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Coefficient estimates for negative powers 
of the derivative of univalent functions 

Danie l  Ber t i l sson  

Abs t r ac t .  Let f be a one-to-one analytic function in the unit disc with f ' ( 0 )= l .  We prove 
sharp estimates for certain Taylor coefficients of the functions (if)P, where p<0. The proof is 
similar to de Branges' proof of Bieberbach's conjecture, and thus relies on LSwner's equation. A 
special case leads to a generalization of the usual estimate for the Schwarzian derivative of f.  We 
use this to improve known estimates for integral means of the functions If'l p for integers p<_ 2. 

1. I n t r o d u c t i o n  a n d  r e s u l t s  

Let  f be a univalent  (i.e., one- to-one  ana ly t ic )  funct ion  in the  unit  disc ]z t < 1 

wi th  f ( 0 ) = 0  and  f ' ( 0 ) = l .  Let  S denote  the  set of such f .  We equip  S wi th  the  

topo logy  of local ly  un i form convergence;  thus  S is compac t  [6, p. 9]. Let  p be a real  

number ,  and  consider  the  coefficients of the  funct ion  

(1.1) (f'(z))P=~'~Cn,pZ ~, where  C0 ,p= l .  
n ~ 0  

The  cont inuous  func t iona l  f H  ICn,pl assumes  a m a x i m u m  on S. T h e  p rob lem of de- 

t e rmin ing  (or e s t ima t ing )  th is  m a x i m u m  is an  in te res t ing  prob lem,  which is r e l a t ed  

to  e s t ima te s  for the  in tegra l  means  of the  funct ion  ]f,12p. This  follows f rom the  

iden t i ty  

(1.2) 
2~T O(2 

I f ' ( r e ~ ~  27r~-~ 2 2 n  I I.Qp. r . 

n ~ O  

For  ins tance,  B r e n n a n ' s  con jec ture  [3] 

27r 

fo If'(rei~ dO=O((1-r)-l-e) for a l l c > 0  
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is equivalent to 

N 

(1.3) Z ]c~,-112 = O(NI+~) for all c > 0. 
n : 0  

Our main result concerns negative p. 

T h e o r e m  1. Let c~,p be the nth coefficient of ( f t )p ,  as in (1.1). Assume that 
p<O and that 1 4 n < - 2 p + 1 .  Then the maximum of ]Cn,pl over f E S  is attained 
when f is the Koebe .function f ( z ) = z / ( l  +z) 2. 

In other words, if f cS,  then 

(1.4) ]c,,,pl <_ Cn,p, 

where C~,p is defined by 

(1.5) ( l ~ z )  3 = Ck,pz k, where Co,; = 1. 

(Ck,p>O for all k>_O, / f p < - ~ . )  
Moreover, equality is attained in (1.4) if and only if 

Z 
2, where j l=l. 

Our proof of Theorem 1 is parallel to de Branges' proof of Milin's conjecture 
[5], [7]: We consider a L6wner family of single-slit mappings ft. LSwner's equation 

t p leads to a linear system of differential equations for the coefficients of (f~) . In 
this way the problem of maximizing ]cn,p] becomes a problem in optimal control 
theory. This problem is solved by proving that  a certain quadratic expression in 
the coefficients is an increasing fimction of t. The computations in this last step are 
more involved than in de Branges' proof. In de Branges ~ proof this was easy, since 
one could use known inequalities for Jacobi polynomials. 

Unfortunately, it is not true for every f E S  that  ]cn,_~l<_Cn, 1 for all n. (This 
would imply Brennan's conjecture (1.3).) An example is given by the function 

f ( z ) =  e x p - 1 . 2 6 7  4~ d(, 
k = 0  

which has c~,p#O(n ~176 if p_<-l ,  see [8, proof of Corollary 3]. On the other hand, 
Cauchy's formula for the coefficients of the derivative of (1.5) gives 

(1.6) C~,p_:O(n,p] 1) i f p < 0 .  
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Thus, if -1 .064<p_<-1 ,  then there is a function f E S  such that  l e n , p l > C n , p  for 
infinitely many n. This also holds if - l < p < 0 ,  since then there is a function f E S  
with 

log If'(re i~ 12p dO 
(1.7) lim inf > max{21p I - 1, 0}, 

see [4, p. 34] and [13, Theorem 8.6]. (If we had IC~,pl<lCn,pl for all n, then (1.6) 
and (1.2) would give a contradiction to (1.7).) 

The case n - - - 2 p + l  of Theorem 1 turns out to be especially interesting. Con- 
sider the differential operator 

Theorem 1 states that 

(1.8) 

Sn f=( f ' ) (n  1)/2Dn(f, ) (n-1)/2. 

ISnf(o)l <n!Cn, (n-l)/2. 

1 times the Sehwarzian derivative. Like the Schwarzian The operator $2 is just - ~  
derivative, Sn has an invariance property, 

(1.9) Sn(fo~-) - -  ( ( S n I ) ~  n if 7- is a M6bius transformation. 

See [9] for a general discussion of operators with this property. Using a disc auto- 
morphism T we can thus "move" the estimate (1.8) to an arbitrary point of the unit 
disc. 

T h e o r e m  2. For functions f univalent in the unit disc we have the sharp 
estimate 

ISnf(Z)l= (f'(z)) (''-1)/2 < K n ( 1  IZl2) - n  , 

where Kn=(n -1 ) (n+  l)(n+ 3) ... ( 3 n - 3 )  and n is a positive integer. 

When n = 2  this is the usual estimate for the Schwarzian derivative [6, p. 263]. 
Using this estimate for the Schwarzian derivative, Pommerenke [13, Theorem 8.5] 
proved that  

ff (1.10) II'(re~~ 1dO=O((1-r)-~176 i f f E S .  

We use Pommerenke's argument and Theorem 2 to prove the following estimates 
for integral means. 
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T h e o r e m  3. Let En be the positive root of 

E(E+ 1)(E+2)... ( E + 2 n -  1) = K~, 

where Ks is as in Theorem 2, and n > l  is an integer. 
If f is a univalent function in the unit disc, then 

fo = o((1 for > If'(rei~ dO all O. 

In particular, 

~o 2~ If'(re i~ 1-2 = O((1 - r ) -  1.547), dO 

fro 2~ lf'(re~~ = O((1 -r)-2"53~ dO 

These estimates are small improvements of the known estimates 

f02~r ( (  1 ~1p1--0.399~ 
I f ' ( r e i~  ] for p < - l ,  

which follow from (1.10) and the elementary estimate [f'(z) l> ~ if'(0)l(1- Izl). Note 
that  as n ~ + o c  we have En=n-~-+o(1). This should be compared with Carleson's 
and Makarov's result [4, Corollary 1] 

I If'(rei~ dO = O for large negative p. 

The exponent IPl-  1 is best possible (take f as a Koebe function). 
In the next two sections we prove Theorem 1, except for the characterization 

of the extremal functions, which will be proved in Section 4. We prove Theorems 2 
and 3 in Sections 5 and 6, respectively. 

2. T h e  p r o o f  o f  T h e o r e m  1 

Let F: [0, +oc)--~C be a parametrization of a Jordan arc such that, for some 

T > 0 ,  the arc F([T, +e~)) is an interval [F(T), +cx~) on the positive real axis. Assume 
that  f0 ~ S maps onto the complement of the arc F([0, +oc)).  The set of mappings of 
the type f0 is dense in S [6, p. 81]. Thus it is sufficient to prove Theorem I for f=fo .  
For t>0 ,  let ft be the Riemann mapping of the unit disc 'onto the complement of 
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the arc C([t, +c~)), normalized so that  f t (0)=0 and f / (0)>0.  We can choose the 
parametrization F so that  f[(O) e ~. LSwner's differential equation [1, Chapter 6] 
then relates the mappings ft, 

, l+w(t)z 
(2.1) ? e ( z ) = f ~ ( z ) z l _ w ~  for t > 0 ,  

where w is a complex-valued continuous function with I~o(t)l= 1, and the dot denotes 
differentiation with respect to t. 

Fix an integer n and a negative number p such that  l < n < - 2 p + l .  We are 
interested in the coefficients of the functions 

o ~  

g t ( z )=(e - t f [ ( z ) )V=Eck( t ) zk  , where co(t) 1. 
k--O 

Specifically, our task is to prove the inequality 

(2.2) Ic,~(0)l < Cn, 

where C~=Cn,p is defined by (1.5). That  Cn>0 will be proved after Lemma 4 in 
Section 3. To prove (2.2) we use two facts. First, the function e TfTES  maps onto 
the complement of an interval [x, +oc) on the positive real axis. Thus e TfT(z )= 
z / ( l  + z) 2, which implies 

ck(T) Ck fork_>0. 

Second, differentiation of LSwner's equation (2.1) gives 

, , l+co(t)z (12aa(t)z-co(t)~ (1-co(t)z) 22c~ ) = , 

which leads to a linear system of differential equations for the coefficients of gt, 
k 1 

(2.3) dk( t ) - -kck( t )+E(2 j+2v(k- j+l ) )w( t )k -Jc j ( t  ) for k > 0 .  
j - -0  

We can write this in matrix form using the vectors 

c(t)=(co(t),cl(t),...,c,~(t)) T and C=(Co,CI, . . . ,Cn)  T 

and the lower triangular matrix M(c0) with elements 

(2j+2p(k-j+l))co k J f o r 0 < j < k < _ n ;  

M(w)kj = k for O<_j=k<_n; 
0 forO<_k<j<_n. 

We have thus reduced our task to the following control theory problem. 
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C o n t r o l  p r o b l e m .  Let c(t) be the solution of the initial value problem 

(2.4) d(t) = M(co(t))c(t), 0 < t < T, c(T) = C, 

where w(t) is a continuous function of modulus 1. Prove that len(O)l_<C,~. 

Note that  the choice co(t)--1 corresponds to ft(z) e tz l ( l+z)  2 and cn( t )= 
C~. Following de Branges, we solve the above problem by studying the quadratic 
expression 

T~ 

(2.5) H(t) = Z hk (t) Ick (t) l 2, 
k = O  

where the weights hk(t) are real-valued and depend on t, but not on the function co. 
We get 

n 

(t) = ~ h~ (t) I ck (t) l ~ + h~ (t) 2 ae(c~ (t) +k (t)) 
k--O 

(2.6) 

) = h ~ ( t ) l ~ k ( t ) 1 2 + h K t ) 2 R e  M ( 1 ) k j T j ( t )  , 
k 0 j=0 

where we have introduced ~yj(t)=co(t)-Jcj(t) and used equation (2.3). Using the 
diagonal matrix D(t) with diagonal elements h0(t), ..., h~(t) and the vector ~/(t)= 
(70( t ) ,  . . . ,  7,,~(t)) r ,  we c a n  write this as 

f~I(t) = ~{)T (D(t) + M(1)T D(t) + D(t)M(1) )7(t). 

We now try to determine the functions hk so that the following conditions are 
satisfied: 

(2.7) /:/(t) >_ 0 for t > 0 and for all choices of w, 

(2.8) /:/(t) = 0 if w = 1, 

(2.9) h k ( 0 ) = 0  for k < n  and h ~ ( 0 ) = l .  

If these conditions are satisfied, our problem is solved, since we get [cn(0)12=H(0)_< 
~" 2 H(T) ~ k  o hk(T)C~, with equality if co( t ) - l ;  hence ten(0)[_<Cn. 

When establishing (2.7), we will forget that  the 7k(t) are not arbitrary, and 
prove the stronger statement that  the matrix 

(2.10) P(t) 19(t)+M(1)TD(t)§ is positive semi-definite for t_>0. 
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Let us first show that  conditions (2.8) (2.10) determine hk uniquely. In the case 
w(t)--i  we have 7 ( t )=C,  so condition (2.8)gives cTp( t )C=O.  Condition (2.10) 
now yields X / ~  C=0,  whence 

P(t)C = D(t)C + M(1)T D(t)C + D( t )M(1)C = O. 

However, M ( 1 ) C=0  (the case a~(t)-I  of equation (2.4)). Thus we get 

(2.11) ~)(t) = --M(1)Ty(t),  

where y(t) = D( t )C= (Yo (t), ... , y~ (t) ) T. Condition (2.9) implies the initial condition 

(2.12) y(o) = (o, o, ..., o, Cn) T. 

Thus 

(2.13) h~( t )=s~( t ) /Ck,  k=0,1,. . . ,~, 

are uniquely determined. 
Now, define y(t) and hk(t) by equations (2.11) (2.13). Then we have P(t)C=O, 

so condition (2.8) is satisfied, as well as (2.9). It remains to prove condition (2.10), 
that  is, that  the Hermitian form r~(t)=-yTP(f)7, also given by the rigtxt-hand side 
of (2.6), is positive semi-definite. 

From now on we consider 3'k as fi'ee variables (independent of t and c~). The 
quantity r](t) takes a simple form expressed in the new variables 

k 

c~k = E ( k - j + l ) ~ / j ,  
j 0 

k = 0 ,  1 , . . . ,n .  

We can write 7k=ctk--2ak_l +ak-2  and 

k 

j = 0  

where c~ 1 =OZ 2=0.  Substituting this into (2.6) and collecting terms one gets 

(2.14) 
n 

v(t) = y~ u~ (t)I~ ? +vk (t)2 ae ( ~  ~:~)+w~ (t)2 R e ( ~ ) ,  
k=O 



262 Daniel Bert i lsson 

where 

(2.15) 

(2.16) 
(2.17) 

uk (t) = hk (t) +4hk+l(t)  +hk+2 (t) +2khk (t) 
+ ( -  16p+8)hk+l (t) + ( - 4 p -  4 -  2k)hk+2 (t), 

vk ( t )  = -2hk (t) - 2hk+l (t) + (419- 2 - 2k)hk (t) + (8/)+ 2k)hk+l (t), 

wk(t) h~(t)- 2phk(t), 

and hn+l(t)=hn+2(t)=O. We want to complete the squares and write 

n 

(2 .18)  ~](t) = Z p k ( t )  lozk 4-qk(t)o~k l+rk(t)o~k_2t 2. 
k=0 

First, we prove tha t  this is possible if t is large. 

L e m m a  1. If n < - 2 p + l  then 

n 

(2.19) hk ( t )=Zhk je -J t>O fort>O, k = 0 , 1 , . . . , n ,  
j k 

where hkj are constants and hkk>0.  

Proof. By (2.13) and (2.11) we have 

(2.20) hk(t)+khk(t)=C~ 1 ~ ( -2k-2p( j -h+l) )Cjhj ( t ) ,  
j-k+1 

where the coefficient of hi(t) is positive thanks to the assumption n <  2 p + l .  A 

descending induction on k, using also the initial condition (2.9), now proves (2.19). 

Moreover, hkk--hk(O)+ f o  ekt(hk(t)+khk(t))dt>O. [] 

By continuity, we can henceforth assume tha t  n < - 2 p + l .  Lemma 1 implies 

that  uk(t), vk(t) and wk(t) are polynomials in e t 

uk(t) = khkke-kt+... , 

vk(t) = (4p--2)hkke kt+.. .  , 

wk(t)-- (-2p-k)hkke ~t+... , 

where the omit ted terms are of smaller order as t--~+oc. This shows that  for large t 
we can successively complete squares in (2.14), beginning with terms containing an. 
In each step of this process the coefficient of terms of type lakl 2 will have leading 
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term khkke kt. Thus we get (2.18) with pk(t) >0 for k = l ,  2, ..., n, for large t. Since 
P(t) is a singular matrix, r/(t) is also singular, so we must have p0( t )=0 for large t. 

The functions pk(t), qk(t), rk(t), now defined for large t, are rational functions 
of e t. We now want to prove that  these functions have no poles for 0<e-t_<1, and 
that  pk(t)>O for t_>0, k = l ,  2, ..., n. Thanks to the special structure of r/(t), we can 
derive a one-step recursion formuIa for Pk (t). Identifying coefficients in (2.14) and 
(2.18) we get, for large t, 

(2.21) u k ( t ) = p k ( t ) §  2, O<k<n,  
(2.22) vk(t)  = p k ( t ) q k ( t ) + p k + s ( t ) q k + l ( t ) r k + s ( t ) ,  1 < k < n, 

(2.23) wk (t) = Pk(t)rk (t), 2 < k < n, 

where Pn+l Pn+2 =qn+l ~rn+l = r n + 2  ~0 .  
~n the  case "r C we have ~(~)=CrP(t)C=O, so (2.18) toge ther  wi th  p~( t )>O 

for l < k < n  and po(t) 0 gives, for large t, 

(2.24) Ak+qk(t)Ak-l+rk(t)Ak-2 O, l <k<n,  

where Ak=Ey=o(k--j+l)Cj. Solve (2.24) for q~(t), plug this into (2.22) and use 
(2.23). This gives the recursion formula 

A k ~  Ak 1Ak+l Ak-1 
(2.25) pk(t)-- Ak wk(t)-- A~ wk+l(t)- Ak vk(t) A~A 21wk+l(t) 2pk+l(t) 

for l < k < n - 1 ,  but still only for large t. In the next section we use this formula to 
prove the following lemma. 

L e m m a  2. The meromorphic functions Pk ( t ) are regular for t >_ O, and for t > 0 
we have 

(2.26) pn(t)=nhn(t)>O, po(t)=O, 

(2.27) p k ( t ) > A ~ w k ( t ) + ~ 2 ( k + l ) h k ( t ) > _ O  fork=l ,2 , . . . , n -1 .  

By (2.23) and (2.24) the functions rk and qk are also regular for t>0 .  Hence 
(2.18) holds for t>0 ,  and thus r/(t)_>0. 

Remark. If n > - 2 p + l  and p < - }  the proof breaks down: We get u n - l ( t ) < 0  
for large t; hence P(t) is not positive semi-definite. 
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Remark. Casting de Branges' proof of Milin's conjecture into our notation we 
note the following differences. Corresponding to (2.14) one gets the simpler expres- 
sion 

n 

?(t) -- ~ ~ (t)la~ }2 + ~ (t)2 Re(a~a~_l). 
k--0 

This stems from the fact that one studies the functions 0t(z)=log(e-tft(z)/z),  which 
contain no derivative of ft. The simpler structure of ~(t) implies that the functions 
/Sk(t) corresponding to our functions Pk (t) become polynomials in e -e. 

3. The  p roof  of  L e m m a  2 

For convenience, introduce the parameter q=-2p+l>n.  We need some lem- 
mas concerning the constants Ck, Ak and Bk=Ak-Ak- l=Co+. . .+Ck.  

L e m m a  3. The following recursion formulas hold for all integers k: 

(3.1) kC~ = (2q-2)c~_1 -(q-k+l)Ck_2, 
(3.2) kBk : ( 2 q - 1 ) B k - l - ( q - k ) B k  2, 

(3.3) kAk = 2qAk 1 - ( q - k - 1 ) A k - 2 .  

Here, Ck-~Bk =Ak=0 for k<0. 

These formulas follow from applying (1-z2)d/dz on the generating Proof. 
functions 

CO 

(1-  ~)~(1+~) -~ : ~ c ~  ~, 
k=O 

(I - ~)~- ~ (1 + z)-~ = ~ s~ ~, 
k=O 

(1-z)'-2(l+z) -3~:~Akz< [] 
k=0 

L e m m a  4. If q>3, then kCk>qCk-l>O for l < k < q + l .  

Proof. The case k : l  is clear. Inductively, assume that kCk>qCk 1>0, where 
l<k<q. Together with equation (3.1) this implies 

( k + l ) C k + l  >_ (2q-2)Ck-(q-k)kCk/q>qCk. [] 

This shows that Ck>0 if 4 < k < q + l .  Moreover, for q>5, Co=1, C1=2q-2,  
C2=(q- 1)(2q- 5) and Ca= �89 1)(4q 2-11q+9) are all positive. Equation (3.1) 
now implies that Ck>0 for all k_>0, if q>5. 
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L e m m a  5. / f  q>3 ,  then Ck_l /Ck<Ck/Ck+ 1 for 0 < k < q .  

Proof. The case k = 0 is trivial. Inductively, assume tha t  Ck Ck 2 < C~_ 1, where 
l < k < q .  Equa t ion  (3.1) implies 

(lg-~-J_)Ck+lCk_l-lgC 2 (q-1-1--k)CkCk_ 2 ( q - k ) C 2  1 . 

But L e m m a  4 implies Ck > Ck 2, so we get 

(k-~-])(Ck+lCs 1 - C 2 ) < ( q  lg)(CkCk_2-C 2 1 ) < 0 .  [~] 

L e m m a  6. If q>3, then Ak-1/Ak<Bk-1/Bk for l<k<q.  

Proof. By L e m m a  5 we have 

B j _ I  _ c 0 + . . . + C j _ l  < Co+...+cj _ Bj 
B5 Co+...+C~ Co+...+C5+1 Bj+I 

for 1-<j -<q. 

Thus  
Ak-~ Bo+...+Bk 1 Bk 1 

-- < - -  for l < k < q .  
A~ Bo+...+Bk Bk 

[] 

L e m m a  7. If q > 3  and l<k<q, then 

(3.4) 
CkBk+l  1 
Ck+lBk < 14 q_~. 

Proof. The case k =  1 is easily checked. Inductively, assume tha t  

Ck_iBk 1 
- - < 1 - t  
CkBk_l q + l - k '  

where 2<_k<q. Using Ck=Bk-Bk-1  and the recursion formula (3.2) we can write 
this as 

(3..5) -k (q-k+l )B~+(2q(q-k )+2q-1)BkBk_l - (q  k+2)(q-k)B~ 1 > 0 .  

We want to  prove the inequali ty (3.4), which in a similar way can be wri t ten  

(3.6) 
(2q-l-(k+l)(q-k+l))B~+((2q-2)(q-k)+l)BkBk 1 

- ( q - k - 1 ) ( q - k ) B ~  1 >0.  
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It suffices to prove that  the difference between the le•hand sides of (3.6) and (3.5), 

= ( B k - B k _ l ) ( ( q + k - 2 ) B k - 3 ( q - k ) B k _ l )  

is positive. Lemmas 5 and 4 imply 

Bk Co +...  + Ck Ck q 
Bk-~ Co+. . .+G-~  > Ck-~ > k" 

Thus we need only prove that  ( q + k - 2 ) q / k - 3 ( q - k ) > 0 ,  which is a simple verifica- 
tion. [5 

We also need the following facts. By (2.20), (2.19) and h~(t )=e ~t we have 
hk ( t)+ k hk (1)> 0 if t > 0 and 0 < k < n - 1 ,  and so equation (2.17) and Lemma 1 yields 

(3.7) w~(t) > 0  f o r t>O,  i f O < k < n - 1 .  

Together with Lemma 1, this proves the second inequality of (2.27). By (2.16) and 
(2.17) we have 

vk (t) = --2wk (t) -- 2wk+l (t) -- 2 (k + 1)hk (t) -- 2 (q -  k - 1)hk+l (t), 

which substituted into (2.25) gives the recursion formula 

(3.s) 

Ak-1 pk(t)= ~ [(2 --Ak-2• Ak_l j~wk(~5)@ (2-- A~: 1)wk+l(ti)@2(k@l)hk(t) 

Ak--lw~+l(t)z] l < k < n - 1 .  
+ 2 ( q - k - 1 ) h k + l ( t )  dkpk+l(t)  J' 

Now (2.26) follows from (2.21), (2.15) and (2.20), 

(3.9) p,,~ (t) = un(t) = h~( t )+2nh~(t )  = nh~(t) = ne -~t > 0 

We prove inequality (2.27) by descending induction over k. 

I n d u c t i o n  base.  For t>O and 2<nKq, 

An 3 . .  A~ 2 - 

n--1 n 1 

Proof. By (3.8) and (3.9), this is equivalent to 

(3.10) 2 ( l - ~ ) w ~ _ l ( t ) + ( 2 - A ~ _ l A ~  _ (t) + 2 ( q -  n)h  (t) 
/ 

for t > O. 

An 2 w~(t) 2 

An 1 nhn(t)  
>0.  
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By (2.20) and (2.17) we have 

wn l(t) = (q-n)(2CnC~l_lhn(t)+hn-l(t)) and wn(t) = (q-n-1)hn(f) ,  

which substituted into (3.10) gives 

an_2j(q-n)h'*-l(t)  + ~ n _ 2 ) ( q - n ) ~ _ l  + 

+2(q-n)-AnAn-12 (q n_-l)21h~(t)>O 

Since An-a<A~ 2 and hn l ( t )>0 ,  we only have to prove that  the coefficient of 
hn(t) is positive. Using the recursion formula (3.3) with k=n, we can write this 
coefficient as 

V{1A,, (3.11) 4(q-n) L\ An-2] Cn 1 1 q--1 

5 that  It follows from Lemma 4 and C2/C1 =q-a  

C~ q 1 
> - -  

Cn-1 2n 

Lemma 5 implies that  

A~ 3 Cn_3+2Cn_4+...+(n-2)Co Cn 1 
An-2 - Cn_2+ 2Cn_3+... + (n -  2)C1-}-(n-1)Co < -~-n 

Thus (3.11) is positive. [] 

I n d u c t i o n  s t ep .  Assume that  l < k < n - 2 ,  t>_0 and 

> + 
r ~ k + l  

Hence, by (3.7) and Lemma 1, 

Ak-1 . , 
(3.12) pk+l(t) > ~k+lwk+l(t) > O. 

We want to prove that  pk(t)>(Ak-2/Ak)wk(t)+(Ak-1/Ak)2(k+l)hk(t). By the 
recursion formula (3.8) and (3.12) it is enough to prove 
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Using the functions s k ( t ) = E j n _ k ( j - - k + l ) y j ( t )  we can write the differential equa- 
tion (2.11) as 

(3.14) ~lk (t) = --ksk(t) § 2(q-- 1)Sk+l (t) + (--q§ l+k)sk+2 (t). 

Remember that  hk( t )=yk( t ) /C~>O. Substituting this, yk( t )=sk( t ) - -2sk+l ( t )+  
sk+2(t) and (3.14) into (2.17) we get 

lo k (~) = C k  I ( (q- -  1 - k)sk (t) + ksk+2 (t)). 

Putt ing this into (3.13) and using hk+l(t)>_0, we see that  it suffices to prove 

(3.15) ( q - l - k ) s k ( t ) + k s k + 2 ( t ) - # k ( q  2- -k )sk+l( t ) - -pk(k+l)sk+3( t )  > O, 

where 

J~k = 

Ck ( ~ k + l  1) 
Ck+l _ CkBk+lAk 1 > O. 

1 -  Ak-~  Ck+lBk 1A~ 
Ak-1 

Note that  q>n>3.  From Lemma 6 and Lemma 7 it follows that  

CkBk+l BkAk 1 1 
= - - < 1 + - - .  

~k Ck+lBk Bk 1Ak q - k  

Hence 

8 k (15) __ Yk (t) ~- 2yk+ 1 (t) @... ~- (n - -  ~-~ 1)y n (t) > 11, -- k -~1 

8k+1(~)  yk+l( t )+. . .+(n- -k )yn( t )  - n - k  
> Pk, 

and similarly sk+2 (t) >#ksk+3 (t). Thus 

( q -  1 - - k ) ( s k ( t ) - -~kSk+l ( t ) )~k (Sk+2( t ) - - t l kSk+3( ]~ ) )  > O, 

which implies (3.15), since 8k4_ 1 (t) • 8k+ 3 (t).  

4. T h e  e x t r e m a l  func t i ons  

Clearly, the Koebe functions f ( z ) = z / ( l + A z )  2, where I l:l, give equality in 
Theorem 1. Assume that  f ( z ) = z + a 2 z 2 + a a z a + . . . E S  is not a Koebe function. As 
in [7] we use an approximation argument to prove that  this implies strict inequality 
in (1.4). The function f is the limit of a sequence of functions f~'~ of the type f0 
considered in Section 2. We denote the corresponding quantities with the same 
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symbol as in Section 2, but with a superscript m. Assume first that  l < n < q =  
- 2 p +  1. Since c~ n (0) = 2pa~ ~, Bieberbach's theorem l a2l < 2 [12, Theorem 1.5] implies 
that  

IC~(0) I<41pl -5=C~ ~ f o r , ~ > , ~ o ,  

where 5>0. The differential equation (2.3) implies 

Ida's(t)[ = IcF(t)+4pa3(t)l <_ Cl@4lpl. 

Thus 

I c F ( t ) [ < C 1 - 5  f o r m > m 0 ,  0 < t < t 0 ,  

where 5>0  and t0>0 are independent of m. Now equation (2.18) gives, for m>mo 
and 0<t<t0, 

[l"~(t) >_ pt (t)]7?(t)+ 27~(t)+q1(t)7~(t)l 2 =pl ( t) lw(t)-lc?(t)-Cll  2 >pl( t )52.  

By Lemma 2 we have pl(t)>_hl(t)/q, so we get 

fro ~2 fotO $2 Ic~(O)l 2 = gin(O) ~ ~ hk(T)C~- qhl(t) dt = C~-  qhl(t) dr. 
k=0 

In the limit m---,oc this shows that  IC~,p[<Cn. By the proof of Lemma 1, this 
conclusion also holds in the limit case q=n, except when n=2 ,  in which case h l ( t ) ~  

3 2 0. In this exceptional case we have c2,-1/2 ~(a2 -aa  ). Thus it follows from the 
elementary estimate l a~-a31<l  [12, Theorem 1.5] that  we have strict inequality 
in (1.4). This concludes the proof of Theorem 1. 

Remark. Just like our estimate of c2,_1/2, the estimate of e3, 1 is not new. It 
was proved by Ozawa [11] in the form [a4 3a2a3+2a~l<2 using Schiffer's varia- 
tional method. 

5. G e n e r a l i z e d  S c h w a r z i a n  d e r i v a t i v e s  

Define the differential operator Sn for conformal maps f by 

S n f =  (f')(n-1)/2D~(f') (n-1)/2, 

where we use the same branch of vzf 7 at both occurrences. To prove the invariance 
property (1.9) we use the following lemma [2], [10]. 
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L e m m a  8. Let T be a MSbius transformation. If two analytic functions are 
related by [l-(go~-)(r')-(n-~)/~, then their nth derivatives have the relation ~(~)= 
(g (n )  O T ) ( T t ) ( n 4 - 1 ) / 2 .  

Proof. Since r is a composition of transformations of the types z~--~z+a, z ~ b z  
and z~--, 1/z, it suffices to prove the lemma when ~- is one of these. The first two cases 
are rather trivial. In the third case T(z)=l/z,  we can by continuity and linearity 
assume that  g(z)=z k, and then an easy calculation proves the lemma. [] 

Now let g=(f,)-(n-1)/2 and ~]--((for)') -(n-1)/2. Since g=(gor)(r') -(n-1)/2, 
the lemma shows that  

(5.1) S~(for)- 
~(~) _g(~)or 

got 
(r ' )  ~ = ((Snf)  o7)(7') ~, 

i f  T i s  a MSbius transformation. 

We now prove Theorem 2. Theorem 1 gives 

(5.2) [S~f(O)l<~n!Cn, (~ 1)/2 

if f c S .  Since S~ is homogeneous this holds also if f is just univalent in the unit 
disc. By (1.5), Cn,-(~-l) /2 is the n th  coefficient of 

(l__z)_(n 1)/2(1+z)3(n_1)/2 --(n 1)/2 ( _ z ) k E  3(n 1)/2 = Z 2 , 

k = 0  j 0 

so that  

~-~(-(n--kl)/2)(3(~--12/2)(_1)k Kn 
C n ' - ( n - 1 ) / 2  = n !  ' 

k = 0  

where K~=(n-1)(n+l) . . .  ( 3 n - 3 )  Now let r(z)=(z+C)/(l+Cz), where 1r 
and let f be a univalent function in the unit disc. Then for  is also univalent in the 
unit disc, so (5.2) gives ]Sn(for)(0)l_<Kn. Together with the invariance property 
(5.1), this shows that  

ISnf ( r  = IS~ f ( r (0 ) ) l  = s ~ ( f o ~ ) ( 0 )  < K n  
( < ( 0 ) ) n  - (1_1r  

since T'(0)=I--[~[2. 
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6. E s t i m a t e s  for i n t e g r a l  m e a n s  

We now use Theorem 2, following Pommerenke [13, p. 181] to prove Theorem 3. 

L e m m a  9. If  g is analytic in the unit disc and m ( r ) = J :  ~ [g(rei~ 2 dO, then 

/oo rn(2~)(r) <_4 ~ Ig(n)(rei~ dO. 

o o  ]~ o o  
Writing g(z)=}-~k= 0 bkz , we get m(r)=27r  ~ k = 0  Ibkl 2r2k" The lemma Pro@ 

is evident from a comparison of coefficients in 

and 

o o  

m(=')(~) = 2~ ~ Ib~l~2k(2k-1)... ( 2 k - 2 n §  2k-2n 
k n 

Ig(~)(<~{~ ~ dO = 2 ~  ~ i b ~ k ( k - 1 ) . . .  ( k -n+ l ) 12 r  2k 2n. [ ]  
k = n  

Let n >  1 be an integer and let f be a univalent function in the unit disc. Using 
Lemma 9 with g=(f f ) - (n-1) /2  we get 

f0 m (2n) (r) << 4 ~ Ig(rP~176 dO. 

Theorem 2 now gives the differential inequality 

K~ ~2 Ig(rei~ dO < l ~ 2 n m ( r )  _ _ ( _ )  

for r0_<r< 1. The corresponding differential equation 

m(2n)(r)=\l~ro] (1 r )  2n 

has solutions ~ ( r ) = C ( i - r )  E(,o), where E(ro) is the positive solution of 

( 2 ~2n 2 
E ( E + I )  ... ( E + 2 n - 1 )  = \ l ~ r 0  / Kn" 

Choosing C large enough, we get 

m(k)(ro)<Cn(k)(ro), k = 0 ,  1 , . . . ,2n- -1 ,  
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and so Proposit ion 8.7 of [13] gives 

(6.1) m ( r ) < ~ ( r )  f o r r o _ < r < l .  

Another proof of (6.1). The function A(r )  m(r ) -Cn( r )  satisfies 

( 2  } 2 A(r) r0_<r<l, (6.2) A(2n)(r) _< ~ ( l _ r ) ~  , 

and A(k)(r0)<0 for k = 0 , 1 , . . . , 2 n .  Let r l < l  be the largest number such that  
A(2*~)(r)<0 for r o < r < r l .  If r l < l ,  then A(2n)( r l )=0  and A ( r l ) < 0 ,  which con- 

tradicts (6.2). Thus r1=1,  and (6.1) follows. 
We thus have 

~0 
2~r 

r e ( r ) =  I f ' ( r e i~  r ) -E(r~ 

Since E(ro)--*E~ as r0---~l, Theorem 3 is proved. 
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