Schauder’s existence theorem for «Dini
continyous data

Emanuel Sperner, Jr.

In 1934 J. Schauder (see [14]) proved his well known theorem on the existence
of classical solutions to linear elliptic partial differential equations of second order.
In this article we shall establish the following improvement of Schauder’s theorem:
A classical solution exists, if the given data (coefficients, boundary values, right hand
side) are uniformly continuous and their modulus of continuity is bounded by some
function 6 which owns the following two properties:

i) [, 0@ypdr <.

ii) There is an O<a<1, such that 8(r)/z* is monotonically decreasing on
some interval (O, T].

For notations we refer to 16. below. We shall always use the summation con-
vention.

2.

In order to give a precise statement, let us introduce the following notions:
Let (: [0, )]0, <) be a monotonically increasing function, lim,,q, {(#)=0,
{(0)=0, {(t)=0, if t=0; B a real Banach space equiped with the norm || 4;
ACR" a nonvoid, open set. C%*(4)=C"*(4, B) is the set of all bounded con-
tinuous functions f: 4—B, for which
2.1 Uly= sup [ fGx)—=fWs/l(lx—yll)
x,y€EA,x#y

is finite. It is easy to prove, that C**(4) becomes a Banach space under the norm:

2.2) 1S Mo, ¢ := N flo+L1f;-
If k€N, let C**(4) be the set of k-times uniformly continuously differentiable
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functions f: A— B, such that f and the derivatives up to order k—1 are uniformly
Lipschitz continuous and any derivative of order k is in C**(4). On C%%(4) we
shall use the norm:

23) 1Al =S lo+ Sz iz 1D fllo+ 2y =i [D);-

Indeed C*¢ is a Banach space. If {=¢% O<a=1, we shall simply write |-,
and C**,

We formulate our assumptions.

i) Let 0: [0, )—~[0, =), 8(0)=0, 6(¢)=0, if =0, be a monotonically increas-
ing Dini-function; that is: [ s 0(2)/tdt<o. We assume that there is a T>0 and
a€(0, 1), such that 0(¢)/t* is monotonically decreasing on (0, T).

ii) Let QcR" be a nonvoid, open, bounded and connected set. We make
the following assumptions about its boundary 90Q: To any x€0Q there exists an
open neighbourhood U, and a C*diffeomorphism ¢,=: U,~B(l) with the
properties:

a) ¢.(x)=0, ¢,(UnQ)=B*(1)={ycB(l): y" =0}
0. (U,n0Q) = {ycB(1): y" = 0}.

b) ¢, is in C**(U,), ¢ is in C*%(B(1)). Further we shall assume, that there
is a constant d, >0, such that the Lipschitz constants of ¢,, of ¢ * and of all their
derivatives as well as |lg,ll5 o and [[@; . 4 are bounded by d,.

iii) There are n*+n+1 functions m;;, m;, me C*(Q,R),i,j=1, ..., n, m(x)=0,
m;(x)=m(x), and constants O<e,<e,, such that for any £€R”, x€Q:

3.1 e+ €112 = my;(x) - &L = e - ||EII%

For any wcH?*(Q) write

(3.2) Mw(x):= m;;(x) - Wy i (X) +m;(x) = i () + m(x) - w(x).
4.

The theorem to be proven is

Assume 3.0)—3.ii), let hcC*®(Q), g€C*%(Q), then there exists a unique
weC?(Q), such that Mw=h on Q and w|0Q=g|0Q. For any x;, %,€Q, 1=i,j=n
the estimate
(1) it (6) — s (3] = g 7 0(0)ede
is valid.
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Remarks.

a) If 6(¢)=t* this is Schauder’s theorem.

b) Recently Burch [1] proved Weyl’s lemma for equations in divergence form, the
coefficients of which satisfy some Dini conditions.

c) Obviously it suffices to prove the theorem for g=0.

d) Choose O<a<1<pf, then the function

‘ (Ino)-?, if O<t=exp(—p/a)
o)= {(ﬁ/a)"’, i 1= exp(~ o)

satisfies 3i), since for O<r<exp (— f/e)

D,6(t) = (B/t)(~Int)=~1 =0,

8(1)t = '/31—_1D‘ (=In 1)'-*,

D,(0(t) -t~y =1"""0@)(B(~In)~"1—a) = 0.

5.

i) Let{ be as in 2. We shall call { an a-function, O<a<1, on (0, T if {(z)/¢*
is monotonically decreasing on (0, 7'}, T=0. This implies:
(5.1) (Wy=t*1t*{(x), O<r=¢t=T
Inserting t=c-1, c>1, we obtain:
5.2) {le-)=c*-L(x), O0<1=Tle

ii) Now let 8 be as in 3.i), that is: 6 is an a-Dini function. We introduce the
function

(5.3) 5(t) = t~1. f;@('c) dr.
Since 6(1)=0(¢) and
5.9 Dé(t) =t71(0(t)—6(1)) = 0,

0 is a monotonically increasing, absolutely continuous Dini function. Integrating
the inequality

5.5 (D) =t7%0()+% O<1=1=T
with respect to t over (0, t), we obtain:

5.6) S =0 +w), O<t=T.
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We infer, that

(-D8() _ . 0)

-7 5@y 5(1)

=q, O=<t=T.

Multiplying (5.7) by 7%, we arrive at D(¢~*8(r))=0, O<t=7, which implies,
that & is indeed an «-Dini function.
iii) We need the auxiliary functions

(5.8) ) = f;@(t)/’rdt, o(t) = f;é(r)/rd‘c.

From (5.7) we infer by integration:

(5.9) dt)y=oa+a(t), O0<t=T

while (5.3) and (5.6) imply, that

(5.10) c)=w@)=(0+0)a(t), O<r=T.
iv) Observe, that by (5.2):

(5.11) wlc-1) :fo"o(r)/rdr
:f(:@(c-s)/sdséc“-w(t), e>1, 0=<t=<TJe

and the same inequality holds for o.

6.

i) An open set @ACR" is said to own the property C, if there exist two
positive constants K, g,, such that for any x4 and O<g=g,:

6.1) F(B(x,0)nA)y= K- "

It is easy to prove, that any open set with compact Lipschitz boundary owns the
property C. Thus 3.ii) implies property C for Q.
ii) If feC%%(4), then for any x€4, 9=0:

(6.2) v(f, %, 0, 4) = 20,[ 5+ 0" - 0*(0)
(see (16.3)). The proof is obvious.

iii) If A owns property C, f€L_(A,R), 0 a Dini function (see 3.)) and (6.2)
holds for any x€A, O<gp=gy, with 2w,[f)3 replaced by some constant L2, then f
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coincides F-almost everywhere on A with an uniformly continuous function f, for
which the inequality

6.3) 7@ —Fo = e (277" 0 di+01x— 1)),

co=¢3(00, K, n)« (L+| fllo), holds whenever x,ycA.
Proof. Let 0<p=g,, X€A,

FQ= [ [, ona€dr=[  (e~lx—z)f()d2z
6.4) 1(0):= ZL(B(x, 9)n 4)

g@):=[l10dr= [
The property C implies:

L (e—lx—zDdez,

(x,0)

(6.5) gl@=K-¢"*" 0=<¢=g.

We calculate:

(6.6) 8@+ f,. ., fdZ~1)-F@
= J s, pna /@ (8@ =) (e—lx—zl))d 2z
= B(x’e)nAf(z)-cD(z) dZz,

where

6.7) f s s PRVLZ=0,

fB(x,q)ﬂA »*dZ = I(o) .fB(x,gmA(Q_”x_Z”)z d%z—1(g) g(a)?

= @l 0%t

We derive:

(6.8) |/ GO d2z|
= | [y ona F@=m i %, 0, 4) - 0(2) 42|
= U(f; X, @ A)I/Z .fB(x,e)ﬁA P2 dgl/Z
=i "2 0(f, x, 0, AV

and

(6.9) |D,(F(0)/2(2))|

=270[e@-f, . 1L~ F@|
= (@}/c3- ) -0(f; x, 0, 4)

sc¢-L-0(0)/e, 0=< =g,
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Integration implies for arbitrary O<g,=¢,=g,:
F(g,) _ F(o,)
| g(e2)  gle)

Thus the limit f(x):=lim,., F(0)/g(g) exists and equals f(x) Z-almost everywhere
by Lebesgue’s theorem. From (6.10) we derive

(6.10) =cy-L-f 529(9)/9 do.

©11) 17— F(@V/g(@)l = cs-L- [ 0@)jtdr, 0<o= g,
and from (6.6), (6.8):
(6.12) Im(f, x, ¢, A)— F(g)/g(0)|

=g(@7 - l(@7t - w}?- "™ L. 0" 0(p)
=c¢;-L0(0), 0<g=og,.
For x,y€A, ¢g:=2||x—y||=9,, we have
(6.13) K2 (/2 |\m(f, x, 0, A—m(f, y, 0, A)]
= Im(x, @)—m(y, 0)|*dL""

TV B(x,e/2NA

= (f—m(x, Q))2d$1/2+f8

= —ni 2 4 g1/2
= J Bona (f-m(@, Q) dZ

o, @NA
=2L.0"%-8{g), O0<g=g,.

From (6.11), (6.12), (6.13) we derive (6.3) for some specific constant &, as long as

lx—=yl=eo2. If | x—yl=e0/2,

(6.14) |7 =7 = 21 f11,072 (o) - 0211 x— ).

This implies the statement.
iv) If 0 is an «-Dini function, we derive by some simple argument (see (6.14))
from (5.6), (5.9), (5.10), (5.11) the estimate

(6.15) |76 =) = o L+ fll) ol x=yl)
Ce = CG(K3 Qo> 12y (X,’T).

v) Remark. Spanne’s result (see [15]) might be useful to obtain a slightly better
estimate in specific domains.
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7.

i) If f,g€C%*(4,R), then f-gcC%*(4) and obviously:
(7.1) I/~ gllo,c = 2l fllo ¢~ ligllo,¢-

ii) If f: A-R is a bounded uniformly continuous function and there is a
>0, such that x,y€d with |x—y|=e, implies [fGx)—f(M|=M -L(lx—yD),
then f€C**(4) and obviously

(7.2) [f); = max {M, 2[| f1lo- {(e) ™}

iif) If { is an a-function on [0, T] (see 5.0)) and fEC*#(A), a=p=1, then
f€C%(4) and

(7.3) [f1; = max {l| fllo,..- T, 2l fllo}/0(T).
Indeed, if x, y€A, 0| x—y|=T, then by (5.1)
L= = 1SN0, lx=yI?

= ol — ﬁ—MM. _
= [fllo,p-lx—l =) CAlx—ylb

= fllo,p - TP=(TL(T)) - L= yID-

Now the statement comes from 7.ii).
iv) If { is an a-function, f€C%*(4), Y: B~A Lipschitz continuous with Lip-
schitz constant L, then foy€C®*(B) with

(7.4) [foyl, = max {[f];- L* 2| fllo- {(T/LH) ™},
L* =max {L, 1},
Indeed, if x, y€B, |x—y|=T/L*, then by (5.2):

lf (W ) —f W D) =S - CL* - lx—yID=[ ST L= - Lx =)
Now apply 7.ii).

8.

If (f))ven is a bounded sequence in C**(4), 0=ACR" bounded, open and
connected, then there exists a subsequence ( f,.) converging in C*(A) (see (16)) to some
function f,€C**(4) with

(8.1 [Dffol; = sup [DPf)e, 1Bl =k
v
Proof by induction.



200 Emanuel Sperner

In the case k=0 this is essentially the Arzela—Ascoli theorem. Assume the
theorem to be proven for j=k—1=0 and f,€C%%(4), véN. Then for any
i=1,..,nf, «€C"*(4) and thus a subsequence f, . converges in C/(4) to a func-
tion f;,cC/(4), i=1,...,n. Certainly for some x,£A4 there is a subsequence f,.
of f,,, such that f,.(x,) converges. Now the statement follows from a familiar theorem
(see [3, 1.3.6]). (8.1) is obvious in any case.

9.

1) Assume, that 0 is an a-function and Q satisfies 3.ii). If feC%%(Q), then
there exists a sequence of uniformly Lipschitz continuous functions on  converging
uniformly to f and
©.D [ fillo,0 = dall fllo,a» d2 = ds(£2).

If f is nonpositive, so is any f,, vEN.

ii) Proof. Assume first, that gcC%?(R") and has compact support, then the
functions g,(x):=m(g, x, 1/v) (see (16.1)) are Lipschitz continuous and converge
uniformly to g on R”, further

02 lg.llo,0 = ligllo,e, VvEN.

iii) Now cover & by a finite number of open sets Q;, i=0, ..., k, such that
@,cQ and each Q;, i=1, ...,k is in the domain of a boundary chart ¢, (see 3.ii)).
Let be 7,€Cy(R)NC=(R"), 1,=0, such that % , n,(x)?=1 for any x€Q (see
[2, 1.4.1], [4, p. 35]). Now set
9.3) b2 =floi*2), i=1,..,k
z€ B*(1). We shall use

z, if zeBT(1)
s(2) :={ 1 a-1 ny +
(Z, ..., 2", =z if zeB()NB™(1)

and define

9.4 hi(2) = hy(s(2)).

Since ¢;* and s are Lipschitz continuous, we infer from 7.iv)
9.5 IBllo,0 = 2+l fllo,0, €2 = ¢7(dy, T, ).

Further define:
n(e(2)-hi(2), if ze€B(1)
gi(z):=

0, otherwise, i=1,...,k
(9.6)
no(2) -f(2), z€£,
g(2) =

0, otherwise.
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By (7.1) g,£C*%R") and
9.7 lgdlo,o = sl flo,8, €8 = cs(dy, T, ).

iv) Now approximate g; by Lipschitz continuous functions g; ,, véEN, as
described above and set
m:(x) -+ g, (@:(x), x€Q,

()= {O, otherwise, i =1, ...,k
(9.8)
10(X) * go,v (%), XEQ

0, otherwise.

fo,v(x) = {

Certainly f; , is Lipschitz continuous and converges uniformly on Qto f-#?. Further
by (9.2), 7.i), 7.iv):

(9'9) “f;',v”ﬂ,ﬂ = Co* ”f“o,o» Cg = c!)(dl’ T’ o, ni)a VEN, i= Oa LR k'
Now define
(9.10) [Gx)= Zigfiy(®), x€Q

and the statement follows.

v) Later we shall need the following remark. If (m; j(x))z j=1 18 the matrix func-
tion of 3.iii) satisfying (3.1), and any coefficient m;;, 1=i,j=n, is approximated
by Lipschitz continuous functions m{} as described before, then (3.1) holds for any
(mP ()} =1, VEN, x€Q. Indeed the settings in (9.3) and (9.4) do not change
the ellipticity constants ey, €;, (9.6) changes both by a factor (¢ ~1(z)) or 1y(2),
which might be zero, the approximation in 9.iv) does not change ellipticity constants,
since (3.1) stays unchanged by taking means. (9.8) again alters the constants by a
factor #,(x), which is observed to be the same than the one before. The sum in (9.10),
however, implies, that all the factors accumulate to 1, since #? is a partition of unity.

10.

If the bounded open set 0=ACR" has Lipschitz boundary, then for every
£=0, there exists a c(e, Q)=0, such that for every f€C*»*(4):

(10.1) Zica Mo = &« 27, [fade+c(& Q- [ f llo-

Proof. We first recall a proposition in [6, p. 136, 6.7.ii}: There are two positive
constants L, g, such that for any y€A4 with dist(y,04)=¢; and any O=<p=g,
there exists a x¢B(y, ¢) such that B(x, g/L)c Q. Now choose ¢ at least so small,
that {(oe(1+1/L))=e. If dist(y, d4)>p,, there are for every ic{l,...,n} two
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points y,, y.€0B(y, ¢} and a y€B(y, ¢), such that

(10.2) [P = —21; )= =1 flo/e
thus
(10.3) O = [ LoD+ () L (D

= I fllo/e+1fule+ £ ()
If dlSt (ya 3A)§Q1, there are yq, yZEaB(xs Q/L)’ fEB(x, Q/L)

(10.9) 126 =5Lg ) —Fl = LI fle.

Since |jy—yl=|y—xil+[x—Fy|=e(l+1/L) we conclude
(10.5) £l = 1S =L DI+ 1S (D)

={(e(1+1/D)- [fxi];+§ TN

which finally implies the statement.
11.

The proof of the theorem proceeds as follows:

i) We approximate the coefficients m;;, m;, m and the right hand side % by
Lipschitz continuous functions m{?, m®, m®, A, veN as described in 9.

i) Any equation M®y®: —m(V)u(”)xj+m§“)u§§)+m(”)u(”):h(v), u"PQ =0 owns
an unique solution u®¢C**(Q) by Schauder’s theorem.

iii) We shall prove below, that

(1.1 Dy 2,
=dy - (1h0, 5+ 14 1,e+ 27 ;g 1882%00)s
dy=ds(Q, 5,£(”) where J, o are the same in 5.i) and 5.iii) and
W= max (Il o0 Do, 1l o).
Here as later we underlined the quantity u in order to emphasize, that d;

depends monotonically increasing on u®™.
iv) Now we apply (10.1) with f=u®, i=1,...,n and ¢ small and infer:

(11.2) 215;3 =n uxzxf o =£E- 21«; ,s,. [l +cle, Q) - le;Sn Eux* lo
thus the terms [u(

O allo in the brackets on the right hand side of (11.1) may be
dropped on changing from d, to a constant d,=d,(Q, 6, u®).
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v) Now choose p:=n/(1—a) and recall
(11.3) 4 g2 = dg = (1B L, + 14D L)
dy = dy(Q, p)
from [9; § 3.11, line (11.8)], [7], [8] and [10; chap. 36]. From [13; § 3, Th. I] we infer
(11.4) 4Pz, = e10(Q) - | #Ollg = d5 - MO u®
ds = ds(Q, p™).
We infer from (11.2), (11.3) and the Morrey—Kondrashev theorem [11; Th. 3.6.6.]:
(11.5) [, = diell Ko
dex = d(Q, ﬁ(”)).
Thus the term [[u®||, , in the brackets on the right side of (11.1) may be dropped

on changing the constant.
vi) From (11.1), (11.2) and (11.5) we conclude

(11.6) 4O, o = dg+ 11,5

dy = d(Q, i),
(9.1) however implies, that the right hand side is now bounded by a constant depend-
ing on IAllo,s and Hi=MaXy <; j k=n {”mij||0,69 ”mk“(),aa ”m”o,a}- Since CO’G(Q):
C*%(Q) by (5.3), (5.6) this means, that ("), is bounded in C*°(Q). By 8. thus
a subsequence (u®”) exists, which converges to some #,€C>°(Q) in C2(Q) (see

(16)). Since the coefficients m$”, m@”, m®”? and the functions A®*” converge uni-
formly on @, u, is the desired solution of

Mu=h, uloQ =0.

(5.10) implies the final part of the statement.

vii) The rest of this paper is concerned with proving the estimate (11.1). For
simplicities sake we make the following change in notation: p:=p®, u:=u®c
CEH(Q)cC> (by 1iiD)), a;=m{, aq:=m®, a:=m®, f:=h". Observe, that by

iy

9.v), (3.1) is valid for (a;))} ;..
12.

1) First write
(12.1) a3 (x) * Uyin (X) = (%) — @y (%) - 1 9(X) —a(x) - u(x) =: f(x).
By (11.4), 7.iii) and 7.i) we have:
(12.2) I fallo,5 = d7 () + 1 fllo, 5-
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ii) Now choose some fixed point x,£Q and let S be the symmetric, positive
definite matrix, such that

§72= (aij(xo))?,jﬂ-
We infer from (3.1), that |S|=e;2, |S~1| =} Consider the transformation

Y = Yo+ S[x—xq), = Xg»

(12.3) Yo L ols Yo 0
X = Xp+S 7y -yl

and the functions:

v(y) = u(xe+S 7y —xl),
(12.4) a;(¥) = Sy @y (X) - Siu»
£(00) =A)

and conclude:
(12.5) _O_‘ij(.V) ‘Uy"yf(Y) = fo(»), %j()’o) = Qij-

From 7.iv) we infer, that
[(@:pllo, 5 = c10(T, o) + (@i lo, s

I fallo,s = en (T, eg) « 1l fillo,a-
Defining o;;(y):=0;;—a;;(¥), we obtain
(12.7 Av(y) = fo(N) +o;;(y) - vy, ()
for y€B(¥y, 01)» 01:= 01(xo) =dist (x,, 0Q2)/Ve, .

(12.6)

13.

i) We shall prove for any Xc0Q:
(13.1) B(%, 1/2dy) ¢ U, (see 3.ii)).

There is a maximal ¢=0, such that B(X, ¢)cU;. Assume, that ¢<1/2d,. By
3.ii): (B, 0))<B(1/2). The set V:=¢7*(B(1/2)) is compact and dist (x, dU;)
attains a positive minimum £>0 on V. Since B(X, o)< V, thisimplies B(x, ¢+&)C
U, which is a contradiction to the choice of g.

ii) Choose x,€%Q, such that dist (x,, dQ)=0,:=min{1/2d;, Ve, /23 Vey}. If
X€0Q, such that [|X—x,|=dist (x,,#Q), then x,¢U,. From now on, we shall
write U and ¢ instead of U, and ¢y, Y:=¢~% Define zy:=0¢(x,), J.:(2):=¥%(2),
#(2) :=u(Y (2)), z€ B+(1), b;;(2):=a,,- (¥ (2))- J;,*(2) - J;;*(z). We have fic C2°(B*(1))
by 7.iv), 3.ii) and for z¢€ B+(1):

(13.2) bij(2) + 21,3(2) = fi (Y (D)) H (Y (2)) - ¥hi2s(2) - By (2)
=:f3(2).
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3.ii), 7.iv) and 7.i) imply:
(13.3) (bi 0,5 = 12(dy> 6) - (@i o, s
and thus by (11.4), 3.ii), 7.i), (12.2):

I fsllo,s = ds(, di, 8)+11f 10,5

Now let S be the symmetric, positive definite matrix, such that S~ %=
(bij (zo));" j=1- Since ¥ and ¢ are Lipschitz continuous with Lipschitz constant 4,
we have |[(J)l=dy, |(J;DI=d; and thus by the definition of (&;): [S~Y =
dy . 1/?1, IS =d,/Ve,. Further let O be an orthogonal matrix, such that

OS[{yeR": y* = 0}] = {y€R": y" = 0}
Then B(l/le?l)COS[B(l)] and on defining y,:=0Sz, we obtain:
1voll = Izl - dafVeo
= le@ -l - di/Ve,

= [X—xoll - d¥/V ey = 1/2d, Ve, = g,.
We shall use:

()= #(ST10*y)EC»*(B* (2¢4),
b;j(y) =0-5+(b;(S71-071y))-8.07
and f,(y):=f3(S§"1-071y) to calculate
(13.9) bij(y)ﬁyiyj(y) = fu(y), .bij(yO) = éij
H(ipllo,s = €13(ds, €1, 8) - l(a;llo, s
I fallo,s = do(ut, dy, 6, €)1l fllo,5-

ili) Let y; be the orthogonal projection of y, onto {y€R": 3"=0} and define
v(») =) —5fi(y) - (P)PEC*°(B* (205)). Since u(x)=0 if x€0Q we still have
v(»)=0 if y"=0. Further we have
(13.6) bi; ()« vy, (V) = So(M) —Sfa(y) =1 /()

I f5llo,6 = 21 fallo,5-
Now define f;(»):=4;;— b;;(¥) and observe, that
(13.7) Av(y) = f:(0) = Bi;(¥) - 0y ()= f6 (1)
We have Eij (y9) =0, [(Eij)]a"—'[(bij)]a
(B = 1+, )]
We recall the function S in 9.iii) and define
Th(y) = sgn (5" - h(s(»)), YE€BQ2e),

(13.5)
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for any function A on B*+(2g,), and

v:="2v, fy:=2fs, fo:=2f5.

Since p(y) and p,:(y), i>n equal zero if y"=0, we first observe, that v€ C'(B(2¢s)
and that the first derivatives are still Lipschitz continuous, thus v€ H* = (B(2g,)) and

{(Zyyiyf)(y), if i#=n#jori=n=j
oyt () = 2,,4(s(y)), otherwise

Z-almost everywhere on B(2p,). Thus v is a strong solution of
(13.8) Av=f, on B(205) (see [5, 4.5.6]).
Define

Bis(s()), if izn=jori=n=j
By ) = {(Zfij)(y) otherwise, y€B(20;)

and conclude, that 2(_ﬁ_ij- Vyiy) (D) =Pi;(¥) * v,:,:(y) L-almost everywhere. Thus
fs=Bij* vyiyit+fr. For any y€B(yy, ¢s)nB~(1) we have [s(¥)—nl=ly—nl=
[y=xoll and [[y1—yol =ly—yol. Since f;(y1)=0, we infer

(13.9) TR ACHIERFACIE)) EIFACH]
SiTAG)ETACA EIVACHETACH]
= [£1:(8Us() = 3D 81y — 1))
= 2[f5ls- 0y —yol)-

This inequality now holds for all y€B(y,, @5). Since further |s(y)—yoll =y —ol
we obtain similarly for any y€B(y,, 03)

(13.10) 1Bi; I = 18315+ 611y — yoll)
= ¢a(dys €1, 8) - @i )lls - 51y —yol))-

14.

i) We notice, that (12.7) and (13.8) are of the same type and proceed to prove
the following proposition.

Let v€ H*>=(B(yy, 04), R), O<g,, be a strong solution of

(14.1) 40(y) = fro(P):= f(0) +7:;(0) = vy (D)
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where the functions f, and y;; own the properties:

[fo (Vo) —fo(y)l = K; < 3(lye—2il)
(14.2) 17 (o) = 7:; (Dl = Ky - (| yo— 11l

J’1€B(YO9 94)5 Ki = Ki(dla eo,el,é,y_), i= 1’ 2'

Then there is a 0<gz<p,, 05=05(0, n, a, u) depending monotonically decreasing
on u and a constant dy,=dy(dy, ey, €1, 0, a, 1), such that for any O0<r=g;

Boun 2 o1y —m vy, ¥y, PP AL

= dll(”f”o,a + ”Uy"yfuo)-

(14.3) r—".a(r)-2.f

ii) Proof. For O<g=yp, define

(14.4) i (0) = m(vyiy7, Yo, 0)/(1+6y;)
_ Conty—1, e (Vi— Vi .
=00 T o o O W A8

ak(Q) = am (Uyk’ ¥, Q)

The function
(14.5) 0, () := v(y) =0 (@) - (V* — ¥8) — 7 (@) - F —y&) - (' — )
stror.gly solves

(14.6) 4v,(y) = f10(¥) —m(fr05 Yo, @) =: fu1(¥).

Let @€Cy (B(yg, 04))- Multiplying (14.6) with ¢ and integrating by parts twice
yields:
(14.7) f sy Ve Py AL = f

B(yg, ¢4

)fi() * ¢yk dg

and by some continuity argument, this equation holds for any ¢¢H L1(B(yo, 04))-
For O=e<r=g, define
1, if O<t<r—e¢
L. () =y0—0)]e, If r—e t=<r
0, if r>r
and choose

(14.8) P(1):= 0y, 1 (1) - &, 1y = yol)s
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(14.7) implies
(14.9) Sagur o 0+ aly —vald d 2

)
& v By, W\ By,

r—2) Ua,ykyi(y) 'Ug,yk(y) * (yl"%)/”y—.\’o” d<

+ B(vo,r)fn(y) U,y (1)« & (1 y = yol) 4L

ey VA GIERT O R OIS S

Inserting (14.5) we observe, that any integral is a sum of products, each of which
consists of factors, which are either a;(g) or 62(g) or g,,(0) or 63,(0), or an integral,
that does not depend on ¢. Thus there exists one set Nc(0, ¢,), £ (N)=0, not
depending on g, such that for any r¢N and any ¢€(0, ¢,) the limit -0 exists.
Then it is legitimate to set ¢ =r¢N. Using the notation w,:=(v, 1, ..., U, ) and
summing over k we obtain:

1 o
2 = e 2) ;. (vh— i
(14.10) fmyo,@“we“ A2 =5 famo,,_,)(wg)y (V'—yhydo#
1
2 —_ cwk . vk yk
+ B(yy, 0) nd? 0 aB(yo,g)fll wp - (Y —yp) dot.
Now notice, that
(14.11) WE () = 0 —~0(0)— Tus(@) (1 ) (¥ =)
and
k2 — 2. ST N )
(14.12) faB(M)(wQ) A=, rdA—(n-, " 0,(0)

— (0w, Q"+1) * Z;’=1 [t:(0) - (1 +0:)1%.
If he H, then

(14.13)  o- hy(y) - (7' —yb) d,sfy+n-fwwhdz,

hd# =
3B(y,0) B(vg, @)

which implies, that f B, o #d# is an absolutely continuous function of ¢ and

n—1
(14.14) D, f aB(y(pq)hd&’f: ; f oy hd#

1 C
— hy(y) - (= _
+ o oo OV Y AHy
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Using (14.4) it is now easy to calculate from (14.12)

2 _n—1 2
(14.15) D, aB(yo’Q)wgd/f— - fmy.,,g) w2 d A+
+2 (W) (' —yb) Aot
Q0 Y 3B(yg, @) itV = Vo Y

Inserting this in (14.10) we arrive at

2 __h- 1 2 . 2 ]
(14.16) 2f sy 0 VP4 ; f iy e8P f 1 WedH
+2 rrdg-2 fi W (e —yR) dA.
B(yg,0) 0 v 9B(y,.0) e

iii) We recall, that fi(y)=£10() ~m(fior Yo, @)s froi=fy—7i;*Oyeys and intro-
duce the notation g,:=y;;+ Uy, —m(V;j* Vyiys, Vo, €). We have

(14.17) f3=2{(fi—m(fy, vor @)+ 82}
(14.18) f oo 2 0L = (Vi * Vyigs—m(7;;) - m(0y1,) )2 ALV

“J Bope
= J By 1150y — M @y1y0) + M @) - (35— (v:)} dL1?
= By @) {'}’ij (v}"yf —m (Dyiyj))}2 dpe
+.[ Brg.2) {m (Vyiys) (Vi ;—m (yij))}2 dr2
= “s” 5(9) ’ '/.B(YO,Q) ” VWQ” : d$1/2+ IIUWW”O ¢ v(?ii: Yoo Q)l/z.

From (14.17), (14.18), (14.2) and some simple calculations we conclude
(14.19) [, fidZ =4-dh-)flos0(0)e"
. .
253 alas- [ IVl

+2¢14+6(0)% 0"+ ”(aij)”o,a . Z?,j:l ”nyy.i”%,

¢1g = C16(d1> €1, €, 0, ).
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iv) The last term in (4.16) is bounded above by

11—« 2 0 2
(14.20) Z f . At +5— o8, fEd#,
Now choose 0<g,=p, so small, that
(14.21) 0%(05) = n/(n+2x) - 4cis - l(a;lls»
where
n=(1-w)/l2.
Now we derive from (4.16), (4.19), (4.20)
— 2
(14.22) e-nf s 0 | Vel 4
_n —2+a

2 2
= widA# —D wedH
0 f 3BGyga) °© ¢J 9Brg.0) ¢

+4cy6 ”(aij)”rs -8(0)* 0" Zi,j ”Uy y-f“(z)

. 2 . . n Q 2 7
+8-dho-1flos- 000"+ [,  FAAH.

v) It is essential to observe, that for any O<g<g, the inequality

(14.23) 2f I w2d# =

”°

. 2
f souo VWl
holds. Indeed the eigenvalue problem

(B) Au(y)y=0 on B(yy,0), A-u(y)=(Vu(y)-y) on dB(y,,0)

owns in any dimension the eigenvalues A,=i, i=0, 1,2, ... and the restrictions of
the corresponding eigenfunctions ugf) to dB(y,, ¢) form a complete orthogonal basis
of L,(0B(y,. 0)). Actually u is an eigenfunction of (E) if and only if #:=u|dB(y,, 0)
is an eigenfunction of the Laplace—Beltrami operator on dB(y,, ¢) corresponding
to the eigenvalue y:=A(A+n—2) and it is u(¥)=[y—yol*- &y —yol/l y—sl)-
The eigenvalues A; are characterised by the Rayleigh quotient:

®)  A=min{f = |Vz|2dZ:ze H}(B(o. ). zufdA# =0
0

33()’0, 13

for all eigenfunctions u{® of some eigenvalue 4, k <i}.

The eigenfunctions corresponding to 1,=0 are the constant functions, the space of
eigenfunctions corresponding to 4,=1 is spaned by uP(y):=)—yi, j=1,..,n
(see [16], [12]). Thus (R) implies (14.23) by the definition of the 7,; and o, (see
(14.4)).
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Multiply (14.23) by—3;ga and add the resulting line to (14.22):
(14.24) (lha— )f IVw,i2de
) 2 ( B(3p. ) e
_ _n+ 1420 . .
= - f i, 04 W+ Dy f oo Ve 9

+(4016 @ llo, s 2?,,':1 ”inyf”(zrl—8d%o”f”0,a) <0(g)?-¢”

e 2
1—a f 3B{yy,0) fad#.

Consider now the two continuous functions

(14.25) C@=n-f IVwI*d%
and '

+

{(0) = 2(n+2+205) (Cmu(aij)”o,a ZZ;zl Huyiyi”o“l”Zd%o ° ”f”o,a) -8(0)*- 0"

The set E:={0€(0, ¢5): {(0)<&(@)} is an open set and thus the union of an at
most denumerable sequence of open disjoint, nonempty intervalls (r;, r,), vEN,
O<r,<r,=g,. For any r,<gp<r, we obtain by adding the inequality —¢&(g)=
~{(g) to (14.24):

1—o
(14.26) ( 5 2;1) f oo Vw2 d
_ " +142a 2 N .
- 4 f 3B(yg.0) e d%-'—D“-/ 3B(yp.0) wodH#
-2 fhdw

_1——:; 3B(y4,0)
—~2(n+2x) (‘»'16 (@, s+ Zj:l h vyiyf“0+2d%0 i fllo, a) -3(0)?- "

Observe now, that by (5.7) for ¢=0

—q S . 1. Y P .Q'Deé(g)
1421 Dfe 3@ = - 5(p{~g-2. L5

=—(g+20) -~ -5(0) 2
We first use g=n-1 to obtain

"n+2+2afa

(1428 oo~

wid#'+D, faB(yo,q) w d%”)

Blyg,0)

= D0~ 05()7* f,

widA).
9B(yq, 2)



212 Emanuel Sperner

Thus multiplying (14.26) by o~ ®+".5(g)* and integrating over (r,r,), r, <r<r,,
we arrive at:

- .

(14.29) [ - _2,1] 7 6@ g
=[5 f 9B(yy, Q) wed Ao

—2(n+2w) (Cm l(@:)lo,s 22j=1 llvyiyj]lo+2d%0 Hf"o,a) <5(0)%+ 0"

1 v _n - 2
l—cxfr 0™+ 6(0) 2/’3300,9)]‘11(1%@.

IVw,2dZ de

By, 0)

+

Indeed f3; depends on g (see (14.6)), but it is easy to see, that

2 o 2
D, f B(yo,e)f“ d# )f” d,

- 9B(yg, @

and thus by integrating by parts the last integral in (14.29) can be transformed to
-n -2 2 a=Fr,
(14.30) [e-"s(@—2f o0t 2de]i

— [ Dy(e7"8(0) ) fmyo,@) f2d%do.

Dropping one negative term and uvsing (14.27) with g=n and (14.19) we find the
upper bound

—n — 2
(1431) PRIV RSN IR 1.7
™o _(n+1) —2 2
+Ha+22) [T e Va 7 [ fhdZ do

= 4diol fllo, s+ 2css 1 @ilo, 5+ 25 j =1 1030illd

+2eksl@loars” [ IVWdZ

+ (n42) - 2 1@ o530 7 0"V [Vw,?d L de

(}’o;
+(n+loc)(4d§0 1 fllo,5+2¢c16 ”(aij)Ho,a d 2:j=1 ”inyfutz)) 'f:v ¢ tdo.

Using this estimate in (14.29) we obtain (see (14.21))

R L AU CRTEEE

= [0 A

(1 f oo+ Zh s Iompillo) +xs 1" [

)lIVwQHZdZ do

B(yg, ¥

Vw22,

(o, 1y

¢y = ¢y7(dys e, €, 0, _ﬂ_), c1s = ¢(dy, €1, €4, 9, li)
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Now insert # from (14.21) and add
— —_ AT 2 2
(=24 +20) [ 07"3(0) [, IVwell*d#dg
to the left side of (14.32). Using (14.27) with g=n, we obtain the lower bound

i—a

(14.33) 4(n +2%)

7 Delos@2 [, Vw22

-n 5—2 2
+07"9 _ 1V, d%’].

Now again it is easy to observe, that
2 — 2
(14.34) D, jﬂ(ymg) [Vw,|2d = faB(M) IVw, |2 ds#

and we hence obtain

4(;1112“)[ 0@ g, IVl ALY

= [e~"Ds(e) 2 [

0B(yg, @)

w2 dyf]g:;v

e (I oo+ 20 oy Iovpsle) Fers e [ IVW2dL.

Dropping one negative term on the right and using (14.23) once more, we arrive at

14. “"5(r) 2
(14.35) ro(r) fmw IVw,|2d2
= oI No.s+ 27 o1 Iosillotr ™ f - IVw, |2d2),
C1p = C19(dy, €1, €, 5,_@-
However, by the definition of E, either r,=g; or
1436) 600 [ IV AL = (S oot ST o Lol
Cap = C0(dy, €1, €, G, 0, /_{)
So we achieved, for all 0<r=g,, the inequality
(14.37) W [ 1YWL = du oo+ lowilo)

dll = max {020, 619(1 +Cz())}.
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15.

i) From 12. and 13. we infer, that
(15.1) Uiy (X) = eyl (A(x)) . ll;ci(x) . 'ﬁxf(x)
+vyk (A‘ (x)) * )”.‘:fixf (X),

in some vicinity of x,, where either A(x)=y,+S[x—x;] or A(x)=0-S[p(x)].
We first remark, that by 3. and the definitions of v

10lly,a = €21(dy, €q €1) * ully, a5
thus by (11.5), 3. and the device of (14.18) we derive from (15.1)
(15.2) (s (%), Xo, 0) = C25(dy, ds, €1, €0) -
(S 121 @@ (A0 %o, Q)+ 0yl ) +1.1 1),
which implies by some simple estimates
(15.3) 0(tzys, Xos @, 2) = Co3(dy ey, €, 2, 1) -
(k121 Oy, X0, €20 Q)+ [0gello) +1 7o),
1 < ¢yy = €54(dy, €1, €)-
This, however, implies by (14.37)
(1s5.4) V(Usis; Xos 0, Q) = diy (X1 [0peillo+1fllo, 5) €+ 6 (),
dip =dp(Q, 0, €1, €0, ), 0 < 0 = 0 = 05/Cs-
ii) On the other hand, we have
(15.5) Oyt (1) = s (A7) - A7 (D)ie - AT (0N
(A7) - A7 iyt
which by (11.5) and 3. implies:
lopyillo = €os(dyy ds) - (27 ;i Ntxssillo +11.f 1o, 5)-
Inserting this in (15.4):
(15.6) (Uit X0 @ Q) = dag o (Dt ltiaallo+11o,5) - 0"+ 5(0)%
dyg = di3(2, 0, eq, €, ;_1_), 0<9 =g

Now the desired inequality (11.1) foliows from 6.iii).
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16. Notations

B(x, 0):= {yeR" |x—y| < ¢}, B(e)= B(0, ),
B*(0):= B(e)n{ycR": y" 2 0},
_ {1, if i=j
= 0, if isj.
A bar denotes the closure of a set, a d the boundary. %, is the g-dimensional Lebesque

measure, L:=%,, 0,:=2(B(1)); # is the (n—1)-dimensional Hausdorff measure.
If heL,(A), we write

(16.1) mh, y, 0, A= LBy, o x [, hd2,
(16.2) om(h, y, 0, A):= K QBO,Q) [ nds,
(163) o(h, y, 0, )= [, (=m(y, b, o, AfdZ

We drop some of the quantities in the brackets, if their choice is obvious. Frequently
we shall use, that
U(h, Y, 0, A)=mln (h—k)ng

keR v B(y,e)N4

For the definition of the Sobolev spaces H%? see [11; Ch. 3], the spaces C* and
Ck% are introduced in [6; § 4.1].
If & is differentiable, J4 denotes its Jacobi matrix.
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