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A parallel interval method implementation 
for global optimization using dynamic load 
balancing 
JERRY ERIKSSON and  PER LINDSTR6M 

During the past few years the interest paid to global optimization has rapidly increased. One of the 
main reas(ms is the new tedmok~gy of para!lel computers which offer" computatkmal l~wer capable of 
solving global optimization problems in reasonable time. The method studied in this work is based on 
interval atmlysis which provides'a reliable way for solving the problem. Despite the fact that the method 
contains a high degree of potential parallelism, it is not straight forward to'parallelize due to its irregular 
and unpredictable complitational l~haviour. Thb paper deals with the problem of balan6ng the load 
dynamically, I~th with respect to the quamity and to the qtmlity of the tasks. EITt~ient strategies are 
pro~)sed and implemented on an lntd iPSC/2 hypercube. Since the sequential algorithm is used as a 
ba~e it will be m,~lified to suit the paralld algorithm. 
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1. Introduction 
During the last two decades, a n u m b e r  of  methods  for solving global opt imizat ion problems have 

been proposed. O n e  of  the hardest  issues for these p rob l ems  is the computa t ional  requi rements  
that  are very high. Fortunately,  m o d e r n  c o m p u t e r  technology has m a d e  significant progress 

(~) J. Etiksson, P. LindstrSm, 1995 
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The global optimization which has brough! the global optimization problem into new light. 
problem is, 

min f ( x )  

.~.t. l~ <_ xi  <_. u ,  i = L 2 . . . . .  n .  

In this paper, let I be the set of real compact intervals. A box is defined as a closed 
rectangular parallelepiped whh sides parallel to the coordinate axes. In this paper, a box is 
denoted with an underlined letter as in X where X E I" .  

The method studied here for solving the global optimization problem is termed the. bttervtd 
r,ethod, see [I, 7, 13, 15]. The method provides a reliable way for solving the global optimization 
problem. It is based on an exhaustive search in a given box. The  box is dynamically sub-divided 
into smaller sub-boxes until they are manageable by different elimination phases. Throughout 
the algorithm, all sub-boxes not yet examined are ordered in a priority queue so that the most 
promising sub-box can be quickly extracted. 

Here the interval method is implemented as a brtmch.4md-&mnd qdgoritln, which is an impor- 
tant class of methods for solving optimization problems. Since the parallelism in brtmch.4tnd-bound 
idgorithms is inherently irregular, it requires dynamic load balancing in its implementation on 
a distributed memory computer. In this study, different decentralized dynamic load balancing 
strategies are designed and implemented. The load balancers are based on both receiver and 
sender initiated approaches. In many implementations in this area, the scheduler is only dealing 
with balancing the load with respect to the quantity of tasks. In this paper, it is seen that it is 
also important to consider the quality of the tasks. 

Initially, in the parallel execution, the box is split into p sub-boxes, where p is the 
number of processors. Since the original sequential algorithm does not include any initial 
sub-division, it is not fair to compare execution time between the sequential algorithm and the 
parallel algorithm. Instead, it is better to include an initial phase in the sequential algorithm. 
Additionally, in situations when the Krawczyk method (the local minimum search method) 
performs poorly a bisection is often too weak. A sub.dividing strategy based on the result of 
the Krawczyk method that may split the box into more than two sub-boxes is proposed. 

The paper is outlined as follows. In Section 2, the interval method is described. For the 
readers who are unfamiliar with the interval method, an introduction to interval analysis and 
a more detailed description of the interval method can be found in [16]. The modifications 
to the sequential algorithm are given in Section 3. The  parallel algorithm and its realization 
are discussed in Section 4. Section 5 deals with the dynamic load balancing problem. Last, m 
Section 6, the results and experiences are summarized. 

2D The sequential algorithm 
The algorithm is based on an exhaustive search in the multidimensional solution space. The 
initial box can be arbitrarily sub-divided into sub-boxes which can be investigated independently 
of each other. If a sub-box is too large to be manageable it is split further into smaller sub- 
boxes. Fortunately, it is not necessary to fully investigate all sub-boxes. Instead, many sub-boxes 
can quickly be discarded as not interesting by different rules. Further a priority queue is used 
to order the sub-boxes by increasing lower bound. The lower bound is the lowest function value 
the objective function can obtain in a sub-box. During the execution, sub-boxes are dynamically 
queued and dequeued from the priority queue. 
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The  first step in the algorithm is to compute  the lower bound of  the initial box, X0. The  
box X0 with its corresponding lower bound is inserted in the priority queue. As long as there 
exist sub-boxes that are not investigated, i.e., the priority queue is not empty, the execution 
continues. 

Next, the first sub-box is dequeued from the priority queue. If  its corresponding lower 
bound is higher than the current minimum (ca~inl), the algorithm terminates. Hence, it is 
possible to eliminate sub-boxes before any costly computations of  the sub-boxes are carried 
out. This test is often called the mid-point test. In the second step it is investigated whether 
the subbox is monotonous. 2 T h e  purpose of  this elimination phase, which is often caUed an 
acceleration device, is to make the algorithm faster and it does not seek a minimum explicitly. 
The  algorithm would still be correct even if this phase was removed from the algorithm, but 
the t ime to solve some problems could be expected to increase dra,naticailv. 

If the sub-box passes these tests the Krawczyk method is invoked to explicitly seek a 
local minimum. The  Krawc~k  method can end up with one of  three different results. If  the 
Krawczyk method converges it has either made a significant or  a non-significant +improvement .  
otherwize the Krawczyk method diverges and the box is excluded. The  Krawczyk iteration 
continues as long as it converges signifa:antly, in the non-significant case the box is split into 
two new sub-boxes which are inserted in the priority queue. If  a lower minimum is found, i.e., 
a value which is lower than cm/n, then cm/n is updated.  

When all sub-boxes, with a width greater  than a given epsilon (e) have been investigated, 
the algorithm terminates. At this stage cmin holds the global minimum. 

30  Modifications to the original algorithm 
T h e  purpose of  this modification is to extend the seqttentiai algorithm so it can serve as an 
efficient bails for the parallel algorithm. The  original sequential algorithm does not contain an 
initial tubal, ividing of  the solution space. Since the eliminations phases are often inefficient in 
the beginning of  the execution an initial phase is to prefer. The  second snl~diving modification 
proposed uses the result of  the Krawczyk operator.  

The  initial phase. We propose an extension so a number  of  bisections can be carried out 
initially. Here the term initial phase refers to the time before entering the sequence of cycles. 
The  elimination phases, especially the Krawczyk method, are often inefficient in the first part  
of the execution and it is not motivated to invoke them too early. Ideally, it would be more 
efficient if the sub-boxes were small enough to be directly manageable by the elimination 
phases. 

There  is a trade-off in determining the number  of  subboxes to be generated. If  too 
few sub-boxes are generated, the gain will not be large. On the other hand, if too many 
sub.boxes are generated,  a lot of  sub-hexes will be unnecessarily investigated. In order to keep 
the algorithm reliable, the generation of sub-boxes should be held at a moderate  level. 

Unfortunately, it is impossible to give an optimal :formula on how a subbox generation 
should be defined. Probably, the only practical way is to use common sense and experiences 

l~/n is initially set to +oc. 
2A box X is said to he monotonous if the t'tuv:tion f is monotonous in X__.. 
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from computer tests. [n order to design a usefid practical algorithm, the following three 
parameters have been emphasized: 

�9 the width of the initial box, w(X__0), 

�9 the required precision, z, 

�9 the dimension of X_.~0, n. 

Here the qt,otient u'(X0)/e 'is an important factor since it is the upper bound of how 
maqy sub-boxes that must be investigated. However, this quotient could be a very large number. 
By applying logi0 to the quotient a suitable mimber is often - achieved. That  is, it gives Values 
not larger than 10 for reasonable sizes Of the initial box and of the accuracy respectively. This  
leads to Formula (1). 

However, when n is large s should be limited, That  is, if. n >_ 10, then s :is be limited to 
2, to avoid a too high sub-bo x generation frequency. 

The next task is to decide how s ~shouid I~ used. ]f n is large, it is generally more 
complicated and should lead to a higher generation of sub.boxes. After some testing, the 
following strategy turned out to be the most promising. 

Algorithm: Initial phase 

I. ( ~ n p u t e  s by Formula (1). 

2. For i = 1, n do steps 3-5.  

3. Pick rdl sub-boxes in the priority :queue. 

4. Split all these" sub-~xes into S' sub-boxes for dimension i. 

5. Insert all these in the priority queue. 

In other words, the initial box is dequeued from the priority queue and is further split 
into s sub-boxes. These newly created sub,k)oxes are inserted in t h e  priority queue. At this 
point the priority queue, consists or" s sub-boxes. This pattern is repeated for all dilnensions, n. 
After rt repetilions the priority qneue consists of s n sub-boxes. 

There is no need: to compute the lower bound of the sub-lx)xes generated except in the 
last loop. That is, in the first n - 1 loops the. value zero is assigned to the lower bound of each 
sub-box. Since all lower bounds are zero, the priority queu e is essentially a. simple list in these 
loops. Hence, this scheme avoids the calculation of "s. n - x  lower bounds. But more importantly, 
the elimination phases have not been invoked for  these sub-boxes. 

It could also be motivated to consider different mathematical operations and interval 
dependency of the object ftmction. However, it would probably be an immense task to 
determine or calculate weights on these operations and it has not been dealt with. 
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A modified bisection. The Krawczyk method [8] computes an operator K(X) ,  called the 
Krawczyk operator. In each iteration the sub-box X,~+l = X,, Ct K(Xn) is computed. If 
X,,~t is not an erupt} sub-box, there might exist a local mininmm in the sub-box, otherwise 
the method diverges. A positive side effect lies in the inherent information in K(X) .  If 

w(K(Xn) ) >_ 0.9'w(X.), then the Krawczyk method has made non-significant a improvement 

(otherwise significant improvement). The reason is probably that w(X~,,) is too large to be 
efficiendy manageable by the Krawczyk method. In these situations a bisection of X n is 

If w(K(mn) ) >> w(mn), there is a risk that a bisection is too powerless. If the required. 
sub-box cotdd be split into more than two sub-boxes the elimination phases would be invoked 

% / 

on smaller sub-boxes. 

!n order to realize this approach another practical algorithm is designed. The following 
paraineters are considered as important: 

�9 the width of the current sub-box, w(~_,,), 

�9 the. width of the Krawczyk operator, w(K(Xn)). If w(K(X,,))is much wider than 
w(X,)  it could be  expected the Krawczyk method has  been very unsuccessful 

Basically, this idea is somewhat akin to the previous algorithm. In this case the quotient 

w(K(Xn))/w(X___,,) is of great importance. That is, a high quotient should lead to a high 
number of subboxes generated. The quotient is applied to logt0 in order to obtain a suitable 
number. Further, the upper bound of this number is limited to upihnit = 6 leading to 
Formula (2). 

s =  max ( ra in  (logt0 (w(K(Xn))/w(X~)): uplimit),2). (2) 

The sub-division is applied to the widest interval in the sub-box. 

However, this solution is not fidly satisfactory. If the Krawczyk method continuously 
performs poorly, a verv high number of sub-boxes will be generated. Therefore, an adaptive 
mechanism is included. If the Krawczyk inethod performs poorly the number of sub-boxes to 
be generated is slightly decreased by a term tad. The term rut. initially equals zero, could also 
be increased during the execution if it turns out that the Krawczyk method is getting more 
efficient. In our tests, it has been shown that it is suitable to let ad be decreased by 0.25 for 
each non-significant improvement and increased by 0.25 for each significant improvement. By 
using Formula (3) the variable, s, varies between two (ordinary bisection) and ttplimit (equal to 
six in our tests). Hence, if ad is getting too large or too small it will not be not adjusted. 

Summary~ these modifications consist Of the following two parts; First, the algorithm lnititd 
ptuLw, is supplied, which purpose is to avoid unnecessary computations in the beginning of the 

execution. Second, in the situations when the width of the Krawczyk operator, w(K(X__n)), is 

much larger than the width of the computed sub-box, w(Xn), Formula (3) is used to determine 
the number of sub-boxes to be generated. 

These modifications are solely based oil common sense, but they have an empirical basis. It 
is mos~ important to keep control over the number of generated boxes otherwise an extremely 
high sub-box generation might result. 
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No. 

6 
7 

Function 

(1.5 - x l  + XlXz) 2 + (2.25 - x l  + x i x 2 )  2 + (2.625 - x l  + x l x ~ )  2 

E~~ F'~k, Fk = e x p  (--:~'~ -- e x p  (:--~o ) A k x a ,  Ak  = exp (~o k) -- e x p ( - k )  k 102 
(ah + 10xz) 2 + 5(xa - x4) z + (xz - 2xa) 4 + 10(xl - x4) 4 

100(x2 - x~) 2 + ( ~  - 1) 2 

E~ ~ In (x~ - 2)g + E~~ In (10 - xi) 2 m 
[ (:~+y") + 1 cos x cos 

"Fable 1. The test problems 

2 

2 

3 

4 

2 

10 

2 

�9 Initial box, X__ ~ . # local minima No.  

1 [ -  10, 10][- 10, 10] 
2 [ -  10, 10][- 10, 10] 

3 [0, 5][8, 11][.5, 3] 
4 [ -4 ,  5][-4, ~][.~, 5][ -4 ,  51 

5 [-lOOOO. lOOOO][-lOOOO, mOOOl 

6 [3, 4] [3, 4] [3, 4] [3, 4] [3, 4] [3, 6] [3, 61 [3, 6] [3, 61 [3, 6] 
7 [ -  1000, 1000}[- 1000, 1000] 

760 
1 
2 

1 
1 

boundary valne 

1 

Table 2. The initial boxes 

Teat results. The test fimctions selected are well-known global oplimization problems. There 
are polynomial fimctions as well as fimctions which include both exponential operations or 
trigonometrical operations. 

The selection of test functions is shown in Table 1. Six of the seven functions can be found 
in [18] and number 6 can be found in [17]. The corresponding initial boxes for the functions 
are given in Table 2. Throughout all tests the accuracy (z) is set to 0.1. The computer used 
for the sequential implementation is a Sun Sparc 1+. 

Table 3 summarizes the total execution times. The second column shows the improvements 
after the modification. The last column displays the improvement of the original algorithm 
versus the final proposed algorithm. For six of the functions an improvement of 27 - 47% 
has been made. For Function 2 only a minor improvement is achieved. For a more detailed 
presentation of the test results, see [4], 

We stress that the purpose of these modifications is m make the algorithm more suitable 
to the parallel algorithm. However, the test results show that these ideas might be successful 
in the sequential algorithm as well. 
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Function Original After hnprovement 

No. algorithm modification 

1 

2 

3 

4 

5 

6 

7 

5.81 

1.56 

12.45 

0.36 

0.82 

55IA8 

2.38 

4.26 

1.46 

8.46 

0.19 

0.58 

388.61 

1.46 

1.55 (27%) 

o.1o (6%) 

3.99 (32%) 

0.17 (47%) 

0.24 (29%) 

162.87 (20%) 

0.92 (38%) 

Table 3. Comparison of the original sequential, algorithm versus the modification (in seconds) 

4. The parallel algorithm 
The sequential algorithm has a high level of inherent parallelism. All sub-boxes are independent 
of each other and can'be investigated in parallel. As mentioned earlier, the interval method is 
here formed as a brand~md-bmmd qdgorithm. The  following algorithm is adapted for the interval 
method, but the structure also fits many other brtmch.~md-boumi qdgorilhms, see [6]. 

1. la i t la ihat i~.  The original box is inserted in the priority queue and the cm/n is set to oo. 

2. Seleaioa. The most promising subimx is selected and dequeued from the priority queue. 

3. Lower bouad teat. If the lower bound of the new sub-box is higher than train, the 
sub-box is excluded from further consideration (The mid-point test). 

4. Elimination test. The sub-box is investigated by the different elimination phases. The 
sub-box is excluded if it is guaranteed not to lead to an optimal solution. 

5. Feasibility test, Update cmin if a lower minimum has been found. If so, exclude all 
sub-boxes in the priority queue that have a higher lower bound than cmin. 

6. Branching. Split the sub-box into new smaller sub.boxes and insert these into the priority 
queue. 

7. Algorithm termination. If the priority queue is not empty then repeat 2-6, otherwise 
the algorithm terminates and the optimal value is hold by cm/n. 

4.1. Realization of branch-and-bound methods on iPSC/2 
The parallel computer used in this work is an intel iPSC/2 hypercube, supplied with 64 
processors (nodes). The hypercube computer hel0ngs io ihe category of distributed memory 
computers. Another name is message-passing computers since communication between nodes 
are carried out by sending messages to each other. A hypercube has always 2 d nodes where 



8 4  J. ERIKSSON 0 P. IJNDSI"ROM 

each n(~le ha.s d physi,:al neighl~mrs. The  most inlel csting pr q;evties of the hypercube topology 
is the different, mapping conligtlrati,nt possibilities, s~tch a~ ring, toru~ cubes, arid trees, see It-it. 
Another nice featttre is the efficient inlplementati,m ,ff global -pcrati,)t~s. Fi,r example, if each 
node has ~.1 partly computed vector, it is possible to summarize all the,e it'/ d steps. 

In order  to implemem a parallel bmmh-.and.bo,mt meth~M, or lnorc pretiselv the parallel 
interval method on a distributed memory tnachine, several issues must be solved 

�9 How and where should tile priority queue be stored in ordei to" 

- -  keep all nodes htlsy investigating sttb-~oxes (ql.tamity). 

-- mv/2stigate the m-sl. promising std~-h,~xes (quality). 

- utilize the total memory efficiently. 

�9 Ho~ !o broadcast the new ,ninima as ,luicki.~ as possible 

The  first item refers to the dynamic load. balancing problem: Our  approach uses two 
proces~s or'/ each node; a worke r  and a sdteduler,  T h e  first process, the worker, investigates 
sub-boxes. The  second process, the scheduler, tries to balance, tile load as fairly as possible 
among the nodes. It also deaJs with the distribme d termination .problem. T h e  idea 0f using 
two processes is a matter of  abstraction. To u"eal the :i~,k'o processes as '~p,Srate makes the 
discussion'conceptuallv cleat~er and also serve :to emphasize the independence of the processes. 

- , .  . �9 . . - . 

The  worker should be' free from all responsibility consider!ng load balancing and, besides 
investigating sub-l~kes, only "request and receive sub-lx>xes fi'om .the ~t:hechtler. ,In .tile next 
section, different load 16alancers are proposed. 

The  ~cond  item refers to the problem of broadcasting a new minimum. If a new lower 
local minimum is fottnd the worker  broadcasts the ulinimum to all t~.her worker s . .Th i s  is 
carried out relatively cheaply by just One communication call. c,~'nd(). All other nodes can 
receive this message b,F a corresponding crecy(), However. t, he problem is to dete~'mitie when. 
during the execution, the worker should receive this ntessage. It is expensive to probe f i ~ r  a 

message ofren. On,.the other hand. urnlecesm~r,r compntalions might be carried out .if tile m~le 
probes lt~o seldom. 

Ahernatively, the iPSC,2 ,.,frets ;.ill interrupt-driven message primitive, hrect~(~, that solves 
this problem efficiently: in tile beginning of tile execution, a node Can infornl the operating 
system which messages (in our  case a new mininntm) that should have special treatment. 
Whenever a tuew minimum, is pending it is immediately received and the execution contimtes 
in all user predefined subroutine, hl this sul>routine cmin is updated and then it is legal to 
jump to any place in the c,xte. This timture enables tile worker to xeceive a new minimuln 
during an investigation of a sttb.-box. It is even po.~sible that the current stlb-l~x is excluded 
during tile investigation if its lower bound is higher than the new received minimum~ 

It is certainly preferahle to use this primitive instead of oecv 0. The  advantage is twofold. 
First, one d ~  not have to Ix~ther when and wh'ere to probe for a new minimum. Second. 
cmin is updated immediately after it reaches the node which makes it p,,ssible to avoid some 
COml~utatitnts. 

5. Dynamic load balancing 
The  amount  of work of im.,estigating a sub-box (task in the sequel) can differ widely. Due to 
the :|hct that no knowledge considering :tile behaviour of  the execution 'is known a priori, it is 
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no*. suitable to statically balance the load. The  use of a static load balancing strategy would 
undoulafidly lead to an inefficient use of the parallel computer. In general, a brand~.~aad-bound 
cdgorithm can never be efficiently implemented on a parallel machine without dynamic load 
balancing. 

In an earlier work, [~3], two different approaches were implemented and compared, a 
centralized load balancer based on the Master-and-slave concept and a hypercube topology 
based decentralized load balancer. 

In the centralized load balancer the priority queue and c,~in are Stored at the Master node. 
The other nodes (the slaves) request work from the Master. The Master always deliver the 
most promising task to the requesting node. This is the main advantage of using centralized 
load balancers. Sadly, a lot of drawbacks occur t,sing this approach. The Master very often 
becomes a serious bottleneck w.r.t, the processor capacity and worse, the communication unit 
will often be quickly overloaded. 

The decentralized load balancer, on the other hand, avoids the bottlenecks mentioned 
above. But, since the priority queue is distributed among the p nodes and the load balancer 
only consider the quantity of the tasks, the p most promising tasks are seldom investigated. 
Test results showed that, when the number of nodes exceeds 8, the decentralized load balancer 
is superior to the centralized load balancer. Hence, in the sequel, only the decentralized load 
balancer will be considered and filrther developed. 

The aim for a dynamic load balancer is to migrate work from the busy nodes to the 
lightly loaded or idle nodes during the execution. A decentralized dynamic load balancing 
scheme can he characterized as one of the following, see [I0]: 

�9 Sender-initialed. This means that the load balancer delivers tasks from the local node to 
lightly loaded nodes without any explicit request from the remote nodes. However the 
load balancer often has some knowledge of the load in the system. 

�9 Receh~,r-initi~aed. In these schemes the load balancer requests tasks from a sub-set of nodes. 
A demand is initiated b i' an idle node or lightly loaded node. 

�9 Hybrid. This scheme is a hybrid of the two earlier. 

In the following sections, receiver-initiated as well as sender-initiated load balancers are 
proposed. In Section 5.1 a receiver-initiated quantity load balancer is described. This load 
balancer considers the load with respect to the quantity of the tasks. The goal of this load 
balancer is to reduce the inefficient parts of our previous load balancer based on the hypercube 
topology. Two sender-initiated load balancers are proposed in Section 5.2. These load balancers 
strive to balance the load with respect to the quality of the tasks. The purpose is to capture 
the advantages of the centralized load halat~cer. Together, the receiver-initiated and sender- 
initiated load balancer form a hybrid load balancer. In Section 5.3 test resuhs for an Intel 
iPSC/2 hypercube are given. 

5.1. The receiver-initiated quantity load balancer 

One of tile drawbacks of using the hypercube topology is that tile protocol requires a 

lot of messages. Consider the following scenario for a d-dimensional hypercube: A node 
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has been idlefl Ti le idle node requests work from al[ its hnmediale neighbors (d messages) 
Upon receiving a task fi-om one or more abundant t node it sends a acknowledgement to 
the same set of nt~les (d ntessages). This implies a total of 2d messages for the requests 
attd acknowledgements, plus one or more messages consisting of tasks from abtmdant  nodes. 
Auother  disadvantage of using this .scheme is that tile l~)werftt[ cttt-throttgh network is not 
fully utilized. 

Here,  a new load balancer algorithm based on a ring topology that solves the two earlier 
drawbacks is proposed (see Figure 1). The  scheduler proposed has the following properties. 

0 @, 0 

Abundant 

o| @, 
@ 

Figure 1. Node 7 has been idle. It sends a request to the next node in the ring. Just before 
node 0 receive the request from node 7 it has also become idle. Node 0 packs both requests 
into one message and sends it to node L Unfortunately, node 1 has no tasks to deliver so it 
sends the request filrther to node 2. Since this node has tasks; it sends one task directly to 
both node 0 and node 7 respectively, without interfering node I. 

First. it is fiflly asynchronously and decentralized which means tha t  balancing is carried 
ont whenever necessary and not at specifi c intervals. The  term decentralized means that the 
responsibility for load balancing is decentralized among  all nodes. Second, it reduces the 
communication for the scheduler to a very low level. An idle node sends a reqnest to the 
next node  in the ring and upon receiving a task it sends no acknowledgement. For a 64- 
nodes configuration, this approach reduces the number  of messages significantly. Third,  if 
all idle node sends a request to another  idle node, the request is pa"ssed fttrther packed into 
one message. Tile last feature is that an abundant  node does not send the task back to the 
ring. Instead it sends the task directly to tile target node thereby utilizing the cut-through 
communication network. For a more detailed description, see [4]. 

5.2. The sender-initiated qualitative load balancer 
To this point the quality of  the tasks has not been considered. By tile term quality, we mean 
how promising the tasks are (the lower bonnd Of the sub-boxes). The  purpose of the quality 
balancer is both to speed-up the execution and to redttce tile number of tasks, thereby capturing 

:~A m~de that is out of tasks is called idle, 
aA n~ le  that has a surplus of tasks is called abundant. 
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the advantages of  the centralized toad balancer, in other words, its purpose is to overcome 
ttw problem ,ff investigating non-promising tasks. Several approaches based on hettristics have 
been tested. The  t~o schemes presented below turned out to give the best results. The 
~eceiver-initiated quantity load balancer is inchtded as a base in I-x,th schemes. 

5.2.1. Random distribution 

The first scheme acts as follows. Each scheduler counts the number of tasks generated by 
splittings. Each time the counter exceeds a generalor limit the scheduler sends its first task in 
its priority qnette to a randomly chosen nocle. In this scheme the ge,eratm limil is fixed to 5. 
This strategy tends to keep the most promising tasks scattered among all ,lodes so all workers 
are likely to investigate one of  the most promising task. Each separate local scheduler has 
no knowledge about the load on other ,lodes. So, in the worst case, a node with a lot of  
promising tasks can unnecessarily receive non-promising tasks. This is IlOt tOO bad since the 
non-promising tasks will be inserted at tile end of  the receiver's priority queue. 

Notice that, assuming that the random generator works Well (which it does), this scheme 
also implicitly balances file |oad with respect to qnantity. 

5.22. Adaptive random distribution 

This scheme is an improvement of  the previous. Instead of  having the ge,ermor limit fixed it 
can be varied during the execution. The  scheme acts as follows. As previously, a scheduler 
that receives a task insei-ts it in its priority queue. If the task is inserted first in the priority 
queue, tile scheduler respond a good message back to the sending node. Otherwise, if the task 
is, inserted in another place in the priority queue, a &d message is responded. The sending 
node then receives the responded message and its local generator limit is adjusted depending 
on the vahte of  the message. If a good message is received, the generator limit is decreased by 
one. This means that the scheduler ,lode will distributes tasks more frequently. The opposite 
holds if a /~M message is received. For example, let the generator limit initially be set to 5. If 
a scheduler has distributed 15 &u/ and 3 good tasks, the generraor limit is 17 (5 + 15 - 3). In 
this scenario the scheduler is distributing tasks rather seldom due to all bcul messages it has 
received. 

The advantages of using this approach are that a scheduler with promising tasks tend 
to distribute more tasks than others. This leads to less distributions and investigations of  
non-promising tasks. 

5.3. Test remits and comparisons 
In the context of  parallel computers, the efficiency is measured as: 

time( s ) 
E(p)  = time(p) * p 

where lime(s) is the sequential execution time and time(p) is the parallel execution time using 
p nodes. E(p)  * 100 expresses the efficiency ill percentages. Naturally, the goal is to achieve 
efficiency as close as possible to 100%. 

The  test resnlts show comparisons of  the different load balancers w.r.t, the efficiency. 
Due to some hardware problems, we have been forced to use software interval romading. By 
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Figure '2. Gmtparison of efficiency using Function 3 

that fact, no execution times are presented. T h e  three most time consuming (on tile iPSC/2) 
functions from the seven test functiolls presented in Table 1 have been selected. 

Figure 2 shows the resuhs for Function 3. The  efficiency is over 60c~ up. to 16 nodes. 
[Jsing more nodes, it is hard to achieve high efficienc~ ~ due to the very short execution time. 
h is clear that a problem must be large if it should be fruitful to rise a parallel co,nputer. 

in Figure 3 the resuhs for Functi(m 4 are displayed. The  efficiency is over 80r~ for all 
load balancers using tip to "{2 iiodes~ It is clear that the ,hybrid load balancer including the 
;'tdaptive randolfi distribution is more efficient than the o thers  foi: all node configurations. Due 
to: the very irregular parallel algorithm it is possible to achieve an efficiency over  100c/~. This 
is due to the fact that th.e parallel algorithm does ,~ot investigate the sub-boxes in the same 
order as the sequential algorithm. 

T h e  best results are achieved using Function 6 as displayed in Figure 4. T h e  differences 
between the different load balancers are obvious. T h e  use of  adaptive random distribution is 
very successful for large problems. These results confirm the advantages of  using qnalitative 
proix'rties in the load halancer. 

Last. the number  of  tasks generated for Function 6 are presented. Figure 5 shows that if 
a quantitative load balancer alone is used, the number  of  tasks can inc/'ease dramatically, in 
this example the difference is around 19000 tasks (35000 - 1C~00) using. 64 n,~es. 

6. Conclusions 
In tills paper  we have developed different dynamic load balancers fi)r implenlenting a global 
optimization method  on an lntt4 iPSC/2 hypercube. Decentralized load ba!ancers has several 
advantages; the)' use tile tnetnory efficiently, the communication unit will not be overloaded. 
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Figure 5. Comparison of the number of sub-boxes using Function 6 

Another advantage is scalability. These imple,nentations will execute efficiently on larger 
hypercubes, if the problem is sufficiem large, without being altering. 

it has been shown that it is appropriate to use a/..'br/d scheduler. A recehv,,r-initiated quantity 
load halancer enables the nodes to request tasks from other nodes when idle. It is also usefid 
for branch.and-bourn1 aigorith~l~ to include a .wnder-initkaed quality load bala,lcer which delivers 
promising tasks to other nodes. Two approaches have been examined. First, a scheme based 
on random distribution where the load balancer distributes its most promising task to randomly 
chosen nodes at specific intervals. The second t'ariant acts similarly, but the tasks are distributed 
at intervals which vary during the execution depending on the qnality of the distributed tasks. 
The test resuhs show that the execution time as well as the number of tasks decrease when 
the scheduler becomes more sophisticated. 

References 
[1] Caprani, O. and Madsen, K. s ;t4lh inlencd mahod~ for nonlinear .~):~ten~. Technical 

report. Institute fitr Angewandte Mathematik, Universidit Frieburg i. Br., Copenhagen, 
1981. 

[2] Caprani, O. and Madsen, K. lmroduktion Ill intenr amdy, e. Institute of Dataiogy, University 
of Copenhagen, 1981. 

[3] Eriksson, J. lmpro~,nent~ of the i,len~d method for .~h~ng the glob, I optimzation problem. UMINF- 
report, Information Processing, University of UmeA, 1991. 

[4] Eriksson, J. PandM globtd'o]~imztaion ttsing imen,d amdT~i~. UMINF-report, Information Pro- 
cessing, University of UmeA, 1991. 



A PARALLEL INTERVAL METHOD IMPLEMENTATION FOR GLOBAL OPTIMIZATION.,, 91 

[31 Eriksson, J. Improper,tents of the inter~ method for sdz~ng the glol~d optimz~aion p'ablem. UMINF- 
report, Information Processing, University of Ume~, 1991. 

[4] Eriksson, J. Par~dM globqd ol~imzlaion using inZerzgd mudy.6s. UMINF-report, Information Pro- 
r University of Ume;l, 1991. 

[5] Eriksson, J. PartdM glol~d optimization using hUtrzvd anal~si~ on iPSC/2 (Dr~). UMINF-report, 
Information Processing, University of Ume/t, 1990. 

[6] Fehen, E. W. Best-first branch-c~nd-bonnd on a hypercuJle, in: ~Conference on Hypercube Con- 
current Computers and Applications, 1", ACM, 1988, pp. 1500-1504. 

[7] Hansen, E. Global optimiztaion ~tsing inter~d mudysis~the mtdti-dimensiomd case. Numerische 
Mathematik 34 (1980), pp. 247-270. 

[8] Krawczyk, R. Newton-Algorith~t~ zur Be.slimmung zgm NIdL~ellen mit FeMersckranken. Computing 
4 (1969), pp. 187-201. 

[9] Lai and Sahni. Anmludies in parrdlel branch.trod-bound algorith,L~. Communications of the ACM 
27  (6) (1984), pp. 594-602. 

[10] Lin, F. C. and Keller, R. M. GrcMieni tnodel: a dntu~mt-drh~ lotM &danca'ng scheme. In: ~IEEE 
Conf. on Distributed Systems', 1984, pp. 337-357. 

[11] Moore, R. E. A com/nacaiontd test for convergence of iterqah~ methods for nmdi~tear systems. SIAM 
Journal on Numerical Analysis 15 (6) (1978), pp. 1194-1196. 

[12] Moore, R. E. A test for existence of sohaions to nonlinear syste,ts. SIAM Journal on Numerical 
Analysis 14 (4) (1977), pp. 611-615. 

[13] Moore, R. E. l~er~r taudysis. Prentice Hail, Englewood Cliffs, 1966. 

[14] Ranka, S., Won, Y., and Sahni, S. Programmilg a hypercube multicomputer. IEEE Software, 
1988, pp. 69-77. 

[15] Ratschek, H. and Rokne, J. New computer methods for globtd optimiuaion. Ellis Horwood, 
Chichester, 1988. 

[16] Ratchek, H. and Voiler, R. L. Wlua ctm inter~gd antdy~sis do for globtd optimization, j. of Global 
Optimization 1 (2) (1991), pp. 111-130. 

[17] Thofi-Christensen, J. Globtd optimering pd parallel&aa,ua. Master's thesis. Numerical Institute 
in Copenhagen, 1989. 

[18] Walster, G. W., Hansen, E., and Sengupta, S. Test reudts for a globtd optimization ~dgoritlnn. 
in: Boggs, Byrd, and Schnabel (eds) "Numerical Optimization', SIAM J. on Scientific and 
Statistical Computing, 1984, pp. 272-287. 

Received: August 25, 1993 Institute of Information Processing 
University of UmeA 

S-901 87 Ume~ 
Sweden 

E-mail: jerry@cs .nmu,  se  
p e r l g c s ,  umu. as  


