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Algebraic approach to the interval linear
static identification, tolerance, and control
problems, or

One more application of Kaucher arithmetic

Sercey P. Suary

In this paper, the identification problem, the tolerance problem, and the amtrol problem are treated for the
interval linear equation Az = b. These problems require computing an inner approximation of the wited
solution set £33{A,b) = {z € B™ | (34 € A)(Az € b)}, of the twilerable wintion st Lya(A,b) = {z €
R™ | (V4 € A){Az € b)}, and of the amtrollable smlution st Taw(A,b) = {z € R™ | (Vb € b)(Az 3 b)}
respectively. An algebraic approack to their solution is developed in which the initial problem is replaced hy
that of finding an algebruic solution of some auxiliary interval linear system in Kaucher extended interval
arithmetic. The algebraic approach is proved almost always to give incdusion-maximal inner interval
estimates of the solution sets considered. We investigate basic properties of the algebraic solutions to the
interval linear systems and propose a number of numerical methods to compute them. In particular,
we present the simple and fast subdifferentinl Newton method, prove its convergence and discuss numerical
experiments.
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In this paper, intervals and other interval objects are denoted by boldface letters, for example,
A,B,C,...,X,y,2, while non-interval (real) objects are not distinguished in any way. Also, we

need the following notation:

IR—the set of all real intervals [2,Z] on R, 2 £ 7,
IR™—the set of n-dimensional interval vectors,

X, X—upper and lower bounds of x respectively,
mid x = (X + X)/2—mean value (midpoint} of X,

rad x = (X — x)/2—radius of x,

[x| = max{[X], [x|}—absolute value (magnitude} of x,

(x) = { min{|x], x|}, if 0 ¢ x, —mignitude of X or the least distance between points

0, otherwise

absolute value,

of x and zero, in some sense the opposite of the

(-,-)—standard scalar multiplication in R", that is, the sum of component products.
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If x = (x;)%, is an interval vector, then all of the operations defined above are to be
understood componentwise, so that rad X, for example, is the real vector (rad x;)%,. We shall
assume the topology on the interval space IR" to be defined in the standard way, that is, by
the Hausdorff metric

o(x,y) = max{[lx - y[l.Ix - ¥} (1)

and the norm of the interval vector x € IR" is
el <111 2)

where || - || is a monotonic vector norm on R™.

1.2. Problem statement

The subject matter of this paper is certain problems relating to interval linear algebraic systems,
but we shall not consider them in the context of the so-called self-validating computations,
validated numerics etc. as is fashionable among modern numerical analysts. To our mind, that
artificially narrows the scope of interval analysis, of the very interval idea. Personally, I prefer
to take interval analysis primarily as a convenient and computationally efficient tool to deal
with a specific kind of uncertainty, a special case of the currently popular bounded uncertainty,
that is, as a tool of data analysis that is alternative to probabilistic and fuzzy models. It is this
viewpoint that underlies our work, and I am sure the outlined area will be the major realm
of applications of interval analysis in the years to come.

So our main object under consideration is the interval system of linear algebraic equations
Az=Db (3)

with an interval n xn-matrix A and an interval right-hand side n-vector b. It is common
knowledge that (3) is only a formal symbol, which in itself can mean, for instance, a collection
of all point linear algebraic systems Az = b with elements belonging to A and b respectively.
To pose the problem correctly, let us define what is meant by the solution or the solution set
to (3). In interval analysis, the following four solution sets have been the subject of more or
less vigorous enquiry so far:

e the united solution set formed by solutions of all point systems Az = b with A € A and
b€b, ie, the set

T33(A,b) = {z € R" | (34 € A)(3b € b)(Az = b)} (4)

historically first and undoubtedly the most popular of the solution sets; it is called by
Western authors simply as solution set and usually is denoted by £(A,b) (see [1, 17, 19]
and the extensive references there);

o the tolerable solution set, formed by all point vectors T such that the product Az € b for
any A € A, ie, the set

Tva(A,b) = {z € R" | (VA € A)(3b € b)(Az = b)} (5)

(see [8, 13, 18, 19, 25, 28] et al). Neumaier [18, 19] and some other authors use the term
“restricted solution set” for (5), denoting it Yg(A,b), but in our work we keep to the
more adequaté term “tolerable”. The history of the set wz(A,b) and of some related

problems was described comprehensively in the papers by Neumaier {18] and by Kelling
and Oelschligel [13};
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o the controllable solution set
Zav(A,b) = {z eR"| (Vb e b)(3A € A)(Az = b)} (6)

formed by all point vectors £ € R", such that for any desired 6 € b we can find a
corresponding A € A satisfying Az = b (see [26]);

e the algebraic solution [22], ie., such an interval vector X, that, substituting into (3) and
executing all interval arithmetic operations, results in the valid equality Ax, = b.

In particular, one can readily see from these definitions that
Tya(A,b) C Ta3(A,b) and Lav(A,b) C T33(A,b).

As a visual example to illustrate the above concepts, we have chosen the popular interval linear

system
[2,4] [-2,1] _[{1-2,2]
(23 o)== (2 )
from [3] repeatedly considered by various authors. Its solution sets are depicted in Figure 1.
Aside from the formal definitions (4)—(6), there also exist more convenient characterizations

for the solution sets under study. It is well known that for any interval matrix A and a point
vector T

A-z={Az| A€ A}

kzz

3
vz
‘ -
Xa

Zaw=0

(2]

Figure 1. The solution sets to (4)—(7)
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where “” denotes the common interval matrix-vector multiplication {1, 17, 19]. Because of this,
Tva(A,b) = {z€R*|A-zCb},
Zaw(A,b) = {z€R"|A-z2b}

and for the united solution set, as Beeck first pointed out in [4],

233(A,b)= {xER“]A-xﬂb#@}.

The direct descriptions of the solution sets (4)~(6), since their computational complexity
grows exponentially with n, become’ laborious and practically useless, even for systems with
relatively small dimension. Besides, Lakeyev and Noskov [16] managed to prove that the
problems of recognition whether Z33(A,b) or Zay(A,b) is empty or not are NP-complete
for the systems with rectangular A (see also Rohn [24]). For this reason, one usually confines
oneself to finding simple subsets of Zyz(A,b) and Zav(A,b), since for all their points the
properties (A -zMNb # @), (A-z C b) or (A-z 2 b) remain valid, respectively. Put it
differently, we replace £33(A,b), Zvz(A.b), and Z5¢(A,b) by their inner approximations,
formulating the problems to be solved in the following form:

Find an interval vector that is included in the tolerable
solution set (if nonempty) of the interval linear system

(8)

and

Find an interval vector that is included in the controllable
solution set (if nonempty) of the interval linear system.

(9)

We are going to seek the inner approximation to the united solution set too, but such a
problem statement, though not completely new (see, e.g., [4]), requires justification. Traditionally,
outer component-wise estimates for the united solution set are computed, and the standard form
of this problem—the so-called “outer problem” for the interval linear algebraic systems—is as
follows:

Find an interval vector that includes the united
solution set of the interval linear system.

(10)

The problem (10), being in fact a generalized sensitivity problem in interval form, is a classical
interval analysis problem, and a large number of papers has been devoted to various aspects
of its solution from the early 1960’s to now. However, the outer approximation of L33(A,b)
contains points that have nothing to do with solutions of the system Az = b for some A € A and
b € b, and due to this, such a problem statement may turn out unacceptable in many practical
situations. The latter is especially typical for the observation and identification problems. So
the third problem we shall deal with is

Find an interval vector that is included in the

united solution set of the interval linear system. (11)

The problem (8) is the classical linear tolerance problem [8, 13, 18, 19, 28] (sometimes
referred to as the inner problem for the interval linear system), with numerous and fruitful
practical applications, and the problem (9) is a new promising interval algebraic problem that is
believed to have extensive potential use in the automatic control. We shall call the problems (9)
and (11) the control problem and the identification problem for the interval linear algebraic system,
respectively.!

1The author realizes that the terms “identification problem” and “contrnl problem” may seem a poor choice,
somewhat vague and pretentious. " The words “idendfication” and “control” have very wide meaning, which is in no
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13. Algebraic approach

The aim of this work is to present a new efficient algorithmic approach to the solution of
the problems (8), (9), and (11), but the principles that underlie our construction are to a great
extent unusual. Our construction is based upon the concept of the algebraic solution to the system
{3) mentioned above.

Definition 1. An interval vector is said to be algebraic solution to the interval system of equations
if substitution it into the system and execution of all interval arithmetic operations results in a
valid equality.

This concept was first considered by Ratschek and Sauer in [22], but only a few papers on
this subject have appeared for the last decade. Apparently, until now Western researchers have
taken the algebraic solution solely as a theoretical curiosity. Nonetheless, if X, is an algebraic
solution of the interval system Az = Db, then, due to inclusion monotonicity, there holds

Az CAx, =b

for any T € X,, so X, € Zva(A,b). We have proved

Proposition 1. If the interval vector X, is an algebraic solution to the system Az = b, then
%, € Zvs(A,b), that is, X, is a solution to the interval linear tolerance problem (8).

The linear tolerance problem thus reduces to a purely algebraic one: find an algebraic
solution of the system (3). That is a very attractive feature, notwithstanding that the algebraic
solution to the interval linear system does not need to exist ‘even if the corresponding linear
tolerance problem is compatible. It is demonstrated, for instance, by the one-dimensional linear
tolerance problem with A = [-1,1], b = [-2,3]. The interval linear equation [-1,1]-z =
[—2,3] has no algebraic solutions, but Lvz(A,b) = [-2,2] # 0.

However, the numerical procedures ([30, 31, 33] etc) devised so far to implement the
approach to inner estimation of the tolerable solution set based on Proposition 1 (the algebraic
approach) are cumbersome and inefficient, the cause of this being bad algebraic properties of the
classical interval arithmetic IR, that is, more precisely, the absence of additive and multiplicative
inverses for most intervals. Under these conditions, it is reasonable, as Shary proposed in [25],
to embed IR into a wider algebraic system that would have better algebraic properties, that
would be Ticher in manipulation technique, with the more powerful analytical tools, and then
to seek the solution in it. If the interval vector so obtained proves to lie in IR, then it will be
a solution to the original problem.

The algebraic completion of IR has been performed by Kaucher (see, for instance, [11,
12] and references there), who called the algebraic system so constructed “the extended interval
arithmetic IR”. The elements of IR are real pairs [, T] that are not necessarily subject to the
condition z < % Thus, IR is made up by adding improper intervals [z,Z], £ > T, to the set
IR = {[z,%Z] | 2, € R,z < Z} of proper intervals and real numbers. IR is an additive group,
but the multiplicative group of IR is formed only by intervals [z, Z] with zZ > 0. Also, recall
the definition of a basic involution of Kaucher extended arithmetic, namely, the map

dual : IR — IR

wiy exhausted by the mathematical formulations (1 1) and (9). We suggest that in the context of this paper one should
consider the phrases “identification problem”, “control problem” merely as lahels for the mathematical formulations {11)

and (9) respectively.
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with action
dual [z,T] = [T, z].

The inclusion order relation is naturally carried over to IR:
gz Cky < z2y and Z<T

The inclusion monotonicity of the interval arithmetic operations also remains valid in Kaucher
extended arithmetic:
xCxX,yCy = xxyCx'xy
for x € {+,—,-,/} and any x. X, y,y € IR.
The most wonderful fact is that the algebraic solution in Kaucher arithmetic can help in
the inner approximation of the controllable and united solution sets too!

Proposition 2. If the interval vector X, is an algebraic solution to the system Ax = b and all
its components are improper, then dual x, & Zav(A,b), that is, dual x, is a solution to the
interval linear control problem (9).

Proof. Indeed, suppose an algebraic solution X, to (3} has only improper components. Then we
have z 2 %, for any z € dual X, and

Az DAx,=b
due to the inclusion monotonicity. Therefore, z € Zay(A,b), and so dual x, € Zav(A,b). O

Proposition 3. If the interval vector X, is an algebraic solution to the system Az = dual b
and all its components are improper, then dual x, C Z33(A,b), that is, dual x, is a solution
to the interval linear identification problem (11).

Proof. One can readily see that, for an improper interval x and a proper interval y,

yIx <= yNdualx#0. (12)
Furthermore, if X, is an algebraic solution to the equation
Az =dualb

and all its components are improper, then
Az D Ax,=dualb
for any z € dual x,, that is,
Azrndual (dualb) = AzNb #0

because of (12). Recalling Beeck’s characterization of the united solution set [4, 19], we may
conclude that z € T33(A,b), and so dual x, € T33(A, b). ]

The one-dimensional equation
axz=Db

* € {+,~,-,/}, with proper intervals a and b provides a major illustration of what has been
stated above and the remarkable interpretation of Kaucher interval arithmetic. Suppose that
its solvability condition holds, that is, there exists an algebraic solution X, to this equation and

x,=bxta
in Kaucher arithmetic (“«™!” denotes the inverse operation to “¢”). The interval x, may be
either proper or improper, but the following exact equalities hold in the both cases:
X, = Dva(a,b)  if x, is proper and
dual x, = Zav(a,b)  if x, is improper!
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14. Discussion

As far as the author knows, the above calculations have not appeared earlier in explicit
form, although the possibility of reducing the linear tolerance problem to computation of the
algebraic solution was pointed out in a very vague form by Zyuzin [31] not long ago. The
algebraic approach to the inner estimation of the united solution set (Proposition 3) has been
advanced simultaneously and independently by the author and by Kupriyanova [15] (which
was revealed at the international conference INTERVAL94, St.Petersburg, Russia, March 7-10,
1994; see [27]). Proposition 2 about the inner estimation of the controllable solution set is due
to the author.

Nevertheless, our algebraic approach seems not to be completely original. The beginnings
of the basic ideas for above theory are contained in some extremely general results by Gardenes
and Trepat [9, 10], namely, in the theorems on the analytical foundation of extended arith-
metic semantics. Unfortunately, these results were both so general and formulated so briefly
and without necessary explanations that they had been hardly understood and recognized by
specialists in interval mathematics. We are going to revive and enrich that approach on a new
powerful computational basis. A key property of the algebraic approach is that i almost always
gives inclusion-maximal inmer approximations of the solution sets considered.

Our task is thereby to find algebraic solution to the system (3) in Kaucher interval
arithmetic. Taking into account the original statements (8), (9), and (11), it will suffice to
restrict our attention to the case of proper interval matrix A. What ways can we offer to
tackle that problem?

The field of numerical analysis has amassed a rich arsenal of both theoretical approaches
and practical algorithms, but an overwhelming majority of them has to do with operator
equations in linear spaces. Formally, these methods are not directly applicable to computation
of the algebraic solution to. the system (3), since IR™ is not a linear space. We avoid this
difficulty by embedding IR" into the standard linear space R?", Further, we assert existence
and uniqueness results for algebraic solutions: if the proper interval matrix A contains a special
kind of nonsingular point matrix and is sufficiently narrow (i, if [[rad Af is sufficiently small),
then the interval linear system Az = Db has an algebraic solution in Kaucher arithmetic and it
is unique. The “embedded” nonlinear equation obtained in R®™ corresponds to an order convex
operator, and to solve it we use the subdifferential Newton method, which is shown to converge to
an algebraic solution of the system (3) if the proper interval matrix A is “sufficiently narrow”.

By and large, one may characterize the algebraic approach to the linear tolerance problem
(8), the control problem (9) and the identification problem (11) as extremely efficient from
the computational viewpoint (in practice it converges in a few iterations), but not sufficiently
sensitive to examine the problem comprehensively, since an algebraic solution with the desired
properties does not need to always exist. In particular, the technique developed will be useful
for very quick computation of solutions to (8), (9), and (11) (in real time devices, for example]
provided that their “good solvability” is given a prior.

2. Interval arithmetics

Classical interval arithmetic is the algebraic structure (IR, +,—,-, /) whose support is formed
by intervals [z, Z], z £ T, of the real axis, while the binary operations-—addition, subtraction,
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multiplication and division—are defined so that the fundamental property
xxy={z*xylzexyey} (13)

holds for intervals X,y such that (z xy), * € {+,—,-,/}, makes sense for all z € x, y € ¥.
Hence, we have

7 + w7 = E+yz+7),

27 - g7 = 2-3.72-y,

{LE} [23?7} = [mln{zﬂ7@: fy_,fy},max{zy_,zﬂyfy,@}]’

2.zl / w7 = (&7 [1/3.1/y for [y, 7] #0.

The classical interval arithmetic IR is known to be a commutative semigroup with respect
to the addition and the multiplication, and is not even a lattice with respect to the natural
inclusion ordering, since not every two-element subset of IR has infimum. “Incompleteness”
both of the algebraic and of the order structures of IR naturally stimulated attempts to create a
“more convenient” interval arithmetic based on it. As mentioned above, the algebraic completion
of IR carried out in the works by Kaucher [11, 12] resulted in the algebraic system called “the
extended interval arithmetic IR”, We shall also use this term as well as the more academic
one—“Kaucher interval arithmetic”. Afterward, Gardenes and Trepat studied this arithmetic
and established some its helpful properties and important applications [9, 10].

Taken as a whole the extended interval arithmetic IR is a quite nontrivially arranged
algebraic system. In this section we describe only those aspects of it that are necessary for our
future consideration. In particular, for this reason we do not at all dwell on extended interval
division. The complete description of IR may be found in [9, 11, 12].

The elements of IR are the pairs [z, Z] of reals, that are not connected by the obligatory
condition z £ Z. Thus, IR is obtained by adjoining #mproper intervals [z,%], £ > T, to the set
IR = {[z,Z} | ,Z € R,z < T} of the proper intervals and the real numbers. The proper and
improper intervals, the two major parts of IR, may change places as the result of the duality
mapping

dual : IR — IR

such that dual [z,T] = [Z,z]. As in classical interval arithmetic,
xCy <& x2y and X<¥

but the extended interval arithmetic is a conditionally complete lattice with respect to this
inclusion order relation [5}, in contrast to IR. In other words,

V %, :=supc{x,|y€l} = [infs{;s., {v€Thsup A%, | 7€ F}]

el

(maximum with respect to the inclusion ordering) and

A\ = infc ey | 7€ T} = [supgfx, | v € T} inf{%y |y € T
Y€

(minimum with respect to the inclusion ordering) are elements from IR now, if {x, |7 €
index set I'} is a bounded family of “extended intervals”.
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Addition and multiplication by real numbers are defined upon IR by

{)\QE_, E}? if A € R‘H
[AZ, Az], otherwise.

2] +[y7 =

Az, E] =

Thus, each element x of IR has a unique additive inverse, denoted “opp X”, and

x+oppx=0 = opplz,Z =[-z -7
AER,

opp (Ax) = A opp X,
opp T = —I, zeR

Inclusion monotonicity for addition:

1t follows directly from the definition that, with respect to addition, IR is a commutative

group, which is isomorphic to the additive group of the standard linear space R®. Sometimes,
we denote for brevity the inverse operation for addition, i.e., the inner (algebraic) difference of

x+yCx +y.

IR, by &, so that
X8y :=x+o0ppy.

The following fundamental formula generalizes the property (13):

xX+y= Mx My (z+y)

ZTEpProx YyEproy

(14)

where
V if x is proper,

M = { A otherwise
pro x { zicual x ;ft;; ::Vilzel‘oper, (proper projection of the interval)
It expresses the connection between the result of the interval addition'x+y and the results of

separate point additions z + y for £ € prox and y € proy.
The set of basic involutions id(-), —(-), opp(+), dual(-) multiply (compose) according to the

following Cayley table:

o | id — opp dual
id id — opp dual
- - id dual opp
opp | opp dual id -
dual | dual opp - id
Table 1.

In other words, their set’s multiplicative structure coincides with the well-known Klein's

four-group.
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The following inclusion properties:

xCy = —-xC -y,
dual x D dual y,

opp X 2 Opp Y,
Ax C My, AeR.

Multiplication in Kaucher arithmetic is also defined on the basis of the representation (14):
x AY

<y=" N @ (16)
TEprox yEproy

To write this definition out in the explicit form, put

P {(xeR|(x20&x20)}, ~-P = {-x|x€P}
U {xeﬁRix_SOé‘i}, V = {x€IR|dualx cU}

so that IR =P U (~P)UUUYV. Then we have (see [12]):

yeEP yelu y€-P yeV
xe€P | y.%] Xy, %] [xy, x¥] [xy, x3]
[l minEm Ry}
xel |[x7,%7) masc{acy, 5] Xy, xy] 0
xe-P|wry  bvxyl  fwml bwsy
X BT X [ma'x{-)szv ﬁ}s

Table 2. Multiplication in Kaucher arithmetic

Though it is not evident from definition (16), extended interval multiplication turns out
to be commutative and associative [9, 11, 12]. But the multiplicative group of IR is formed

only by intervals [gs_, 7] with zZ > 0, since the cancellation law does not hold on any wider
subset of IR.

Other properties include:

dual (xy) = dual x - dual y,

Alxy) = (Ax)y =x(Ay), AER,
xCx,yCy = xyCx.y.

Extended arithmetic subtraction and division are defined:
X—-y = X+ (_1) 'Y,
x/y = x-[1/§,1/y] for0¢proy.

Thus, these operations are also inclusion monotone.

i

The interrelation between the multiplication and the addition is:

if x is proper, x-(y+2z)Cx-y+x-2, {subdistributivity)
if x is improper, X-(y+2)2X -y +X'2 (superdistributivity)
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and these inclusions turn into exact equalities for thin z.

By induction, the above semantic interpretation (14) and (16) may be generalized to some
rational expressions. Let x = (Xy,...,Xp) be a proper interval vector, ¥ = (y1,...,¥,) be
an improper one and f(z,y) (= f(21,...,%p, Y1,.--,Yq)) be a rational expression having only
ome occurrence of each varigble (if at all) to the first power. We designate by f(x,y) the result of
substitution of the vectors X,y in f and execution of all extended interval arithmetic operations,
that is, the corresponding “natural interval extension”. Then (see [9])

fey)=V A f@= A V=) (17)
TEX yEproy yEproy z€x

In the extended interval arithmetic, the operations with vectors and matrices are defined
similar to those in IR. The sum (difference} of two interval matrices of identical size is an
interval matrix of that same size formed by elementwise sums (differences) of operands. If
X = (x;;) € IR™* and Y = (yi;) € IR™™, then the product of the matrices X and Y is a
matrix Z = (2;;) € R™™ such that

{
Bij = ) XikYij-
k=1

The above semantic interpretation is not always the case for interval matrix operations,
remaining valid only for addition and subtraction. In multiplication, we have merely their
weak forms. Even for the proper X,Y, in contrast to the pure equality (13), there holds [19]

XY = the interval hull of {XY | X e X, Y €Y}

where the “nterval hull” is the smallest (with respect to inclusion) interval matrix containing
the original set. Still some semantic conclusions can be done too. Further, we will consider
the extended interval matrix-vector multiplication at length. In particular, if Y is a proper
interval matrix, v is an improper interval vector and V, A are componentwise extensions of
the corresponding lattice operations, then
Av=\ A A= A V Av= A Av (18)
AEA vEPIOV vEprov AcA vEPro v
The definitions of the midpoint, the absolute value, etc. are carried over to the entire
arithmetic IR in a straightforward way and, in the componentwise manner, over the interval
space IR™.

Finally, the norm || - || is defined on IR™ as in (2); while the topology on the extended
interval space IR™ is set, similar to (1), by the metric
elx,y) = lxeyl. (19)

All the extended arithmetical operations, the matrix-vector operations in IR as well as the
operations V, A and the basic involutions of IR" are continuous in the metric (19) (see [12]).

3. Immersion into linear space

3L Definition and basic properties

The problem we have thus arrived at is to find an algebraic solution to the interval linear

system
Ar=b.
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Essentially, it is the ordinary problem of the solution of an operator equation, which much of
the traditional numerical analysis deals with. The peculiarity of the situation is that the main
set IR™ on which the equation is considered is not a linear space at all, which is due to the lack
of distributivity. So most of the existing computational approaches are not directly applicable
to our problem.

In actual fact, we can easily avoid this difficulty by making use of an embedding of IR™
in the common and well studied Euclidean space R?™. It is fairly simple to realize that each
bijection ¢ : IR® — R?*" induces the bijection

& (IRY)® - (R2F”
from the set of all mappings over IR™ to the set of all mappings over R?", such that each
1 : IR® — IR" is matched to the induced mapping

Yr=to0tporL”t: R™ = R™ (20)

where “o” stands for composition. We can thereby change the problem of solution of the
equation in IR™ to the problem of solution of the equation in R?", a situation that modern
numerical analysts are much used to. The major question about the construction of the
embedding is to provide a reasonable compromise between its simplicity and convenient form
.of the induced mappings ¢*. We take the following

Definition 2. A bijective mapping ¢ : IR® — R?™ is said to be an immersion of IR™ into R*"
provided that it satisfies the properties

(i) ¢ is an isomorphism of the additive groups IR™ and R?",
(ii) ¢ is a homeomorphism of the topological spaces IR™ and R™.

It follows immediately from this definition that

t(Ogn) = Ogon,
loppx) = —u(x), x € IR™.

In addition, the inverse mapping ¢~! : R*® — IR™ also satisfies conditions (i)—(ii) from the
definition of ¢, and ‘

L—l(ngn) = OER'H
¢ H-x) opp ¢~ }Hz), z € R™,

Proposition 4. An immersion is a positive-homogeneous mapping.
Proof. It is standard. If x € IR" and k is a positive integer, then

kx) =x+x+--- +x) = ku(x).
k

If k =1/l for some positive integer [, then

e(hx) + o(kx) + -+ olkx) =(x) = ofkx)= Yu(x) = ke(x).

H
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Thus, the equality ¢(kx) = ki(x) is valid for each positive rational k. Extension to all
nonnegative reals is performed by passage to the limit, making use of the continuity of ¢. [J

In particular,

Ax+py) = Mf(x)+pely),
Vi +py) = ANz + e )

for any A\, 4 € R* and x,y € [R", z,y € R™

Proposition 5. If ¢ : [R™ — R*" is an immersion and T is a nonsingular linear transformation
of R*", then (T o4) is also an immersion. Conversely, any other immersion k is represented in
the form (T o) for some nonsingular linear transformation T : R** — R,

Proof. The first statement is substantiated trivially. To prove the second one, let us consider the
mapping (k7! o). Evidently, as the composition of two isomorphisms, it is an automorphism
of the additive group R?", that is, a nonsingular linear transformation of the space R™. We
may take T =x"tou. O

3.2. Standard immersion

The significance of Proposition 5 is that it asserts the equivalence of all immersions of IR"
into R?". Any two of them are the same to within a nonsingular linear transformation of R**,
and so, when constructing a specific immersion, we may be guided only by convenience of its
representation in the standard bases of IR™ and R?". We recommend for practical realization
the embedding of IR in R*" that acts as follows:

(XI,XZ, “u ,X,n) aand (—3_17 —Xgy .. —X.nyi.lai27 - -»Sin) {21)

i.e., when the 1st,2nd,...,n-th components of the vector ({x) are set to equal to the left
endpoints of Xi,X3,...,X, with opposite signs, and the (n + 1)-th,...,2n-th components of
t(x) are set to equal to the right endpoints of xj,Xg,..., Xy, respectively. We shall refer to
the mapping (21} as the standard immersion 0.

Each immersion ¢ : IR® — R?" naturally induces a partial ordering “C” on the linear
space R?*, which is an image of the inclusion order on IR™. Specifically, for z,y € R* one
can say that “z does not exceed y” and write “z C ” if and only if +~(z) C ¢7!(y) in IR™
Since for any z,y,u,v € R? there holds

»

rCy, aeR* = arlay,
zCy, wCv = z+uly+v

then the partial order “C" conforms to the linear structure of R?" and therefore is set by some
positive cone K = {z € R* | z J 0} [5, 14, 20], so that

tCy <& y—-z€kKc

Clearly, the concrete formulas for “C” depends on the form of immersion, but for the
standard immersion (21) they look especially simple. It is not hard to see that then

2Cy ifand onlyif z <y in the componentwise sense (22)
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that is, if z; < y;, ¢ = 1,2,...,2n. The positive cone under the standard immersion is

correspondingly
Kc={zeR™|z;>0,i=12...,2n}.

Thus the induced partial order on the space R?™ coincides with the common componentwise
ordering and this is the main justification of the form {21) for the standard immersion that
we have chosen. Furthermore, the above is a sufficiently telling argument for us to treat from
now on only the standard immersion ¢ of the form (21) as well as the componentwise ordering
(22) on R?", which is associated with . So shall we.

Consider now the properties of the mappings (20) induced over R by the immersion of
the interval space. The simplest and the most elementary of them are those corresponding to
the multiplication by thin matrices in IR™

Proposition 6. If ¢ : IR® — IR™ is an operator of multiplication by a thin matrix Q@ = (g;),
Q € R™™" e, ¥(x) = @x, then Y* is a linear transformation of the space R*™. For the
standard immersion ¢, the matrix of the linear transformation ° has the size 2n x 2n and
the following block form

+- -
Q* | @ (23)
Q| eQf

where the matrices Q* = (¢f}) and Q™ = (qj) are the positive and negative parts of Q

respectively, that is, such that
¢ = max{g;;,0} and ¢ = max{—gy,0}.
Proof. The first statement immediately follows from the distributivity relation
a-(x+y)=a-x+a-y
that is valid for thin a, while the second one is a consequence of the multiplication rule
A z,Z] =if AeR* then [\z, 7], else [AT, Az

and formula {21). ad

The block 2n X 2n-matrix from Proposition 6 is so significant in our theory that we shall
use a special designation for it.

Definition 3. For a given n X n-matrix (), we put

pou( @@
Q™| e
Notice that for any matrices C, D € R**" the relation
C<D
in the common componentwise sense does not necessarily imply
c° LD

The other important feature is that the matrices Q° € R?™ %" are always non-negative: such
matrices must represent “<”-isotone operators on R? that correspond to inclusion-isotone
multiplication on @ in IR™.
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33. 1-nonsingular matrices
Below, the mappings ¥ that satisfy the nonsingularity condition
V(u) #0. <= u#0 (24)

will play a leading role. It is vital to note that the nonsingularity of the point matrix Q in the
sense of classical linear algebra does not necessarily mean that the corresponding operator of
multiplication by @Q in IR™ is also nonsingular in the sense of (24). The matrix

(1 4) )

for instance, has nonzero determinant, but

(1) (E=)-(3)

ie, this matrix generates a singular positive-homogeneous operator on IR?. To distinguish
such cases, we give the following

Definition 4. We say that the matrix Q € R™" is s-nonsingular, if multiplication by it meets
the nonsingularity requirement (24) on IR™, that is, if

RQx=0 <= x=0elIR™
Otherwise, we call the matrix Q w-singular.

Obviously, if a matrix is singular in the common sense, then, a fortiori, it is i-singular. As
a corollary of Proposition 6 we get

Proposition 7. The point matrix @ € R™ " is t-nonsingular if and only if the matrix Q° €
P { P
R?**2" s nonsingular in the common sense, i.e., its determinant does not equal to zero.

For example, the identity matrix
10
0 1
is 2-nonsingular, and the matrix (25) is ¢-singular. All nonnegative nonsingular matrices are
t-nonsingular.
Our immediate task is to show that there are sufficient ¢-nonsingular matrices.
From a more general viewpoint, the operators of multiplication by a matrix (both point

and interval) are continuous positive-homogeneous operators on IR”. The topology on their
set is determined by the standard norm

Yu
o) = sup 120l
o [lul]
which is equivalent to
) = sup .

Since the unit sphere is compact in IR", nonsingularity of ¥ is equivalent to infjuy=1 [|[¥ul| > 0.
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Proposition 8. The nonsingular positive-homogeneous operators on IR™ form an open subset
in the set of all positive-homogeneous operators.

Proof. Let ¥ be a nonsingular positive-homogeneous operator on IR™ with § = infyuy=, || Pul| >
9, and let © be a positive-homogeneous operator such that |¥ © ©|| < §. For any u € IR",
we have

[©ul| = [[¥ue (¥ & O)uf 2 |Tul - [|(¥ & O)u]

and because of this,

u'uﬂlf1 |eu] 2 Hirﬁlfl [Tu]] ~ sup |(T©Ou||=6~[¥e8]>0.
wi= = uii=1
Hence, the positive-homogeneous operator © is also nonsingular. O

We have thus shown, among other things, that the set of 2-nonsirigular matrices is nonmeager
in the sense of Baire [6] under the natural choice of the topology over the séts of all matrices
R™*" or IR™*™, or, in other words, is of the second Baire category. In particular, the set of
all 2-nonsingular matrices form an everywhere dense subset in the set of all.square matrices.

4. Investigating the equation

As the result of the embedding, we have reduced investigation of the mappings IR" — IR" to
investigation of the mappings R?® — R of the standard Euclidean space. In -particular, we
have turned the original problem that concerns us, ie., that of finding zeros of

p(u) = Audb,
into the problem of solution of the equation
&(r)=0 (26)
in R* such that ® = copoo~!:R*™ — R™, ie,
®(z) = G'(A -o7(z) e b) = a(A . a'l(m)) — o(b). (27)

On the other hand, theoretical investigation of the original equation is sometimes easier or
more convenient in the interval space IR™, when useful properties of interval arithmetics are
invoked. So. we will utilize both above representations of the equation under study.

We would like to remind the following fundamental definitions [5, 7, 14, 20}

Definition 5. Let U be a linear space with a partial order %. An operator T : U — U is called
isotone with respect to the partial ordering “<” if T(z) < T(y) for any z,y € U, z X y. An
operator T is called antitone if T(z) % T(y) for any z,y € U, z < y. The operator T is called
positive if z 3= 0 implies T'(z) » 0.

For linear mappings, isotonity is known to be equivalent to its positivity.

Proposition 9. The induced mapping ® : R*™ — R, defined by (27), is isotone for any
interval matrix A € IRZ>2",



20 S. P. SHARY

Proof. Let z,y € R*, 2 < y. Then o7}(z) € 0~!(y), and by the inclusion monotonicity

property,
AcHz)ebC Ac Y (y)ob

that is,

3(z) = (Ao (z) ©b) < o(Ac7}(y) B b) = (1)
as required. N
41, Existence and uniqueness of algebraic solutions

The next two results—Theorems 1 and 2—are very important, but their comprehensive proofs
involve much tedious mathematics, so in this short paper we present only their brief outlines.

Theorem 1. If the interval matrix A € IR"*" is sufficiently narrow (that is, if |[rad Al is
sufficiently small) and pro A contains an i-nonsingular point matrix, then the interval linear
equation Az =b has an algebraic solution for any b € IR".

Proof. It is based on the theory of the topological degree of a mapping (see, e.g., [20]).

Let A from A be an s-nonsingular point matrix. If A is sufficiently narrow, then we may
perform a continuous nonsingular homotopy (even the linear homotopy) from the mapping
(27) to the mapping

&(z) := a(ﬁ . a"l(z)) - o(b).

As the consequence of the Poincare-Bohl theorem the topological degrees of ®(z) and &(x)
coincide with respect to a sufficiently large ball having the center in the origin of coordinates.
The equation Az = b always has a solution, 50 does Az = b too. O

Theorem 2. If the interval matrix A € IR™" is sufficiently narrow and pro A contains only
t-nonsingular point matrices, then the algebraic solution to the interval linear equation Az =b
is unique.

Proof. First, the equation Az = b may have only a finite number of different isolated solutions,
if all point matrices A € proA are t-nonsingular. Second, even the above situation is impossible
for sufficiently narrow A, when the mapping (27) is “almost linear” in R*". O

Without uniqueness, algebraic solutions to Az = b may constitute entire order segments.
From a practical standpoint, inclusion-maximal and inclusion-minimal algebraic solutions are
of prime importance, and there can be several noncomparable such solutions. For example,
if A =[-1,1, b = [~1,1], every interval of the form [¢,1] and [~1,¢], -1 < e < 1,is an
algebraic solution. Hence, the equation has one inclusion-maximal algebraic solution [-1, 1} as
well as two noncomparable inclusion-minimal solutions ~1 and 1.

If the set of algebraic solutions to (3) is bounded, then each algebraic solution is contained
in an inclusion-maximal algebraic solution, and contains an inclusion-minimal algebraic solution
to {3).

Indeed, if an algebraic solution X, is not contained in a wider algebraic solution, then it is
maximal. Otherwise, let us take the maximum V{y € IR" | Ay = b,y D x,} of all algebraic
solutions containing X,. We may conclude from the continuity properties of the arithmetical
and V-operations on IR that the interval vector so obtained is also an algebraic solution. The
second assertion is proved similarly, taking the inverse partial ordering.
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The next interesting example is the interval system

(3)-(89)

which also illustrates Theorem 2 as well as Proposition 3 about the inner estimation of the
united solution set. Here, we have the whole parametric family of algebraic solutions

1+t -1-t¢

11—t -1+1
with £ € R. All these algebraic solutions are noncomparable and each of them is simultaneously
both inclusion-minimal and inclusion-maximal.

Note that Theorems 1, 2 and Proposition 9 hold true for any interval matrix A from
IR™ ™ and right-hand side vector b € IR", not necessarily proper. The rest of this section
will be devoted to equations that arise in the implementation of the algebraic approach to the
linear tolerance, control and identification problems (8), (9), (11), namely, to the equations with
the proper interval matrices.

42. Maximality of the interval estimates

Kupriyanova was the first to notice that the algebraic approach to the inner approximation of
the united solution set almost always gives estimates which are maximal by inclusion. In [15], she
formulated and proved the corresponding statement, but only for nonsingular interval matrices
A. Below, we give the most general formulation of that result and its proof of our own.

Theorem 3. If the improper interval vector X, is an inclusion-minimal algebraic solution to
the system Ax = dual b, then dual X, is an inclusion-maximal interval vector contained in
Z33(A, b), that is, provides an inclusion-maximal solution to the linear identification problem

(11).

Proof. We shall carry it out ad absurdum. Assume that a proper interval vector y exists such
that y D dual x,, y # dual x,. Then dualy C x, and

A - (dual y) C Ax, = dual b. (28)

It should be recognized that the equality in (28) is impossible for the minimal algebraic solution
Xg, by its very definition. In view of the representation (18), we have the strict inclusion
A\ Ay C dualb
yey
or, more precisely,
SUpye, (Ay)i > by,
infye,(Ay): < by, i=12,...,n,
with at least one of these 2n inequalities (say, the k-th) being strict.
Let us take the vector § € y which provides that strict inequality. We may have

cither (Ay)r>br or (Ay)<b

but in both cases AjNb = 0. Hence, § ¢ L33(A,b) due to Beeck’s characterization, and so
y € Z33(A, b). O
The next two “maximality theorems” have been established by the author recently.
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Theorem 4. If the proper interval vector X, is an inclusion-maximal algebraic solution to
Az = b, then it is an inclusion-maximal interval vector contained in Zy3(A,b), that is,
provides an inclusion-maximal solution to the linear tolerance problem (8).

Proof. Let us take an interval vector ¥ D X;, ¥ # X,. It follows from the definition of the
maximal algebraic solution that

Ay>b (29)

where the equality is impossible. With respect to interval vectors, such as Ay and b are, the
inclusion (29) means that a whole face of Ay exists that does not belong to b. Formally, there
exist an index k € {1,2,...,n} and a real number t, equal either to (Ay)x or to (A¥)s, such
that

(A¥), s (AY)e-1,t (AV)ir, - (AY)a) OB =0,

We now recall that

Ay = the interval hull of {Ay| A€ A, yey}

so Aj € ((Ay)l,...,(Ay)k-l,t, (Ay)k,m,...,(Ay)n) for some A € A and § €y. In
particular, one may conclude that Aj ¢ b for some A € A. The latter just means § ¢
Tvs(A,b), and y € Zvs(A, b). ]

Theorem 5. If the improper interval vector X, is an inclusion-minimal. algebraic solution .to
Az = b, then dual X, is an inclusion-maximal interval vector contained in Tav(A,b), that is,
provides an inclusion-maximal solution to the control problem (9).

Proof. If a proper interval vector y exists such that
dual x, Cy € Zys(A, b)

then dual y C x, and
A (dualy) Cb.

Here, when dual y # X,, equality is impossible by virtue of minimality of X,.
Invoking the representation (18), we may rewrite the latter in the form

A Ay C b

yEy
By the very definition of the lattice operation “A”, the above inclusion means that
Ay2b (30)

for at least one point § € y, since otherwise, if all A-y 2 b, we would have the inverse relation
Ayey Ay 2 b. Specifically, (30) implies § ¢ Z3v(A,b), and so y Zav(A,b) as required. [J
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43. Order convexity and subdifferentiability

If A is a proper interval matrix, then for any u,v € IR"
Alu+v)C Au+Av. (31)

A consequence of this subdistributivity property is of crucial importance for our further con-
sideration. Really, it follows from (31) that

U(A(u + v)) <co(Au+ Av)

and so we have for A € (0,1) and any z,y € R*" such that z = o(u), y = o(v)

3(da + (1- A)) U(Aa‘”l()\z +(1-y)e b)

- a(A(Au +1-Xv)e b)

< o(Mu+(1-)Aveb) (32)
= X{Aueb)+ (1 - A)o(Aveb)
= A0(z)+ (1 - A)3(y).

The relationship obtained is the multidimensional analogue of the well-known convexity in-
equality. Let us recall the following definitions

Definition 6. Let U,V be real linear spaces, and V is partially ordered by the order “”. The
mapping F : U — V is called order convex with respect to “X” if

F(hz+ (1~ Ny) < AF(z)+ (1 - V) F(y)
for any z,y € U and X € (0,1) (see [20]).

Definition 7. A vector w is called a subgradient of the convex function f : R* — R at the point
z if

f(Z) 2 f(z)+(w,z——x)
for any z. The set of all subgradients of the function f at the point T is called subdifferential of

the function f at x, while the function f itself is said to be subdifferentiable at z if its subdifferential
is nonempty at that point. (see [2, 23]).

It is well known [2, 23] that convex bounded continuous functions are always subdifferen-
tiable in the interiority of their domain.

The chain of transformations (32) shows that the mapping under investigation ® : R** —
R?*" is order convex with respect to the common componentwise order on R?", which is
equivalent to the functionals ®; : R* — R—coordinate components of $—being convex for
i=1,2,...,2n. Therefore, for ®;(z), i = 1,2,...,2n, the subdifferentials are defined at any
point x € R?" ie., the sets of vectors s; € R*, i =1,2,...,2n, such that

®i(z +v) - O;(x) > (s;,v)  for all v e R*™
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Then, constructing 2nXx2n-matrix S = (51, 52, . . .,82n) 1, we may conclude that at each z € R*™
the set of linear operators S : R*™ — R®" that satisfy the inequality

O(z +v) — ®(z) > S(v)

for any v € R? is nonempty. We will call this set the order subdifferential of the order convex
map & at the point z and denote it by 8@(z).2

Proposition 10. All linear operators S € 0®(z) are isotone at any point z € R*".

Proof. As was already mentioned, isotonity of a linear mapping is equivalent to its positivity. It
is sufficient therefore to prove that S(v) > 0 for any z,v € R*", § € 8®(z) and v > 0.

From the definition of subdifferential we have
S) > ®(z) — ¥(z —v).
On the other hand, z > £ — v and by Proposition 9
&(z) - &(z—-v) 20

Hence, S(v) is actually 2 0 0

44. Estimate of the subdifferential

To conclude this section, we consider the practical calculation of the subdifferential 6®(z) and
some its estimates, which is important for the implementation of the algorithm to be developed
and will be utilized in the proof of its convergence as well.

The natural componentwise partial order on R*" is the direct product of the orders “<”
on R. Therefore, the order subdifferential is the direct product of the common subdifferentials
of the separate components of ®(z). The subdifferential of the convex function Di(z), i =
1,2,...,2n, coincides with its gradient at its points of the differentiability [2, 23]. At the points
of differentiability z, the subdifferential d®(x) thereby consists of the only element, namely, of
the Jacobi matrix

0%,(z) 8%, (z)
dzy Ot
: 3 : (33)
8%,,(x) %2, (z)
3$1 e B.Z'Qn

of the mapping ®(z).
In the general case, the subdifferential 9®(z) is known to be a convex polyhedral set,
with one-sided directional derivatives
0%;i(x) im ®;(z + ag) — ®:(x)

——— = i

dg a\o o

2Lt is more correctly ta speak of order Ssubdifferential or Z-order subdifferential, but we drop the symbol “<™ for
brevity, since no other orders on R?" are considered.
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g € R*™, a € Ry, being the support functions for the component subdifferentials ®;(z) {2, 23]
Let us denote by

0%;(z) — lim ®(z1,...,Tj-1, %5 — Q, Tjg1, - - T2n) — BilZ1, ..., Tom)
Oz} AN a
and
6@,(3:) -k @i(xl, ey Tj1, T k< 27 X% NN xzn) - q)i(Il, ceey mzn)
Oz? aNo o

i
that is, the one-sided partial derivatives, from the left and from the right, with respect to the
Jth coordinate direction. Assuming differentiability,

B@i(x) - 8@1(:1:) - 3@,(:2)

oz; dz; dz;

For the functions ®;(z), the existence of the one-sided derivative with respect to any coordinate

direction in no way affects the existence of the derivative with respect to the other variables.

Besides, the matrices of the form (33) composed of the one-sided derivatives obviously belong

to the subdifferential 8®(z). Hence, 0®(x) is a direct product of the “partial” subdifferentials,

that is, an interval 'matrix whose elements are [09;(x)/0z;, 89(x)/dz]].

More precisely, if + € {+,—}, then we have for i =1,2,...,n
0%i(z o)

i(z) é;%—(a(A-a‘l(a:)) —a(b))

= 5z 2(mul@),)

3

orE

7 i

( a -] . .
“ocF (aij(a (x))j), if je{1,2,...,n},
- 6 - . I3
| ‘55? (a,-,,-_n(a I(I))j~n), if je{n+1,...,2n}
modulus of the one-sided derivative

of a;y,if j € {1,2,]...,'{3,}, or

= of a;j_ny, ifj€ {n+1,...,2n}, (34)
\ with respect to an endpoint of y
Similarly, for i=n+1,...,2n,
modulus of the one-sided derivative
0%i(z) | of mL;y.ifje{l,2,....n}, or (35)

dzF | of Mmooy, ifje{n+1,..:,2n},
with respect to an endpoint of y

Close inspection of Table 2 shows that the derivatives (34)—(35) are equal either to the
absolute value of an endpoint of the interval aj; (respectively, a;j_n, 8i=n;j, Qi-nj-n) or, if
0 € ay; (respectively, &;j-n, @i-nj, Bi-nj-n), the derivatives (34)—(35) may equal to zero. In
any event,
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a5

<I)i(1:)

dz= € [{ay), layll, if 4,7 <n,
o,
; (:I) € [(ai.j—n>~ !as.j-nl], if isn<n+1<y,
or;
J9,(:
(:) € [ai-ng) laionyl]; if j<n<n+1<i.
Ox3 .
09,
() o (@icnjon)s |8imnj-al]. if n+1< i

dz

=~ H

So, overall, the following estimate

(&) <oems(fa ) -

is valid.

. Algorithms

5.1 A brief overview

To solve an operator equation, one often reduces it to the form
z = G(z). (37)
Then, having chosen some 9, we iterate
2D = G(z™), (38)

Under suitable conditions, z® converges to the fixed point x* of the mapping G, that is, to
the solution of (37). To obtain more sophisticated numerical algorithms for finding algebraic
solutions, it is natural to avail ourselves of the fact that the main space (either IR"® or R#)
carries the additional partial ordering structure (inclusion order or its induced). The solution
of both algebraic and functional equations in partially ordered spaces is a developed branch
of modern numerical analysis. Classical results on this subject may be found, for instance,
in the well known books by Krasnoselskii {14], Collatz [7], Ortega and Rheinboldt [20] and
others. The standard ways to solve equations of the type (37) with monotone and their related
operators rely upon the facts that are variations of the widely known Kantorovich lemma (see [20]
as well as [7, 14] where it appears in the nameless form). This kind of methods for computing
the algebraic solution were developed in the works by Zyuzin [30—32] and Kupriyanova [15].
Their main result is a stationary one-step iterative method in IR", which can be formulated as
follows:

Let the operator H : IR" — IR" be defined by

(f{(X))1 = ( bi = Z ainj) @ ai;. = 1,2. P ) (39)

j=1g#i
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and there exist intervals v(® w(® ¢ IR", such that v{® C w(® and

viO ¢ Hw®) ¢ w(®

(i.e. the order segment [vq, Wq] is H-invariant). Then the sequences

v® = H(wlED)y, (40)
wk = H(vED)Y, k=1,2,... 41

converges to fixed points v* and w* of the operator H (which are algebraic solutions
to the original equation),

vO vl c...cvtcwC...cwi g w®
and any fixed point.u* € [v(%, w(®] of the operator H lies within [v(®, w(®].

How can an initial approximation for the method (39)—(41) be found? That is a crucial
point and, unfortunately, there are no satisfactory prescriptions for such a selection in general.
If we seek a proper algebraic solution to the system (3), then, as Zyuzin has shown in [32], the
desired choice of invariant order segment for (39) reduces to solution of an auxiliary linear
tolerance problem. This result (which is in a sense a conversion to Proposition 1) indicates that
finding an invariant order interval for the scheme described above turns out to be at any rate
no easier than the original problem.

The other significant disadvantage that is intrinsic to all simple iterative schemes (38) (in
particular, to (39)) and their modifications is the low convergence rate, which is merely linear.

52. Subdifferential Newton method

We have managed to overcome the above drawbacks {more or less) successfully. One of the
main mathematical results of this work is the following iterative algorithm that solves the
equation (26)—(27) in the enveloping space R?":

Algorithm I
(subdifferential Newton method with a special starting approximation)

As the starting vector (@ take the solution of the “midpoint” system
(mid A)’z = o(b).

If the k-th approximation z®, k =0,1,..., has already been found,
then compute any S® € 8®(z¥) and put

24D g6 T(s(k))*l(@(x(k))).

Here, 7 is a damping factor from (0, 1] whose choice should be considered separately. We
incline to recommend 7 to be equal or close to 1. Our computational experience shows that



28 S. P. SHARY

then, as a rule, Algorithm I gives exact solution to the problem in a small finite number of
iterations, which usually does not exceed the dimension of the system. In this kind of method,
the damping factor was originally introduced to prevent divergence. However, it is not quite
clear for me yet whether taking 7 < 1 really improves convergence of the subdifferential
Newton method or not. Anyway, the less 7, the slower Algorithm I works.

Complete investigation of the subdifferential Newton method is beyond the scope of the
present work. Computer experiments with it demonstrate very interesting and surprising
phenomena (see Section 6), which are to be studied thoroughly. Below, we shall prove, based
on the standard technique (see, e.g., [20]), a local convergence theorem that amounts to the
following:

Theorem 6. If the proper interval matrix A is sufficiently narrow and all point 2n X 2n-matrices
C that satisfy
(a) (A) ) . ( A] |A] )
c<
( (a) (a) ) =7 T\ IA] A

are nonsingular, then Algorithm I converges to 0(X,), where X, is an algebraic solution of the
system Az =b.

Proof. Let us specify what is meant by a “sufficiently narrow” interval matrix A. We shall
require that

the convex hull of the set

U {C‘IKS C e R, (<A> <A)) <Cs (:ﬁ%}ﬁ})}

(A)(A)
(where C~1K< denotes the preimage of the cone K¢ under the linear
transformation C) itself is a cone Kg in R?, that is, defines a partial
ordering “<” of R*",

(42)

This is not an arbitrary condition. If the matrix A is thin, that is, A = 4, then (A°) 1K
is actually a cone, being the image of the cone in the linear transformation. If the matrices
C,, Cz € R are “sufficiently close” then the cones C7 K< and Cj 'K are dlose too, and
their convex hull is still a cone. So the condition (42) reflects “narrowness” of the interval
matrix A in some sense indeed.

It is worth noting that if a matrix C' € R 2" satisfies

(& &)=e=(i &)

then it is nonnegative, ie,

CK¢ C K¢
This implies
C—IKS 2 K«
so that
Kq 2 K<

(one could say that “the partial order < is weaker than the common <7).
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Further, owing to the special choice of the starting vector,

Ao Hz®) D (mid A). o7} (z®) =D

80
(=) > 0.

Next note that by the definition of subdifferential

d(z:+D) > @(zW) 4 SW (glk+D) =)
for ' € 89,(z'¥) and any k = 0,1,2,. .., while by virtue of Algorithm 1

SO (gD — £y = _r@(z¥)), (43)

Hence. for 0 < 7 £1 we get by induction

®(z®) >0, k=01,2,... (44)

which. bearing in mind the representation (27) for ®(z), is equivalent under our assumption
o

¥ > g-1(b), kE=0,1,2,...

The other important point is that the sequence {z(®} generated by our algorithm is
monotonically decreasing with respect to the order “J7, that is

2R > k1) (45)
for all £ =0.1.2.... Indeed, combining (43) and (44) one obtains
S(k)(x(kﬂ) - :z:("')) <0.

As we could see, the inequality (36)

() @) === (1A A1)

holds for each S, and thereby, in view of (42), (45) follows.
So. we have proved
.’Zt(k) > Z(k—f-l) > U—l(b)

and there exists a limit z* of the sequence {z(®}. We can find it by solving the fixed-point
equation

¥ =z - T(S(k))q(@(x*)).
Therefore, ®(z*) = 0. O

Note that this result may be taken as yet another way of proving the existence of an
algebraic solution to the equation Az = b in extended interval arithmetic,
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6. Computational tests

In this section we summanrize numerical experiments carried out with the subdifferential Newton
method on a PC/AT 486, The Algorithm 1 was implemented using Turbo C in standard double
precision floating point arithmetic.

Now let us illustrate the theoretical constructions of the previous sections with the results
of numerical tests.

Example 1. the classical one (see Figure 1),

(59 )= (23

When used 7 = 1, Algoritl m I gives, in merely 2 iterations. the exact algebraic solution—the
vector {{—0.333....0.333.. e 1.[-0.333....0. 33.3 ) T —which is easily seen to be the inclusion-
maximal interval vector contained in (ht. wlerable solution sct to this system, On the other
hand. the absolute error of the result is in the order of 1077 only after 22 iterations in the
method (39) based on the Kantorovich lemma [32, 33]

(e )= (B3)

As in the previous case, Algorithm I converges to the exact algebraic solution ({1. -1]. {1. -1)7
in 2 iterations for 7 = 1. One can readily see from Figure 1 that the wvector
dual ([1. —1],[1.—1]) provides a good inner approximation for the united solution set of

Example 2.

the system (7), even maximal by inclusion.

Example 3 [30].

2.41 [-5.-1] [-2.3] [—28.43]
-3 1] [5 7 [4.6] r=| [-60.29]
([ 11 (=21 [-7.-7 [-11.39]
With 7 = 1. Algorithm I converges in 4 iterations to the exact algebraic solution

(2.5 {=3.4]. [=4.-1])".

Example 4. when Algorithm I diverges.

3.4  [-5.-2 [-2.2) [~28, 43]
(~3.-1 [6.7 [5.6] |z=| [-60.69]
“10] [-L1] [-41] [~11.39]

For this interval linear system and with 7 = 1, Algorithm [ generates an oscillating sequence
that evidently does not converge to any limit. It is interesting to note that the right-hand side
of this system is wider than that of the previous example. while all elements of the matrix but
ay; are thinner. Nevertheless, the method fails.

Example 5. Let us turn to the interval linear systems with the matrix from [29%

[n =107 -11-38] ... [@a=-11-7] 1-n,n-1]
[a=1.1-9] (n—1LWN] cor Jo-1,1- 4 | BT—-nn=1]

]

0-1.1-3] la-11-3] ... [n=1,N]| 1-mn,n-1]
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where n denotes dimension (n > 2), 0 < a £ §<1 and N is a real number > n — 1. For
any tested dimensions 1 < n < 45, any pseudorandomly chosen N and arbitrary right-hand
interval vector, Algorithm 1 converged to exact algebraic solution of the system in 2 iterations.

Example 5, mysterious behavior of the subdifferential Newton method.
For the interval linear 7 x T-system

[4.6] [-9.0] [0.12] [23 [59 [-23.-9] [1523] (~10,95]
0.1 6.0 [-L1 [~1,3 [-51] [L13] [=3,-1] [35,14]
[0,3] [-20,-9] [12.77] [-6,30] [0,3] [-18,1] [0,1] (-6, 2]

~41 [-L1 [-3,1 @35 59 12 L4 |z=| [30,7)
[0.3] 0,6] [0,20] [~1,5] [8,14] [-6,1]  [10,17) [4,95]

-7.-2 L2 4 =31 [0.2] 8.5 [-21 [~6, 46]

(1.5 [-3.2] [0.8] [L11) [-510] [27]  [6,82] (~2, 65]

Algorithm I converges to the exact algebraic solution

[—1.22474317578,0.50542987670)
[18.26444337096, —9.51750410300]
[—0.02818650587, 1.16075521933]
[16.40769576636, —14.45553419850]
[~1.34356527337, 3.98821848038]
[~3.52893852104, 4.54345836822]
[5.43086236811, —0.67400838683]

in 9 iterations. At the same time, if we replace the element ary in the matrix by the interval
[10.82], which is narrower than the original one. the Algorithm [ diverges.

An advertisement

Public domain software that implements subdifferential Newton method (as well as its text in
C) is available.
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