
Arch. Rational Mech. Anal. 112 (1990) 339-362. @ Springer-Verlag 1990 

Closed Orbits of Fixed Energy 
for Singular Hamiltonian Systems 

ANTONIO AMBROSETTI & VITTORIO COTI ZELATI 

Communicated by H. BREzIs 

w 1. Introduction 

This paper deals with the existence of periodic solutions of 

q'" + V'(q) = 0 (2.1)  

such that 

�89 [q, 12 -k V(q) = h (1.2) 

where q E R N, h is a given number, VE C2(R u \ {0}, R) has a singularity at 
x = 0, and V' denotes the gradient of V. 

Our main results are collected in Theorems 3.6, 4.12 and 5.1. In Theorem 3.6 
1 

we deal with potentials which, roughly, behave like -- Ix ]----~ with a > 2 (referred 

to in the sequel as the "strong-force" case) and prove the existence of solutions q 
of (1.1), (1.2) such that q(t) 4= 0 for all tE R (so that there are no collisions). 

1 
In Theorems 4.12 and 5.1 we are concerned with the case in which V(x) ~ ix ib 

with 0 < b < 2, and prove the existence of solutions q which can possibly 
pass through the singularity x = 0 (i.e., which can have collisions). 

To have an idea of the kind of problem we can handle, let us state two specific 
results concerning potentials of the type 

1 
V(x) = Ix + W(x),  

for which (1.1) becomes the perturbed Kepler's equation 

q 
q" -[- ~ -~- W'(q) = O. 

Iqr  
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1 
Theorem 1.1. Suppose that V ( x ) -  q- W(x) with 
fying I x I 

WC C2(RN; R) satis- 

(Wl) 

1 
(w2) W ' ( x )  . x > - - -  Ixj' 
(w3) W ' ( x )  . x + W ( x )  > o; 

3 W ' ( x ) .  x + w " ( x )  x .  x > o; 

(W4) lim inf [W(x) -k �89 W'(x) ,  x] >= 0; 
lxl-+ c~ 

Then for all h < O, problem (1.i), (1.2) has a periodic solution. 

1 
Theoreml.2.  Let h < 0  be given and let V(x) -- tx I ~- eU(x) with U smooth 

in all R N. Then there exists an ~ (depending on h and J] UI c2) such that for all le l < e, 
the problem 

q 
q" + ~ + ~u'(x) = o, 

Iql~ 

�89 l q ' ( t ) 1 2  - -  _ _  

has a periodic solution. 

1 
l q(t) 1 + sU(q(t)) = h 

Theorems 1.1 and 1.2 follow from the much more general results contained in 
Theorems 4.12 and 5.1, respectively. 

In the last few years there has been a remarkable amount of work on the exis- 
tence of periodic solutions of systems with singular potentials having a given 
number T >  0 as period, see, e.g., [2], [4], [7], [8], [11], [61, [14], [18]. But much 
less is known on problem (1.1), (1.2) where the energy rather than the period is 
prescribed. As far as we know, only the papers [12], [5] deal with such a problem 
in the large. (For perturbation results see, for example, [15].) Paper [12] covers a 
rather restricted class of potentials satisfying the strong-force condition, only. 
Paper [5] deals with the existence of solutions of (1.1), (1.2) confined in an annulus 

1 
d where the shape of V differs strongly from that of -- Ix i---%. For example, neither 

1 1 
the potentials V(x) ~ Ix[ ixl~, 0 <  b <  2 (covered by Theorem 4.12, or 

1 
for l < b <  2, by Theoreml.1)  nor any V(x) - -  ix I ~-eU(x), e>=O (see 

Theorem 1.2) can be handled by [5]. On the other hand, we do not confine the 
solutions to any annulus, and in the case of Theorems 4.12, 5.1, the solutions we 
find could have collisions. 
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on HI(S ~, R N \ {0}) with 
q(t) ~ u(cot) where 

When VE Ca(R N, R) a way to seek solutions of (1.1), (1.2) is to look for 
stationary points of 

I 1 

f(u)---~ f]u'? dt.  f [h-- V(u)]dt 
0 0 

1 

f ]u'l 2 dt > O. If  u is such a stationary point, then 
0 

1 

f [h - -  V(u)] dt 
( D 2 ~  0 

1 

~ f [u']Zdt 
0 

satisfies (1.1), (1.2). See, for example, [19]. 
In the present paper the idea of the proof relies on a variational principle, 

discussed in Section 2, which amounts of finding solutions of (1.1), (1.2) as critical 
points at a positive level of the functional 

1 1 

f ( u ) =  �88 f lu'[Z dt.  f V ' (u) .udt  
0 0 

on the set 

where 

M h =  u E A :  f [ V ( u ) - i - � 8 9  
0 

A = {u E H~(S 1 ; R ~) such that u(t) ~- 0 V t}. 

Our principle is related to the preceding one by the fact that J~z% = f  and 

VfM h = 0 if and only if V f----- 0. 

A similar approach has been used in [3], and earlier, for semilinear elliptic 
boundary value problems in [13], [1], [16], but it is new in connection with singular 
Hamiltonian systems. 

To clarify why our approach is appropriate for our purposes and seems more 
suitable for a rather direct application of the Lusternik-Schnirelman (LS, for 
short) theory let us briefly outline the arguments of the proof. 

1 
Assuming V(x)~  ix is, or > 0 near x = 0 we distinguish between ~ > 2 

and 0~ < 2. 
In the strong-force case, studied in Section 3, it is natural to take h > 0. 

It turns out that for such an h: (i) Mh, which 4=0, is a smooth manifold; 
(ii) cat Mh -~ + oe (here cat denotes the LS category); (iii) f is bounded below on 
Mh; (iv) f satisfies the Palais-Smale (PS for short) condition on Mh; (v) Mh is 
complete. Then the LS theory applies, yielding infinitely many critical points for 
f on Mh with J(u) ~ O. 

The case in which V does not satisfy the strong-force condition (as is the 
case in Theorems 1.1 and 1.2) is discussed in Section 4 and requires some care. 
Taking h < 0, which is now the "natural" value of the energy, one still has that 
(i), (ii) and (iii) hold, but now Mh is no longer complete. 
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To overcome such a problem (and the related lack of the PS condition) we 
modify V by setting 

1 
VXx) = V(x) - 6 

Ixl2" 
A remarkable feature of our approach is that the manifold M~, corresponding 

to the potential V~, coincide with the manifold Mh corresponding to V, and one 
is led to seek critical points of 

1 1 

f~= �88 f lu '?  d t .  f g 2 ( u ) . u d t ,  
0 0 

on M h. Since V, satisfies the strong-force condition, the preceding arguments yield 
a critical point u~ E Mh, such that s  > 0. A limiting procedure, based on 
some energy estimates, allows us to show that us --> u as e --> 0 and this gives a 
solution of (1.1), (1.2). 

The hypotheses of Theorems 3.6 and 4.12 are global in nature. In the last 
section we state a result, Theorem 5.1 (which is related to Theorem 4.12), where 
such assumptions are made in {V<~ h} only. 

The same variational approach can be used to handle a class of Hamiltonian 
systems including the N-body problem. These systems will be the object of a 
forthcoming paper. 

Notation. Throughout the paper we let 
N 

X " y : ~--a xiYi, 'r X, y E R N, 
i = i  

[~l=V'x-~ V x c R  n, 

H = H I ( S  l, RN), 

1 1 

( u l v ) =  f u ' . v ' §  f u . v  vu ,  vCH, 
0 0 

llul) --  (u l u) V u E H ,  
~(~ = R N  \ {0}, 

A = {u E H such that u(t) @ 0 V t}. 

w 2. The Variational Principle 

In this section we state the Variational Principle. In the sequel we always assume 
that 

VE C2(s9; R).  

We define f E  CI(A,  R) by 
1 1 

f (u)  = �88 f lu'I2 dt �9 f V ' ( u ) . u d t  (2.1) 
0 0 
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and g E Ca(A, R) by 
1 

g(u) = f [V(u) + �89 Vi(u ) �9 ul dt.  (2.2) 
o 

For h E R  we set 
Mh -~ {u E A : g(u) - -  h}. (2.3) 

We remark that from the Sobolev embedding theorem it immediately follows 
that 

if u. ~ 2, un, fi E A, then g(u,,) ~ g(~) and Vg(u,) ---> Vg(K). 

(2.4) 

In the rest of this section it is understood that M h @ 0. It will be shown in 
w167 3, 4 that this is actually the case for suitable values of h related to the behaviour 
of V a t  x = 0  and at I x l - + ~ .  

Lemma 2.1. Let  V satisfy 

(A1) 3V'(x)  . x + V"(x)  x . x @ O V x C  ~2. 

Then Mh is a Cl-mani foM o f  codimension 1 in A .  More  precisely, 

(Vg(u) [u) ~ 0 u u E Mh. (2.5) 

Moreover,  i f  V also satish'es 

(A2) V'(x) . x > 0 V x E ~2, 

then f (u )  ~ 0 on Mh and f (u )  ----- O, u E Mh, i f  and only i f  u is a constant. 

Proof. By direct calculation one has 

1 

(Vg(u) l u) =- f [Lz V'(u) - u + �89 V"(u) u " u] dt, 
o 

and the first statement follows from (A1). The second statement easily follows from 
(A2). [ ]  

Remark  2.2. M h is obviously closed with respect to A, but not necessarely with 
respect to H, as we will see for the class of potentials discussed in w 4. However, 
if Mh denotes the closure of M h in H, one has that Mh \ Mh ~ ~A. 

Lemma 2.3. Suppose (A1) and (A2) hoM. Let  u E Mh be a critical point o f f  con- 
strained on Mh such that f (u )  ~ O. Le t  

I 

f V'(u). udt 
~ 2 = o 1 ( 2 . 6 )  

f lu'l 2 at 
0 

Then q(t)  = u(o)t) is a (non-constant) periodic solution o f  (1.1), (1.2). 
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Let u E Mh be a critical point o f f  constrained on Mh. Then there exists 
such that 

Vf(u) -- 2 Vg(u). (2.7) 

Taking the scalar product of (2.7) with u, we obtain 

(Vf(u) t u) ~- 2(Ug(u) [u). 
From this we easily deduce that 

1 

2= �89 f lu'f dt. 
0 

Inserting this value into (2.7) we obtain 

I 1 1 1 

f u'.v'dt, f V'(u).udt= f lu'tZdt f V'(u).v VvffH. 
0 0 0 0 

1 

Note that f l u' 12 dt > 0 if f(u) > O. Then it follows that 
0 

o~2u '' + V'(u) = 0 (2.8) 

with o~ 2 given by (2.6), and q(t) ~ u(cot) satisfies (1.1). Moreover, since (2.8) is 
autonomous, the conservation of energy yields 

�89 ~o 2 [u'(t)12 + V(u(t)) ~- c. (2.9) 

Integrating this equation we find that 

1 1 

-}~ f lu'12dt+ f V(u) d t - ~ e  
0 0 

and thus that c = h since u E Mh. This implies that q (which is non-constant 
1 

since f l u '  12 dt > 0) satisfies (1.2). [ ]  
0 

w 3. Existence Results. (Strong Forces) 

In the proof  of the existence of critical points o f f  on Mh an important role is 
played by the behaviour of V as x -+ 0. Let us explain this fact with the "model"  
case 

1 
v(x) - lx]~, o,>o. 

Note that for all c~ =~ 2, (AI) and (A2) hold and the variational principle applies. 
Here the "natural"  values of the energy are: h > 0 if o~ > 2 and h < 0 if 
0 < o~ < 2. In fact, if q(t) is a radial, periodic solution of 

q 
q" + c*, -.,~+2 -- O, 

lqL 



Closed Orbits of Fixed Energy for Singular Hamiltonian Systems 345 

then the corresponding energy is 

h = 2 x [q'(t)[ ~ =  -- 1 lq(t)l ~. 

On Mh (nonempty by Lemmas 3.3 and 4.3), the functional f takes the form 

1 1 

f(u) = 4 a-- [u'l 2 dt .  lu l l .  
0 

If  u n-+ ?t E Mh \, Mh, then (see Remark 2.2) K E ~A. Then it is well known (see 
Lemma 3.1) that 

1 f l  o ~ ' - - ~ "  ~ if o~> 2 

while, when 0 < 0~ < 2, the integral above can converge to a finite value. 
This model case shows that it is worthwhile to distinguish between potentials 

1 1 
which behave (as Ix [ -+ 0) like Ix [a, a > 2 (strong-forces) or like I x [b' 

0 < b < 2 (weak forces). The former is discussed in this section; the latter will 
be discussed in w 4. It is worth noticing that a virtue of the strong-force case is 
that the weak-force case will be handled by perturbing V with a strong-force 
potential. 

We first treat with potentials satisfying (A1), (A2) and 

(A3) 3 7 > 2, such that V'(x) �9 x <= --TV(x) V x E g2; 

(A4) 3 / 3 > 2  and r > 0  such that V' (x ) . x>=- - f lV (x )  V 0 < ] x [ = r ;  

(A5) lim sup [V(x) + �89 V'(x) .  x] < O. 
i x l _ + o  o 

We note that (A2) and (A3) imply 

V(x) < 0 V x E O .  (3.1) 

First of all we show that (A4) implies the so-called "strong-force condition" 
[10]. We recall that in [10] it is proved: 

Lemma 3.1. Suppose that V satisfies the "strong-force condition", i.e., that there 
are an r ~ O and an o~ ~ 2 such that 

C 
v(x) v o < IH < v .  

1 

Then f W(u.) dt --> --oo for any sequence u,, in A converging weakly and uniformly 
0 

to ~ E OA. 
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Lemma 3.2. f f  (A4) holds, then there exists a e~ > 0 such that 

so that 

V ( x ) <  c~ = ixl~ v 0 < l x [ < r ,  

1 

f V(u.)  d t - >  - -  o~ V u. ~ u ~ ~A.  
0 

(3.2) 

(3.3) 

Proof. For t Y ] = r  define Oy: (0 ,1 ] -+R by 

ey(~) = -V(2y)  > o. 
From (A4) it follows that 

hence 

where 

, v(;~y) ~,(~) 

~y(2) >_ ey(1) 2 -~ ~ c22 -~ v 0 < 2 -< 1 

c~ = min { -V(y~  l lyl = d .  

X 
Then, letting y = ]-~ r, we obtain 

V(X) = V = - -~y  G - i x l f l  

with ca = c2r ~. The last statement follows from Lemma 3.1. 

for O< Ixt--<r 

[] 

Next we prove 

Lemma 3.3. Let  (A1)-(A5) hold and let h > O. 

(1) Mh 4 = 0 and Mh is complete; 

(2) catMh (Mh) = oo; more precisely, for  each 
X Q M h such that catMh(X) ~ m. 

Then 

m >= O, there is a compact 

Proof. Let u C A  be fixed. For a >  0, 

1 

gu(a) ::- g(au) -~ f [V(au) + ~ V'(au) " au] ,It. 
0 

d 
According to (2.5), ~ag,,(a) 4: 0; hence g, is strictly monotone. Using (A5) we 

immediately find that 

lira gu(a) <= O. 

Let a-+  0% Then au(t)-+ 0 uniformly and (A4), (3.2) imply that 

1-- j V(au dt=> T--1 
0 
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and thus gu(a) -+ § oo as a -+ 0 +. Then for all h > 0 the equation g,(a) = h 
has a unique solution a(u) and a(u) u E Mh. 

Again from (2.5) it follows that a depends continuously on u. Then Mh is a 
deformation retract of A. From [9] it is known that catA(A) = ~ and that for 

all m there exists a compact .~ C A with cata()~)>= m. Thus (2) follows. 
To show that Mt~ is complete, let us take a sequence {u,} ~ Mh such that 

un -+ ~ in H. (Actually, it suffices to take {u,} C Mh such that u, --> fi weakly 
and uniformly in [0, 1]). We assert that h E A. Otherwise, there is an interval 
I Q  [0, 1] and an integer ~ > 0 such that ]u,(t)l < r for all tE I, and for all 
n > h. Then, using (A4), we readily find for n large that 

1 

h = f [v(u.) + �89 V'(u.). u.] dt 
0 

= f [V(u.) + �89 v'(u.), u.] dt + f W(u.) + �89 V'(u.). u.] dt 
[0,11~I I 

> 1 -  f g(uo)dt+c~, 
0 

in contradiction to Lemma 3.2. So u E A and g(~) = lim g(u,) = 0 (since 
u, ~ ff uniformly). Then ~ E Mh, as required. [ ]  

To investigate the PS condition, we first show: 

Lemma 3.4. Let (A1)-(A5) hoM and let u, E Mh be such that 

f(u.) <= c. 

Then both IluLIIL2 and HunlIL~ are bounded. 

(3.4) 

Proof. Inserting the expression for f into (3.4) we find 

1 1 

�88 f l u ;  [ 2 dt" f V t ( U n )  " U n dt ~ C. 
0 0 

Moreover, using (A3) ,we find 

h = f [V(u.) + �89 V'(u.). u.] dt < 
o = 2 

hence 

(3.5) 

1)j V'(u,) . u, dt; 

From (3.5) and (3.6) we deduce that 

IIuGIIL2 =< ca. ( 3 . 7 )  

To show that llu.llL~ is bounded, we argue by contradiction. Let u. = ~. § w., 

h 
f V'(un)" un > k, where k --  - -  > 0. (3.6) 

o = 1 1 

2 
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1 

~ , = f  u, dt. 
0 

From (3.7) it follows that IIw'[IL~ =< cl, and up to a subsequence, w n --> ~ uni- 
formly. Consequently, if []U,[ILo~--> 0% then ]~,t--> co. Then from 

min ]u.(t) t => [~. ] --  max I Wn(t) ] ~ I~.] - -  C 2 

it would follow that [u.(t)I--> ~ uniformly. Using (A5) we would then find that 

1 

lim sup f [V(u.) + �89 V'(u.) .u.] dt <= O, (3.8) 
n-+~ 0 

contradicting g(Un) = h > O. [] 

Lemma 3.5. Let  (A1)-(A5) hold. Then f satisfies P S  on Mh: for  all {u.} Q Mh 
such that 

f (u . )  ~= c, (3.9) 

Vfvh (u . )  -+ 0 (3.10) 

there exists u. k -+ Ft E Mh such that Vfvh( f i  ) = O. 

Proof. From (3.9) and Lemma 3.4 it follows that Ilu. ]! =< const. Then, up to a 
subsequence, u. -+ h uniformly and weakly in H, and ~ E Mh (see the proof  of 
Lemma 3.3). Thus 

gfMh(U) = Vf(u . )  - -  2. Vg(u.) .  (3.11) 

From (3.10) it follows that 

gf (u . )  - -  2. Vg(un) --~ O. (3.12) 

Multiplying (3.12) by u. we have 

(gf(Un) [ u.) - -  2 . (gg(u.)  l u.) ---> O. 

Since 

(Vf(u)[u)--2(Vg(u)lu) =�89 ~o f lu'[=dt - .of [3V'(u).u+V"(u)u.u,]dt 

and since, by (2.4) and (A1), 

1 1 

f [3v'(u.). u. + v"(u.) u.. u.] dt - +  f [3v'(h) �9 K § v"(fi) ft.  h] at 4= o 
0 0 

we have that 
1 

�89 f lU'n 12 dt  - -  1~ n + O. ( 3 . 13 )  
o 
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Finally, from (3.11) it follows that 

, t ,  3 V t ( u n )  v / ~ ( u o )  = - ~ v (u, , ) .  u.  dt u.  + ~ ]u.' I ~ dt - -  ~- 
0 

+�89  ~ [u. d t - - 2 ,  u.. 

1 1 

Since f V'(un) .u .  dt-+ f v'(h) .fi> o, V(Un) V'(~) and V"(u.)u.--~V"(-h)fi, 
0 0 

we deduce, using (3.12), that u'.' converges (up to a subsequence) in H, and the 
result follows. [ ]  

We can now state the main result of this section. 

Theorem 3.6. Suppose that V satisfies (A1)-(A5). Then, for all h > 0, problem 
(1.1), (1.2) has a periodic solution q(t), with q(t) =4= 0 for all t. 

Proof. According to the variational principle (Lemma 2.3) it suffices to find criti- 
cal points u of f M  h with f(u) > 0. These critical points will be found by using 
the LS theory. Let 

~ m  = { x C  m, ,  I 
and 

X is compact and cat~rh(X) ~ m} 

b m =  inf max f .  (3.14) 
X ~ . ~  m X 

~'m + 0 for all m by Lemma 3.3(2). Moreover b m is a non-decreasing 
O ~ b m <  + e o  for all m. 

Note that 
sequence with 

Since PS holds f o r f M  h (Lemma 3.5), the LS theory, extended to C 1 manifolds 
in [17], implies that each bm is a critical level and, if 

then 

where 

b ~ b m : bin+ 1 . . . .  = bin+k, 

catMh(Zb) ~ k + 1, 

zb = {u ~ Mh If(u) = b, VfMb(u) = 0}. 

We assert that b3 > O. If  not, the preceding remark with b ~- b~ = b2 = b3 
yields 

catMh(Zo) >= 3. 

But Lemma 2.1 implies that Zo = {u ~ const}/5 M h. The arguments of Lem- 
ma 3.3 show then that 

Z o o S  N-~, 

which implies that catMh(Zo) = 2, a contradiction. Then the level b3 carries a 
critical point u of f M  h such that f ( u ) >  O, and this completes the proof. [ ]  
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1 
Example 3.7. If  V(x) -- Ix [b with 

I I 

1 
for b = 2, Vz(x) = Ix ]2 satisfies 

3 V~(x). x + v~'(x) x . x  = 0 v x 4= O. 

On the other hand, all the periodic solutions of 

b > 2 then (A1)-(A5) hold. Note that 

(3.15) 

have energy h = O. 

2q_% q'4- lql4 = 0  

Example 3.8. Let 
1 

V ( x ) -  I I ' x*+ w(x)  

WE C2(s R). Then (A1) and (A5) become respectively with b = 2  and 

b(b --  2) 
3 W ' ( x ) . x 4 -  W"(x)  x . x <  ixlb V x ~= 0, (3.16) 

W(x) 4 - � 8 9  as lxl -+ o,~. (3.17) 

Conditions (A2), (A3) and (A4) are verified provided that 

b 
w'(x)  . x > - Ix I ---~ v x 4= o, (3.18) 

3 7 > 2: W'(x) . x  4- yW(x)  < ~  --  b = lx[b , (3.19) 

fl--b 
3flE(2,) ,] ,r>0: W ' ( x ) ' x 4 - 1 3 W ( x ) >  [xl---V- V 0 <  I x l < r .  

For example, if W(x) -- 

(3.20) 

1 
/x[C, c >  2, then (3.16)-(3.20) hold. In fact, (3.16), 

(3.17) and (3.18) are trivially satisfied; to satisfy (3.19) and (3.20) it suffices to 
take 7 > max {b, c} and 2 < / 3  < min {b, e}. 

Moreover, let us remark that if W is smooth On all R N, then (3.16), (3.18)- 
(3.20) impose no restrictions near x = 0. This is clear for (3.16) and (3.18) 
because b > 2. So for (3.19) and (3.20) it suffices to take any fl, 7 satisfying 
2 < f l < b < ) ~ .  

w 4. Existence Results (Weak Forces) 

1 
We study here the case when V behaves like -- Ix ]-----~ with 0 < a < 2. In 

[ 

particular, this will include the interesting case of perturbations of the Kepler 
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1 
potential [x t '  such as 

1 
v(x)  - [xl + W(x) .  

Note that in the present case the meaning of a solution of (1.1)-(1.2) must be 
specified, because solutions passing through the singularity x = 0 could arise. 
The following definition has been introduced in [4]. 

Definition 4.1. q E HI(S~; R N) is a solution of (1.1), (1.2) if 

(1) the set {tE S 1 I q(t) = 0} has zero measure; 

(2) in the set {tE S 1 [q(t) 4= 0} q is of class C 2 and satisfies (1.1), (1.2). 

In addition to (A1) and (A2) we suppose that 

(A3') 3 0~ E (0, 2) such that V'(x) . x >= --o~V(x) V x E f2, 

(A4') 3 d E ( 0 , 2 )  and r > 0  such that V ' ( x ) . x < _ - - d V ( x )  V O < ] x l < = r ,  

(A5') lira inf [V(x) -- + �89 V'(x) .  x] > 0. 
L x l . + o  o = 

We will follow here a procedure similar to that of w 3. First, as in Lemma 3.1 
we have: 

Lemma 4.2. I f  (A3'), (A4') hold, then there is a e2 > 0 

C2 
V(x)  ixl VO<lxl r. 

such that 

Proof. It suffices to repeat the arguments of Lemma 3.1 using (A3') and taking 
into account that (n4') yields rain { - - V ( y ) ' [ y I =  r} < O. [] 

We explicitly remark that (3.1) and (3.3) do not necessarily hold in the present 
situation. 

The next lemma replaces Lemma 3.3. 

Lemma 4.3. Let (A1), (A2), (A3')-(A5') hold and let h < O. Then 

(1) Mh =~ 0; 

(2) catMh(Mh) = 0r ; more precisely, for all m >= 0 there is a compact X Q Mh 
such that catuh(X ) ~ m. 

Proof. From (A1) it still follows that 

1 

g.(a) -~ g(au) ~ f [V(au) + �89 V'(au) . au] dt 
0 

is strictly monotone, and from (A5') it follows that 

lira infgu(a ) ~ 0. 
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Then, using (A3') and Lemma 4.2 we deduce that, for each u E A, 
1 1 

and thus g.(a)--->--co as a-+O +. Therefore for all h < O, the equation 
g,(a) = h has a unique solution and Mh =~ 0. The remainder of the proof is the 
same as that of Lemma 3.3. [ ]  

In the present situation, as we have already remarked, Mh is no longer com- 
plete, so the LS theory cannot be directly applied. To deal with such a situation 
we modify V setting 

8 

Vo(x) = V(x)  Ix12, ~ > ~  

Remark  4.4. Let 
1 

&(u) = f [V,(u) + �89 V'~(u). u] and Mh., = {u 6 A : g,(u) = h}. 
o 

According to Example 3.7, 
&(u) = g(u), 

and hence Mh,, = Mh. Moreover, 
8 

V:(x)  . x = v ' ( x )  . x + 2 - ~  > v ' ( x )  . x > o. 

Therefore Lemma 2.3 applies and for all h < 0, the critical points off~ on Mh 
such that f~(u) > 0 give rise to periodic solutions of 

q" + V'(q) + 28 ~ = 0 (4.1) 

with energy 

�89 ]q'(t) [2 + V(q(t)) I q 12 - -  h. (4.2) 

In order to find critical points off~ on Mh we state some lemmas which are 
the counterparts of Lemmas 3.4, 3.5. We always suppose that (A1), (A2), (A3')- 
(A5') hold. 

Lemma 4.5. I f  u n E Mh is such that 

f , (u,)  ~ C, (4.3) 

then [Iu,~[IL= and ]lu~lrL~ are bounded. 

Proof. From (4.3) it follows that 
1 1 

/ i[ c > A(Un) = �88 l u'. i z d t .  V ' ( u . ) .  u. -[- 2 dt 
0 

1 I 

~-.1" ]Un. 12 dr "  o f Vt( l tn) 'Un dr. (4.4) 
0 0 
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If u. E Mh, then (A3') implies that 

h = f [V(g/n) -~- �89 Vt(blu) " Un] dt >= �89 -- g'(un)" u,, dt; 
0 

hence 
1 h 

f V'(u~). ~ ~ k := 1 > O. 
0 1 

2 
O~ 

This inequality and (4.4) yield 

1 4C 
f ~ / 1 2 d t < c  1 : = - - .  

0 ~n ~ k 

From (4.5) and (A5') it then follows, as in Lemma 4.3, that 

(4.5) 

llu.llLo~ ~ c~. [ ]  

Lernma 4.6. f ,  satisfies PS on Mh. 

Proof. Let u, E Mh be a PS-sequence. By Lemma 4.5 one has 

Iiunll < C, 

hence u.-+ ~ uniformly and weakly in H. We assert that ~ E Mh. Indeed, in 
view of (2.4), it suffices to show that ~ E A. We shall prove this by contradiction. 
First, let ~ = 0. Then u. ---> 0 uniformly and (A4') and Lemma 4.2 imply, for n 
large, that 

1 1 

h = f [ v ( . ) + � 8 9  v(u.)dt 
0 0 

1 1 

Since the last term tends to --e% we have a contradiction. 

Next, let ff E ~A with ~ ~ 0 (hence h ~ const.). Then 

1 1 

L ( u . )  = �89 f l u; [2.  f[h - -  E(u.)]. 
0 0 

Since 
8 8 

No(x) = v ( x )  Ix? =< - l x l  ----~' 

V. satisfies the strong-force condition and 

I 

f [h - v~(..)]-+ ~ .  
0 

Moreover, 

vo<I~I<~ 

1 1 

0 <  f l~'l 2 ~ liminf f lu.l'2, 
0 0 
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and we reach a contradiction, proving that ~ E Mh. The rest of the proof  follows 
as in Lemma 3.5. [ ]  

We explicitly remark that the arguments of Lemma 4.6 actually show that 
the sublevels {u E Mh I f~(u) < c} are complete. 

The preceding result allows us to apply the LS theory to f~ on Mh. Repeating 
the arguments of Theorem 3.6 we find 

Lemma 4.7. For arbitrary e > 0 there exists u~ E Mh such that Vfilmh(u,) = O, 

and u, ~ const. Let 

f~(u~) = b m = inf maxf~, m ~ 3, 
X~3U m X 

1 

f <(u~) �9 u~ dt 
2 0 

(De = I 

f [u:l ~ dt 
0 

; (4.6) 

y; '( t )  -k V~(y~(t)) = O, 

then y , ( t ) =  u,(o9~t) satisfies 

2 12 �89 co~ l u;(t) + V,(u~(t)) = h. 

(4.7) 

(4.8) 

Remark  4.8. It will be convenient to take u, in such a way that 

f~(u~) = inf maxf~ 
XcaY~" m X 

where m ~ 3 is fixed independently of e. In particular, in the following lemma 
we will take m = 3 .  [ ]  

In the sequel, our plan is to show that u~ converges to some u* which gives rise 
to a solution y* of (1.1)-(1.2). For  this program we require some estimates. 

Lemma 4.9. There exists a k > 0 such that II u~ I1 ~ k and u~ --~ u* uniformly. 

Proof. As anticipated in Remark 4.8, we have that 

b, : =  f~(u,) = inf max f~(u). 
catMh(A)~3 u~A 

e 1 
Since V~(x) = V(x) - -  -~--~ ~ V(x) V e ~ 1, 2 

iXl - 

Thus 

it follows that 

L(u)  ~ f l (u )  V 0 < e ~ 1, V u E A .  

f , (u , )  = b, < b : =  inf  max J] V e E (0, 1] 
catMh(A)>=3 u~A 

and the result follows from Lemma4.5.  [ ]  

(4.9) 
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Lemma 4.10. (1) V(u*(t)) ~ h; 

(2) u*(t) ~ o. 

Proof. (1) If  not, u*(t):4= 0 for all t so that 

V(uXt))-~ V(u*(t)) = h, 

V'(u~(t)) " u,(t)-+ V'(u*(t)) " u*(t) 

uniformly. Therefore 

I 

h = g(u,) = f [V(u3 + �89 V'(u3. u,] dt 
0 

1 1 

-+ f [V(u*) + �89 V'(u*) �9 u*l at = h + �89 f V'(u*) . u* dt. 
0 0 

1 

Hence f V'(u*). u* = 0, in contradiction with (A2). 
o 

(2) If  not, u* ~ 0 and u~ -+ 0 uniformly. Then, using (A4') and the fact that 
u, E Mh, we find (for e small enough) that 

so that 

( r h = f [V(u~) + �89 V'(u,). u,l at ~ 1 -- V(u,), 
0 

1 h 

f V(u.) > - -  
1 - - - -  

2 

On the other hand, since 

I 

f V (u3-+-  
0 

u,-+ 0 uniformlyl from Lemma 4.1 we infer that 

as (e --~ 0+), 

a contradiction. [ ]  

Lemma 4.11. There are numbers ~, A > 0 such that 

0 < o ~ < A .  

Proof. From Lemma 4.10 we deduce that there exists a closed interval I such that 
I has positive measure and such that 

u*(t) 4: o, V(u*(t)) 4= h 

Integrating (4.8) o v e r / ,  we find that 

V t E I .  

2 a~ f Iu~ [2 dt + f V~(u~) dt -= h l l i .  (4.10) 
I I 
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Since 
1 

f l u; l~ dt -<- f [ u; l~ dt <= C, 
I 0 

equation (4.10) implies that 

f [ h  - V~(u3] dt 
1 2 >  I 
~-(De = 

C 

But u~ -+ u* uniformly on I and u* 4= 0, so that 

f [h - -  V,(u3] dt -+ f [h  -- V(u*)] dt 
I I 

From (4.8) 

(e -+ 0+). 

h -- V,(u,) ~ 0 and thus, from the definition o f / ,  one has 

f [h - -  V(u*)] d t >  O. 
I 

This shows that (D, ~ d > 0, To prove that (D, =< A, 
and (4.9) to find that 

we start by using (4.8) 

1 1 f~(u3 b 
z(D~ f [u'l 2 d t =  f [h - -V , (u , ) ] -  ~ = 

0 0 �89 f ]u;[ ~ dt �89 f [u:l ~ dt 
0 0 

Then 

(0/ ]u;l 2dr <7.z .  
(D e 

1 

If (D -->o% it follows that f lu;I 2 dt-+O and hence that both u, and y, 
0 

converge uniformly to some constant ~e C R N. From Lemma 4.10 it follows that 
4= 0 and V(~) =~ h. Using (4.7) we have (since V~(y,) converges uniformly to 

V'(~)) that y~ converges in C 2 to ~. Finally, passing to the limit into (4.8), we find 
that V(~) = h, a contradiction. [ ]  

We are now in a position to state the main result of this section: 

Theorem 4.12. Suppose that (A1), (A2), (A3'), (A4'), (A5') hold. Then Jot all 
h < O, problem (1.1), (1.2) has a non-constant periodic solution. 

Proof .  We shall show that u* gives rise to a solution of (1.1),  (1.2) in the sense of  
Definition 4.1. Although this result follows routinely from the preceding lemmas, 
we present the complete proof  for the convenience of the readers. Let 

J = {tE [0, 1] lu*(t) = 0}. 

From (4.10), with J replacing/,  and from Lemmas 4.9 and 4.11 we deduce that 

2 ,[2 ~2k2" f V,(u,)dt= ]J]h--�89 f lus  d t ~  I J i b - - � 8 9  (4.11) 
J J 
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But us ~ 0 uniformly on J and hence, if J has positive measure, we obtain from 
Lemma 4.1 that 

f V~(u3 dt -> - -  o,z, 
I 

in contradiction to (4.11). Thus J has zero measure. 
Let K, ( [0, 1] \ J be an increasing sequence of compact sets with 

and set 

Each K* C 
Then V~ --~ V 

~ d G =  [0, 1 ] \ J ,  
n ~ l  

K* = {u*(t) [ t E Kn}. 

is compact and has a neighbourhood JC'n such that JVn Q D. 
in CI(JV,, R) and therefore 

V'~(u~(t))-+ V'(u*(t)) uniformly in K,. 

and 

co*u*" + V'(u*) = 0 

y*(t)  = u*(cg*t) satisfies 

y*"  -]- V'(y*) = 0 

v t ~ [ o ,  1]\ J 

v t~ [0,1] \ J. 

The energy conservation (1.2) follows directly from (4.8). [ ]  

1 
Example4.13.  Any V(x) ~ - - 
(AS').  Ix L ~ 

with 0 < a < 1 satisfies (A1), (A2), (A3)- 

To explain the significance of Theorem 4.11 we now discuss a specific example 
concerning a perturbation of the Kepler potential. 

Example 4.14. Let us take 

1 
V(x) = - -~1 + rV(x) 

with WE C2(E2, R). In this case (A1) and (A5') become, respectively, 

1 
3 W ' ( x ) .  x + w " ( x )  x .  x > - Ix--it v x ~ ~ ,  

lim inf [W(x) -}- �89 W'(x)"  x] >= O. 
l x l - + o o  

(4.12) 

(4.13) 

Since u~ satisfies 
2 t ,  p o~,u~ + V;(u~) = 0 

and since w,-+ w*=~ 0 (Lemma 4.11), it follows that 

u, -+ u* in C2(K,,, RN), 

co*u*" + V'(u*) = 0 on K,. 

Since ~J K, = [0, 1] \ or, it follows that 
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Similarly (A2) and (A3') become, respectively, 

i 
W ' ( x )  . x > - I x--II v x E .o ,  

i i  

"~ 0 < ~ < 2 such that W'(x)" x -k ~ W(x) ~ ]x----~, 

Condition (A4') gives 

-4 ~ =~ d < 2 and r > 0 such that 

For example, any W(x) -- 

(4.14) 

V x E O .  (4.15) 

d - - 1  
W'(x )  . x + OW(x) < Ixl 

V O <  lxl ~ r. (4.16) 

1 
with 0 < a <  2 satisfies the above conditions 

(takeo~, ~ such that 0 < o ~ < a < c ~ < 2  and 0 < g <  1 < ~ < 2 ) .  

The case discussed in Example 4.13 allows us to deduce Theorem 1.1: 

Proof of Theorem 1.1. It suffices to note that (Wl), (W2) and (W4) imply (4.12), 
(4.14) and (4.13), respectively. To satisfy (4.15) we take ~ = 1 and use (W3). 
Lastly, since Wis smooth at x = 0, it follows that W'(x) �9 x ~- ~ W(x) is bounded 
in any neighbourhood of the origin for any 6, so that (4.16) holds for 6 > 1. [ ]  

w 5. Other Existence Results 

From the conservation of energy it follows that any solution q of (1.1), (1.2) 
is such that 

V(q(t)) ~ h u t. 

Therefore it is natural tO expect that assumptions (A1)-(A4) or (A1), (A2), (AY), 
(A4') need to be verified only in 

{xE ~91 r(x) =< h} := Oh. (5.1) 

We discuss only the weak-force case; in the strong-force case, V < 0 and h > 0 
imply O h = s 

Let us denote by D h the connected component of Dh such that 0 C/~h and let 
~Dh = {x E Dh [ V(x) = h}. 

Theorem 5.1. Let h ~ 0 be given. Suppose that D h is compact and that V: ~--> R 
satisfies (A4') and 

(hlh) 3 W ' ( x ) ' x @  g ' ( x )  x . x ~ O  V x C D h ;  

(A2h) V'(x) �9 x ~ 0 V x E Dh; 

(A3~) 3 0 < ~ ' < 2  such that V ' ( x ) . x ~ - - o c ' V ( x )  V x E D h ;  
(A6h) VE C 4 in a neighbourhood of  ~ D  h and max [W'(~) ~- ~] < 0. 

~OD h 

Then corresponding to such a value of  h, (1.1), (1.2), has a periodic solution. 



Closed Orbits of Fixed Energy for Singular Hamiltonian Systems 359 

Proof.  Since V'(~) �9 ~ > 0 on #Dh, it follows that  Dh is star-shaped with respect 
to x = 0. Set 

ah = f2 \ Dh. 

For  every x E Gh there exists a unique ~ E ~D h and s > 1 such that  

X ~ S ~ .  

We assert that  there exist functions A, B, S E C2(6Dh) such that  the modified 
potential 

[ V(x), x E Dh 

V(x)  = I A(~) 
[ aS(x) - -  Is - -  S (~) [  + B ( O ,  x ~ a~  

is o f  class C 2 in ~ .  To see this, it suffices to take 

4(V'(~) .  ~) 3 
A(~') - -  

( v ' v )  ~. ~)~ ' 

2 ( v ' ( ~ )  �9 ~)~ 
B(~)  = h - -  

v " ( ~ )  ~. ~ ' 

2v'(~) -# 
s(~) = ~ + 

v"(~) #. ~ 

Let us remark that  (Alh) - -  (A6h) imply that  

A(~)  > o, ~ ( ~ )  > h - 0 > #; 

2 / where 6 = x ~ h. We now rescale ~" by setting 

where 

L ~ O ,  
~ > ~ ,  

Since 

s(~)  < 1 

f~(x) = r + c 

L = max (0 - -  h, 0 ) ~ 0 .  Since IP(x):  V ( x ) + L  in Dh and since 

it follows immediately that  I~ satisfies (A1), (A2) and (A3') in D h. For  

we have 

V'(x)  . x <= - ~ V(x)  = - ~  V(x)  + (3 - o) V(x) .  

V(x)-+ --oo as x - +  O, we can take r so small that  

V' (x )  . x < - $ v ( x )  - & = - S ( V ( x )  + L ) ,  

froln which (A4') follows. 
Next, for  x ----- s~ E Gh, we obtain 

d - d sA(~) 
P ' ( x )  �9 x = 2 2  ~ = 2 2  ~ ( ,~x)~=~  - Is - s ( ~ )  i ' 

IT"'(x) x "  x = 2s2A(~) 
i s - s ( o  ? " 

(5.1) 
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^ s A ( $ )  (3 Is - -  S ( $ ) [  - -  2 s )  
3 ~)'(x). x + v"(x )  x .  x = I s -  s(~)[3 > o  V s > l 

and (A1) holds. 
Since A(~) > 0, (A2) follows f rom (5.1). Since D h is compact  and B(~:) _>__ 

h -  0, it follows that  

l im inf  [ l , ; (x)+ �89 l ) ' (x ) .x]  =: l im inf  [ A(~) sA(~) ] 
~x~ . . . . .  I s - -  S(~)[ + B ( ~ ) + L +  ~ i s _  S(~)12 

>=h--O+L_>_O, 

so that  (A5') holds. 
Finally to prove that  (A3') holds in G h we need only notice that  

ts - -  S(8) ] - -  e~0ah 11 - -  S(8) ~ 02 

where 0 < 02 -<- 1 ; hence 

sA(~)  
# ( x )  . x - -  Is - -  S (~)  ? 

A(~) 
> 02 Is - s ( ~ )  I 

[ A ( , ) ( B ( , )  + L)] 
> 02 Is - s(~)l 

= -02f(x). 
We are now in a posit ion to apply Theorem 4.12, f rom which follows the exist- 

ence of  a periodic solution of  

q"  + 17'(q) = 0, 
(5.2) 

�89 lq' [2 + l~(q) = e 

for  all e < 0. Since L < --h, it follows that  e = h -t- L < 0 is an admissible 
value of  the energy. For  such a choice of  e, (5.2) becomes 

q"  + lP'(q) = 0, 

Iq'? + IT(q) = h 

and hence l/(q(t)) <= h. For  x --  &e E Gh one has that  

#(x) = ~(s~) > ~(~) = h. 

Therefore  q(t)E Dh, V(q)= V(q) and q satisfies (1.1), (1.2). [ ]  

As an application of  Theorem 5.1 we can prove Theorem 1.2. 
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Proof  of  Theorem 1.2. We first notice that O h is compact if e is small enough. 
m ' ,  ' M "  Hence there exist constants m, m ,  M, M ,  such that 

m ~ U(x) <= M, m r <= U'(x).  x <= M',  m" -<- U"(x) x .  x <= M r' 

for all x E Dh. For  lel small enough we immediately find that (alh),  (a2h), (A3~), 
(A6h) are satisfied. [ ]  

Remark 5.2. We notice that e of Theorem 1.2 can be explicitly estimated in terms 
of h and of the C 2 norm of U. For example, if I1U IlL~ = II U'IIL~ ----- 11 U" tIL~ = 1, 

it is not difficult to see that ~ can be taken to be rain 2 ' 4 ( 3 1 h 1 + 2 )  " 

The following example is related to Theorem 1.1 and can be obtained as a 
straightforward application of Theorem 5.1 : 

1 
Example 5.3. Let h <  0 be given and let V(x) . . . .  Jr W(x) with W 
smooth in f2 and such that ix[ 

1 
(1) V ( x ) - + - - o o  as Ix[-->0 and W ( x ) ~ O  ' r  with Ixl- h 

I 1 

1 1 
(2) 3 W'(x) .  x + W"(x)  x -  x > - - / I  'x----5 u Ix ] ~ [nl-;-7 ; 

1 1 
(3) v lxl 

1 1 
(4) W"  ( x ) x . x < -~l 'r Ix ] ~ -~1" 

Then (1.1), (1.2) has at least one periodic solution. 

We point out that (1)is used only to show that {x IV(x) ~ h}Q {x[Ix  [ ~ J-~l}" 
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