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Some theoretical considerations of the 
surface tension of liquid metals for metal 
matrix composites 

J A C Q U E S  E. SCHOUTENS*  
Metal and Ceramic Matrix Composites, Processing and Evaluation Center, 
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA 

This paper presents a model for calculating the surface tension of pure metals and their alloys. 
It is based upon the theory of Eyring et al. which uses classical statistical physics to describe 
the thermodynamic properties of metals in the liquid state. Calculations show the surface 
tension of pure aluminium to be nearly 9% greater than that measured for pure aluminium 
having a monolayer of oxide (AI203), and within about 10% of measured values for AI-xMg 
and AI-xCu, where x is the weight percent of the alloying element. In the present calculations 
0 ~< x ~< 8 w t %  for magnesium and 0 ~< x ~< 30wt% for copper were used. The values calcu- 
lated are also in good agreement with results from other models. The model was also used to 
calculate the temperature coefficient. For pure aluminium the calculated values fall within 
experimental measurements, and exhibit a slight temperature dependence. 

1. I n t r o d u c t i o n  
Cast metal matrix composite (MMC) materials 
reinforced with unidirectional fibres will turn out 
to be a low cost alternative to MMC fabrication by 
diffusion bonding, cold and hot compaction, and 
other methods. In the development of this kind 
of casting technology, one of the most important 
problems to be solved is wetting of the fibres. From an 
experimental point of view, wettability is poorly 
understood. From the theoretical point of view there 
are a number of different approaches, and some of the 
sophisticated approaches have not been of use to 
experimentalists. There are a number of approaches 
for calculating the thermodynamic and surface 
properties of liquid metals, and they can be divided 
inlLo macroscopic and microscopic models. 

The macroscopic modelling approach is the most 
general and is based on equilibrium thermodynamics. 
It uses the classical Gibbs formulation for an inter- 
phase, and attempts to predict interfacial tension or 
adhesion and the surface free energy of liquid metal in 
equilibrium with its vapour, or another liquid, or a 
solid substrate. The Gibbs model is an energy balance 
between the Helmholtz free energy and the sum of 
entropy, mechanical work, surface tension and the 
chemical potential of the species involved. From this 
balance the surface free energy is related to the wet- 
tability of the liquid metal on a non-metallic substrate 
material, and wettability is then related to the contact 
angle using Young's equation. It is well known experi- 
mentally that the wetting of a ceramic by a liquid 
metal can be inferred from changes in the contact 
angle with changes in the parameters of the experi- 
ments. Consequently, this kind of modelling is used to 

"estimate" the wettability of ceramics by liquid metals 
under specific conditions. What is most often the case 
is the Gibbs formulation is used post facto to explain 
what happened in an experiment, and, therefore, 
does not really possess much of what a good theory 
should possess: predicting the outcome of an 
experiment! 

Various kinds of micro-models have been proposed 
which attempt to introduce an atomic or molecular 
"picture" into thermodynamic arguments. Included in 
this type of approach is the notion that the major 
contribution to adhesion forces arises from the instan- 
taneous attraction among dipoles and among induced 
dipole interactions between the liquid and its substrate. 
This method has been fairly successfully applied to 
understand hydrocarbons wetting solid hydrocarbons 
and similar conditions in organic chemistry. These 
interactions are modelled variously with the well 
known Lennard-Jones, Devonshire or Morse poten- 
tials, and with the London formula which involves 
first ionization potentials of constituents. Another 
approach of the micro-model type argues that the 
basic parameter behind the empirical relationship 
between surface tension and heat of vaporization per 
unit atomic surface is the electron density at the boun- 
dary of the Wigner-Seitz atomic cell. It was shown by 
Miedema and coworkers [1-3] that the surface energy 
and the heat of vapourization are linearly related to 
the Wigner-Seitz cell by empirical scaling rules. These 
models then embody a combination of behaviours at 
the microscopic and at the macroscopic levels. 

Finally, there are theories of liquid metals that 
are derived ab initio. These formal approaches are 
rigorous mathematically and generally elegant. 
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Approximations are introduced at the end, either in 
the form of simplified mathematics or over-simplified 
radial distribution functions and inter-molecular 
potentials. These theories are not really suitable for 
practical approaches to predict wettability or inter- 
facial energies or for guiding experiments; they are 
tools to understand fundamental properties of liquid 
metals. The interested reader is referred to a review of 
the literature [4]. 

The approach taken in the work reported herein is 
intermediate between thermodynamic macro-models 
and detailed theoretical models. 

2. T h e o r y  
The theory discussed here is based on classical stat- 
istical mechanics first developed by Eyring and 
coworkers [5, 6] to predict thermodynamic properties 
of liquids. Eyring's theory is founded on the assump- 
tion that the metal upon melting acquires vacancies 
that are moving freely through the melt and that there 
is short-range order in the liquid but no long-range 
order. These freely moving vacancies, called fluidized 
vacancies, have a volume fraction that is made to 
correspond to the volume change of the metal upon 
melting, or about 3 to 4% for transition and non- 
transition metals. Using statistical mechanics par- 
tition functions are written which account for the 
gas-like behaviour of the fluidized vacancies, and 
for the solid-like behaviour of the liquid metal. The 
relationship between the Helmholtz free energy and 
the partition functions make it possible to calculate 
the thermodynamic properties of the liquid metal. 
Eyring and coworkers have shown this approach to be 
quite successful in predicting the thermodynamic 
properties of a large number of liquids, including a 
number of pure metals. However, calculations of the 
surface tension of liquid metal alloys using this 
approach has not been reported. The work reported 
herein is a first attempt at calculating the surface ten- 
sion of pure aluminium and binary alloys of aluminium 
such as A1-Cu and A1-Mg. 

The relationship between the Helmholtz free energy 
and the partition function for a liquid is 

A = - k T  In/" (1) 

where k is the Boltzmann constant, T the absolute 
temperature, and f '  the partition function defined 
below. The surface tension is calculated from 

where N is Avogadro's number, V the molar volume 
and ~ is the surface area occupied by a monotayer of 
atoms on the liquid surface, which is given by 

f~ = ooN~ (3) 

where co is the area occupied by one atom, and Arc is 
the total number of sites available for atoms on the 
liquid surface. To calculate the Helmholtz free 
energy, the partition function can be written as the 
product 

f "  = f.fmL (4) 

where fmL is the partition function for the surface 

2682 

atoms andfB the partition function for the bulk liquid 
atoms. In general, any partition function can be 
written as the product of partition functions describ- 
ing each process involved [7]. Therefore [5] 

fN~ = (fjvsv~/v(fg)uB(l-v~/v) (5) 

where V~ is the molar volume of the metal at its melting 
point, and 

M 
V - (6) 

p(T) 

is the molar volume of the liquid at temperature T when 
its density Q(T) is a function of temperature, and M is 
the atomic weight of the metal under consideration. In 
Equation 5, f~ and fg are the partition functions for 
the solid and gas-like behaviour of the bulk liquid 
respectively. The partition function can be further 
separated into the product of partition functions, thus 

= f E i n s t e i n f r o t f v i b J ( T )  (7) 

and 
L = ftransfrotfvib (8) 

showing that rotation, vibration, and translation 
motion can be accounted for in this manner. J(T)  is 
the partition function for internal degrees of freedom. 
The partition function for the oscillations of the atoms 
in the solid may be calculated from Einstein's theory, 
o r  

exp (Es/RT) 
fEinstein = [1 - exp ( -  O / T ) ]  3 (9) 

where 0 is the Einstein temperature [8]. For metals, 
O/T ~ 1 so that Equation 9 reduces to 

fEinstein " '  exp (E~/RT) (10) 

where E~ is the sublimation energy and R is the univer- 
sal gas constant. 

For pure liquid metals, the probability of diatomic 
modules is extremely small, and those formed with 
residual impurities in the metal is also very small. 
Consequently, the partition functions for rotation and 
vibration are unity. 

A term must be included in the partition function 
given by Equation 7 to account for the total number 
of positions available to an atoms in the melt, or [5] 

V -  V~ exp 
1 + n V~ ( V -  Vs)RT/ (11) 

where n and a are the parameters that can be 
calculated theoretically. It will be seen shortly that in 
the further development of the theory, these two par- 
ameters drop out. 

The partition function for the bulk behaviour of the 
liquid is then written as 

f~B = [(1 - exp ( -O/T)]  3 1 + n 

r . .  \ ' T ~ N S V d  v 

x exp ( V -  K)RTJJJ 

• [(2~mkT'~3/2(V--~ .] - 

x (12) 



A similar reasoning gives the partition function for 
the monolayer or 

[1 - exp ( -  O'/T)] 3 1 + 

~ r  * \ - r ~  N ' V s l V  
a 

x exp (V ~- ~-)RTJJJ 

• k \  ) 

The second brackets in Equations 12 and 13 can be 
simplified using Stirling's approximation x! = (x/e) ~ 
so that 

- L \  h= ) ( 1 4 /  

and 

f~(l-V~lV) L\ g // ( (15) 

In Equation 13, the primed quantities refer to the sur- 
face atoms corresponding to the unprimed quantities. 
In the above derivation we must have conservation of 
the number of atoms, or 

N = NB + N'  (16) 

where NB is the number of atoms in the bulk and N'  
the number of atoms on the surface as a monolayer. 

Now we write 

lnf" = In (fBfmL) = lnfa  + lnfmL (17) 

and using Equations 12 to 15 gives 

7 

where 

In  gr 

1 + n[(V/I/;)-  1] exp [--aE~V~/(V- V~)RT] 
1 + n'[(V/Vs)- 1] exp [ -a 'E~V~/ (V-  ~)RT] 

(23) 

As n' - n and a' ~ a, gr ~- 1, hence In gr = 0 and 
Equation 22 reduces to 

x ( E ,  - E~' [1 - exp (-O'/T)] , J(T)'~ 
R-T- + 3 In [1 - exp ( -  O/T)] + m ~ )  

\ 

(24) 

= 0. Lu, It can be shown that In [J(T)/J'(T)] 
Jhon, Ree and Eyring showed that 

Ei -~ ¼Es(l + f )  (25) 

and 

O" = 0(¼ + ¼f)~/2 (26) 

so that the second term in the bracket of  Equation 24 
reduces to 

In ¼(1 + f )  

Then, we finally have 

7 = ~°-I kT  

In Equation 27, for close packing 

+ ~ln¼(1 + f ) )  

(27) 

l n f '  = N" V~(ln f£{-1 + n'[(V/V~)- 1]exp[-a'E~V~/(V__-_ V~)RT]}~ 
V \  f~{1 + n[(V/V~) 1 ]exp[ -ae~V~/ (V-  V~)RT]} J + l n f  

where 

exp (EdRT) _ exp (E2/RT) 
f~ = [(1 -- e x p ( - - 0 / T ) ]  3 L ' - [ 1  -- e x p ( - - 0 ' / T ) ]  3 

The Helmholtz free energy for a liquid involving its 
surface is 

and 

A = -kTlnf"  (19) 

,V,T ,F,T 

aA 

In Equation 20, a random distribution of vacancies 
is assumed, that Nc is the total number of'sites avail- 
able for atoms on the surface, and 

N'  V~ (21) 
Nc V 

Combining Equations 18, 19 and 20 gives after some 
algebra [9] 

(18) 

(28) 

3. Numerical  results and discussion 
We will now perform three calculations: one for pure 
aluminium, one for A1-Cu alloy and A1-Mg alloy. 

3.1. Pure aluminium 
Table I presents the numerical values of the par- 
ameters used in the calculation of surface tension of 

T A B L E  I Numerical values used for calculating the surface 
tension of  pure aluminium with Equation 27. 

Parameter Numerical value Reference 

f 0.083 9 
V~ (cm 3 g-atom- ~ ) 10,6327 9 
E~ (kcal tool-  I) 64,5098 9 
M (gmol -I)  26.982 10 
k (ergK - I )  1.3807 x 10 q6 
R (ergKmo1-1) 8.314 × 107 
N (atomsmol - I )  6.023 x 1023 

1 erg = 10 -7 J 
1 kcal = 4.184kJ 
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Figure 1 Calculated surface tension of  pure aluminium as a function 
of temperature using Equation 27. (+  Calculated [13], • Measured 
[9], • Calculated [9], zx Measured [14], v Calculated [15], I Garcia- 
Cordovilla et al. [16], ~ Equation 27). 

pure aluminium. To calculate the surface tension of  
pure liquid aluminium the temperature dependent den- 
sity values of Gebhardt et al. [11] were used. Between 
933 and 1173 K, these values are well represented by 

Q(T) = 2.368 - 2.63 x 1 0 - 4 ( T -  Tin) (29) 

where Tm =  933K is the melting temperature of 
pure aluminium and T is the temperature of interest 
in K. Compared with values obtained with a similar 
expression reported elsewhere [12], the values calcu- 
lated from Equation 29 are 0.71% lower at the melting 
point and 0.56% lower at 1173 K. The molar volume, 
V~, for pure aluminium given in Table I differs from 
that given by Shimoji [4] which is 11.4 cm 3 g-atom '. 

Fig. 1 shows the surface tension of pure aluminium 
as a function of temperature calculated with Equation 
27. These values are compared with other calculated 
values [9, 13, 15] and measured values [9, 14, 16]. Also 
shown is a range of values at 660 C of the surface 
tension of  pure aluminium measured by Garcia- 
Cordovilla and coworkers [13] using the method of 
maximum bubble pressure. They found that the 
surface tension of pure aluminium was as high as 
l122mJm -z [16] for an unoxidized bubble surface, 
decreasing to 865 mJ m -2 with a controlled increase in 
the bubble surface oxidation. The values calculated 
with Equation 27, are in good agreement with other 
computations using various modelling approaches, 
and measured values reported in the literature. 

There is an interesting implication from the range of 
measured surface tension values shown in Fig. 1 and 
reported by Garcia-Cordovilla et al. [16]. These suggest 
that the values reported by others [9, 14, 17-26] are 
low because the surface was contaminated by oxides 
during surface tension measurements. Indeed, measure- 
ments of surface tension of aluminium requires great 
care that no oxygen is introduced into the system 
except under controlled conditions. 

The surface tension value of 1184 mJ m -2 shown in 
Fig. 1 was calculated by Chacon et al. [13] for a free 
surface of  pure aluminium. This value is still 5.2% 
greater than the highest value [16, 26] measured under 
conditions of ultra-high vacuum, or in a clean system 
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that has been purged with 99.9995% pure argon. 
Moreover, to attain such measured high surface ten- 
sion values, high purity (99.999%) aluminium was 
used [26]. Th6 drop in the surface tension from 
l122mJm 2 to a mean value of  868mJm -2 [16, 26] 
has been established as caused by a monolayer of 
oxide, presumably A1203 [26]. 

3.2. A l u m i n i u m - m a g n e s i u m  al loy 
For  the case of binary alloys, Equation 27 was modi- 
fied by using rule-of-mixture types of scaling. If  the 
alloy is designated as Al-xMg, where x is the weight 
percent, then the following rules of mixtures can be 
used. The area occupied by the atom, co, can now be 
assumed to have the value 

co = (1 - Xl)COAI + X, COMg (30) 

where x, is the fraction by volume. The molar volume 
of the alloy can be written similarly as 

K = (1 - x,)VssAI + Xl V~Mg (31) 

and the molar volume of the alloy as a function of 
temperature can be written 

MAI MMg 
v = ( l  - x , )  ~ + x, ~M,(2~) 

- (1 - -  Xl)MAI -}- XIMMg (32) 

where x, is of the order of a few percent in this calcu- 
lation. For the density relation we used the following 

Q(T) = 2.376 - 2.8 × 1 0 - 4 ( T -  Tm) - 0.9Xl 

(33) 

where the last term is to account for the observation 
that the density of the alloy varies linearly with mag- 
nesium content [16]. The following equation was used 
to calculate the dissociation energy for the alloy [27] 

Es  = (1 - xl)2EsA1 + x~E, Mg 

+ 2x,(1 - Xl)(E,A,E, Mg) u2 (34) 

These modifications were made to Equation 27, and 
the following values were used in addition to those 
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Figure 2 Calculated surface tension of Al-xMg, with 
0 ~< x ~< 8wt % Mg, as a function of temperature. (I measured 
range for 0.8-8 wt % Mg [16]). 
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Figure 3 Calculated surface tension of  A1 xMg,  with 
0 ~< x ~< 8 wt % Mg, as a function magnes ium content at 973 K. 

shown in Table I: EsM . = 32.9498 kcal mol -~ , V~Mg = 
14.821cm3g-atom i, MMg = 24.32gmot-~. 

Fig. 2 shows calculated values of surface tension for 
Al-xMg, where 0 ~< x ~< 8wt % Mg. These results 
are compared with measured values reported by 
Garcia-Cordovilla and coworkers for the unoxidized 
and the oxidized state. The same data were replotted 
as a function of magnesium content at 973 K, and are 
shown in Fig. 3. The results of the present calculation 
fall between the results for unoxidized and oxidized 
measured values [16], the entire range being about 
22%. 

3.3. A lum in ium-coppe r  al loy 
The calculation described for Al-xMg alloy were 
repeated for Al-xCu alloy, with 0 ~< x ~< 30wt % 
copper. The results of these calculations are plotted in 
Fig. 4. These results are compared with measurements 
reported by Eremenko et aL [28] and Laty et aL [29]. 
It should be noted that the present results are about 
6% higher than the values measured at 973 K for 
20 wt % copper. Unlike the results for Al-xMg, the 
surface tension of this alloy increases with increasing 
weight percentage of copper. This is shown in Fig. 5 
wlhere the results of the present calculations are com- 
pared with the results of calculations performed 
by Poirier and Speiser [15]. In this calculation the 
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Figure 4 Calculated surface tension of  AI=~Cu, with 
0 ~< x ~< 30 wt % Cu, as a function o f  temperature (x Eremenko 
el al. [28], @ Laty et al. [29]). 
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surface tension of with Figure 5 Calculated Al-xCu,  
0 ~< x <~ 30 wt % Cu, as a function o f  copper content, along the 
liquidus o f  the AI -Cu  binary. (-Q)- present calculation, - x -  Poirei 
and Speiser calculation [15]). 

liquidus temperatures of A1-Cu binary corresponding 
to the wt % of copper were used. These results give a 
curve which is parallel to the curve calculated by 
Poiriet and Speiser [15], who used a thermodynamic 
model to obtain their results. The present results give 
surface tension values for Al-xCu which are higher 
than Poirier and Speiser's result by approximately 
8%. 

3.4. Temperature coeff ic ient 
The temperature coefficient can be calculated directly 
from Equation 27 by differentiation with respect to 7". 
This gives the following result 

d ,  
dT co 

- -  5 . 2 6  × 10 . 4  7 ( r )  (35 )  
e(T) 

where the temperature dependence of the molar 
volume and density is shown to emphasize the fact 
that d?/dT has a temperature dependence. It is easily 
shown that the first term of Equation 35 is approxi- 
mately 25% that of the second term. Calculated values 
of the temperature coefficient as a function of tem- 
perature for pure aluminium are shown in Table II. 
From these results, we note that the temperature coef- 
ficient has a weak dependence on temperature, 
decreasing by 5.8% over a temperature range of 300 °, 

It is worth noting that the calculated value of 
the temperature coefficient falls well within the 

T A B L E  II  Calculated values o f  the temperature coefficient for 
pure a luminium 

T 7(T)* V(T) ~o(T/ d~/dT 
(K) ( m J m  -2 ) (cm 3 g-atom -l  ) (gcm -3) ( m J m  -2 K - t  ) 

973 938 11.448 2.357 - 0.260 
1073 911 11.574 2.331 - 0.255 
1173 884 11.706 2.305 - 0 . 2 5 0  
1273 858 11.842 2.279 --0.245 

*Calculated with Equation 27 
"t Calculated with Equation 29 
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experimentally determined range, this range varying 
from a minimum value of  - 0 . 1 2  [24, 26] to a maxi- 
mum value of - 0 . 5 1  [18] for pure aluminium, using 
various experimental methods. This wide range in 
measured values is attributable to the many difficulties 
encountered in making measurements of surface ten- 
sion of  liquid metal even though they are based on well 
known techniques in classical physics. 
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