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1. Introduection

In her thesis [4], R.-M. Hervé develops Brelot’s axiomatic potential theory.
Within this theory she constructs an adjoint potential theory satisfying the same
axioms. She applies this to the potential theory associated with an elliptic linear
second-order differential operator L. When the adjoint operator L* exists in the
classical sense and has Hélder-continuous coefficients, the adjoint potential theory
coincides with that of L*. In Section 3 of this paper we generalize this fact to the
case when the coefficients of L are assumed to be locally «-Holder continuous and
L* is defined in the sense of distributions. This result easily implies some properties
of supersolutions of the equation L*u = 0 proved by Littman [5]. He shows that
they satisfy a minimum principle and have some approximation properties.

Under the same assumptions, we prove in Section 4 that the distribution solutions
of L*u = 0 are locally «-Holder continuous. In Section 5 we obtain a formula for
Hervé’s L*-harmonic measure of a domain w. This measure is shown to have an
area density given simply by a conormal derivative of the Green’s function of L
in . Finally, we prove a Fredholm type theorem for the Dirichlet problems for
L and L* in a given domain.

The author wishes to thank Professor Kjell-Ove Widman for his valuable help
in the preparation of this paper, in particular for giving the ideas of several of
the proofs presented.

2. Preliminaries

Suppose we are given a domain £,C R*, n > 2, and a differential operator

Lu = a¥ui; + b'u; + cu,
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defined in 2, We assume that oV = o/, that L is elliptic in £, and that the
coefficients are locally «-Holder continuous, for some « with 0 <« < 1. As
Hervé shows, we can let the C® functions u satisfying Lu = 0 be the harmonic
functions in Brelot’s axiomatic potential theory presented in Brelot [2, 3]. In this
way we obtain a potential theory satisfying Brelot’s Axioms 1, 2, and 3’ (see Hervé
[4]). We write »L-harmonic», »L-potentialy, etc. when we refer to concepts of this
theory.

To make possible the construction of an adjoint theory, we must limit ourselves
to a domain 2 C £, where a positive L-potential exists. Depending on the coef-
ficient ¢ of the operator, £ may be chosen in the following way, as shown by
Hervé [4, p. 562].

1.If ¢ <0 and ¢ == 0, we may take £ C £, arbitrary.

2. If ¢=0, we may take any bounded £ such that 2 C Q,.

3. If ¢ is arbitrary, any w, € 2, has a neighbourhood which is an admissibie

Q.
From now on we fix such an 2. In the sequel o, @y, ... will always be subdomains
of 2 or £,

We follow the notation of Brelot and Hervé and write Ry for the balayaged
function of a nonnegative L-superharmonic function » and a set EC Q. If &
is compact and contained in 2, and f is defined and continuous on 9w, then the
solution of the Dirichlet problem for L in « with boundary values f is denoted
by HP. A point x, € 0w is called L-regular for w if Hp(x) — f(x,) as & — %,
x € w, for any continuous f. As shown by Hervé, z, is L-regular if and only if it
is regular in classical potential theory.

Hervé [4, Prop. 35.1] constructs an L-potential P, in £ with support {y}
and such that the mapping (x, y) — P,(x) is continuous for x,y € 2, z # y.
The support of a potential P is defined as the complement of the largest open set
in which P is harmonic. The function P,(x) is a fundamental solution of L in £.
Hervé [4, Theorem 18.2] shows that any L-potential P in £ can be represented as

P) = f Py@)du(y) 2.1)

for a unique positive measure g in 2. The support of x4 coincides with the support
of the L-potential P.
For any bounded o of class C"? and such that & C 2 the Green’s function
is given by
GO, y) = Py(x) — Hp (2). (2.2)

The function G“ can be used to solve a boundary value problem, as follows. If f
is continuous in & and locally Hélder continuous in w, the unique solution of the
problem

Lu =f in w, u=0 on Jdw



ON THE ADJOINT OF AN ELLIPTIC LINEAR DIFFERENTIAL OPERATOR 155
is given by

u(z) = — f & (@, 1) (y)dy. (2.3)

For this see Miranda [6].

To construct the adjoint potentials, Hervé uses the concept of completely-
determining open set in £, which is defined in Hervé [4, p. 451]. If o is
L-completely determining, Hervé defines the L*-harmonic measure o) for o at
¥y € Dby the equation

Rﬁ;\"’(x): f P.(x)do?(2). (2.4)
The left side of (2.4) is an L-potential in £, so because of (2.1), the measure g}’

is uniquely determined by (2.4). Hervé now calls a function L*-harmonic in o,
if it is continuous there and satisfies

u(y) :fu(x)da;’(x), Yy €w,

for any L-completely determining o such that & c ;.

Hervé shows that the L*-harmonic functions satisfy the axioms of Brelot’s
potential theory. In the adjoint theory the function Pj(x) = P.(y) is a potential
with support {y} and plays the role of P,(x). Following Hervé’s notations, we
shall write »L*-superharmoniey, »L*-potentialy, etc., for concepts pertaining to this
adjoint theory. From the definition it can be proved that the property of L*-
harmonicity in o is independent of the domain £ considered, £2 D w. If the
adjoint operator

a2
axiaxj

J .
P (b'u) + cu (2.5)

L#y = (@) —
exists in the classical sense and has Holder-continuous coefficients, then the ZI*-
harmonic functions are simply the solutions of L*u = 0. In the general case, we
interpret (2.5) in the sense of distributions, for any locally integrable wu.

For each &> 0 we fix a nonnegative C' function w, in R", with support
contained in {|z| < &}, and such that

fws(x)dx = 1.

We let H(x,y) be the fundamental solution of the operator a¥(y)d?/dx0x;
defined by
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H(z,y = \/—1 g Cag) (@ — y)ay — y) ™ if 0 =2,
3 1
 (— 2oV A(y)

Here w. is the area of the unit sphere in R", and A(y) and (ay4(y)) are the
determinant and the inverse, resp., of the matrix (a%(y)).

S asly) (@ — i)y — )™ if 0> 2.

3. The fundamental equivalence

We start with a preliminary regularity property of the distribution solutions of
L*y =0 in a domain o C Q.

LemMa 1. If u € L) (0) satisfies L*u = 0 in the sense of D'(w), then u

coincides a.e. in © with a continuous function.

Proof. Assume n > 2, and take a fundamental solution F(z,y) of L in .
Let U be a relatively compact open subset of o, and pick y € U so that

f lu(z) — uly)lds = o(g") (3.1)

as ¢—0, where B, is the ball {z: |x — y| < ¢}. Choose ¢ € @(w\Bglz) equal
to 1in U\BQ. In B@\Balz we let the derivatives of ¢ satisfy ¢; = O(o™) and
@i = 0(p~%) as o-—0, and outside U we take ¢ independent of p and .
Since x — p(x)F(x,y) is a C® function, we conclude that

[worp@r e, i < o
But L.F(x,y) =0 for x4y, so

[r@a @@ F @, s+ 2 [ e epEEs e i +

Be B (3.2)
+ f @R 1)ds + [ p@F @ i) = 0.
o\ U

We know that F(z,y) = O(lx — y|*™") and that

F(w,y) — H(x,y) = O]z — y[**7").

(Cf. Miranda [6, pp. 18—20]). Hence, (3.1) implies that the third term in (3.2) is
o(l) as ¢ — 0, and the first term equals
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[ () (@) ps(@) H(z, y)de + o(1). (3.3)

Bo

By means of an integration by parts, we find that the second term in (3.2) equals
the same expression, except for a factor — 2. But H is a fundamental solution
of a¥(y)o?/ox:0z;, and ¢ — 1 can be considered as a function with compact

support in B, so the integral in (3.3) equals u(y). Letting ¢ — 0, we get

uly) = f (@) Ll (2)F (@, y))da (3.4)
o\ U

for a.a. y in U. Since F(z,y) is continuous in (x,y) for x £ y, the integral
in (3.4) is a continuous funetion of y in U, and the lemma is proved for » > 2.

If n=2, we introduce a new variable x, and put M = L - 9%/d2; and
v(x, %3) = u(x) in wXR. Then M is elliptic, and » satisfies M*y = 0 in the
sense of D'(wXR), since for y € H(wx R) we have

/szpdxdxs :/dx3/ () Ly(z, x5)dx —{—/u(x)dx/ (2, 25)dxy = 0.

Thus we can make v and hence also % continuous by changing them on null sets,
and the proof is complete.

Remark. As we shall see later, % is in fact Holder continuous, and therefore
the proof of (3.4) holds also in the two-dimensional case.

THEOREM 1. Let o G Q. A locally integrable function w in o sabisfies L¥*u = 0
in the sense of D'(w) if and only if w coincides a.e. in o with a function which is
L*-harmonic in . Similarly, w is locally integrable in o and satisfies L*u < 0
in the sense of D' (w) if and only if w coincides a.e. in o with a function which is
L*-superharmonic in o.

Proof. Suppose « is L*-harmonic in w, and let y € D(w). Take w; and o,
such that

supp py Cw, € &, Cw, C @y, C w,
and let w, be bounded and of class C"?, If % >0, define

v = (B¥™)

g

which is the balayaged function of # in the L*-potential theory in w,. Then v
is an L*-potential in w, with support contained in 8w,, and » coincides with «
in w;. By Theorems 33.1 and 18.2 in Hervé [4], the L*-potentials can be represented
as in (2.1). In this case we obtain
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vly) = f G (@, y)dp(z), (3.5)

for some positive measure u with support contained in dw;.

There exists a positive L*-potential P} in £ and thus also a positive L*-
harmonic funetion in a neighbourhood of @, An L*-harmonic % of arbitrary sign
is therefore in w, a difference between two positive L*-harmonic functions. Hence,
we obtain a representation similar to (3.5) for any w, but where p need not be
positive.

Because of (2.3), the function y satisfies

) = — f G, ) Lp(y)dy. (3.6)

W2

Now (3.5—6) and Fubini’s theorem imply that

fuLwdx = — /wdy =0,
and thus L*u = 0.

Conversely, suppose » is locally integrable in o and satisfies L*u = 0. We
take a completely determining w; with @&, Cw and a point y €w,. Put

fla) = f P.(2)(e,(2) — 02(2)),

where &, is the measure consisting of a unit mass at y. From (2.4) it follows that

x) =0 for x &, since RN =P in Q2\&, Now define
1 y ¥ 1
9. = e, xw, h =ol*xw,

and
fo@) = f P (x)(g.(z) — h.(2))dz.

Since P (x) is a fundamental solution, we see that f, is L-harmonic outside
the supports of g, and A, and that f,—f—=0 in OQ\&, as &— 0, uniformly
on compact subsets of 2\.@;. From Theorem 35, IV in Miranda [6], it follows that
the first- and second-order derivatives of f, tend to 0 in Q\@, as &->0, uni-
formly on compact subsets. Take ¢ € b(w) equal to 1 in a neighbourhood U of

@y. Then
Ligf) = — 9.+ I,

in U, and L(gf,) — 0 uniformly in o \U as &-— 0.
Since ¢f, is of class C®, it is clear that

JRCCAZEY
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/ wL{pf )dx — f ug dx -+ f whdr = 0.

w\U

By Lemma 1 we can assume that w» is continuous. Letting ¢-— 0, we get

uy) = f udo?,

and the first part of Theorem 1 is proved.
The proof that L*u << 0 for an L*-superharmonic function u is quite similar
to the corresponding proof for L*-harmonic functions and is omitted.
Conversely, suppose that L*u is a negative measure — u. Take a bounded
o; of class C"? and such that @, C ». Because of (2.3), any v € D(w,) satisfies

f ulyde = / f G, y)du(x) Ly (y)dy,

where the double integral is absolutely convergent. The first part of Theorem 1
now shows that the function v defined by

v(y) = ufy) — / G (@, y)du(e) (3.7)

is equal to an L*-harmonic function a.e. in w,. The integral in (3.7) represents
an L*-potential, so % coincides with an L*-superharmonic function a.e. in o
and thus also in w. The proof of Theorem 1 is complete.

or equivalently,

4. Regularity of the L*-harmonic funections

THEOREM 2. If w is L*-harmonic in o C Q, then u € C%Y(w).

Proof. Suppose n > 2, take a compact set K Cw, and let ¢ € D(w) be 1
in a neighbourhood U of K. If y € K, we have

f w(@)a? (y)ypy()de = f w(@)((@7(y) — a¥(@))ypy(x) — b(@)pi(@) — c(@)p())dw
for any y € $(w). As in the proof of Lemma 1 we find that
ue) = [ w@H @ @)@+ 2 [ u@a oL@ i+

02

6x,- axj

+ f w(z)(@¥(@) — a¥(y)) s (p@)H(z, y))d + (4.1)

0
+ [ulevE) 5, (@ 1) + c@p@HE ).
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Now take y and 2z € K with ¢ = |z — y| so small that
B={xlxr—y <20cCU,

and consider (4.1) and the corresponding formula for «(z). From the regularity
of the a¥ it follows that

H(x, ?/) - H(.’I), 2) = O(Qa]x - ylz_" + Q]x - yll_")>
Hxi(.’/U, ?/) - Hxi(x: Z) = O(Qalx - yll_n _[_ Q[.’E - y]_")a
and

H,.(x,y) — Hon(x,2) = 0(p%x — y|™™ 4 olz— y|™'™™),

X x
L) vy

if ¢ B. Since u is continuous, these estimates easily imply that the difference
between the first terms in the formulas for u(y) and u(z) is O(p*) as ¢ —0,
and the same is true for the second and fourth terms.

The third term in (4.1) we split as f .+ f v T f o 2nd the integrals
over B in this expression and in the corresponding expression for u(z) are O(g%).
The difference between the integrals over w\U is also O(¢%). The remaining
difference can be written as

w(@)(a¥(z) — a¥(y))Hap (@, 2)d +
UNE (4.2)
+ | w@)(@(z) — a(y))(H.
A

Here the second term is O(g®), and the first term is O(o* log 1/p). Hence, u € C&P
for some f > 0. But then we can improve the last estimate. Since

(@, y) — Hox (2, 2))da.

vy L)

/ H"i"j(x’ 2)dS; =0

jx—z|=r

for all r, the first term in (4.2) equals

(u(@) — w())(@7(2) — a¥(y)Hep (@, 2)dx + O(e”),
u\\B
which is bounded by

(") - f & — 2f"de -+ 0(¢%) = 0(¢).
U\ B

The case n = 2 now follows as in the proof of Lemma 1, and Theorem 2 is proved.
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Remark. 1t is clear that the exponent « is best possible. In a similar way, one
can prove regularity properties of solutions of nonhomogeneous equations L*u = f.
For example, if f€ LE, then % € C%Y if p = n/(2 —«), and u is continuous
if p> nf2.

5. A formula for the L*-harmonic measure

We shall approximate the coefficients of L with more regular functions, and
start by examining how the Green’s function varies with the coefficients. For
& — 0, assume that

i i
L = a%u; + bui + cu

is an operator with coefficients in C%Yw), for some w C 2. Let G° be the
corresponding Green’s function, whenever it exists.

LEMMA 2. Assume that o is o bounded CCY domain with & C Q. Let the
C(w) norms of the a¥ be bounded for small &, and let a¥ — a’ wuniformly in
o as &— 0, and analogously for b} and c,. Then G®(x,y)—G°(x,y) uniformly
on any compact subset of wXw which is disjoint with the diagonal.

Proof. Since there is a positive L-potential in £, there exists a C*% function
v in @ which is positive and satisfies Lv << 0 in &. Since then also Ly << 0
if & is small enough, G¢ exists for such e.

In Boboc and Mustaté [1, Chap. 4], there is a construction of the Green’s function
for L in the form of an L-potential whose support is the point g. From this con-
struction it can be seen that G”(z, y) is uniformly continuous in ¥ when x and y
stay within disjoint compact subsets of w, and this continuity is uniform in &
for small . Boboc and Mustatd assume that the coefficient ¢ is nonpositive, but
f this is not the case, we can apply their proof to the operator M,: u — v~ L (vu),
n which the coefficient of » is negative. Then the Green’s function of L, is given by
i a; G5 (@, ) )

L€<x: 2/) Me(x’ y) ’U(y)’
and the same equicontinuity follows.
For f€C®™(w) and ¢ small, let u, be the solution of the problem

Lu,=f in o, u,=0 on do.

If we define u similarly by means of L, then the O®(w) norms of u and wu,
are uniformly bounded for small ¢, as follows from Miranda [6, Theorem 35, IV].
Now L(u — u,) = (L, — L)u,, so sup, |L(u — )] — 0 as ¢ — 0. From Theorem
35, IX in [6], we then conclude that u,—u as &—0, uniformly in . Since
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w(z) — (@) = — f (G2, y) — G2, Y)Y,

the lemma, then follows if we choose f suitably and use the equicontinuity of G¢.

Suppose that o is a bounded O%¥ domain with & < 2. Then dw is a
compact (n — l)-manifold, imbedded in R*, and for topological reasons each of
its components separates R". It follows that 9o = dw, which means that at each
point of this manifold, o lies on one side and R"\& on the other. It is easily
shown that o is L-completely determining (see the proof of this fact for open
balls in Hervé [4, p. 565]).

If x € 0w, we let n, = (cosay, ... cosw,) be the exterior unit normal of dw
at x. The conormal derivative at x is defined by &/0v = a¥(x) cos x;0/0x:. The
area measure of 9w is denoted dS.

THEOREM 3. If y is a point in the OO domain o described above, then the
L*-harmonic measure oy is absolutely continuous with respect to dS, and

doy 96", y)

for x € 0w. This density of of is x-Holder continuous and positive on dw.

Proof. Since o} is independent of 2D &, we can assume that £ is bounded
and of class 0%, and that the coefficients of L are defined in a slightly larger
domain, so that Lemma 2 applies to £. Then we can write P, (x) = G(z,y). Put

= ng\w, (5.2)

which is an L-harmonic function in Q\.dw. Since all the points of dw are regular,
w equals P, in Q\ o and H‘j;y in w, and u is continuous in £ and zero on 92.
Due to Theorem 3.1 in Widman [7], grad « is «-Holder continuous in @ and in
2\ w, but its boundary values on 0w need not coincide. We write ou’/dy and
ou”/dy for the conormal derivatives obtained from the values of grad % in o
and 2\, resp. Further, we put A0u/dy = du'[ov — u"|d».
Now define
ol = a¥ % w,

and analogously for b! and ¢, for &> 0, and write L, and G, = G2 as before.
By @/ov, we shall mean the conormal derivative on dw associated with L, and
Aodufov, is defined analogously. We also need the auxiliary function

b (x) = Z oS & (b’ (x) — Z aa;i )),

defined for « € 9w.
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From Lemma 3.3 in Widman [7], it follows that each second derivative w; is
integrable in . Therefore, we can apply Green’s and Stokes’s formulas, and for

xz €w we obtain
/G(x, 2)L u(z)dz — fG(xz
2\ o

36, (=,
+ f ——aiﬁi) HEN = af b,(2)G. (@, 2)u(2)dS,

&z
Ow ’

and

u(x)——f@szuz)dz+[ze) a(z) S —

_faG(x,z) dS+fb ()G (x, z)u(z)dS.

(Cf. Miranda [6, pp. 12—20]). Adding, we get

fozLuz)dz+ foz (z)dS (5.3)

and in a similar way, this formula can be proved for x € Q\@. Now let &— 0.
From the construetion of the Green’s function in Boboc and Mustaté [1], we conclude
that G.(z, 2) = O(H(z, 2)) in £X 2, uniformlyin ¢. Hence, it follows from Lemma
2 that the first integral in (5.3) tends to f G(z, z)Lu(z)dz = 0, and so

ou(z)
u(xr) = fG(x, z)A a—vdS,. (5.4)
Ow
From (2.2) and (5.2) we see that
g 2@ ey

oy T o,

for z € 0w, so (2.4) and (5.4) imply (5.1). It follows from Theorem 3.1 in Widman
[7] that do2/dS € CO9(dw).

To prove that 0G“(x, y)/0v. is negative on 0w, we note that G“(z,y), con-
sidered as a function of z, is L-harmonic and positive in w\{y} and zero on dw.
Let w,; be a domain obtained by taking away from ® a small ball centred at y.
If the coefficient ¢ is nonpositive, the result follows directly from Theorem 3,IV
in Miranda [6], applied in ;. For arbitrary ¢, we take v asin the proof of Lemma 2
and apply the same theorem to G/v and the operator wu — v 'L(vu).

Theorem 3 is proved.
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6. The Dirichlet problems for L and L*

For subdomains of £, the Dirichlet problems for L and L* need not be
uniquely solvable, but we have the following Fredholm type theorem.

THEOREM 4. Let o be a bounded O domain with & C Q, Consider the
problems

Llu=f in o, u=10 on dw, (6.1)

and
L*v =g in the sense of 9'(w), v=¢ on v, (6.2)

where f € O (w) and f is continuous in &, g € LP(w) for some p > nf2, and
@ 1s continuous on dw. Then either (6.1) and (6.2) are both uniquely solvable, or else
the corresponding homogencous problems have the same finite number of linearly
mndependent solutions wi and v, © = 1,..., m. In the second case (6.1) is solvable

if and only if

ffvidx:O, 1=1,...,m,

and (6.2) if and only if

au,-
fguidx%—f(pgdS:O, t=1,..., m.
Jw

w

Proof. If we let M be the operator L — » and choose the constant y large
enough, there exists a Green’s function @ of M in «. Then w is a solution of (6.1)
if and only if Mu=f—yu in o and =0 on 0w, which is equivalent to

u(w) =y f G, yyuty)dy — f G, ) ()dy. (6.3)

w w

Similarly, v solves (6.2) if and only if

v(y) = ny(x, yw(x)dx — [G(x, iy)g(x)dx -fi(y¢p(x)d8x. (6.4)

dw

To this pair of integral equations, Fredholm’s theory is applicable (see Miranda [6]).
Hence, the equations are either both uniquely solvable, or else the corresponding
homogeneous equations have the same finite number of linearly independent
solutions u; and v, ¢ =1,..., m. These functions are then also solutions of
the homogeneous problems (6.1) and (6.2). Moreover, in the second case (6.3) is
solvable if and only if
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fvi(x)dx/G(x, fyydy =0, i =1,...,m,

which is equivalent to

ffvidac-——o, i=1,...,m.

For (6.4) the condition of solvability is

/ul dnyxy x)dx +
G (x
+/u, dy/

(6.5)

p@)dS; =0, 1=1,...,m.

Using the methods of Widman [7 or 8], one shows that 8G(x, ¥)/dv, = O(|lx — y|'™")
for » € 0w, y €w. It follows that (6.5) is equivalent to

fg@cldx+f<p<—d8—0 t=1,...,m,

and the proof of Theorem 4 is complete.
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