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Coefficient estimates for negative powers
of the derivative of univalent functions

Daniel Bertilsson

Abstract. Let f be a one-to-one analytic function in the unit disc with f/(0)=1. We prove
sharp estimates for certain Taylor coefficients of the functions (f’)?, where p<0. The proof is
similar to de Branges’ proof of Bieberbach’s conjecture, and thus relies on Lowner’s equation. A
special case leads to a generalization of the usual estimate for the Schwarzian derivative of f. We
use this to improve known estimates for integral means of the functions |f/|P for integers p<—2.

1. Introduction and results

Let f be a univalent (i.e., one-to-one analytic) function in the unit disc |z{<1
with f(0)=0 and f’(0)=1. Let S denote the set of such f. We equip S with the
topology of locally uniform convergence; thus S is compact [6, p. 9]. Let p be a real
number, and consider the coefficients of the function

(1.1) (f'(2))P= Z Cnp2", where o= 1.
n=0

The continuous functional f—|c, | assumes a maximum on S. The problem of de-
termining (or estimating) this maximum is an interesting problem, which is related
to estimates for the integral means of the function |f/|??. This follows from the
identity

27 oo
(1.2) | 1r e pras=an Y len
0

n=0

For instance, Brennan’s conjecture [3]

2w
/ [f'(re’)|72do=0((1—7)"1"%) foralle>0
0
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is equivalent to

N
(1.3) Z len—112=O(N'"¢) for all e>0.

n=0
Our main result concerns negative p.

Theorem 1. Let ¢, be the nth coefficient of (f')?, as in (1.1). Assume that
p<0 and that 1<n<-2p+1. Then the mazimum of |c,,| over f€S is attained
when f is the Koebe function f(z)=z/(1+2z)2.

In other words, if f€S, then

(1.4) len p) < Chps

where Cy, ,, s defined by

o0

1-2 ¥
(1.5) (———3) ZZCk,pzk, where Cop p = 1.
(1+42) P

(Crp>0 for all k>0, if p<—3.
Moreover, equality is attained in (1.4) if and only if

f(z) where |A| = 1.

B z
C(1+A2)Y

Qur proof of Theorem 1 is parallel to de Branges’ proof of Milin’s conjecture
[5], [7]: We consider a Lowner family of single-slit mappings f;. Lowner’s equation
leads to a linear system of differential equations for the coefficients of (f{)?. In
this way the problem of maximizing |c, ,| becomes a problem in optimal control
theory. This problem is solved by proving that a certain quadratic expression in
the coefficients is an increasing function of t. The computations in this last step are
more involved than in de Branges’ proof. In de Branges’ proof this was easy, since
one could use known inequalities for Jacobi polynomials.

Unfortunately, it is not true for every feS that |¢, —1)<C, _1 for all n. (This
would imply Brennan’s conjecture (1.3).) An example is given by the function

fz)= /0 Texp (—1.267 f: <4°’°) dc,
k=0

which has ¢, , Z0(n%%*) if p<—1, see [8, proof of Corollary 3]. On the other hand,
Cauchy’s formula for the coefficients of the derivative of (1.5) gives

(1.6) Chp=0@P=1) if p<o.
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Thus, if —1.064<p<-1, then there is a function f€S such that |c, ,|>C,,, for
infinitely many n. This also holds if —1<p<0, since then there is a function fe€S
with

2
log [ 1/ (re ) g
0

r—1 1
1 -
(1)

see [4, p. 34] and [13, Theorem 8.6]. (If we had |c,, »|<|Cp | for all n, then (1.6)
and (1.2) would give a contradiction to (1.7).)

The case n=—2p+1 of Theorem 1 turns out to be especially interesting. Con-
sider the differential operator

Snf — (fl)(nfl)/QDn(f/>7(n—l)/2.

>max{2|p|—1,0},

Theorem 1 states that

The operator Sy is just —% times the Schwarzian derivative. Like the Schwarzian
derivative, S,, has an invariance property,

(1.9) Sn(for)=((Spf)or)(r")" if T is a Mo6bius transformation.

See [9] for a general discussion of operators with this property. Using a disc auto-
morphism 7 we can thus “move” the estimate (1.8) to an arbitrary point of the unit
disc.

Theorem 2. For functions [ univalent in the unit disc we have the sharp
estimale
d n

8.5 = N2 (4] ) <Ko

where K, =(n—1)(n+1)(n+3) ... (3n—3) and n is a positive integer.

When n=2 this is the usual estimate for the Schwarzian derivative [6, p. 263].
Using this estimate for the Schwarzian derivative, Pommerenke [13, Theorem 8.5]
proved that

(1.10) /% | (re®)| T dg=0((1—r)~%%0Yy if fes.
[§]

We use Pommerenke’s argument and Theorem 2 to prove the following estimates
for integral means.
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Theorem 3. Let E, be the positive root of
E(E+1)(E+42)...(B+2n—1)=K2,

where K, is as in Theorem 2, and n>1 is an integer.
If f is a univalent function in the unit disc, then

/% |/ (re®)| 7" do = O((1—7)"Fn"%)  for all £ >0.
0

In particular,

/2vr lf/(rei0)|—2 df = O((lﬁT)—1.547),

0

/ " If/(rei9)|-3 dezo((l_,r)—2.530)_

0

These estimates are small improvements of the known estimates

o _ | \lpl-0.399
/ |f’(rew)|pd0:O(<—) ) for p<—1,
0 1—r

which follow from (1.10) and the elementary estimate | f/(2)|>$|f(0)[(1—|z]). Note
that as n—+oco we have E,=n—2+0(1). This should be compared with Carleson’s
and Makarov’s result [4, Corollary 1]

2m . 1 ipl—1
/ |f/(re®®) P do = 0((——) ) for large negative p.
0

1-r

The exponent |p|—1 is best possible (take f as a Koebe function).

In the next two sections we prove Theorem 1, except for the characterization
of the extremal functions, which will be proved in Section 4. We prove Theorems 2
and 3 in Sections 5 and 6, respectively.

2. The proof of Theorem 1

Let I':[0,+00)—C be a parametrization of a Jordan arc such that, for some
T>0, the arc I'([T, +00)) is an interval [['(T'), +o0) on the positive real axis. Assume
that fo€S maps onto the complement of the arc I'([0, +00)). The set of mappings of
the type fp is dense in S [6, p. 81]. Thus it is sufficient to prove Theorem 1 for f=Jfp.
For t>0, let f; be the Riemann mapping of the unit disc 'onto the complement of
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the arc I'({¢, +00)), normalized so that f,(0)=0 and f/(0)>0. We can choose the
parametrization I' so that f/(0)=e’. Lowner’s differential equation [1, Chapter 6]
then relates the mappings f;,

1+w(t)z
1-w(t)z
where w is a complex-valued continuous function with |w(t)|=1, and the dot denotes
differentiation with respect to ¢.

Fix an integer n and a negative number p such that 1<n<—-2p+1. We are
interested in the coefficients of the functions

(2.1) fi(2)=fl(2)z for t >0,

91(2) = (e7" f;(2) p—ch (t)2*, where co(t) =1.

Specifically, our task is to prove the inequality
(2.2) 1cn (0)] < Ch,

where C,=C,, ,, is defined by (1.5). That C,,>0 will be proved after Lemma 4 in
Section 3. To prove (2.2) we use two facts. First, the function e~ fr €S maps onto
the complement of an interval [z, +oc) on the positive real axis. Thus e 7 fr(z)=
z/(1+2)?, which implies

ex(T)=Cy for k>0.

Second, differentiation of Léwner’s equation (2.1) gives

. , 1rw(t)z w(t)z 2w(t)z
() =9, (2)e Pl >( (t)z+(1—w(t)z)2>7

which leads to a linear system of differential equations for the coefficients of g,

k—1
(2.3) ér(t) = ken(t)+ > (25+2p(k—j+1))w(t)* I e;(t)  for k>0.
=0

We can write this in matrix form using the vectors
C(t) = (Co(t), Cl(t), cey Cn(t))T and C= (C(), Cl, ceey Cn)T
and the lower triangular matrix M (w) with elements
(2j+2p(k—j+1))wk7 for 0<j<k<nm;
M(w)g; =X k for 0<j =k <n;
0 for 0<k<j<n.

We have thus reduced our task to the following control theory problem.
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Control problem. Let c(t) be the solution of the initial value problem
(2.4 {t) = M(w(B)elt), 0<t<T, o(T)=C,

where w(t) is a continuous function of modulus 1. Prove that |c,(0)|<C,.

Note that the choice w(t)=1 corresponds to fi(2)=€'z/(1+2)? and c,(t)=
C,,. Following de Branges, we solve the above problem by studying the quadratic
expression

(2.5) H(t)=" hi(t)|ex(®)I?,
k=0

where the weights hg(t) are real-valued and depend on ¢, but not on the function w.
We get

H(t) =Y hi(t)|er(t)]?+ ha(t)2 Re(cr (t)éx(t))
(2.6) £

k=0

n k
=3 Ay () P +ha(t)2Re (’Y:c(t) > ML)y (t)) ;
=0

where we have introduced v;(¢)=w(t) 7c;(t) and used equation (2.3). Using the
diagonal matrix D(¢) with diagonal elements hq(t), ..., hy(t) and the vector y(t)=
(Yo(t), ..., ¥ (1))T, we can write this as

() =7 (DO)+M(1)TDE)+DO)ML)A).

We now try to determine the functions hjy so that the following conditions are
satisfied:

(2.7) H(t)>0 for t>0 and for all choices of w,
, H(t)=0 ifw=1,
(2.9) he(0)=0 fork<n and h,(0)=1.

If these conditions are satisfied, our problem is solved, since we get |c,(0)|?=H(0)<
H(T)=3"}_ h&(T)C}, with equality if w(t)=1; hence |¢,(0)|<C.

When establishing (2.7), we will forget that the 5 (¢) are not arbitrary, and
prove the stronger statement that the matrix

(2.10) P(t)=D@t)+M LT D(t)+D(t)M(1) is positive semi-definite for ¢ > 0.
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Let us first show that conditions (2.8)—(2.10) determine hy uniquely. In the case
w(t)=1 we have y(t)=C, so condition (2.8) gives CT P(t)C=0. Condition (2.10)
now yields 1/ P(t) C=0, whence

P()C'=D(t)C+M(1)" D(H)C+D(t)M(1)C =0.
However, M (1)C'=0 (the case w(t)=1 of equation (2.4)). Thus we get

(2.11) y(t) =—M(1)Ty(1),

where y(t)=D(t)C=(yo(t), ..., yn(t))T. Condition (2.9) implies the initial condition

(2.12) y(0)=(0,0,...,0,C,)7.
Thus
(2.13) he(t)=ys(£)/Cx, k=0,1,...,n,

are uniquely determined.

Now, define y(t) and hy(t) by equations (2.11)—(2.13). Then we have P{t)C=0,
so condition (2.8) is satisfied, as well as (2.9). It remains to prove condition (2.10),
that is, that the Hermitian form n(t)=4% P(t)y, also given by the right-hand side
of (2.6), is positive semi-definite.

From now on we consider <y, as {ree variables (independent of ¢ and w). The
quantity 7(t) takes a simple form expressed in the new variables

k
k :Z(k_j+1)7ja k=0,1,...,n.
7=0

We can write vy =ag —20k -1 +ag_o and

k
Z M(D)rjvj = kag+(4p—2)ag 1 +(—2p—k)oy_s,

§=0
where a_;=a_3=0. Substituting this into (2.6) and collecting terms one gets

n

(2.14) n(t) = Z u (t)| ok |2 +vi ()2 Re(arag 1) +wi(t)2 Re(arar_3),
k=0
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where

(2.15)  up(t) = hg () +4hp 1 (8) + Py o(t) +2khe (t)
+(=16p+8)hit1(t)+(—4p—4—2k)he42(t),

(216) v (t) = —2hg(t)— 2hg 1 (£)+ (4p—2—2Kk) by (8) + (8p+2K) Py 1 (1),

(217)  wi(t) = hi(t) —2phi (1),

and hpq1(8)=hn12(t)=0. We want to complete the squares and write

(2.18) n(t) = pr(t)lok+qr(t) k147 (t)ak—s}’.
k=0

First, we prove that this is possible if ¢ is large.

Lemma 1. If n<—2p+1 then

(2.19) hi(t)=> hige >0 fort>0, k=0,1,...,n

where hy; are constants and hyy >0.
Proof. By (2.13) and (2.11) we have

T

(2.20) hi(t)+khi(t) =Ct Y (—2k—2p(i —k-+1))Cjh;(1),
j=k+1

where the coefficient of h;(t) is positive thanks to the assumption n<—2p+1. A
descending induction on k, using also the initial condition (2.9), now proves (2.19).
Moreover, hyr=hi(0 +f°o kKt (hy,(t) +khi(t)) dt>0. [

By continuity, we can henceforth assume that n<-—-2p+1. Lemma 1 implies

that ug(t), ve(t) and wg(t) are polynomials in e,

uk(t) = k‘hkke_kt—l—... s
vp(t) = (4p—2hgre M4 ...,
wk(t) = (—2p—k)hkk€7kt—|—... s
where the omitted terms are of smaller order as t— -+oc. This shows that for large ¢

we can successively complete squares in (2.14), beginning with terms containing .
In each step of this process the coefficient of terms of type |ag|? will have leading
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term khyre ¥t Thus we get (2.18) with pg(t)>0 for k=1,2, ..., n, for large t. Since
P(t) is a singular matrix, 7(t) is also singular, so we must have pg(¢)=0 for large t.

The functions p(t), gx(t), r&(t), now defined for large ¢, are rational functions
of e*. We now want to prove that these functions have no poles for 0<e=*<1, and
that pg(¢)>0 for £>0, k=1,2,...,n. Thanks to the special structure of n(t), we can
derive a one-step recursion formula for py(¢). Identifying coeflicients in (2.14) and
(2.18) we get, for large t,

(2.21) up(t) = pr () +Drr1 (£) o1 (8)* +prs2 (B)rig2(t)?, 0<k<n,
(2.22) Uk (t) = Pr(t) @k () +Prot1 (B) @1 ()41 (2), 1<k<n,
(2.23) wi (6) = pr(t)r5 (8), 2<k<n,

where pn+1=Pnt+2=0n+1=Tn11="n12=0.
In the case y=C we have n(t)=C7T P(t)C=0, so (2.18) together with px(t)>0
for 1<k<n and po(t)=0 gives, for large ¢,

(2.24) Ap+gr () Ag—1+715(0) Ag—2 =0, 1<k<mn,

where Ak:2§:0(k—j+1)Cj. Solve (2.24) for g(t), plug this into (2.22) and use
(2.23). This gives the recursion formula
A 1Ak+1 (t)— 1 We41(t)?

(2.25) p(t)= A2 Pit1(t)

wi(¢) —

for 1<k<n-—1, but still only for large ¢. In the next section we use this formula to
prove the following lemma.

Lemma 2. The meromorphic functions px(t) are regular for t>0, and for t>0
we have

(226) Pn (t> = nhn(t) >0, pO(t) =0,

Ap o9 Ay

wi(t) Lo(k+1)he(t) >0 fork=1,2,...,n—1.
Ay, Ay

(2.27) pi(t) >

By (2.23) and (2.24) the functions r, and g are also regular for £>0. Hence
(2.18) holds for ¢>0, and thus n(t) >0.

Remark. If n>—2p+1 and p<—gz the proof breaks down: We get un-1(t)<0
for large ¢; hence P(t) is not positive semi-definite.
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Remark. Casting de Branges’ proof of Milin’s conjecture into our notation we
note the following differences. Corresponding to (2.14) one gets the simpler expres-
sion .

() =Y i (t)|ax >+ 5 (£)2 Re(Grdr_1).
E=0
This stems from the fact that one studies the functions g:(z)=log(e~* f;(z)/z), which
contain no derivative of fi. The simpler structure of 7j(t) implies that the functions

Px(t) corresponding to our functions pg(t) become polynomials in e™*.

3. The proof of Lemma 2

For convenience, introduce the parameter g=—2p-+1>n. We need some lem-
mas concerning the constants C, Ay and By=Ar—Ar_1=Co+...+Cp.

Lemma 3. The following recursion formulas hold for all integers k:

(31) kC’k:(2q—2)Ck‘1—(q—k+1)C’k_2,
(3.2) kBk:(2q—1)Bk~1—(q—k)Bk72,
(33) kAk:2qu,14(q——k—1)Ak_2.

Here, Cr=By=A;=0 for k<0.

Proof. These formulas follow from applying (1—2z2)d/dz on the generating
functions

(1-2p(142) =3 Oy,

k=0
(1—2)P 1142 % = Z Bz",
k=0
(1=2)P2(142)7P =" Ap2*. O
k=0

Lemma 4. If ¢>3, then kCp>gCr_1>0 for 1<k<g+1.

Proof. The case k=1 is clear. Inductively, assume that kCy>¢Cy_1 >0, where
1<k<q. Together with equation (3.1) this implies

(k+1)Cri1 > (29—2)Ci~(q—k)kCy /g > qCx. O
This shows that C,>0 if 4<k<g+1. Moreover, for q>%, Co=1, C1=2¢-2,

Cy=(q—1)(2¢~ 5) and C3=3(g—1)(4¢>—11q+9) are all positive. Equation (3.1)
now implies that Cj,>0 for all k>0, if ¢>32.
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Lemma 5. If ¢>3, then Cr_1/Cr<Cy/Clyy for 0<k<q.

Proof. The case k=0 is trivial. Inductively, assume that Cka,2<C,f_1, where
1<k<q. Equation (3.1) implies

(k+1)Cii1Cr1—kCE = (q+1-k)CrLCr_a—(q—k)CZ_,.
But Lemma 4 implies Cy>Cy_2, so we get
(k—i—l)(CkJrle,l —C,%) < (qfk)(Cka_Q *C]%il) <0. 0O

Lemma 6. If ¢>3, then Ap_1/Ar<By—1/By for 1<k<g.

Proof. By Lemma 5 we have

Bj_1_00+...+Cj_1 C0+...+Cj B Bj
Bj Co++cj CO+---+C]'+1 Bj+1

for 1<5<q.

Thus
Agr—1  Bo+..+Bp_1  Bp_

— <
A By+...+ By By,

for 1<k<gq. 0O

Lemma 7. If ¢>3 and 1<k<q, then

CvB 1
ROREL oy
Cr 1B q—k

(3.4)

Proof. The case k=1 is easily checked. Inductively, assume that

Cr_1B 1
k=l k<1+ ,
CiyBr_1 g+1-k

where 2<k<gq. Using Cr=Bj,— By_1 and the recursion formula (3.2) we can write
this as

(3:5)  —k(g—k+1)Bi+(29(g—k)+2¢—1) By By 1 —(q—k+2)(g—k) B}, >0.
We want to prove the inequality (3.4), which in a similar way can be written

(2¢—1—(k+1)(g—k+1))Bi +((2¢—2)(q—k)+1)Bx By

(3.6) 2
—(g—k—-1)(q—k)B;_, >0.
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It suffices to prove that the difference between the left-hand sides of (3.6) and (3.5),
(q+k—2)Bi+(—4q+2k+2) By By—1+3(q—k) B,
= (Bi—By-1)((g+k—2)Be—3(q—k) Br-1)
is positive. Lemmas 5 and 4 imply

By  Cot.+Cp _ C
Br_1 Co+..+Chy ™ Cipa

q
>k.

Thus we need only prove that (g+k—2)q/k—3(g—k)>0, which is a simple verifica-
tion. [J

We also need the following facts. By (2.20), (2.19) and h,(t)=e ™" we have
hi(t)+khi(t)>0if t>0 and 0<k<n-—1, and so equation (2.17) and Lemma 1 yields

(3.7 w(t) >0 fort>0,if 0<k<n—1.

Together with Lemma 1, this proves the second inequality of (2.27). By (2.16) and
(2.17) we have

Vi (£) = —2wp (1) — 2wp1 () —2(k+ 1) hie(£) —2(q—k — D iy (1),

which substituted into (2.25) gives the recursion formula

() = 22 (2= 252 Y0 (2 2 Yk ) 2004 D)

Ap_1wip1 (8)?
Appr1(t)

Now (2.26) follows from (2.21), (2.15) and (2.20),

(3.8)

+2(g~k—1)hp11(t)— }, 1<k<n—1.

(3.9) Pn(t) = tn (t) = hp (£) + 20k, (t) = nhy (£) =ne ™ >0 for £ >0.
We prove inequality (2.27) by descending induction over k.
Induction base. For t>0 and 2<n<g,

An—2
Anfl

A,
Pn—-1(t) > ﬁwn—l(t)-!-

2nhnA1 (t)

Proof. By (3.8) and (3.9), this is equivalent to

(3.10) 2<1— j"“”’)wn-lw (2-{%>wn(t)+2(Q—n)hn(t)— - Zﬁ)ﬁ) >0,

n—2
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By (2.20) and (2.17) we have
Wy 1(t) = (q—n)(2CC 1A () +hp_1(t) and  w,(t) = (g—n—1)h,(t),
which substituted into (3.10) gives
An_3 An—3 20n An
2(1- )R - - - —n—1
<1 An—Q)(q n)hn 1(t)+ [2<1 An—2>(q n) Cn—l +<2 An—1>(q " )

An72 (qfn_ 1)2
2= h, 0.
A ” (t) >

+2(g—n)—
Since A,_3<A,_9 and h,_1(t)>0, we only have to prove that the coefficient of

hn(t) is positive. Using the recursion formula (3.3) with k=n, we can write this
coeflicient as

An\3 Cn qg—1
1 - - - .
(3.11) 4(g—-n) [(1 An—2> o +1 o }

1t follows from Lemma 4 and Cy/ Clzq—% that

Cy 1
sS4
Cnil 2n
Lemma 5 implies that
A,_3 _ Cn_3+2C’n_4+...+(n—2)Co Ch_1

Ao n Cn_2+2Cn_3+...+(n—2)Cl+(n41)C’0 Chn )
Thus (3.11) is positive. O

Induction step. Assume that 1<k<n-—2, >0 and

Aj_ A
i1 (t) > 52w (8) + = 2(k+2) b1 (8).
Apgt Apt1
Hence, by (3.7) and Lemma 1,
Ap_1
(3.12) pk+1(t) > ka+1(t) >0.
k+1

We want to prove that pg(t)>(Ar—2/Ar)wi(t)+(Ax—1/4%)2(k+1)hi(t). By the
recursion formula (3.8) and (3.12) it is enough to prove

(3.13) 2 (1— i’;j>wk(t)+2(1_ AZ—]:l >wk+1(t)+2(q—k—1)hk+1(t) >0.
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Using the functions s (t)=>_7_,(j —k-+1)y;(t) we can write the differential equa-
tion (2.11) as

(3.14) g (t) = —ksi(t)+2(q—D)s 1 (£) + (—g+1+k)sp42(t).

Remember that hy(t)=yx(t)/Cr>0. Substituting this, yx(t)=sk(t)—2sk41(t)+
sk+2(t) and (3.14) into (2.17) we get

wi(t) = Cy ((q—1—k)su(t) +kswia(t))-
Putting this into (3.13) and using hy+1(t) >0, we see that it suffices to prove

(3.15)  (g—1—k)sk(t)+kskr2(t) —pr(g—2—k)skt1(t) — pr(k+1)sp13(t) > 0,

where
Cr <Ak+1
Cry1 \ Ax CyBrr1Ak 1
g e >O.
Hi 1— Ag—2 Cri1Br—1 Ak
A1

Note that ¢g>n>3. From Lemma 6 and Lemma 7 it follows that

CyBry1 B Ag_
N e ol W

Kk

 Cr+1Bi Bi_14y q—k’
Hence
sp(t) _ Ye () 21 () + .o+ (n—k+Dyn (£) S n—k+1 > ik
sk+1(t) Y1 () +. -+ (n—K)yn (1) - on—k ’

and similarly sgi2(t)>pgsky3(t). Thus
(q—1—=k)(sk(t) —prskr1(t)) +k(skra(t) —prsirs(t)) >0,

which implies (3.15), since sg41()>sk+s(t)-

4. The extremal functions

Clearly, the Koebe functions f(z)=2z/(1+\z)?, where |A|=1, give equality in
Theorem 1. Assume that f(z)=z+az2%+az2%+...€5 is not a Koebe function. As
in [7] we use an approximation argument to prove that this implies strict inequality
in (1.4). The function f is the limit of a sequence of functions fI* of the type fo
considered in Section 2. We denote the corresponding quantities with the same



Coeflicient estimates for negative powers of the derivative of univalent functions 269

symbol as in Section 2, but with a superscript m. Assume first that 1<n<g=
—2p+1. Since c7*(0)=2pa}*, Bieberbach’s theorem |as| <2 [12, Theorem 1.5] implies
that

I (0)] < 4lp|—6=C1—6 for m >my,

where 6>0. The differential equation (2.3) implies
7" (£)] = e () +4pw(t)| < Cr+4]pl.
Thus
e (®)| < Cy—6 for m>myg, 0<t<tg,
where 6>0 and ty>0 are independent of m. Now equation (2.18) gives, for m>my
and 0<t<ty,

H™ () 2 p1(8)In7(8) + 208" () + a1 (6 (O = (D) |w(t) T (1) = C1 > > pu ()87

By Lemma 2 we have p;1(£) >h1(t)/q, so we get

n to 52 to §2
lc™(0)]? = H™(0) < th(T)o,z—/ —ha(t) dt:c;ff/ —ha(t) dt.

5—0 o 4 o 4
In the limit m—oo this shows that |c,,|<C,. By the proof of Lemma 1, this
conclusion also holds in the limit case g=n, except when n=2, in which case h; ()=
0. In this exceptional case we have ¢y _y /2:%(a%—a3). Thus it follows from the
elementary estimate |aZ—as|<1 [12, Theorem 1.5] that we have strict inequality
n (1.4). This concludes the proof of Theorem 1.

Remark. Just like our estimate of ¢ _1/, the estimate of c3 1 is not new. It
was proved by Ozawa [11] in the form |as—3azaz+2a3|<2 using Schiffer’s varia-
tional method.

5. Generalized Schwarzian derivatives

Define the differential operator S, for conformal maps f by
S"f — (f/)(n—l)/?Dn(f/)f(n—l)/Z’

where we use the same branch of /7 at both occurrences. To prove the invariance
property (1.9) we use the following lemma [2], [10].
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Lemma 8. Let 7 be a Mébius transformation. If two analytic functions are
related by G=(go)(7)~(*=1/2 then their nth derivatives have the relation §(™ =
(g™ er)() /2.

Proof. Since T is a composition of transformations of the types z+—z+a, 2+—bz
and z—1/z, it suffices to prove the lemma when 7 is one of these. The first two cases
are rather trivial. In the third case 7(z)=1/z, we can by continuity and linearity
assume that g(2)=z", and then an easy calculation proves the lemma. [

Now let g=(f)~(""1/2 and g=((for)")~»=1/2, Since §=(go7)(r")~(n~1/2,
the lemma shows that

g(n) g(n) oT
g geT

(5.1) Sn(fo1) = ()" = ((Snf)er) (=)™,

if 7 1s a Mobius transformation.
We now prove Theorem 2. Theorem 1 gives

(5.2) |Snf(0)] <n! Cn,,(n,l)/g

if f€8. Since S,, is homogeneous this holds also if f is just univalent in the unit
disc. By (1.5), Cp,—(n—1)/2 is the nth coefficient of

(1_Z)~(n71)/2(1+z)3(n—1)/2:i ( (nkl)/2> ki (3(71 1)/2)

k=0 7=0

Contyo E”: (—(n;l)/2> <3<7;—_1k)/2) (—1)F %

k=0

so that

where K,=(n—1)(n+1)...(3n—3). Now let 7(2)=(2+¢)/(1+(z), where [¢|<1,
and let f be a univalent function in the unit disc. Then fo7 is also univalent in the
unit disc, so (5.2) gives |S,(fo7)(0)|<K,. Together with the invariance property
(5.1), this shows that

Kn

Suf (Ol = ISnF ()] = <

’ n(fo7)(0)
()

since 7/(0)=1—|¢|?.
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6. Estimates for integral means
We now use Theorem 2, following Pommerenke [13, p. 181] to prove Theorem 3.

Lemma 9. If g is analytic in the unit disc and m(r):fo27r lg(re®)|2 do, then

27
mF) (1) < 4" / g™ (ret?)|2 8.
0

Proof. Writing g(2)=3"5%, bx2", we get m(r)=2r 37 |bx|>r?*. The lemma
is evident from a comparison of coefficients in

m® (r) =21 Y |be[*2k(2k—1) ... (2k—2n+ 1)r*F 2"
k=n

and ) -
/ 9™ (re®) > do =27 Y " bpk(k—1) ... (k—n+1) 77?2 O
0

k=n

Let n>1 be an integer and let f be a univalent function in the unit disc. Using
Lemma 9 with g=(f")"(""1/2 we get

27
mCm (r) < 47 / lg(rei®) S, f(re®)|? do.
0
Theorem 2 now gives the differential inequality

(7)< 47 (%) / ety P do < (%)%mﬁ

for ro<r<1. The corresponding differential equation

e (r) = (1fr0 )2" 1 Kf)% m(r)

has solutions m(r)=C(1—r) F() where E(ry) is the positive solution of

9 2n
E(E+1)...(E+2n—1)= (H—r ) K2
0

Choosing C' large enough, we get

m(k)(ro) <77L(k)(7“0), k=0,1,...,2n—1,



272

Daniel Bertilsson

and so Proposition 8.7 of [13] gives

(6.1) m(r)<m(r) forro<r<l1.

Another proof of (6.1). The function A(r)=m(r)—m(r) satisfies

2n 2
(6.2) A(Q”)(r)g( 2 ) iA(r), ro<r<l,

1+rq /) (1—7)"

and A®)(rg)<0 for k=0,1,...,2n. Let r;<1 be the largest number such that
AP (r)<0 for ro<r<ry. If r<1, then AC™(r;)=0 and A(r1)<0, which con-
tradicts (6.2). Thus r1=1, and (6.1) follows.

We thus have

m(r) :A " |f,(,r,61‘9)|—n+1 dGZO((lf’I‘)_E(TO)).

Since E(rg)— F, as rg—1, Theorem 3 is proved.

10.

11.
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