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1. Introduction

Let f(z) be meromorphic in the plane. We define in the normal way the order
o and the characteristic 7'(r, f) of f(z) and also the quantities m(r, @) and N(r, a)
for any @ in the closed plane.)

The Valiron deficiency is defined to be

— mir, a) . Nra)
Ay =Tm 7. =i 7,

We are concerned in this paper with the question of how large the set of a can
be for which A(a, f) > 0 [3, problem 1.2]. For functions of finite order this problem
has recently been completely solved by Hyllengren. He proved [4, Theorem 1]
the following

THEEOREM A. Let E be any plane point set. Then the following two conditions are
equivalent

a) There exists a positive number k and an infinite sequence a,, a,, . . . of complex
numbers, so that each a € E satisfies the inequality

la — a,] << exp{— exp(nk)}

Jor infinitely many n.
b) There exists a real number z, 0 <z <1 and a meromorphic function f(z)
of finite order in |z| << o0, so that

A(a, f) > =
for every a in E.
In fact f(z) can be chosen to be an integral function.

1) for the notation see e.g. [5, p. 158].
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For functions of infinite order the situation is rather different. The strongest
result in the positive direction is due to Ahlfors [1, see also 5, p. 264], who proved

TreEOREM B. Suppose that f(z) is meromorphic in the plane. Then given &> 0,
awe have for all a outside a set E of capacity zero

m(r, a) < T(r, f)7+e (1.1)

for all sufficiently large r. In particular A(a) = 0 outside a set of capacity zero.

As Hyllengren points out, while all sets satisfying his condition a) have capacity
zero, the converse is false, and in fact sets satisfying a) are metrically substantially
smaller than general sets of capacity zero.

2.

In this paper we shall give examples to prove that for functions of infinite
order Theorem B is more or less best possible, by proving

ToEOREM 1. Let E be an arbitrary F_ set of capacity zero. Then there exists an
integral function f(z), such that A(a,f)=1 for a € K.

This result is an immediate consequence of the following more precise

THEOREM 2. Let Dy(r) and Dy(r) be continuous increasing functions of r for r > r,,
which tend to -+ oo with r. Let E. be an expanding sequence of compact sets of
capacity zero, having the origin as an isolated point. Then there exists an integral
function f(z) with f(0) =0, and a sequence rn—> o with m, such that for
m=1,2,..., we have

(T, 4, ) < Dytm), @ €EH,, (2.1)
N{tm, 0, f) < @i(rw) log tm, 0 €H., (2.2)

and
T(rm, f) = Polrm) - (2.3)

We note that @,(r) can tend to infinity as slowly and @,(r) as rapidly as we please.
Taking for instance @,(r) = log r, D,(r) = r, we see that all values ¢ in B = U E,,
satisfy A(e,f) = 1. It is also interesting to note that the lower growth of N(r, a)
for @ € E may be as slow as we please, subject to being more rapid than log r.
Using the second fundamental theorem, we deduce from (2.2) that

T(rnf2, f) < 4@y(rm) log (rm), m > mq ,
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which, contrasts with (2.3). We also deduce from (2.2) and (2.3) that the sequence
7w is exceptional for Nevanlinna’s second fundamental theorem. For that theorem
implies as # — oo outside an exceptional set of finite measure [5, p. 241]

(@ — 29T, f) < (1 + o) 21, N(r, a, [)

for any ¢ distinet values ¢, If this were true for 7. we should deduce
Dy(rm) << (9 + 0o(1))(g — 2)2Dy(rn) which is false in general. Thus the exceptional
set in Nevanlinna’s second fundamental theorem can really occur [see 3, problem
1.22].

The assumption that #, is compact and has the origin as an isolated point is
no real restriction. For if the E,. are arbitrary closed sets we may write E,, for
the part of U™ .E, in m= < |z| <m, together with the origin. If the E, all
have capacity zero, so does K., which is compact and

E=Uz.E,= Uz, E.U{0}. (2.4)

Thus any F_ set E containing the origin can be written in the form (2.4). If
we now choose for instance @(r) = r, @,(r) = r? in Theorem 2, we deduce that
for every a in K

N(tm, ) O(rm log 1)

T(rm f) 7

so that A{a, f) = 1. Thus Theorem 1 follows immediately from Theorem 2.
Theorem 2 also shows that if £ is any F_ set of capacity zero and @(r),

D,(r) are the funetions of Theorem 2, then there exists a sequence 7, — c© and
an integral function f(z) such that (2.3) holds and for any ¢ € £ we have

N(’I‘m, a) _.<._ @1(7"") IOg T'm, M Z ’mo(“) . (25)

In this form the result is best possible. In fact the set of @ satisfying (2.5) for a
given m, is an intersection of closed sets and so is closed. Thus the set E of all
a satisfying (2.5) for a given sequence r,, is an F_ set. It follows from a result of
Nevanlinna [5, formula 18, p. 171] that any closed subset of E, and so E itself,
must have capacity zero if (2.5) holds, as soon as

—0, as 7,—> o,

D,(r,) — Dy(r)logr, — 4 ©, as m-—> ©. (2.6)

Thus it is remarkable that once the very weak condition (2.6) is satisfied, we do not
restrict the set H further. by decreasing @,;(r) or increasing @(r).

3. Some preliminary results
We complete the paper by proving Theorem 2. In order to do this we need

to reproduce a situation in a finite disk for a sequence of values r = r, in the plane.
We need two subsidiary results.
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Lemwma 1. Let E be a compact set of capacity zero, p a positive integer and x
a positive number. Then there exists a,, such that x << a, << 10z and a function

F)=az+ a, 227 + ..., (3.1)

regular in |z| <1, univalent in |z| <V 2 — 1, having unbounded characteristic
and assuming no value of E more than once in |z| << 1.

We assume initially that £ does not meet the real axis, except perhaps at
w= 0. Let E, be the set K with the points 0, F «, w0, added where z is a
positive number. Let B be the infinite covering surface over the complement of
E, We cut a copy of B from x to + oo along the real axis thus obtaining two
surfaces R;, R, and another copy of B from — 2 to — oo obtaining two surfaces
R, and R,, all of which are simply connected. Let E; be the plane cut from z to
oo and from — x to — oo along the real axis and let B, be obtained by joining
R,, R, to Ry on the segments (z, o), and R; and R, to R; along the segments
(— o, — ), so that B, is a Riemann surface containing none of the points
F x, 00 in any sheet and containing points over E exactly once, namely in the
sheet R;. Thus R, is simply connected, and since R, does not contain the points
F 2, 0, R, is hyperbolic. Thus we may map |z| << 1 (1,1) conformally onto R,
by a function

Fyz) = bz + b2 4 ...
where b, > 0.
The function Fy(z) never assumes the values T x, oo, and so is subordinate

to the function G(z) which maps [2] <1 onto the infinite covering surface S
over the plane with these 3 points removed and satisfying

G(0) =0, G'(0)> 0.

This latter function maps z = 1,7, — 1, — ¢ onto w = x,4 ®©, — &, — 100 so that
the sheet R, corresponds to a »quadrilateraly ¢ in the unit disk bounded by 4
quarter circles joining these points (1,¢), (¢, — 1), (— 1, —¢) and (—4,1) and
orthogonal to |z] = 1. Clearly @ contains the disk |z| < v'2 — 1, and since
Fy(z) is subordinate to G(z), the disk |z] < V2 —1 corresponds to a subset
of the sheet By by Fy(z2), so that Fy(z) is univalent in |z] < vVa—1.

Tt now follows from Koebe’s theorem that 2 > b;(3/2 — 1)/4. On the other hand
the inverse function z = @(w) of Fy(z) maps the disk |w| << & into the disk
|z] <1, so that by Schwarz’s Lemma b;' = &’(0) << 1. Thus we deduce that

4
T<<b << ————2x<<10x. 3.2
< T (3.2)

Thus Fyz) has the required development (3.1), when p = 1.
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We next note that Fyz) has unbounded characteristic in |2| << 1. In fact
Fy(z) cannot have any radial limits other than points of E, It follows from a
classical theorem of Frostman and Nevanlinna [5, p. 198] that if F(z) had bounded
characteristic then the total set of radial limits of Fy(2) would have a positive
capacity, giving a contradiction. Thus Fy(z) has unbounded characteristic.

This proves Lemma 1 for the case p =1. If p > 1, we proceed as follows.
Let B, be the set consisting of all complex numbers w?, such that w € E. We may
say that E, is the p-th power of E. Let F,(z) be defined as above with E,
instead of H, xP instead of z, and set

F(z) = {F,(zP)}? = bR(z + (b fbyp) + .. .).

Since Fp(z) # 0 for z % 0, F(z) is regular. Also if A4, is the part of [z] << 1 which
corresponds to the sheet By by Fp(z), then Fp(z) is univalent in A, Thus if
A, is the p’th root of A, i.e. the set of all z, such that 2? liesin 4, then F(z)
is univalent in A4,. In fact if 2,2, liein 4, and F(z) = F(z), we deduce that
2,28 liein 4y, F,(2) = F,(2}), sothat 2f = zJ. Thus we have, for some integer
k, 2z, = 2z exp (2nik/p). This implies F(z) = F(2,) exp (27ik[p), so that z, = 2,
and F(z) is univalent in A4,, which includes the disk [z]| < (\/E — 1), and so
certainly the disk |z] < V2 — 1. We also see that if Fey=w in E, then
Fp(2P) = wP in E,, and this is possible only for 22 in A4,, ie. z in 4,, where F
is univalent. Thus Fp(z) assumes no value of £ more than once in |z| < 1. Finally
we see that xP < b; << 10z, so that F(z) has the development (3.1).

The above argument assumes that K, does not meet the real axis, except perhaps
at the origin. However, since E, has capacity and so linear measure zero, K, will
not meet every straight line through the origin, at points other than w = 0. If
E, does not meet argz = «,x -~ n, we apply the above argument with the set
E,(x) instead of E, where E,(x) is obtained by rotating E, by an angle — «
around the origin. We then consider e*F,(ze™™) instead of F(z). The argument
showing that F,(z) has unbounded characteristic also shows that F(z) has un-
bounded characteristic and Lemma 1 is proved.

We can deduce

Lemma 2. Suppose that a,,...,a, are preassigned complex nwumbers, not all
zero, and let M = >P_, |a,|. Let E be the set of Lemma 1. Then there exists Fp(z)
regular in |z] << 1, assuming no value of E more than 2p times there, having un-
bounded characteristic in 12| << 1 and o power series development

Fo(2) = a2+ a2 + ... .az? + 0@ (3.3)
near z = 0. Further

\Fo@)] < 10M, for lz| < (W2 —1)2. (3.4)
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Suppose that x> M and write

r=1
o(z) = v
U + Z dyzzp—v
y=1
Then |w(z)] =1 for [z| = 1, and (z) has precisely 2p zeros and no poles in

|z2] < 1 by Rouché’s Theorem. Let F(z) be the function whose existence is asserted
in Lemma 1, with @, = y, where M <<y < 10M and set

Fp(z) = Flo(2)} -
We proceed to show that F,(z) has the required properties. It is evident that

o) = ur S, a2 + 0@,

r=1 "y
and so
Fp(z) = por(z) + O@F*)

has the required power series development at the origin. Next it is evident from the
same argument concerning radial limits that Fp(z) has unbounded characteristic
in |z] < 1. Also the equation w(z) = ¢ has precisely 2p roots in [z| <1 for
any |{| <1, and so, since F(z) = w has at most one root z for w in E, it
follows that F,(z) = w has at most 2p roots for w in E.

Finally, since F(z) is univalent in |z2] <7y = v'2 —1 it follows from a
classical inequality for univalent function [2, p. 4] that |F(z)| < uralz|(ry — 12)7%,
|z| < 7, Also by Schwarz’s lemma |o(z)] < |z}, for |z| <1, and so we deduce
that

1F,(2)] < prilo@)|(rg — o)) < 10Mrglz)(r, — [2)7* < 10M, if [z <ro/2,

This completes the proof of Lemma 2.

4, Proof of Theorem 2

We shall proceed to construct the function of Theorem 2

f@) =202, (4.1)

by successively constructing its coefficients b,. We set b, = 1, and assume that
m is a strictly increasing sequence of positive integers such that p; = 1. We
assume that b, is known for n < p: and proceed to construct b, for pr < n < Py

To do this, we shall inductively define a sequence g, of positive numbers,
increasing rapidly to infinity and such that g, = 1. Suppose that o« has been
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chosen and let Ei be the set of Theorem 2. Let Fy(z) be the function defined as
in Lemma 2 with p = o, B = E. and

a, = b,gp . (4.2)

Thenif a, are the coefficients of Fi(z) for all n, we define &, by (4.2) for
P <0 < Ppy1. It remains to show that the sequences ¢r, pr can be chosen in-
ductively so that f(z) given by (4.1) satisfies all the conditions of Theorem 2.

We start by showing that if g is chosen sufficiently large, when g,_,, pr have
been chosen, we shall have

b, < (201" 2 < <Py (4.3)
In fact it follows from Lemma 2, (3.4) and Cauchy’s inequality that

la,] < 104V 2 — 1}/2)' M, po <n <Peys, (4.4)

where
M= zlbiek<e’°zlb!

Writing 4, = (V2 — 1)/2, B.= Zfl;l 1b,, we deduce from (4.2), (4.4) that
for p, <n <p,,., we have

16, < 1003x™" A7 B, . .

Thus (4.3) holds if ™" > 10(20,./40)"B,, ie. ¢ > (IOBk)"_—__pI;(2Qk—1/A0)nTP';:
and this condition is certainly satisfied for all n > px, if \

or > 10B,(20, 1/ A4g)P+t . (4.5)

Here we use the fact that B, > |b;| = 1. We assume that, if p, and g,_, are
known, g, is chosen to satisfy (4.5) so that (4.3) holds. Since g o with £,
we deduce at once that f(z) given by (4.1) is an integral function.

We note that (4.3) implies in particular that |b,] <1 for all =». Thus for

lz] = 9 < 1/2, we have

0
]f(z)]<zg <1_Q<2g. (4.6)
Let E, consist of all points of E, other than the origin, so that by hypothesis E;
has a positive distance from the origin. We choose §, to be positive decreasing,
less than half this distance and less than 1/2. Then it follows from (4.6) that f(2)
assumes no value of K in |z < §,. Alsofor |2] = p, where 0 < ¢ < §,, we have
¢° e — 2¢°

fElZe—S¢—e— oo = >0,
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Thus f(z) # 0, for 0 << |2| << §,, and so in this annulus f(z) assumes no value
of E,. Also f(z) has a simple zero at the origin.

The function F.(z/g,) by our construction approximates very closely to f(z)
and the coefficients of both functions are the same, namely a,, for n <p, ;.
Also for n > p,.; we have in view of (4.3)

b, < (200)7" -

This will enable us to show that f(z) and Fi(z/o,) behave similarly for |z| = r, << g,
provided that p,,; is large enough. However before constructing 7, and p,.,
we need some further conditions on g, which like (4.5) will be satisfied if ¢, is
sufficiently large. Accordingly we choose g, so large that in addition to (4.5) we
have

20 < Dy(F @) > (4.7)
and
Ok
2p, log (5) < Oy} o) log (F @) - (4.8)

We now suppose that g, satisfies (4.5), (4.7) and (4.8), and proceed to define 7.
It follows from Lemma 2 that Fi(z/ox) has unbounded characteristic in |z| << os.
Thus we may choose 7, such that

To<n<o, (4.9)
and in addition

T{ri, Fr(zfoe)} > DPolox) + 1. (4.10)

Next we note that sets of capacity zero have linear measure zero, and hence so do
their inverse images by regular functions, since the inverse function is locally con-
formal except at isolated points. In particular the inverse image of Ey, by Fi(z/ow)
meets |z| = r only for a set of r of linear measure zero. Thus, by increasing 7
if necessary, we suppose in addition to (4.9) and (4.10) that Fi(z/g) does not meet
I, for |2| = r. Since K, is compact, this implies the existence of a quantity
e, such that 0 < e <1 and

[ Fr(zfor) — a] > &, for a € By and |z| = 7. (4.11)

Having chosen 7. to satisfy (4.9) to (4.11), we proceed to show that if p,,;, which
has so far been left undetermined, is chosen suitably, then (2.1), (2.2) and (2.3)
will be satisfied.

We write Fi(z/g;) = >, B,2", and note that the series is absolutely convergent
for |z| = 7. Thus we may choose p,, solarge that 2:0=Pk+1 |B"| 2" < % &, 2] =1,
where ¢ is the quantity in (4.11). Next it follows from (4.3) and the fact that

e << o, that for |z] =
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[=¢] n © —n __ 9=PLi1
"=Pk+1+1 lbnl ]Zl S Z"'=Pk+1+1 2 2 ’

and this is less than % e if p, ., is large enough, which we assume. Thus we
may choose p,., so large that (regardless of any later choices of o, 7, and p,
for v >k 4 1) we have

If(2) — Falzloe)l = 125 141 (bn — Ba)2| <, 2] = 1. (4.12)

It follows from this and (4.11) that for ¢ in E; the equations f(z)=a
and Fi(z/or) = ¢ have equally many roots in |z| << 7%, i.e. at most 2p;, in view
of Lemma 2. Now (2.1) follows at once from (4.7), (4.9) and the fact that @D(r)
increases.

Next if n(t, a) denotes the number of zeros of f(z) —a in 0 < |z} <, it
follows from the definition of &, ‘that for o € Ey

wt, @) =0, t< &,
while from what we have just shown

nlt, @) <20, O <t <<7.
Thus if ¢ # 0

R

N(re, @) = f n(t,ta,)dt < 2pr log (7%/0k) -

0

If a =0, we recall that, since f(z) has a simple zero at the origin, and no zeros
in 0<|z] <

%
N(re, 0) = f n(t, 0) ? + log 6 < 2pi log (r/0k) .
2
Thus for ¢ in E, we have in all cases
N(re, @) < 2pilog (n/d) < Pi(F or) log (3 ex) < Pa(ri) log 7,

in view of (4.8), (4.9) and the fact that @,(f) increases with ¢. This proves (2.2).
Finally we have by (4.10), and the well-known inequality for the characteristic
of the sum of two functions [5, p. 162],

Do(r) + 1 < Dyfow) - 1 < T{ra, Frlzfon)} < T{re, Fulz/ow) — fl2)} + T{re, f2)} + 1
= T{n, f); + 1,

in view of (4.12) and the fact that & < 1. This proves (2.3) and completes the
proof of Theorem 2.
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