multidimensional solution space. The
initial box can be arbitrarily sub-divided into sub-boxes which can be investigated independently
of each other. If a sub-box is too large to be manageable it is split further into smaller sub-
boxes. Fortunately, it is not necessary to fully investigate all sub-boxes. Instead, many sub-boxes
can quickly be discarded as not interesting by different rules. Further a priority queue is used
to order the sub-boxes by increasing lower bound. The lower bound is the lowest function value
the objective function can obtain in a sub-box. During the execution, sub-boxes are dynamically
queued and dequeued from the priority queue.

A PARALLEL INTERVAL METItOD IMPL~MENFfATION FOR GLOBAL OPTIMIZATION... 79

The first step in the algorithm is to compute the lower bound of the initial box, X0. The
box X0 with its corresponding lower bound is inserted in the priority queue. As long as there
exist sub-boxes that are not investigated, i.e., the priority queue is not empty, the execution
continues.

Next, the first sub-box is dequeued from the priority queue. If its corresponding lower
bound is higher than the current minimum (ca~inl), the algorithm terminates. Hence, it is
possible to eliminate sub-boxes before any costly computations of the sub-boxes are carried
out. This test is often called the mid-point test. In the second step it is investigated whether
the subbox is monotonous. 2 T h e purpose of this elimination phase, which is often caUed an
acceleration device, is to make the algorithm faster and it does not seek a minimum explicitly.
The algorithm would still be correct even if this phase was removed from the algorithm, but
the t ime to solve some problems could be expected to increase dra,naticailv.

If the sub-box passes these tests the Krawczyk method is invoked to explicitly seek a
local minimum. The Krawc~k method can end up with one of three different results. If the
Krawczyk method converges it has either made a significant or a non-significant +improvement .
otherwize the Krawczyk method diverges and the box is excluded. The Krawczyk iteration
continues as long as it converges signifa:antly, in the non-significant case the box is split into
two new sub-boxes which are inserted in the priority queue. If a lower minimum is found, i.e.,
a value which is lower than cm/n, then cm/n is updated.

When all sub-boxes, with a width greater than a given epsilon (e) have been investigated,
the algorithm terminates. At this stage cmin holds the global minimum.

30 Modifications to the original algorithm
T h e purpose of this modification is to extend the seqttentiai algorithm so it can serve as an
efficient bails for the parallel algorithm. The original sequential algorithm does not contain an
initial tubal, ividing of the solution space. Since the eliminations phases are often inefficient in
the beginning of the execution an initial phase is to prefer. The second snl~diving modification
proposed uses the result of the Krawczyk operator.

The initial phase. We propose an extension so a number of bisections can be carried out
initially. Here the term initial phase refers to the time before entering the sequence of cycles.
The elimination phases, especially the Krawczyk method, are often inefficient in the first part
of the execution and it is not motivated to invoke them too early. Ideally, it would be more
efficient if the sub-boxes were small enough to be directly manageable by the elimination
phases.

There is a trade-off in determining the number of subboxes to be generated. If too
few sub-boxes are generated, the gain will not be large. On the other hand, if too many
sub.boxes are generated, a lot of sub-hexes will be unnecessarily investigated. In order to keep
the algorithm reliable, the generation of sub-boxes should be held at a moderate level.

Unfortunately, it is impossible to give an optimal :formula on how a subbox generation
should be defined. Probably, the only practical way is to use common sense and experiences

l~/n is initially set to +oc.
2A box X is said to he monotonous if the t'tuv:tion f is monotonous in X__..

80 i . ERIKSSON t P . LINDSTR(~M

from computer tests. [n order to design a usefid practical algorithm, the following three
parameters have been emphasized:

�9 the width of the initial box, w(X__0),

�9 the required precision, z,

�9 the dimension of X_.~0, n.

Here the qt,otient u'(X0)/e 'is an important factor since it is the upper bound of how
maqy sub-boxes that must be investigated. However, this quotient could be a very large number.
By applying logi0 to the quotient a suitable mimber is often - achieved. That is, it gives Values
not larger than 10 for reasonable sizes Of the initial box and of the accuracy respectively. This
leads to Formula (1).

However, when n is large s should be limited, That is, if. n >_ 10, then s :is be limited to
2, to avoid a too high sub-bo x generation frequency.

The next task is to decide how s ~shouid I~ used.]f n is large, it is generally more
complicated and should lead to a higher generation of sub.boxes. After some testing, the
following strategy turned out to be the most promising.

Algorithm: Initial phase

I. (~ n p u t e s by Formula (1).

2. For i = 1, n do steps 3-5.

3. Pick rdl sub-boxes in the priority :queue.

4. Split all these" sub-~xes into S' sub-boxes for dimension i.

5. Insert all these in the priority queue.

In other words, the initial box is dequeued from the priority queue and is further split
into s sub-boxes. These newly created sub,k)oxes are inserted in t h e priority queue. At this
point the priority queue, consists or" s sub-boxes. This pattern is repeated for all dilnensions, n.
After rt repetilions the priority qneue consists of s n sub-boxes.

There is no need: to compute the lower bound of the sub-lx)xes generated except in the
last loop. That is, in the first n - 1 loops the. value zero is assigned to the lower bound of each
sub-box. Since all lower bounds are zero, the priority queu e is essentially a. simple list in these
loops. Hence, this scheme avoids the calculation of "s. n - x lower bounds. But more importantly,
the elimination phases have not been invoked for these sub-boxes.

It could also be motivated to consider different mathematical operations and interval
dependency of the object ftmction. However, it would probably be an immense task to
determine or calculate weights on these operations and it has not been dealt with.

A PARALLEL INTERVAL M E I H O D IMPLF.ME~NTATION FOR GLOBAL OPTIMIZATION. . . 81

A modified bisection. The Krawczyk method [8] computes an operator K(X) , called the
Krawczyk operator. In each iteration the sub-box X,~+l = X,, Ct K(Xn) is computed. If
X,,~t is not an erupt} sub-box, there might exist a local mininmm in the sub-box, otherwise
the method diverges. A positive side effect lies in the inherent information in K(X) . If

w(K(Xn)) >_ 0.9'w(X.), then the Krawczyk method has made non-significant a improvement

(otherwise significant improvement). The reason is probably that w(X~,,) is too large to be
efficiendy manageable by the Krawczyk method. In these situations a bisection of X n is

If w(K(mn)) >> w(mn), there is a risk that a bisection is too powerless. If the required.
sub-box cotdd be split into more than two sub-boxes the elimination phases would be invoked

% /

on smaller sub-boxes.

!n order to realize this approach another practical algorithm is designed. The following
paraineters are considered as important:

�9 the width of the current sub-box, w(~_,,),

�9 the. width of the Krawczyk operator, w(K(Xn)). If w(K(X,,))is much wider than
w(X,) it could be expected the Krawczyk method has been very unsuccessful

Basically, this idea is somewhat akin to the previous algorithm. In this case the quotient

w(K(Xn))/w(X___,,) is of great importance. That is, a high quotient should lead to a high
number of subboxes generated. The quotient is applied to logt0 in order to obtain a suitable
number. Further, the upper bound of this number is limited to upihnit = 6 leading to
Formula (2).

s = max (ra in (logt0 (w(K(Xn))/w(X~)): uplimit),2). (2)

The sub-division is applied to the widest interval in the sub-box.

However, this solution is not fidly satisfactory. If the Krawczyk method continuously
performs poorly, a verv high number of sub-boxes will be generated. Therefore, an adaptive
mechanism is included. If the Krawczyk inethod performs poorly the number of sub-boxes to
be generated is slightly decreased by a term tad. The term rut. initially equals zero, could also
be increased during the execution if it turns out that the Krawczyk method is getting more
efficient. In our tests, it has been shown that it is suitable to let ad be decreased by 0.25 for
each non-significant improvement and increased by 0.25 for each significant improvement. By
using Formula (3) the variable, s, varies between two (ordinary bisection) and ttplimit (equal to
six in our tests). Hence, if ad is getting too large or too small it will not be not adjusted.

Summary~ these modifications consist Of the following two parts; First, the algorithm lnititd
ptuLw, is supplied, which purpose is to avoid unnecessary computations in the beginning of the

execution. Second, in the situations when the width of the Krawczyk operator, w(K(X__n)), is

much larger than the width of the computed sub-box, w(Xn), Formula (3) is used to determine
the number of sub-boxes to be generated.

These modifications are solely based oil common sense, but they have an empirical basis. It
is mos~ important to keep control over the number of generated boxes otherwise an extremely
high sub-box generation might result.

82 J. ERIKSSON o P. LINDb'TRg~M

No.

6
7

Function

(1.5 - x l + XlXz) 2 + (2.25 - x l + x i x 2) 2 + (2.625 - x l + x l x ~) 2

E~~ F'~k, Fk = e x p (--:~'~ -- e x p (:--~o) A k x a , Ak = exp (~o k) -- e x p (- k) k 102
(ah + 10xz) 2 + 5(xa - x4) z + (xz - 2xa) 4 + 10(xl - x4) 4

100(x2 - x~) 2 + (~ - 1) 2

E~ ~ In (x~ - 2)g + E~~ In (10 - xi) 2 m
[(:~+y") + 1 cos x cos

"Fable 1. The test problems

2

2

3

4

2

10

2

�9 Initial box, X__ ~ . # local minima No.

1 [- 10, 10][- 10, 10]
2 [- 10, 10][- 10, 10]

3 [0, 5][8, 11][.5, 3]
4 [-4 , 5][-4, ~][.~, 5][-4 , 51

5 [-lOOOO. lOOOO][-lOOOO, mOOOl

6 [3, 4] [3, 4] [3, 4] [3, 4] [3, 4] [3, 6] [3, 61 [3, 6] [3, 61 [3, 6]
7 [- 1000, 1000}[- 1000, 1000]

760
1
2

1
1

boundary valne

1

Table 2. The initial boxes

Teat results. The test fimctions selected are well-known global oplimization problems. There
are polynomial fimctions as well as fimctions which include both exponential operations or
trigonometrical operations.

The selection of test functions is shown in Table 1. Six of the seven functions can be found
in [18] and number 6 can be found in [17]. The corresponding initial boxes for the functions
are given in Table 2. Throughout all tests the accuracy (z) is set to 0.1. The computer used
for the sequential implementation is a Sun Sparc 1+.

Table 3 summarizes the total execution times. The second column shows the improvements
after the modification. The last column displays the improvement of the original algorithm
versus the final proposed algorithm. For six of the functions an improvement of 27 - 47%
has been made. For Function 2 only a minor improvement is achieved. For a more detailed
presentation of the test results, see [4],

We stress that the purpose of these modifications is m make the algorithm more suitable
to the parallel algorithm. However, the test results show that these ideas might be successful
in the sequential algorithm as well.

A PARALLEL INTERVAL METHOD IMPLEMENTATION FOR GLOKAL OPTIMIZATION... 83

Function Original After hnprovement

No. algorithm modification

1

2

3

4

5

6

7

5.81

1.56

12.45

0.36

0.82

55IA8

2.38

4.26

1.46

8.46

0.19

0.58

388.61

1.46

1.55 (27%)

o.1o (6%)

3.99 (32%)

0.17 (47%)

0.24 (29%)

162.87 (20%)

0.92 (38%)

Table 3. Comparison of the original sequential, algorithm versus the modification (in seconds)

4. The parallel algorithm
The sequential algorithm has a high level of inherent parallelism. All sub-boxes are independent
of each other and can'be investigated in parallel. As mentioned earlier, the interval method is
here formed as a brand~md-bmmd qdgorithm. The following algorithm is adapted for the interval
method, but the structure also fits many other brtmch.~md-boumi qdgorilhms, see [6].

1. la i t la ihat i~. The original box is inserted in the priority queue and the cm/n is set to oo.

2. Seleaioa. The most promising subimx is selected and dequeued from the priority queue.

3. Lower bouad teat. If the lower bound of the new sub-box is higher than train, the
sub-box is excluded from further consideration (The mid-point test).

4. Elimination test. The sub-box is investigated by the different elimination phases. The
sub-box is excluded if it is guaranteed not to lead to an optimal solution.

5. Feasibility test, Update cmin if a lower minimum has been found. If so, exclude all
sub-boxes in the priority queue that have a higher lower bound than cmin.

6. Branching. Split the sub-box into new smaller sub.boxes and insert these into the priority
queue.

7. Algorithm termination. If the priority queue is not empty then repeat 2-6, otherwise
the algorithm terminates and the optimal value is hold by cm/n.

4.1. Realization of branch-and-bound methods on iPSC/2
The parallel computer used in this work is an intel iPSC/2 hypercube, supplied with 64
processors (nodes). The hypercube computer hel0ngs io ihe category of distributed memory
computers. Another name is message-passing computers since communication between nodes
are carried out by sending messages to each other. A hypercube has always 2 d nodes where

8 4 J. ERIKSSON 0 P. IJNDSI"ROM

each n(~le ha.s d physi,:al neighl~mrs. The most inlel csting pr q;evties of the hypercube topology
is the different, mapping conligtlrati,nt possibilities, s~tch a~ ring, toru~ cubes, arid trees, see It-it.
Another nice featttre is the efficient inlplementati,m ,ff global -pcrati,)t~s. Fi,r example, if each
node has ~.1 partly computed vector, it is possible to summarize all the,e it'/ d steps.

In order to implemem a parallel bmmh-.and.bo,mt meth~M, or lnorc pretiselv the parallel
interval method on a distributed memory tnachine, several issues must be solved

�9 How and where should tile priority queue be stored in ordei to"

- - keep all nodes htlsy investigating sttb-~oxes (ql.tamity).

-- mv/2stigate the m-sl. promising std~-h,~xes (quality).

- utilize the total memory efficiently.

�9 Ho~ !o broadcast the new ,ninima as ,luicki.~ as possible

The first item refers to the dynamic load. balancing problem: Our approach uses two
proces~s or'/ each node; a worke r and a sdteduler, T h e first process, the worker, investigates
sub-boxes. The second process, the scheduler, tries to balance, tile load as fairly as possible
among the nodes. It also deaJs with the distribme d termination .problem. T h e idea 0f using
two processes is a matter of abstraction. To u"eal the :i~,k'o processes as '~p,Srate makes the
discussion'conceptuallv cleat~er and also serve :to emphasize the independence of the processes.

- , . . �9 . . - .

The worker should be' free from all responsibility consider!ng load balancing and, besides
investigating sub-l~kes, only "request and receive sub-lx>xes fi'om .the ~t:hechtler. ,In .tile next
section, different load 16alancers are proposed.

The ~cond item refers to the problem of broadcasting a new minimum. If a new lower
local minimum is fottnd the worker broadcasts the ulinimum to all t~.her worker s . .Th i s is
carried out relatively cheaply by just One communication call. c,~'nd(). All other nodes can
receive this message b,F a corresponding crecy(), However. t, he problem is to dete~'mitie when.
during the execution, the worker should receive this ntessage. It is expensive to probe f i ~ r a

message ofren. On,.the other hand. urnlecesm~r,r compntalions might be carried out .if tile m~le
probes lt~o seldom.

Ahernatively, the iPSC,2 ,.,frets ;.ill interrupt-driven message primitive, hrect~(~, that solves
this problem efficiently: in tile beginning of tile execution, a node Can infornl the operating
system which messages (in our case a new mininntm) that should have special treatment.
Whenever a tuew minimum, is pending it is immediately received and the execution contimtes
in all user predefined subroutine, hl this sul>routine cmin is updated and then it is legal to
jump to any place in the c,xte. This timture enables tile worker to xeceive a new minimuln
during an investigation of a sttb.-box. It is even po.~sible that the current stlb-l~x is excluded
during tile investigation if its lower bound is higher than the new received minimum~

It is certainly preferahle to use this primitive instead of oecv 0. The advantage is twofold.
First, one d ~ not have to Ix~ther when and wh'ere to probe for a new minimum. Second.
cmin is updated immediately after it reaches the node which makes it p,,ssible to avoid some
COml~utatitnts.

5. Dynamic load balancing
The amount of work of im.,estigating a sub-box (task in the sequel) can differ widely. Due to
the :|hct that no knowledge considering :tile behaviour of the execution 'is known a priori, it is

A PARALLEL INTERVAL METHOD IMPLF~MF~NTATION FOR GLOBAL OPTIMIZATION... 8 5

no*. suitable to statically balance the load. The use of a static load balancing strategy would
undoulafidly lead to an inefficient use of the parallel computer. In general, a brand~.~aad-bound
cdgorithm can never be efficiently implemented on a parallel machine without dynamic load
balancing.

In an earlier work, [~3], two different approaches were implemented and compared, a
centralized load balancer based on the Master-and-slave concept and a hypercube topology
based decentralized load balancer.

In the centralized load balancer the priority queue and c,~in are Stored at the Master node.
The other nodes (the slaves) request work from the Master. The Master always deliver the
most promising task to the requesting node. This is the main advantage of using centralized
load balancers. Sadly, a lot of drawbacks occur t,sing this approach. The Master very often
becomes a serious bottleneck w.r.t, the processor capacity and worse, the communication unit
will often be quickly overloaded.

The decentralized load balancer, on the other hand, avoids the bottlenecks mentioned
above. But, since the priority queue is distributed among the p nodes and the load balancer
only consider the quantity of the tasks, the p most promising tasks are seldom investigated.
Test results showed that, when the number of nodes exceeds 8, the decentralized load balancer
is superior to the centralized load balancer. Hence, in the sequel, only the decentralized load
balancer will be considered and filrther developed.

The aim for a dynamic load balancer is to migrate work from the busy nodes to the
lightly loaded or idle nodes during the execution. A decentralized dynamic load balancing
scheme can he characterized as one of the following, see [I0]:

�9 Sender-initialed. This means that the load balancer delivers tasks from the local node to
lightly loaded nodes without any explicit request from the remote nodes. However the
load balancer often has some knowledge of the load in the system.

�9 Receh~,r-initi~aed. In these schemes the load balancer requests tasks from a sub-set of nodes.
A demand is initiated b i' an idle node or lightly loaded node.

�9 Hybrid. This scheme is a hybrid of the two earlier.

In the following sections, receiver-initiated as well as sender-initiated load balancers are
proposed. In Section 5.1 a receiver-initiated quantity load balancer is described. This load
balancer considers the load with respect to the quantity of the tasks. The goal of this load
balancer is to reduce the inefficient parts of our previous load balancer based on the hypercube
topology. Two sender-initiated load balancers are proposed in Section 5.2. These load balancers
strive to balance the load with respect to the quality of the tasks. The purpose is to capture
the advantages of the centralized load halat~cer. Together, the receiver-initiated and sender-
initiated load balancer form a hybrid load balancer. In Section 5.3 test resuhs for an Intel
iPSC/2 hypercube are given.

5.1. The receiver-initiated quantity load balancer

One of tile drawbacks of using the hypercube topology is that tile protocol requires a

lot of messages. Consider the following scenario for a d-dimensional hypercube: A node

8 6 I. ERIKSSO,'q, P. LIN-o~'IF, t3M

has been idlefl Ti le idle node requests work from al[its hnmediale neighbors (d messages)
Upon receiving a task fi-om one or more abundant t node it sends a acknowledgement to
the same set of nt~les (d ntessages). This implies a total of 2d messages for the requests
attd acknowledgements, plus one or more messages consisting of tasks from abtmdant nodes.
Auother disadvantage of using this .scheme is that tile l~)werftt[cttt-throttgh network is not
fully utilized.

Here, a new load balancer algorithm based on a ring topology that solves the two earlier
drawbacks is proposed (see Figure 1). The scheduler proposed has the following properties.

0 @, 0

Abundant

o| @,
@

Figure 1. Node 7 has been idle. It sends a request to the next node in the ring. Just before
node 0 receive the request from node 7 it has also become idle. Node 0 packs both requests
into one message and sends it to node L Unfortunately, node 1 has no tasks to deliver so it
sends the request filrther to node 2. Since this node has tasks; it sends one task directly to
both node 0 and node 7 respectively, without interfering node I.

First. it is fiflly asynchronously and decentralized which means tha t balancing is carried
ont whenever necessary and not at specifi c intervals. The term decentralized means that the
responsibility for load balancing is decentralized among all nodes. Second, it reduces the
communication for the scheduler to a very low level. An idle node sends a reqnest to the
next node in the ring and upon receiving a task it sends no acknowledgement. For a 64-
nodes configuration, this approach reduces the number of messages significantly. Third, if
all idle node sends a request to another idle node, the request is pa"ssed fttrther packed into
one message. Tile last feature is that an abundant node does not send the task back to the
ring. Instead it sends the task directly to tile target node thereby utilizing the cut-through
communication network. For a more detailed description, see [4].

5.2. The sender-initiated qualitative load balancer
To this point the quality of the tasks has not been considered. By tile term quality, we mean
how promising the tasks are (the lower bonnd Of the sub-boxes). The purpose of the quality
balancer is both to speed-up the execution and to redttce tile number of tasks, thereby capturing

:~A m~de that is out of tasks is called idle,
aA n~ le that has a surplus of tasks is called abundant.

A PARALLEL INTERVAL ME'ftIOO IMI'LE*IE~N.rI'ArlONI FOR GLOBAL OPTIMIZATION... 87

the advantages of the centralized toad balancer, in other words, its purpose is to overcome
ttw problem ,ff investigating non-promising tasks. Several approaches based on hettristics have
been tested. The t~o schemes presented below turned out to give the best results. The
~eceiver-initiated quantity load balancer is inchtded as a base in I-x,th schemes.

5.2.1. Random distribution

The first scheme acts as follows. Each scheduler counts the number of tasks generated by
splittings. Each time the counter exceeds a generalor limit the scheduler sends its first task in
its priority qnette to a randomly chosen nocle. In this scheme the ge,eratm limil is fixed to 5.
This strategy tends to keep the most promising tasks scattered among all ,lodes so all workers
are likely to investigate one of the most promising task. Each separate local scheduler has
no knowledge about the load on other ,lodes. So, in the worst case, a node with a lot of
promising tasks can unnecessarily receive non-promising tasks. This is IlOt tOO bad since the
non-promising tasks will be inserted at tile end of the receiver's priority queue.

Notice that, assuming that the random generator works Well (which it does), this scheme
also implicitly balances file |oad with respect to qnantity.

5.22. Adaptive random distribution

This scheme is an improvement of the previous. Instead of having the ge,ermor limit fixed it
can be varied during the execution. The scheme acts as follows. As previously, a scheduler
that receives a task insei-ts it in its priority queue. If the task is inserted first in the priority
queue, tile scheduler respond a good message back to the sending node. Otherwise, if the task
is, inserted in another place in the priority queue, a &d message is responded. The sending
node then receives the responded message and its local generator limit is adjusted depending
on the vahte of the message. If a good message is received, the generator limit is decreased by
one. This means that the scheduler ,lode will distributes tasks more frequently. The opposite
holds if a /~M message is received. For example, let the generator limit initially be set to 5. If
a scheduler has distributed 15 &u/ and 3 good tasks, the generraor limit is 17 (5 + 15 - 3). In
this scenario the scheduler is distributing tasks rather seldom due to all bcul messages it has
received.

The advantages of using this approach are that a scheduler with promising tasks tend
to distribute more tasks than others. This leads to less distributions and investigations of
non-promising tasks.

5.3. Test remits and comparisons
In the context of parallel computers, the efficiency is measured as:

time(s)
E(p) = time(p) * p

where lime(s) is the sequential execution time and time(p) is the parallel execution time using
p nodes. E(p) * 100 expresses the efficiency ill percentages. Naturally, the goal is to achieve
efficiency as close as possible to 100%.

The test resnlts show comparisons of the different load balancers w.r.t, the efficiency.
Due to some hardware problems, we have been forced to use software interval romading. By

88 I . ERIKSSON, P. LINDS'FR(~M

t26

100

2 0

R e r
H y b r i d r a n d o m - d i s ~ r ~ b , ~ i o ~ ~ -

Rybr~.d a d a p t - i v - r a n d o m - d i s t . r s - ~ -

/ ;

\

I I | I I I

4 8 16 32 6 4
~ u r ~ b e r o~ n o d e I

Figure '2. Gmtparison of efficiency using Function 3

that fact, no execution times are presented. T h e three most time consuming (on tile iPSC/2)
functions from the seven test functiolls presented in Table 1 have been selected.

Figure 2 shows the resuhs for Function 3. The efficiency is over 60c~ up. to 16 nodes.
[Jsing more nodes, it is hard to achieve high efficienc~ ~ due to the very short execution time.
h is clear that a problem must be large if it should be fruitful to rise a parallel co,nputer.

in Figure 3 the resuhs for Functi(m 4 are displayed. The efficiency is over 80r~ for all
load balancers using tip to "{2 iiodes~ It is clear that the ,hybrid load balancer including the
;'tdaptive randolfi distribution is more efficient than the o thers foi: all node configurations. Due
to: the very irregular parallel algorithm it is possible to achieve an efficiency over 100c/~. This
is due to the fact that th.e parallel algorithm does ,~ot investigate the sub-boxes in the same
order as the sequential algorithm.

T h e best results are achieved using Function 6 as displayed in Figure 4. T h e differences
between the different load balancers are obvious. T h e use of adaptive random distribution is
very successful for large problems. These results confirm the advantages of using qnalitative
proix'rties in the load halancer.

Last. the number of tasks generated for Function 6 are presented. Figure 5 shows that if
a quantitative load balancer alone is used, the number of tasks can inc/'ease dramatically, in
this example the difference is around 19000 tasks (35000 - 1C~00) using. 64 n,~es.

6. Conclusions
In tills paper we have developed different dynamic load balancers fi)r implenlenting a global
optimization method on an lntt4 iPSC/2 hypercube. Decentralized load ba!ancers has several
advantages; the)' use tile tnetnory efficiently, the communication unit will not be overloaded.

A PARALLEL INTERVAL M E [H O D IMPLEMENTATION FOR GLOBAL OFI ' IMIZA' I ION. . . 89

H;0

140

120

100

80

&0

4 0

20

Receive-initiated
H y b r i d r a n d o m - d i s t r i b u t s ~ -

H y b r i d a d a p t i v - r a n d o m - d i s t r i b u t i o n ~ -

. . . -

I I I I I I

2 4 B l k 32 64
NumJ~r o f nodes

Figure 3. Comparison of efficiency using Function -I

140 ~ ~ '

[120 "" ',

100 ' - - - - ~ '

20

R e c e i v e - s ~ - -
H y b r i d r i n d o m - d ~ s t r i b u t i o n ~ -

H y b r e d i p ~ v - r a n d o m - d i s t r i b u t s Q "

I i [i I I

2 4 , 8 16]2 64
Number Of n o d e s

Figure 4. Comparison of efficiency using Function 6

90 J . E R I K S S O N , P . L I N O S T R O M

SO000

45000

40000

35000

30000

25000

20000

1SO00

10000

Q u a n t s
Randc~ d i s t r i b u t i o n ~ -

A d a p t i v random d i s t r i b u t i o n -D

t t t t / !
2 4 8 16 ~ s

~ u ~ r o [n o c h t t

Figure 5. Comparison of the number of sub-boxes using Function 6

Another advantage is scalability. These imple,nentations will execute efficiently on larger
hypercubes, if the problem is sufficiem large, without being altering.

it has been shown that it is appropriate to use a/..'br/d scheduler. A recehv,,r-initiated quantity
load halancer enables the nodes to request tasks from other nodes when idle. It is also usefid
for branch.and-bourn1 aigorith~l~ to include a .wnder-initkaed quality load bala,lcer which delivers
promising tasks to other nodes. Two approaches have been examined. First, a scheme based
on random distribution where the load balancer distributes its most promising task to randomly
chosen nodes at specific intervals. The second t'ariant acts similarly, but the tasks are distributed
at intervals which vary during the execution depending on the qnality of the distributed tasks.
The test resuhs show that the execution time as well as the number of tasks decrease when
the scheduler becomes more sophisticated.

References
[1] Caprani, O. and Madsen, K. s ;t4lh inlencd mahod~ for nonlinear .~):~ten~. Technical

report. Institute fitr Angewandte Mathematik, Universidit Frieburg i. Br., Copenhagen,
1981.

[2] Caprani, O. and Madsen, K. lmroduktion Ill intenr amdy, e. Institute of Dataiogy, University
of Copenhagen, 1981.

[3] Eriksson, J. lmpro~,nent~ of the i,len~d method for .~h~ng the glob, I optimzation problem. UMINF-
report, Information Processing, University of UmeA, 1991.

[4] Eriksson, J. PandM globtd'o]~imztaion ttsing imen,d amdT~i~. UMINF-report, Information Pro-
cessing, University of UmeA, 1991.

A PARALLEL INTERVAL METHOD IMPLEMENTATION FOR GLOBAL OPTIMIZATION.,, 91

[31 Eriksson, J. Improper,tents of the inter~ method for sdz~ng the glol~d optimz~aion p'ablem. UMINF-
report, Information Processing, University of Ume~, 1991.

[4] Eriksson, J. Par~dM globqd ol~imzlaion using inZerzgd mudy.6s. UMINF-report, Information Pro-
r University of Ume;l, 1991.

[5] Eriksson, J. PartdM glol~d optimization using hUtrzvd anal~si~ on iPSC/2 (Dr~). UMINF-report,
Information Processing, University of Ume/t, 1990.

[6] Fehen, E. W. Best-first branch-c~nd-bonnd on a hypercuJle, in: ~Conference on Hypercube Con-
current Computers and Applications, 1", ACM, 1988, pp. 1500-1504.

[7] Hansen, E. Global optimiztaion ~tsing inter~d mudysis~the mtdti-dimensiomd case. Numerische
Mathematik 34 (1980), pp. 247-270.

[8] Krawczyk, R. Newton-Algorith~t~ zur Be.slimmung zgm NIdL~ellen mit FeMersckranken. Computing
4 (1969), pp. 187-201.

[9] Lai and Sahni. Anmludies in parrdlel branch.trod-bound algorith,L~. Communications of the ACM
27 (6) (1984), pp. 594-602.

[10] Lin, F. C. and Keller, R. M. GrcMieni tnodel: a dntu~mt-drh~ lotM &danca'ng scheme. In: ~IEEE
Conf. on Distributed Systems', 1984, pp. 337-357.

[11] Moore, R. E. A com/nacaiontd test for convergence of iterqah~ methods for nmdi~tear systems. SIAM
Journal on Numerical Analysis 15 (6) (1978), pp. 1194-1196.

[12] Moore, R. E. A test for existence of sohaions to nonlinear syste,ts. SIAM Journal on Numerical
Analysis 14 (4) (1977), pp. 611-615.

[13] Moore, R. E. l~er~r taudysis. Prentice Hail, Englewood Cliffs, 1966.

[14] Ranka, S., Won, Y., and Sahni, S. Programmilg a hypercube multicomputer. IEEE Software,
1988, pp. 69-77.

[15] Ratschek, H. and Rokne, J. New computer methods for globtd optimiuaion. Ellis Horwood,
Chichester, 1988.

[16] Ratchek, H. and Voiler, R. L. Wlua ctm inter~gd antdy~sis do for globtd optimization, j. of Global
Optimization 1 (2) (1991), pp. 111-130.

[17] Thofi-Christensen, J. Globtd optimering pd parallel&aa,ua. Master's thesis. Numerical Institute
in Copenhagen, 1989.

[18] Walster, G. W., Hansen, E., and Sengupta, S. Test reudts for a globtd optimization ~dgoritlnn.
in: Boggs, Byrd, and Schnabel (eds) "Numerical Optimization', SIAM J. on Scientific and
Statistical Computing, 1984, pp. 272-287.

Received: August 25, 1993 Institute of Information Processing
University of UmeA

S-901 87 Ume~
Sweden

E-mail: jerry@cs .nmu, se
p e r l g c s , umu. as

