Reliable Computing 1 (1) (1995), pp. 77-91

A parallel interval method implementation
for global optimization using dynamic load
balancing

Jerry Eriksson and Per LinDstréM

During the past few years the interest paid to giobal optimization has rapidly increased. One of the
main reasons is the new technology of parallel computers which offer computational power capable of
solving global optimization problems in reasonable time. The method studied in this work is based on
interval analysis which provides a reliable way for solving the probiem, Despite the fact that the method
contains a high degree of potential parallelism, it is not straight forward to’parallelize due 1o its irregular
and unpredictable compunational behaviour. This paper deals with the problem of balancing the ioad
dynamically, both with respect to the guantity and to the quality of the tasks. Efficdent strategies are
proposed and implemented on an Intel iPSC/2 hypercube. Since the sequential algorithm is used as a
base it will be modified 10 suit the paralle] algorithm.

PeaAnsars TIAPAAACABHOTO MHTEPBAABHOTO
METOAQ AASI TAODAABHOM ONTUMM3AILIMHU C
AVHAMIYeCKM 0araHCUpPOBAHMEM HArpys3Ku

Ax. Sruxccon, Il. Aubacrrem

B TeueHine MOCTETHMX HECKOILKMX JET MHTEPEC K MPOGAEME FI0GATHHON ONTHMHIAUNS GHCTPO hO3Pa-
ctax. OaHa 13 OCHOBHHX NPHUHE 3TOTO — HOBHE TEXHOJIOTHH HAPALICIBHEX KOMIBIOTEPOB, odeche-
HHKAIOIBIE JOCTATOMHYID BHISIICIHTEILHYIO MOILHOCTD 115 PEMICHUst 3anay 5I00aabHOR ONTHMUIDUNH
3a pasymMHoe spema. Meton, paccMOTPeHHBIR B 1aHHOR paoTe, OCHOBAH HA MHTEPHEAJILHOM AHATHIE,
KOTOPHIT O0ECHEYHHAET HAEXHKI NYTh pemenns 3aaayuy, HecMOTPA Ha JHAMNTEABHY® 10210 NOTEH-
HHATBHOTO NAPRLICTHIMA B 3TOM METOE, €10 NAPALICTHIAMNNA (PEICTARIACT COGOR HETPHBIAIBHYIO
IAAAYY H3-3% HEPETYIAPHOTE | HEMPEACKAIYEMOTO Xoaa BEYHCIeHnR. Hacrosmnas padota pacomatpu-
BAET NPOGIEMY AHHAMHYECKOTO (2IAHCHPOBAHKA HATPY3IKN € YYETOM KaK Ka4ecTsa, Tak ¥ KOAMWeCTsad
sata4. Tpeasarawtca s ek THEHRE CTPATETHH PEIICHIA W ONHCHRACTCSH HX PEAIGANHS HA MHIlepKyle
Intel iPSC/2. Mockoabky 8 KAYECTBE MCXOAHOTO HCHOILIYETCH HOCTIEIOBATEILHLIT AITOPHTM, OH GyleT
MOJTADHIIIPOBAH, YTO HOJBOIMT HCHOIHIOBATE €10 KK HAPAILICIBHBIN.

1. Introduction

During the last two decades, a number of methods for solving global optimization problems have
been proposed. One of the hardest issues for these problems is the computational requirements
that are very high. Fortunately, modern ‘computer technology has made significant progress

© J. Exiksson, P. Lindstrom, 1995

78 J. ERIKSSON, P. LINDSTROM

which has brought the global optimization problem into new light. The global optimization
problem is,
min f(r)
5.t l,‘ S &r; S U, = 1-, 2, AP (X

In this paper, let I be the set of real compact intervals. A box is defined as a closed
rectangular parallelepiped with sides parallel to the coordinate axes. In this paper, a box is
denoted with an underlined letter as in X where X € I™.

The method studied here for solving the global optimization problem is termed the mterval
method, see [1, 7, 13, 15]. The method provides a reliable way for solving the global optimization
problem. It is based on an exhaustive search in a given box. The box is dynamically sub-divided
into smaller sub-boxes until they are manageable by different elimination phases. Throughout
the algorithm, all sub-boxes not yet examined are ordered in a priority queue so that the most
promising sub-box can be quickly extracted.

Here the interval method is implemented as a branch-and-bound algorithm which is an impor-
tant class of methods for solving optimization problems. Since the parallelism in branch-and-bound
adgorithms is inherently irregular, it requires dynamic load balancing in its implementation on
a distributed memory computer. In this study, different decentralized dynamic load balancing
strategies are designed and implemented. The load balancers are based on both receiver and
sender initiated approaches. In many implementations in this area, the scheduler is only dealing
with balancing the load with respect to the quantity of tasks. In this paper, it is seen that it is
also important to consider the quality of the tasks.

Initially, in the parallel execution, the box is split into p sub-boxes, where p is the
number of processors. Since the original sequential algorithm does not include any initial
sub-division, it is not fair to compare execution time between the sequential algorithm and the
parallel algorithm. Instead, it is better to include an initial phase in the sequential algorithm.
Additionally, in situations when the Krawczyk method (the local minimum search method)
performs poorly a bisection is often too weak. A sub-dividing strategy based on the resuit of
the Krawczyk method that may split the box into more than two sub-boxes is proposed.

The paper is outlined as follows. In Section 2, the interval method is described. For the
readers who are unfamiliar with the interval method, an introduction to interval analysis and
a more detailed description of the interval method can be found in {16]. The modifications
to the sequential algorithm are given in Section 3. The parallel algorithm and its realization
are discussed in Section 4. Section 5 deals with the dynamic load balancing problem. Last, in
Section 6, the results and experiences are sunmarized.

2. The sequential algorithm

The algorithm is based on an exhaustive search in the multidimensional solution space. The
initial box can be arbitrarily sub-divided into sub-boxes which can be investigated independently
of each other. If a sub-box is too large to be manageable it is split further into smaller sub-
boxes. Fortunately, it is not necessary to fully investigate all sub-boxes. Instead, many sub-boxes
can quickly be discarded as not interesting by different rules. Further a priority queue is used
to order the sub-boxes by increasing lower bound. The lower bound is the lowest function value
the objective function can obtain in a sub-box. During the execution, sub-boxes are dynamically
queued and dequeued from the priority queue.

A PARALLEL INTERVAL METHOD IMPLEMENTATION FOR GLOBAL OPTIMIZATION... 79

The first step in the algorithm is 1o compute the lower bound of the initial box, Xy. The
box Xy with its corresponding lower bound is inserted in the priority queue. As long as there
exist sub-boxes that are not investigated, i.e., the priority queue is not empty, the execution
continues,

Next, the first sub-box is dequeued from the priority queue. If its corresponding lower
bound is higher than the current minimum (cmin'), the algorithm terminates. Hence, it is
possible to eliminate sub-boxes before any costly computations of the sub-boxes are carried
out. This test is often called the mid-point test. In the second step it is investigated whether
the sub-box is monotonous? The purpose of this elimination phase, which is often called an
acceleration device, is to make the algorithim faster and it does not seek a minimum explicidy.
The algorithm would still be correct even if this phase was removed from the algorithm, but
the time to solve some problems could be expected to increase dramaticaily.

If the sub-box passes these tests the Krawczyk method is invoked to explicitly seek a
local minimum. The Krawczyk method can end up with one of three different results. If the
Krawczyk method converges it has either made a significant or a non-significant +improvement.
otherwize the Krawczyk method diverges and the box is excluded. The Krawczyk iteration
continues as long as it converges significantly. In the non-significant case the box is split into
two new sub-boxes which are inserted in the priority queue. If a lower minimum is found, ie.,
a value which is lower than cmin, then cmin is updated.

When all sub-boxes, with a width greatér than a given epsilon (¢) have been investigated,
the algorithm terminates. At this stage cmin holds the global minimum.

3. Modifications to the original algorithm

The purpose of this modification is to extend the sequential algorithm so it can serve as an
efficient basis for the parallel algorithm. The original sequential algorithm does not contain an
initial sub-dividing of the solution space. Since the eliminations phases are often inefficient in
the beginning of the execution an initial phase is to prefer. The second sub-diving modification
proposed uses the result of the Krawczyk operator.

The initial phase. We propose an extension so a number of bisections can be carried out
initially. Here the term initial phase refers to the time before entering the sequence of cycles.
The elimination phases, especially the Krawczyk method, are often inefficient in the first part
of the execution and it is not motivated to invoke them too early. ldeally, it would be more
efficient if the sub-boxes were small enough to be directly manageable by the elimination
phases.

There is a trade-off in determining the number of sub-boxes to be generated. If too
few sub-boxes are generated, the gain will not be large. On the other hand, if too many
sub-boxes are generated, a lot of sub-boxes will be unnecessarily investigated. In order to keep
the algorithm reliable, the generation of sub-boxes should be held at a moderate level.

Unfortunately, it is impossible to give an optimal formula on how a sub-box generation
should be defined. Probably, the only practical way is to use common sense and experiences

Lomin is initially set to +oc.

2A box X is said to be monotonous if the function f is menotonous in X.

80 §. ERIKSSON, P. LINDSTROM

from computer tests. In order to design a useful practical algorithm, the following three
parameters have been emphasized:

o the width of the initial box, w(X,),
o the required precision, &,

o the dimension of X, n.

Here the quotient w(X,)/c ‘is an imiportant factor since it is the upper bound of how
many sub-boxes that must be investigated. However, this quotient could be a very large number.
By applying logio to the quotient a suitable number is often- achieved. That is, it gives valués
not larger than 10 for reasonable sizes of the initial box and of the accuracy respectively. This
leads to Formula (1).

s = logyo (w(Xo)/) M

However, when n is large s should be limited. That is, if n > 10, then s .is be limited to
2, t0 avoid a too high sub-box generation frequency.

The next task is to decide how s should be used. If n is large, it is generally more
complicated and should lead to a higher generation of sub-boxes. After some testing, the
following strategy turned out to be the most promising.

Algorithm: Initial phase
1. Compute s by Formula (1).
2. For i = 1, n do steps 3—3.

3. Pick all sub-boxes in the priority queue.

e

. Split all these’ sib-boxes into s sub-boxes for dimension 1.

. Insert all these in the priority queue.

[41}

In other words, the initial box is dequeued from the priority queue and is further split
into s sub-boxes. These newly created sub-boxes are inserted in the priority queue. At this
point the priority queue, consists of s sub-boxes. This pattern is repeated for all dimensions, n.
After n repetitions the priority queue consists of s” sub-boxes.

There is no need to compute the lower bound of the sub-boxes generated except in the
last loop. That is, in the first n— 1 loops the value zero is assigned to the lower bound of each
sub-box. Since all lower bounds are zero, the priority queue is essentially a simple list in these
loops. Hence, this scheme avoids the calculation of s"~! lower bounds. But more importantly,
the elimination phases have not been invoked for these sub-boxes.

It could also be motivated to consider different mathematical operations and interval
dependency of the object function. However, it would probably be an immense task to
determine or calculate weights on these operations and it has not been dealt with.

A PARALLEL INTERVAL METHOD IMPLEMENTATION FOR CLOBAL OPTIMIZATION... 81

A modified bisection. The Krawczyk method {8] computes an operator K(.X), called the
Krawczyk operator. In cach iteration the subbox X, ., = X, N A{X,) is computed. It
X, ¢y is not an empty sub-box, there might exist a local minimum in the sub-box, otherwise
the method diverges. A positive side effect lies in the inherent information in K(X). If
w(K(z{_ ,,)) > 09w(X,). then the Krawczyk method has made a nan-significant improvement
(otherwise significant improvement). The reason is probably that w(X,) is too large to be
efficiently manageable by the Krawczyk method. In these situations a bisection of X, is
required. If w(K (X, ,,)) > w(X,), there is a risk that a bisection is toco powerless. If the
subbox could be split into more than two sub-boxes the elimination phases would be invoked
on smaller sub-boxes.

In order to realize this approach another practical algorithm is designed. The following
parameters are considered as important:

e the width of the current sub-box, w(X,,),

e the width of the Krawczyk operator, w(K (X ,,)) If w(K (X, ,,)) is much wider than
w(X,) it could be expected the Krawczyk method has been very unsuccessful:

Basically, this idea is somewhat akin to the previous algorithm. In this case the quotient
w(K (X,,)) /w(X,) is of great importance. That is, a high quotient should lead 10 a high
number of sub-boxes generated. The quotient is applied to log,, in order to obtain a suitable
number. Further, the upper bound of this number is limited to uplimit = 6 leading to
Formula (2).

s = max (min (logm (w(K(_}in))/w(g(_,,)), chiimil> . 2). {2)

The sub-division is applied to the widest interval in the sub-box.

However, this solution is not fully satisfactory. If the Krawczyk method continuously
performs poorly, a verv high number of sub-boxes will be generated. Therefore, an adaptive
mechanism is included. If the Krawczyk inethod performs poorly the number of sub-boxes to
be generated is slightly decreased by a term ad. The term «d. initially equals zero, could also
be increased during the execution if it turns out that the Krawczyk method is getting more
efficient. In our tests, it has been shown that it is suitable to let ad be decreased by 0.25 for
each non-significant improvement and increased by 0.25 for each significant improvement. By
using Formula (3) the variable, s, varies between two (ordinary bisection) and uplimit (equal to
six in our tests). Hence, if ad is getting too large or too small it will not be not adjusted.

s = max (min (ad + logg (w(K(_X_,,))/w(&n)), uplimil) , 2) (3)

Summary, these modifications consist of the following two parts; First, the algorithm Initial
phase is supplied, which purpose is to avoid unnecessary computations in the beginning of the
execution. Second, in the situations when the width of the Krawczyk operaior, w(K (X, n)), is
much larger than the width of the computed sub-box, w(X,,), Formula (3) is used to determine
the number of sub-boxes to be generated.

These modifications are solely based on common sense, but they have an empirical basis. It
is most important to keep control over the number of generated boxes otherwise an extremely
high sub-box generation might result.

82 J. ERIKSSON, P. LINDSTROM

No. Function Dim
1| 5% icos((i = Dy + 1) T3y jeos (5 — D2 + 1) 2
2 | (L5 =z + 1172)% + (2.25 — 1y + 1,23)% + (2.625 — 1, + 2123)° 2
3 |0 FZ F=exp (lfbﬂ) — exp (:—1'5‘;—’2)‘4&1'3, A = exp (}éﬁ) —exp(—-k) | 3
4 | (z1 + 10x32)% + 5(x3 — 74)% + (3 — 223)* + 10(zy ~ x,)* 1
5 | 100(z — 23)% + (z; — 1)? 2
6 | T n(z -2+ 1% In(10 - x;)? - 12, 27 10
7 L’—:;.ﬁ~b—1—cosz'cos:% 2

Table 1. The test problems

No. Initial box, X° # local minima
1 {[-10, 10][-10, 10] 760
2 | [-10, 10}{-10, 10] 1
3 | [0, 53]8, 11](5, 3] 2
4 | [-4, 3][-4, 3][-4, 53]-4. 3] i
[-10000, 10000] 10000, 10000] 1

(3, 4](3, 4](3, 4](3, 4](3, 4][3, 6][3, 6][3. 6](3, 6][3, 6] | boundary vaiue
[—1000, 1000]—1000, 1000] 1

-1 &

Table 2. The initial boxes

Test results. The test functions selected are well-known global optimization problems. There
are polynomial functions as well as functions which include both exponential operations or
trigonometrical operations.

The selection of test functions is shown in Table 1. Six of the seven functions can be found
in {18] and number 6 can be found in [17]. The corresponding initial boxes for the functions
are given in Table 2. Throughout all tests the accuracy (g) is set to 0.1. The computer used
for the sequential implementation is a Sun Sparc 1+.

Table 3 summarizes the total execution times. The second column shows the improvements
after the modification. The last column displays the improvement of the original algorithm
versus the final proposed algorithm. For six of the functions an improvement of 27 — 47%
has been made. For Function 2 only a minor improvement is achieved. For a more detailed
presentation of the test results, see {4].

We stress that the purpose of these modifications is to make the algorithm more suitable
to the parallel algorithm. However, the test results show that these ideas might be successful
in the sequential algorithm as well.

A PARALLEL INTERVAL METHOD IMPLEMENTATION FOR GLOBAL OPTIMIZATION... 83

Function | Original Afier Improvement
No. algorithm | modification

1 581 4.26 155 (27%)
2 1.56 146 0.10 (6%)
3 1245 8.46 399 (32%)
4 0.36 0.19 017 (47%)
3 082 0.58 024 (29%)
6 33148 38861 | 16287 (29%)
7 238 1.46 092 (38%)

Table 3. Comparison of the original sequential.algorithm versus the modification (in seconds)

4.

The parallel algorithm

The sequential algorithm has a high level of inherent parallelism. All sub-boxes are independent
of each other and can be investigated in parallel. As mentioned earlier, the interval method is
here formed as a branchwnd-bound algorithm. The following algorithm is adapted for the interval
method, but the structure also fits many other branch-und-bound algorithms, see [6).

1.

9

-

41.

Initialization. The original box is inserted in the priority queue and the cmin is set to co.

Selection. The most promising sub-box is selected and dequetied from the priority queue.

. Lower bound test. If the lower bound of the new sub-box is higher than cmin, the

sub-box is excluded from further consideration {The mid-point test).

. Elimination test. The sub-box is investigated by the different elimination phases. The

sub-box is excluded if it is guaranteed not to lead to an optimal solution.

. Feasibility test. Update omin if a lower minimum has been found. If so, exclude all

sub-boxes in the priority queue that have a higher lower bound than cmin.

. Branching. Split the sub-box into new smaller sub-boxes and insert these into the priority

queue.

. Algorithm termination. If the priority queue is not empty then repeat 2-6, otherwise

the algorithm terminates and the optimal value is hold by cmin.

Realization of branch-and-bound methods on iPSC/2

The parallel computer used in this work is an Intel iPSC/2 hypercube, supplied with 64
processors (nodes). The hypercube computer belongs to the category of distributed memory
computers, Another name is message-passing computers since communication between nodes
are carried out by sending messages to each other. A hypercube has always 2¢ nodes where

84 J. ERIKSSON, P, LINDSTROM

each node has d physical neighbours. The most interesting properties of the hypercube topology
is the dlﬂucm m.\ppmg contiguration possibilities, sueh as ring, torus, cubes, and trees, sec 1],
Another nice feature is the efficient implementation of global operations. For example, if each
node has a partly computed vector, it is possible to summarize all these in o steps.

In order o nmplement a parallel branch-and-bound method. or more predselv the parallel
interval method on a distributed memory machine, several issues must he solved.

e How and where should the priority queue be stored in order 1o

— keep all nodes busy investigating sub-boxes {quantityi.
— investigate the most promising sub-hoxes (quality).

= utilize the total memory efficiently.
e How 1o broadcast the néw minima as «uickly as possible

The first item refers to the dynamie load: balancing probiem: Our approach uses two
processes on each node; a worker and a scheduler. The first process, the worker, investigates
sub-boxes. The second process; the scheduler, tries to balance the load as fairly as possible
among the nodes. It also deals with the dtsmbmed termination -problem. The idea of using
two processes is a matter of abstraction. To tfeat’ the two processes as ‘separate makes the
discussion” conceptually cleaner and also serve io emphasize the independence of the processes.
The worker should be’ free from all responsibility considering load balancing and, besides
investigating sub-boxes, only request and receive sub-boxes from the scheduler. .In the next
section, different load balancers are proposed.

The second item refers to the problem of broadcasting a new minimum. If 2 new lower
local minimwm is found the worker broadcasts the minimum to all other, workers. . This is
carried out relatively cheaply by just one communication call, csend(). All other nodes can
receive this message by a corresponding ereco{}. However, thé problem is to determine when.
during the execution, the worker should receive this message. It is expensive 1o probe for a
message often. On'.the other hand, unnecessary computations might be carried ow 4f the node
probes 100 scldom.

Alternatively, the iPSG2 offers an interrupt-driven message primitive, hreco(), that solves
this problem efficiently: In the beginning of the execution. a node can inform the operating
system which messages (in our case a new minimum) that should have special treatment.
Whenever a new minimum. is pending it is immediately received and the execution continues
in an user predefined subroutine. In this subroutine emin is updated and then it is legal 10
jump to any place in the code. This feature enables the worker to 1eceive a new minimum
during an investigation of a sub-box. It is evén possible that the current sub-box is excluded
during the investigation if its lower bound is higher than the new received minimum.

It is certainly preferable 10 use this primitive instead of crecif). The advantage ts twolold.
First, one does not have to bother when and where to probe for a new minimum. Second,
ewin is updated immediately after it reaches the node which makes it possible 0 avoid some
computations.

5. Dynamic load balancing

The amount of work of investigating a sub-box flask in the sequel) can differ widely. Due to
the fact that no knowledge considering ‘the behaviour of the exécution 'is known « priori, it is

A PARALLEL INTERVAL METHOD IMPLEMENTATION FOR GLOBAL OPTIMIZATION... 85

not suitable to statically balance the load. The use of a static load halancing strategy would
undoubtfully lead to an inefficient use of the parallel computer. In general, a branch-und-bound
algorithm can never be efficiendy implemented on a parallel machine withouwt dynamic load
balancing.

In an earlier work, [3], two different approaches were implemented and compared; a
centralized load balancer based on the Master-and-slave concept and a hypercube topology
based decentralized load balancer.

In the centralized load balancer the priority queue and cmin are stored at the Master node.
The other nodes (the slaves) request work from the Master. The Master always deliver the
most promising task to the requesting node. This is the main advaniage of using centralized
load balancers. Sadly, a lot of drawbacks occur using this approach. The Master very ofien
becomnes a serious botileneck wrt. the processor capacity and worse, the communication unit
will often be quickly overloaded.

The decentralized load balancer, on the other hand, avoids the bottlenecks mentioned
above. But, since the priority queue is distributed among the p nodes and the load balancer
only consider the quantity of the tasks, the p most promising tasks are seldom investigated.
Test results showed that, when the number of nodes exceeds 8, the decentralized load balancer
is superior to the centralized load balancer. Hence, in the sequel, only the decentralized load
balancer will be considered and further developed.

The aim for a dynamic load balancer is to migrate work from the busy nedes to the
lighly loaded or idle nodes during the execution. A decentralized dynamic load balancing
scheme can be characterized as one of the following, see [10}:

® Sender-initisted. This means that the load balancer delivers tasks from the local node to
lightly loaded nodes without any explicit request from the remote nodes. However the
load balancer often has some knowledge of the load in the system.

® Recerver-initiated. In these schemes the load balancer requests tasks from a sub-set of nodes.
A demand is initiated by an idle node or lightly loaded node.

o Hybrid. This scheme is a hybrid of the two earlier.

In the following sections, receiver-initiated as well as sender-initiated load balancers are
proposed. In Section 5.1 a receiver-initiated quantity load balancer is described. This load
balancer considers the load with respect to the quantity of the tasks. The goal of this load
balancer is to reduce the inefficient parts of our previous load balancer based on the hypercube
topology. Two sender-initiated load balancers are proposed in Section 3.2. These load balancers
strive to balance the load with respect to the quality of the tasks. The purpose is to capture
the advantages of the centralized load balancer. Together, the receiver-initiated and sender-
initiated load balancer form a hybrid load balancer. In Section 5.3 test results for an Intel
iPSC/2 hypercube are given.

51 The receiver-initiated quantity load balancer

One of the drawbacks of using the hypercube topology is that the protocol requires a
lot of messages. Consider the following scenario for a d-dimensional hypercube: A node

86 J. ERIKSSON, P. LINDSTROM

has been idle? The idle node requests work from all its immediate neighbors (d messages)
Upon receiving a task from one or more abundant! node it sends a acknowledgement to
the same set of nodes (d messages). This implies a total of 2d messages for the requests
and acknowledgements, plus one or more messages consisting of tasks from abundant nodes.
Another disadvantage of using this scheme is that the powerful cut-through network is not
fully utilized.

Here, a new load balancer algorithm based on a ring topology that solves the two earlier
drawbacks is proposed (see Figure 1). The scheduler proposed has the following properties.

O de
Neutral
@ Abundant

Figure 1. Node 7 has been idle. It sends a request 1o the next node in the ring. Just before
node 0 receive the request from node 7 it has also become idle. Node 0 packs both requests
into one message and sends it to node 1. Unfortunately, node 1 has no tasks to deliver so it
sends the request further 1o node 2. Since this node has tasks; it sends one task directly to
both node 0 and node 7 respectively. without interfering node 1.

First. it is fully asvnchronously and decentralized which means that balancing is carried
out whenever necessary and not at specific intervals. The term decentralized means that the
responsibility for load balancing is decentralized among all nodes. Second, it reduces the
communication for the scheduler to a very low level. An idle node sends a vequest 10 the
next node in the ring and upon receiving a task it sends mo acknowledgement. For a 64-
nodes configuration, this approach reduces the number of messages significantly. Third, if
an idle node sends a request to another idle node, the request is passed further packed into
one message. The last feature is that an abundant node does not send the task back to the
ring. Instead it sends the task directly to the target node thereby utilizing the cut-through
communication network. For a more detailed description, see [4].

52. The sender-initiated qualitative load balancer

To this point the guality of the tasks has not been considered. By the term quality, we mean
how promising the tasks are (the lower bound of the sub-boxes). The purpose of the quality
balancer is both to speed-up the execution and to rediutce the number of tasks, thereby capuuring

3A node that is out of tasks is called idle.
YA node that has a surplus of tasks is called abundant.

A PARALLEL INTERVAL METHOD IMPLEMENTATION FOR GLOBAL OPTIMIZATION... 87

the advantages of the cemtralized load balancer. In other words, its purpose is 1o overcome
the problem of investigating non-promising tasks. Several approaches based on heuristics have
been tested. The tno schemes presented below turned out to give the best resuits. The
1ecetver-initiated quantity load balancer is included as a base in both schemes.

521 Random distribution

The first scheme acts as follows. Each scheduler counts the number of tasks generated by
splittings. Each time the counter exceeds a generator limit the scheduler sends its first task in
its priority quene to a randomly chosen node. In this scheme the generator limit is fixed to 5.
This strategy tends to keep the most promising tasks scattered among all nodes so all workers
are likely to investigate one of the most promising task. Each separate local scheduler has
no knowledge about the load on other nodes. So, in the worst case, a node with a lot of
promising tasks can unnecessarily receive non-promising tasks. This is not too bad since the
non-promising tasks will be inserted at the end of the receiver’s priority queue.

Notice that, assuming that the random generator works well (which it does), this scheme
also implicitly balances the load with respect to quantity.

522. Adaptive random distribution

This scheme is an improvement of the previous. Instead of having the generator limit fixed it
can be varied during the execution. The scheme acts as follows. As previously, a scheduler
that receives a task inserts it in its priority queue. If the task is inserted first in the priority
queue, the scheduler respond a good message back to the sending node. Otherwise, if the task
is’ inserted in another place in the priority queue, a bud message is responded. The sénding
node then receives the responded message and its local generator limit is adjusted depending
on the value of the message. If a good message is received, the generator limit is decreased by
one. This means that the scheduler node will distributes tasks more frequently. The opposite
holds if a bed message is received. For example, let the generator limit initially be set 1o 5. If
a scheduler has distributed 15 bad and 3 good tasks, the generator limit is 17 (5+ 15 - 3). In
this scenario the scheduler is distributing tasks rather seldom due to all bud messages it has
received. '

The advantages of using this approach are that a scheduler with promising tasks tend
to distribute more tasks than others. This leads to less distributions and investigations of
non-promising tasks.

53. Test results and comparisons

In the context of parallel computers, the efficiency is measured as:

E(p) = 'time(s)
time(p) * p
where time(s) is the sequential execution time and time(p) is the parallel execution time using
p nodes. E(p) = 100 expresses the efficiency in percentages. Naturally, the goal is to achieve
ctficiency as close as possible to 100%.
The test results show comparisons of the different load balancers wrt. the efficiency.
Due to some hardware problems, we have been forced to use software interval rounding. By

88 J. ERIKSSON, P. LINDSTROM

T T \2 ™ T g
Receive-initiated -o—

Hybrid random-distributiom ~+—

120 Hybrid adaptiv-randem-distribution -2 -
-

Efficiency

i L 2 a

16 32 64

8
Number of nodes

Figure 2. Comparison of efficiency using Function 3

that fact, no execution times are presented. The three most time consuming (on the iPSC/2)
functions from the seven test functions presented in Table 1 have been selected.

 Figure 2 shows the results for Function 3. The efficiency is over 60% up.to 16 nodes.
Using more nodes, it is hard to achieve high efficiency due to the very short execution time.
It is clear that a problem must be large if it should be fruitful to use a parallel computer.

In Figure 3 the results for Function 4 are displaved. The efficiency is over 80% for all
load balancers using up to 32 nodes. It is clear that the hybrid load balancer incduding the
adaptive random distribution is more efficient than the others for all node configurations. Due
to.the very irregular parallel algorithm it is possible to achieve an efficiency over 100%. This
is due to the fact that the parallel algorithm does not investigate the sub-boxes in the same
order as the sequential algorithm.

The best results are achieved using Function 6 as displaved in Figure 4. The differences
between the different load balancers are obvious. The use of adaptive random distribution is
very successful for large problems. These results confirm the advantages of using qualitative
properties in the load balancer.

Last, the number of tasks generated for Function 6 are presented. Figure 5 shows that if
a quantitative load balancer alone is used, the number of tasks can increase dramatically. In
this example the difference is around 19000 tasks (35000 — 16000) using. 64 nodes.

6. Conclusions

In this paper we have developed different dynamic load balancers for implementing a global
optimization method on an Intel iPSC/2 hypercube. Decentralized load balancers has several
advantages; they use the memory efficiently, the communication unit will not be overloaded.

A PARALLEL INTERVAL

Etficiency

Efficiency

METHOD IMPLEMENTATION FOR GLOBAL OPTIMIZATION...

T T T r — T
Receive-initiated —o—
Hybrid random-distribution ——

166 Hybrid adaptiv-random-distribution -0 - 7

" A i - '

20
16 32 54

]
Number of nodes

Figure 3. Comparison of efficiency using Function 4

s Lo T T T Y
140 Receive~initiated — 7
Hybrid random~distribution -
____ a Hybrid adaptiv-random-distribution O -

n i 3). i

. 8 le 12 64
Number of nodes

Figure 4. Comparison. of efficiency using Function 6

89

90 J. ERIKSSON, P. LINDSTROM

50000 T T Y - T L
Quantity +—
Randem distribution —-
45000 b Adaptiv random distribution -D - 4
40000 -~
35000 B
-
. 30000 } B
L4
-
25000 B
20000 F i
Cla
15000 § -
10000 A 4 A . I i
1 2 16 32 (1}

]
Number of nodes

Figure 5. Comparison of the number of sub-boxes using Function 6

Another advantage is scalability. These implementations will execute efficiently on larger
hypercubes, if the problem is sufficient large, without being altering.

It has been shown that it is appropriate to use a hybrid scheduler. A recerver-initinted quantity
load balancer enables the nodes 1o request tasks from other nodes when idle. It is also useful
for branch-und-bound algorithms to include a sender-initiated quality load balancer which delivers
promising tasks to other nodes. Two approaches have been examined. First, a scheme based
on random distribution where the load balancer distributes its most promising task to randomly
chosen nodes at specific intervals. The second variant acts similarly, but the tasks are distributed
at intervals which vary during the execution depending on the quality of the distributed tasks.
The test results show that the execution time as well as the number of tasks decrease when
the scheduler becomes more sophisticated.

References

(1] Capra‘ni, O. and Madsen, K. Experiments with interval methods for nonlinear systems. Technical
report. Institute fur Angewandte Mathematik, Universitit Frieburg i. Br., Copenhagen,
1981.

{2] Caprani, O. and Madsen, K. Introduktion il interval analyse. Institute of Datalogy, University
of Copenhagen, 1981.

[3] Eriksson, J. Improvements of the interval method for solving the global optimzation problem. UMINF-
report, Information Processing, University of Umed, 1991.

[4] Eriksson, J. Parallel global® optimzation using interval analysis. UMINF-report, Information Pro-
cessing, University of Umea, 1991.

A PARALLEL INTERVAL METHOD IMPLEMENTATION FOR GLOBAL OPTIMIZATION... 91

[3] Eriksson, J. Improvements of the interval method for solving the global optimzation problem. UMINF-
report, Information Processing, University of Umea, 1991,

(4] Eriksson,]. Parallel global optimzation using intervl analysis. UMINF-report, Information Pro-
cessing, University of Umea, 1991,

[3] Eriksson, J. Parallel global optimization using mterval analysis on iPSC/2 (Draft). UMINF-report,
Information Processing, University of Umea, 1990.

[6] Felten, E. W. Best-first branch-and-bound on a hypercube. In: “Conference on Hypercube Con-
current Computers and Applications, 17, ACM, 1988, pp. 1500—1504.

[7] Hansen, E. Global optimization using interval analysis—the wndli-dimensional case. Numerische
Mathematik 34 (1980), pp. 247—270.

[8] Krawczyk, R. Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehlerschranken. Computing
4 (1969), pp. 187-201.

[9] Lai and Sahni. Anomalies in parallel branch~nd-bound algorithms. Communications of the ACM
27 (6) (1984), pp. 594—602.

[10] Lin, F. C. and Keller, R. M. Gradient model: « demand-driven load balancing scheme. In: “IEEE
Conf. on Distributed Systems”, 1984, pp. 337-357.

[11] Moore, R. E. A computational test for convergence of ilerative methods for nonlinear systems. SIAM
Journal on Numerical Analysis 15 (6) (1978), pp. 1194-1196.

[12] Moore, R. E. A lest for existence of solutions to nonlinear systems. SIAM Journal on Numerical
Analysis 14 (4) (1977), pp. 611-615.

[13] Moore, R. E. Interval analysis. Prentice Hall, Englewood Cliffs, 1966.

[14] Ranka, S, Won, Y., and Sahni, S. Programming « hypercube multicomputer. 1EEE Software,
1988, pp. 69—77.

[15] Ratschek, H. and Rokne, J. New computer methods for global optimization. Ellis Horwood,
Chichester, 1988.

[16] Ratchek, H. and Voller, R. L. What can interval analysis do for global optimization.]. of Global
Optimization 1 (2) (1991), pp. 111-130.

[17] Thoft-Christensen,]. Global optimering pi paralleldatamat. Master’s thesis. Numerical Institute
in Copenhagen, 1989.

(18] Walster, G. W, Hansen, E., and Sengupta, S. Test results for a global oplimization cigorithm.
In: Boggs, Byrd, and Schnabel (eds) “Numerical Optimization”, SIAM J. on Scientific and
Statistical Computing, 1984, pp. 272-287.

Received: August 25, 1993 Institute of Information Processing
University of Umea

§~901 87 Umea

Sweden

E-mail: jerry@cs.umu.se

perl@cs.umu.se

