On Positive Solutions of Emden Equations in Cone-like Domains

CATHERINE BANDLE & MATTS ESSÉN

Communicated by J. SERRIN

1. Introduction

Let $x = (x_1, ..., x_n)$ be a typical point in \mathbb{R}^N and denote by (r, θ) , $\theta \in \mathbb{S}^{N-1} := \{x : |x| = 1\}, r = |x|$, its polar coordinates. Let Ω be a domain on the unit sphere \mathbb{S}^{N-1} with a boundary $\partial \Omega$ of class C^2 . We define a *cone* in \mathbb{R}^N to be a set of the type

$$\mathscr{C} = \{x : r \in \mathbf{R}^+, \theta \in \Omega\}.$$

In this paper we study the positive solutions of the generalized Emden equation

(1.1) $\Delta u + r^{\sigma} u^{p} = 0 \quad \text{in } \mathscr{C}, \quad \sigma \in \mathbf{R}, \, p > 1$

satisfying Dirichlet boundary conditions

$$(1.2) u = 0 on \ \partial \mathscr{C} - \{0\}.$$

Because of its relevance to physics and its rich mathematical structure the Emden equation has attracted the interest of many mathematicians, starting with Fowler (*cf.*, *e.g.*, the survey of WONG [Wo].)

The structure of the radially symmetric solutions of (1.1), (1.2) is now completely understood [GS, BM]. General positive solutions in \mathbb{R}^N were studied by GIDAS & SPRUCK in a substantial paper [GS]. They were able to determine the precise behaviour near isolated singularities and deduce some nonexistence results.

We say that a solution of our problem is *regular* if it belongs to $C^2(\mathscr{C}) \cap C^0(\mathscr{C} \cup \partial \mathscr{C})$ and satisfies (1.1) and (1.2). We also consider *singular solutions*, denoted by u_s . They are of class $C^2(\mathscr{C}) \cap C^0(\mathscr{C} \cup \partial \mathscr{C} - \{0\})$ and discontinuous at 0. It is known that for certain ranges of p such solutions exist [BL]. In Section 2 we extend a nonexistence theorem of GIDAS & SPRUCK [GS]. For a sector, *i.e.*, a cone in \mathbb{R}^2 , it is expressed as follows.

Theorem 1.1. Let $S(v) = \{(r, \theta): r > 0, 0 < \theta < v\pi, v \in (0, 2]\}$ be a sector. For $1 , problem (1.1), (1.2) possesses neither regular nor singular solutions besides <math>u \equiv 0$.

The bound is sharp since for $p > p^*$ solutions of the form $u = r^{-(2+\sigma)/(p-1)} \alpha(\theta)$ are known to exist [BL]. For $\sigma = 0$ this result is already found in [BL]. We give a simpler proof, which also includes the non-existence of singular solutions.

It should be noticed that if we perform a Kelvin transformation

(1.3)
$$y = \frac{x}{|x|^2}, \quad v(y) = |x|^{N-2} u(x),$$

then (1.1), (1.2) becomes

(1.1') $\Delta v(y) + |y|^{-N-2-\sigma+p(N-2)}v^p = 0 \quad \text{in } \mathscr{C}$

$$(1.2') v = 0 on \ \partial \mathscr{C}.$$

From this observation it follows that every statement concerning the behaviour of a solution near zero leads to a statement on its behaviour near infinity. A solution of (1.1), (1.2) will be called *regular at infinity*, if the transformed function v(y) is regular at zero, or equivalently if

(1.4)
$$\lim_{|x|\to\infty} u(x) |x|^{N-2} = 0.$$

In Section 3 we determine the precise asymptotic behaviour of the solutions which are regular at zero or at infinity. For a sector we get

Theorem 1.2. If u is regular and $\sigma \ge -2$, then there exists a positive constant u_0 such that $\lim_{r\to 0} r^{-\nu} u(re^{i\theta}) = u_0 \sin(\theta/\nu)$ uniformly in θ . If u is regular at infinity and $\sigma \le -2$, then there exists a positive constant u_∞ such that $\lim_{r\to\infty} r^{\nu}u(re^{i\theta}) = u_\infty \sin(u/\theta\nu)$ uniformly in θ .

In Section 4 we derive a non-existence theorem based on an identity of PUCCI & SERRIN [PS] and on the results of Section 3. We also study the question whether solutions can be ordered.

The following notation will be used throughout this paper. If two positive functions f and g satisfy in X the inequalities $c_1 \leq \frac{f(x)}{g(x)} \leq c_2$ for some positive constants c_1 and c_2 , we shall write $f \approx g$ in X. The letter C stands for generic constants depending only on Ω and N.

2. Nonexistence result and asymptotic estimates

2.1. In polar coordinates the Laplace operator has the form

$$\Delta = \frac{1}{r^{N-1}} \left(r^{N-1} \frac{\partial}{\partial r} \right)_r + \frac{1}{r^2} \Delta_{\theta},$$

where \triangle_{θ} is the Beltrami operator on the sphere S^{N-1} . Let $\psi > 0$ be the first eigenfunction of

(2.1)
$$extstyle _{ heta} \psi + \omega \psi = 0 \quad \text{in } \Omega, \quad \psi = 0 \quad \text{on } \partial \Omega.$$

It is supposed to be normalized such that

(2.2)
$$\int_{\Omega} \psi \, d\theta = 1,$$

 $d\theta$ denoting the area element on S^{N-1} .

If we multiply (1.1) by ψ , integrate the resulting expression over Ω and use Jensen's inequality we get for the "mean value"

$$\widetilde{u}(r) := \int\limits_{\Omega} u(r, \theta) \psi(\theta) d\theta$$

the differential inequality

where \triangle_r is the radial part of \triangle and ω is the lowest eigenvalue of (2.1). Observe that

(2.4)
$$\Delta_r - \frac{\omega}{r^2} = r^{-(\beta-\lambda)} \frac{\partial}{\partial r} \left[r^{\beta} \frac{\partial}{\partial r} (r^{-\lambda}) \right] = :L$$

where

$$egin{aligned} \lambda &= \gamma_{\pm} = -rac{N-2}{2} \pm \sqrt{\omega + \left(rac{N-2}{2}
ight)^2} \ , \ eta &= N-1+2\lambda. \end{aligned}$$

We note that if x is a given variable and y is defined by (1.3), we have

$$u(x) |x|^{-\gamma_{+}} = v(y) |y|^{-\gamma_{-}}, \quad u(x) |x|^{-\gamma_{-}} = v(y) |y|^{-\gamma_{+}}.$$

2.2. Next we derive an elementary lemma for positive radially symmetric solutions of

$$(2.5) Lv \leq 0 for r > 0.$$

Lemma 2.1. (i) If $\beta > 1$, then the function $w(r) := r^{-\lambda} v(r)$ is decreasing. (ii) If $\beta \leq 1$, then w(r) is an increasing function.

Proof. From (2.5) we have

(2.6)
$$r^{\beta}w'(r) \leq \varrho^{\beta}w'(\varrho) \quad \text{if } r \geq \varrho.$$

Hence if $w'(\varrho) \leq 0$ for some ϱ , then $w'(r) \leq 0$ for all $r \geq \varrho$. Suppose that the statement (i) is false. Then w'(r) > 0 on an interval $(0, r_1]$, which together with the positivity of w implies that

(2.7)
$$\lim_{r \to 0} w(r) = w_0 < \infty.$$

From (2.6) we get for $r < R < r_1$,

$$w(R) - w(r) \ge \frac{r_1^{\beta} w'(r_1)}{\beta - 1} [r^{-\beta + 1} - R^{-\beta + 1}].$$

For $r \to 0$ the left-hand side is bounded because of (2.7), while the right-hand side tends to infinity. This is a contradiction and (i) is thus established. (ii) Suppose that $w \neq 0$ does not increase everywhere. Then by (2.6) there exists a positive number ϱ such that $w'(\varrho) < 0$ and we have

$$w'(r) \leq r^{-\beta} \left(\varrho^{\beta} w'(\varrho) \right) = : -ar^{-\beta}, \quad r \geq \varrho$$

where a > 0, and

$$w(r) \leq w(\varrho) - a \int_{\varrho}^{r} t^{-\beta} dt \to -\infty, \quad (r \to \infty).$$

Since w is non-negative, this is impossible and we have proved the lemma.

Let us consider the functions $w_+(r) := r^{-\gamma_+}\tilde{u}(r)$ and $w_-(r) := r^{-\gamma_-}\tilde{u}(r)$, $\tilde{u}(r)$ being defined in Section 2.1. We note that

(2.8)
$$\beta_+ := N - 1 + 2\gamma_+ > 1, \quad \beta_- := N - 1 + 2\gamma_- < 1.$$

From the previous arguments we obtain

Corollary 2.2. (i) $w_+(r)$ is non-increasing and $\lim_{R \to \infty} w_+(R) =: w_{\infty}^+ < \infty$. (ii) $w_-(r)$ is non-decreasing and $\lim_{r \to 0} w_-(r) =: w_0^- < \infty$.

2.3. We shall prove the following non-existence result.

Theorem 2.3. If $p \leq \max\left\{1 - \frac{\sigma+2}{\gamma_+}, 1 - \frac{\sigma+2}{\gamma_-}\right\} = :p^*$, no regular or singular positive solutions of (1.1), (1.2) exist in \mathscr{C} .

Proof. Let us assume that our problem has a nontrivial solution u. If $w_+ = r^{-\lambda}\tilde{u}(r)$, where $\lambda = \gamma_+$, it follows from (2.3) and (2.4) with $\beta = \beta_+ = N - 1 + 2\gamma_+$ that

(2.9)
$$R^{\beta}w'_{+}(R) - r^{\beta}w'_{+}(r) + \int_{r}^{R} s^{\beta-\lambda+\sigma+p\lambda} w_{+}(s)^{p} ds \leq 0, \quad 0 < r < R.$$

By Corollary (2.2)(i), w_+ is non-increasing, hence

$$R^{\beta}w'_+(R) + w_+(R)^p \int_r^R s^{\beta-\lambda+\sigma+p\lambda} ds \leq 0, \quad r < R.$$

Letting $r \rightarrow 0$, we see that $\beta - \lambda + \sigma + p\lambda > -1$ and

(2.10)
$$w'_+(R) w_+(R)^{-p} + CR^{(p-1)\lambda+\sigma+1} \leq 0.$$

Integrating (2.10) from r to R, we obtain

$$(2.11) \quad (p-1)^{-1} (w_{+}(r)^{1-p} - w_{+}(R)^{1-p}) + C \int_{r}^{R} s^{(p-1)\gamma_{+}+\sigma+1} ds \leq 0.$$

Since the left-hand member is bounded as $r \rightarrow 0$, it follows that

(2.12)
$$(p-1)\gamma_+ + \sigma + 2 > 0.$$

If $w_{\infty}^+ > 0$, the left-hand member in (2.11) is unbounded as $R \to \infty$, which contradicts the inequality. We conclude that $w_{\infty}^+ = 0$.

The next step is to do the same calculations for $\lambda = \gamma_{-}$ and $\beta = \beta_{-}$. By Corollary (2.2)(ii), w_{-} is non-decreasing, and we obtain

$$-w'_{-}(r) r^{\beta} + w_{-}(r)^{p} \int_{r}^{R} s^{\beta-\lambda+\sigma+p\lambda} ds \leq 0.$$

Letting $R \rightarrow \infty$, we see that $\beta - \lambda + \sigma + p\lambda < -1$, and

(2.10a)
$$-w'_{-}(r) w_{-}(r)^{-p} + Cr^{(p-1)\gamma_{-}+\sigma+1} \leq 0.$$

Integrating (2.10a) from r to R, we obtain

(2.11 a)
$$(p-1)^{-1} (w_{-}(R)^{1-p} - w_{-}(r)^{1-p}) + C \int_{r}^{R} s^{(p-1)\gamma_{-}+\sigma+1} ds \leq 0.$$

Since the left-hand member in (2.11a) is bounded as $R \rightarrow \infty$, it follows that

(2.12a)
$$(p-1)\gamma_{-} + \sigma + 2 < 0.$$

If $w_0^- > 0$, the left-hand member in (2.11a) is unbounded as $r \to 0$, which contradicts the inequality. We conclude that $w_0^- = 0$.

We have proved Theorem 2.3 and

Corollary 2.4. If there exists a nontrivial regular or singular solution of (1.1) and (1.2) in \mathscr{C} , then (2.12) and (2.12a) hold and (i) $\lim_{R \to \infty} w_+(R) = w_{\infty}^+ = 0$, (ii) $\lim_{R \to 0} w_-(R) = w_0^- = 0$.

The bounds in Theorem 2.3 are sharp because if

$$p^* 3, \end{cases}$$

there exist solutions of the form (cf. [BL])

(2.13)
$$u(r,\theta) = r^{-(\sigma+2)/(p-1)} \alpha(\theta)$$

where $\alpha(\theta)$ satisfies the boundary value problem

(2.14)

$$\Delta_{\theta} \alpha - \frac{\sigma+2}{p-1} \left(N - 2 - \frac{\sigma+2}{p-1} \right) \alpha + \alpha^{p} = 0 \quad \text{in } \Omega, \quad \alpha = 0 \quad \text{on } \partial \Omega.$$

Another consequence of (2.11) is stated in

Corollary 2.5. If u is any regular or singular solution of (1.1), (1.2), then there exist positive constants r_0 , $_1$ and c_2 such that

(i) if $0 < w_0^+ := \lim_{r \to 0} w_+(r) < \infty$, then

- (2.15) $\tilde{u}(r) \approx w_0^+ r^{\gamma_+}, \qquad r \to 0,$
- (2.16) $\tilde{u}(r) \leq c_1 r^{-(\sigma+2)/(p-1)}, \quad r \geq r_0 > 0.$

(ii) if $w_0^+ = \infty$, then

$$\tilde{u}(r) \leq c_2 r^{-(\sigma+2)/(p-1)}, \quad 0 < r < \infty.$$

A result complementary to Corollary 2.5 is given in

Corollary 2.6. Let u be a regular or singular solution of (1.1), (1.2). Then there exist positive constants c_1 and c_2 such that

(i) $\tilde{u}(r) \ge c_1 r^{\gamma_+}$ for all $r \le r_0$, (ii) $\tilde{u}(r) \ge c_2 r^{\gamma_-}$ for all $r \ge R$.

Proof. From (2.4) and (2.5), we have

$$w'_{-}(1) \leq r^{\beta} w'_{-}(r), \quad 0 < r \leq 1$$

(we note that $\beta = \beta_{-} < 1$), and thus by Corollary 2.4(ii)

$$(1-\beta)^{-1} r^{1-\beta} w'_{-}(1) \leq w_{-}(r) = r^{-\gamma} - \tilde{u}(r).$$

Since $-\beta + 1 + \gamma_{-} = -N + 2 - \gamma_{-} = \gamma_{+}$, the first statement is proved. The second follows if we apply (i) to the transformed problem (1.1'), (1.2').

3. Local behaviour

3.1. For the arguments of this Section, we shall need Green's function K(x, y) for the Laplace operator in the cone \mathscr{C} , satisfying, for fixed $y \in \mathscr{C}$

where $x \in \mathscr{C}$, $K(\cdot, y) = 0$ on $\partial \mathscr{C}$ and $K(x, y) \to 0$ as $|x| \to \infty$, $x \in \mathscr{C}$.

Such a function exists (cf. [B]; further references can be found in [ELe]). Moreover, for |x| > |y|, we have the classical representation formula of BOU-LIGAND [B]:

(3.2)
$$K(x, y) = |\Omega| \sum_{n=1}^{\infty} \frac{|x|^{\beta_n} |y|^{\alpha_n}}{\sqrt{(N-2)^2 + 4\omega_n}} \Psi_n(\theta_x) \Psi_n(\theta_y)$$

where $|\Omega|$ is the Lebesgue measure of Ω , ω_n is the n^{th} eigenvalue of (2.1) and $\Psi_n(\theta)$ is the corresponding eigenfunction, normalized with respect to the L^2 -

norm (cf. [B, LF]). Furthermore, $\beta_n < 0 < \alpha_n$ are roots of $t(t + N - 2) - \omega_n = 0$. We note that $\alpha_1 = \gamma_+$ and $\beta_1 = \gamma_-$. If |x| < |y|, the roles of x and y in (3.2) are interchanged.

We shall need several estimates.

Lemma 3.1. Let $\varepsilon > 0$ be given. Let Ψ_1 be denoted by Ψ . If $x, y \in \mathcal{C}$, then

(3.3)
$$K(x, y) \approx \Psi(\theta_x) \Psi(\theta_y) |x|^{\gamma_+} |y|^{\gamma_-}, \quad 0 < |x| < (1 - \varepsilon) |y|,$$

$$(3.4) K(x, y) \approx \Psi(\theta_x) \Psi(\theta_y) |x|^{\gamma_-} |y|^{\gamma_+}, \quad 0 < |y| (1+\varepsilon) < |x|.$$

If
$$|x| = r$$
, then

$$(3.5) \qquad 0 < \frac{\partial}{\partial r} K(x, y) \leq C \Psi(\theta_x) \Psi(\theta_y) |x|^{\gamma_+ - 1} |y|^{\gamma_-}, \quad 0 < |x| < (1 - \varepsilon) |y|,$$

$$(3.6) \quad 0 < -\frac{\partial}{\partial r} K(x, y) \leq C \Psi(\theta_x) \Psi(\theta_y) |x|^{\gamma_- - 1} |y|^{\gamma_+}, \quad 0 < |y| (1 + \varepsilon) < |x|.$$

The constants of comparison depend also on ε .

Proof. For the first two estimates, we refer to [A, Lemma 1]. Estimates (3.5) and (3.6) are consequences of (3.2) and estimates (i)–(iii) in [ELe, Section 4].

Let $\mathscr{D}(R_0, R) = \mathscr{C} \cap \{R_0 < |x| < R\}$. Green's function $K_1(x, y)$ in the domain $\mathscr{D}(0, R)$ can be written as $K(x, y) - K(x_R^*, y)$, where x_R^* is the reflection of x in the sphere $\{|x| = R\}$. From Lemma 3.1, we see that

(3.7)
$$0 < \frac{\partial}{\partial n} K_1(x, y) \leq C \Psi(\theta_x) \Psi(\theta_y) |x|^{\gamma_- - 1} |y|^{\gamma_+}$$

for $0 < |y|(1 + \varepsilon) < |x| = R$, $x, y \in C$, where *n* is the inner normal in the domain $\mathcal{D}(0, R)$.

Similarly, if $K_2(x, y)$ is Green's function in the domain $\mathscr{D}(R_0, \infty)$, then

(3.8)
$$0 < \frac{\partial}{\partial n} K_2(x, y) \leq C \Psi(\theta_x) \Psi(\theta_y) |x|^{\gamma_+ - 1} |y|^{\gamma_-}$$

for $|x| = R_0$, $|x| < (1 - \varepsilon) |y|$, $x, y \in \mathscr{C}$.

Lemma 3.2.

$$\int_{\Omega} K(x, y) \, d\theta_x \leq \begin{cases} C \, |x|^{\gamma_+} \, |y|^{\gamma_-}, & \text{if } |x| \leq |y|, \\ C \, |x|^{\gamma_-} \, |y|^{\gamma_+}, & \text{if } |x| \geq |y|. \end{cases}$$

Proof. Since we have Lemma 3.1, it suffices to estimate K(x, y) in $\left\{\frac{|y|}{2} \le |x| \le 2 |y|\right\} \land \mathscr{C}$. We begin with the case $N \ge 3$. By the maximum principle, we have

$$K(x, y) \leq \frac{|x - y|^{2-N}}{A_N} := s_N(x - y)$$

where A_N is the area of S^{N-1} . Since

$$\int_{S^{N-1}} s_N(x-y) \, d\theta_x = \min(|x|^{2-N}, |y|)^{2-N},$$

it is easy to deduce the lemma in this case. When N = 2, we consider the function $H(y) = \int_{\Omega} K(x, y) d\theta_x$, which is harmonic in $\mathscr{C} \cap \{|y| < |x|\}$ and $\mathscr{C} \cap \{|y| > |x|\}$ and is continuous in $\overline{\mathscr{C}}$. Since we can control H on the sets $\mathscr{C} \cap \{|y| = \frac{|x|}{2}\}$, $\mathscr{C} \cap \{|y| = |x|\}$ and $\mathscr{C} \cap \{|y| = 2 |x|\}$, the lemma is true also in this case.

Let $K_0(x, y)$ be Green's function for the Laplace operator in $\mathcal{D}(R_0, R)$, where $y \in \mathcal{D}(R_0, R)$. Then the function

$$v(y) = u(y) - \int_{|x|=R} \frac{\partial K_0}{\partial n}(x, y) u(x) \, d\sigma(x) - \int_{|x|=R_0} \frac{\partial K_0}{\partial n}(x, y) \, u(x) \, d\sigma(x)$$

vanishes on $\partial \mathscr{D}(R_0, R)$. Here *n* represents the inner normal in $\mathscr{D}(R_0, R)$ and $d\sigma(x)$ is the area measure. The Riesz representation formula gives

(3.9)
$$v(y) = \int_{\mathscr{D}(\mathcal{R}_0,\mathcal{R})} K_0(x, y) \left(-\Delta v(x)\right) dx = \int_{\mathscr{D}(\mathcal{R}_0,\mathcal{R})} K_0(x, y) \left(-\Delta u(x)\right) dx.$$

The maximum principle implies that

$$K_0(x, y) \leq K_1(x, y), \quad x, y \in \mathscr{D}(R_0, R)$$

and thus that

(3.10)
$$\frac{\partial K_0}{\partial n}(x, y) \leq \frac{\partial K_1}{\partial n}(x, y), \quad |x| = R, y \in \mathcal{D}(R_0, R).$$

In the same way, it follows that

(3.11)
$$\frac{\partial K_0}{\partial n}(x, y) \leq \frac{\partial K_2}{\partial n}(x, y), \quad |x| = R_0, y \in \mathscr{D}(R_0, R).$$

Furthermore, we have

(3.12)
$$K_0(x, y) \leq K(x, y), \quad x, y \in \mathscr{D}(R_0, R).$$

Let us define u(x) = 0, $x \notin \mathscr{C}$. Assuming that $2R_0 \leq |y| \leq R/2$, we use (3.9), (3.10)-(3.12), (3.7) and (3.8) to deduce that

$$u(y) \leq \int_{\mathscr{D}(R_0,R)} K(x,y) |x|^{\sigma} u(x)^{p} dx$$

+ $C \left\{ R_0^{-\gamma_-} \int_{|x|=R_0} \Psi(\theta_x) u(x) d\theta_x |y|^{\gamma_-} + R^{-\gamma_+} \int_{|x|=R} \Psi(\theta_x) u(x) d\theta_x |y|^{\gamma_+} \right\}.$

We define $M(r) = \sup u(y)$ for |y| = r. Combining the last inequality with Lemma 3.2, we obtain

(3.13)
$$M(r) \leq C \left\{ r^{\gamma_{-}} \int_{R_{0}}^{r} M(s)^{p} s^{\sigma+1-\gamma_{-}} ds + r^{\gamma_{+}} \int_{r}^{R} M(s)^{p} s^{\sigma+1-\gamma_{+}} ds + \left(\frac{r}{R_{0}}\right)^{\gamma_{-}} \tilde{u}(R_{0}) + \left(\frac{r}{R}\right)^{\gamma_{+}} \tilde{u}(R) \right\}, \quad 2R_{0} \leq r \leq R/2.$$

Let $\chi_{\pm} = (\sigma + 2)/(p - 1) + \gamma_{\pm}$. If $M(r) = \eta(r) r^{-(\sigma+2)/(p-1)}$ and $\tilde{u}(R) = r(R) R^{-(\sigma+2)/(p-1)}$, it follows from (3.13) that

(3.14)
$$\eta(r) \leq C \left\{ r^{\chi_{-}} \int_{R_{0}}^{r} \eta(s)^{p} s^{-1-\chi_{-}} ds + r^{\chi_{+}} \int_{r}^{R} \eta(s)^{p} s^{-1-\chi_{+}} ds + \nu(R_{0}) R_{0}^{-\chi_{-}} r^{\chi_{-}} + \nu(R) R^{-\chi_{+}} r^{\chi_{+}} \right\}, \quad 2R_{0} \leq r \leq R/2$$

Note that if a solutions to (1.1), (1.2) exists, then Theorem 2.3 implies that

(3.15)
$$\chi_{-} < 0 < \chi_{+}.$$

We are now in a position to prove the main results of this section.

Theorem 3.3. Let there exist a nontrivial positive solution u of (1.1), (1.2).

(i) If $M(r) r^{(\sigma+2)/(p-1)} \to 0$ as $r \to 0$, then there are positive constants c_1 and c_2 such that

 $c_1 r^{\gamma_+} \leq M(r) \leq c_2 r^{\gamma_+}$ for all $r \leq r_0$.

(ii) If $M(r) r^{(\sigma+2)/(p-1)} \to 0$ as $r \to \infty$, then there exist positive constants c_1 and c_2 such that

$$c_1 r^{\gamma_-} \leq M(r) \leq c_2 r^{\gamma_-}$$
 for all $r \geq r_0$.

Proof. By assumption, we have $\eta(r) \to 0$ as $r \to 0$ and consequently, $v(R_0) \to 0$ as $R_0 \to 0$. Letting $R_0 \to 0$ in (3.14) and using (3.15), we obtain

(3.16)
$$\eta(r) \leq C\left\{r^{\chi_{-}}\int_{0}^{r}\eta(s)^{p}s^{-1-\chi_{-}}ds + r^{\chi_{+}}\int_{r}^{R}\eta(s)^{p}s^{-1-\chi_{+}}ds + \nu(R)R^{-\chi_{+}}r^{\chi_{+}}\right\},$$

 $r \leq R/2.$

We wish to eliminate the first term in the right-hand member of (3.16). To do so, we introduce

$$\Psi(r) = \begin{cases} \sup_{\substack{0 \leq t \leq r \\ \Psi(R), \\ \end{array}} \eta(t), & r \leq R, \\ \Psi(R), & r \geq R. \end{cases}$$

Then the sum of the two terms containing integrals in (3.16) is dominated by

$$r^{\chi_{-}} \int_{0}^{r} \Psi(s)^{p} s^{-1-\chi_{-}} ds + r^{\chi_{+}} \int_{r}^{\infty} \Psi(s)^{p} s^{-1-\chi_{+}} ds$$
$$= \int_{0}^{1} \Psi(rs)^{p} s^{-1-\chi_{-}} ds + \int_{1}^{\infty} \Psi(rs)^{p} s^{-1-\chi_{+}} ds,$$

which is an increasing function of r. From (3.16), we then deduce that

$$\Psi(r) \leq C \left\{ r^{\chi_{-}} \int_{0}^{r} \Psi(s)^{p} s^{-1-\chi_{-}} ds + r^{\chi_{+}} \int_{r}^{\infty} \Psi(s)^{p} s^{-1-\chi_{+}} ds + c_{1} r^{\chi_{+}} \right\}$$

where $c_1 = v(R) R^{-\chi_+}$.

Since $\Psi(r) \rightarrow 0$ as $r \rightarrow 0$, there exists R_1 such that

$$C |\chi_{-}|^{-1} \Psi(R_{1})^{p-1} < \frac{1}{2},$$

$$Cr^{\chi_{-}} \int_{0}^{r} \Psi(s)^{p} s^{-1-\chi_{-}} ds \leq \frac{1}{2} \Psi(r), \quad 0 < r < R_{1}.$$

Thus, if $R = 2R_1$, we see that

(3.17)
$$\Psi(r) \leq 2Cr^{\chi_+} \left\{ \int_r^\infty \Psi(s)^p \, s^{-1-\chi_+} \, ds + c_1 \right\}.$$

Let $H(r) = \int_{r}^{\infty} \Psi(s)^{p} s^{-1-\chi_{+}} ds + c_{1}$. Since $H'(r) = -\Psi(r)^{p} r^{-1-\chi_{+}}$, it follows

from (3.17) that

$$-H'(r) H(r)^{-p} \leq Cr^{\chi_+(p-1)-1}.$$

Integrating this inequality from 0 to r, we obtain

$$H(r)^{1-p} - H(0)^{1-p} \leq \frac{Cr^{\chi_+(p-1)}}{\chi_+}.$$

If $H(0) = \infty$, it follows that

$$0 < c \leq H(r) r^{\chi_+}, \quad r \leq R_1.$$

On the other hand,

$$r^{\chi_+}H(r)=r^{\chi_+}\left\{\int_r^{\infty}\Psi(s)^p\,s^{-1-\chi_+}\,ds+c_1\right\}\to 0,\quad r\to 0.$$

The contradiction shows that H(0) is finite. We now use (3.17) to conclude that

$$\eta(r) \leq r^{\chi_+} \, 2CH(0), \quad r \leq R_1.$$

This implies that

$$M(r) = r^{-(\sigma+2)/(p-1)} \eta(r) \leq c_2 r^{\gamma_+}$$

for all sufficiently small r. The first estimate is now a consequence of this result and Corollary 2.6.

In order to prove the second statement, we apply assertion (i) to the transformed problem (1.1'), (1.2') (we note that $|y|^{-\gamma_+} v(y) = |x|^{-\gamma_-} u(x)$ (cf. Section 2.1)).

Remarks.

- (1) Part (i) or (ii), respectively, of Theorem 3.3 depends only on the behaviour of u in $\mathscr{C} \cap \{|x| \leq R\}$ or $\mathscr{C} \cap \{|x| \geq R\}$ and is not affected by the behaviour of u in the complementary part of the cone \mathscr{C} .
- (2) A related result can be obtained from [KKO] for solutions belonging to certain Sobolev spaces. The estimates there do not apply under our assumptions.

Corollary 3.4. Let u be a positive solution of (1.1), (1.2).

- (i) If u is regular and if in addition $\sigma \ge -2$, we have $M(r) \approx r^{\gamma_+}$ as $r \to 0$.
- (ii) If u is regular at infinity and if in addition $p(N-2) \ge \sigma + N$, we have $M(r) \approx r^{\nu}$ as $r \rightarrow \infty$.

Proof. If u is a regular solution, then by definition u is continuous in $\mathscr{C} \cap \{|x| < R_0\}$ and hence $M(r) \to 0$ as $r \to 0$. Thus the first assertion follows from Theorem 3.3 (i).

If u is regular at infinity, then the transformed function v is regular at the origin (cf. (1.3)) and satisfies (1.1'), (1.2'). Assertion (i) applied to v yields

$$\max_{|y|=r} v(y) \approx |y|^{\gamma_+} \quad \text{as } y \to 0.$$

Since $|y|^{-\gamma_{+}} v(y) = |x|^{-\gamma_{-}} u(x)$, we obtain (ii).

Remarks.

- (1) A solution of the form $u(r, \theta) = r^{-(\sigma+2)/(p-1)} \alpha(\theta)$, considered in (2.13), is regular if $\sigma < -2$. It is regular at infinity if $p(N-2) > \sigma + N$.
- (2) The most regular solutions at zero (infinity) which problem (1.1), (1.2) can admit behave like $u \approx r^{\nu_+}$ as $r \to 0$ ($u \approx r^{\nu_-}$ as $r \to \infty$).

Corollary 3.5. Let u > 0 satisfy (1.1), (1.2). (i) If $u = O(r^{\gamma_+})$ as $r \to 0$, then $|\nabla u| = O(r^{\gamma_+-1})$ as $r \to 0$. (ii) If $u = O(r^{\gamma_-})$ as $r \to \infty$, then $|\nabla u| = O(r^{\gamma_--1})$ as $r \to \infty$.

Proof. We follow an argument found in [GS, To]. Let u be a regular solution and let

$$v(x) := \varepsilon^{\nu} u(\varepsilon x), \quad \nu = -(2 + \sigma + \gamma_{+}p),$$

which satisfy the equation

$$(3.18) \qquad \Delta v + \varepsilon^{v+\sigma+2} |x|^{\sigma} u(\varepsilon x)^{p} = 0 \quad \text{in } \mathscr{C}, \quad v = 0 \quad \text{on } \partial \mathscr{C}.$$

By our assumption on u, we have

(3.19)
$$\varepsilon^{\nu+\sigma+2} u(\varepsilon x)^p \leq c$$

for all $\varepsilon \in (0, 1)$ and $|x| \leq R_0$.

Let us consider (3.18) in the domain $\Pi = \mathscr{C} \cap \{r_0/2 < |x| < 2r_0\}$, where $2r_0 < R_0$. If $|x| = r_0/2$ or $|x| = 2r_0$, we know that $v(x) \leq C\varepsilon^{\nu+\gamma} + r_0^{\gamma+1}$.

Let h be harmonic in Π and such that h = v on $\partial \Pi$. In a standard way (cf. [Wi]) we prove that

$$|\nabla h(x)| \leq C \varepsilon^{\nu+\gamma} r_0^{\gamma+-1}, \quad |x| = r_0.$$

The function w := v - h is a solution of (3.18) and vanishes on $\partial \Pi$. Since the known term $\varepsilon^{v+\sigma+2}u(\varepsilon x)^p$ is uniformly bounded in Π for all $\varepsilon \in (0, 1)$, regularity theory tells us that $|\nabla w|$ is uniformly bounded on $|x| = r_0$. Hence

 $(\varepsilon r_0)^{\nu+1} |\nabla u(\varepsilon x)| \leq r_0^{\nu+1} |\nabla v(x)| \leq C(\varepsilon^{\nu+\gamma+r}r^{\nu+\gamma+}+r_0^{\nu+1})$

which proves assertion (i).

The second assertion is obtained by applying (i) to the transformed problem (1.1'), (1.2').

Remark. The above method applies also to higher derivatives.

Finally, we discuss the asymptotic behaviour of the very regular solutions.

Corollary 3.6. Let u be a positive solution of (1.1), (1.2) and let ψ be as in (2.1). (i) If $u = O(r^{\gamma_+})$ as $r \to 0$, then $\lim_{r \to 0} r^{-\gamma_+}u(r, \theta) = \|\psi\|_2^{-2} \psi(\theta) w_0^+$; the convergence is uniform in θ .

(ii) If $u = O(r^{\gamma})$ as $r \to \infty$, then $\lim_{r \to \infty} r^{-\gamma} - u(r, \theta) = ||\psi||_2^{-2} \psi(\theta) w_{\infty}^-$ uniformly in θ .

Remark. We recall that (cf. Section 2)

$$w_0^+ = \lim_{r \to 0} w_+(r) = \lim_{r \to 0} r^{-\gamma} \tilde{u}(r),$$
$$w_\infty^- = \lim_{r \to \infty} w_-(r) = \lim_{r \to \infty} r^{-\gamma} \tilde{u}(r).$$

Proof. Let $K_R(x, y)$ be Green's function in $\mathcal{D}(0, R) = \mathscr{C} \cap \{0 < |x| < R\}$. Consider the function

$$v(x) := \int_{\mathscr{D}(0,R)} K_R(x, y) |y|^{\sigma} u(y)^p dy,$$

which is a solution of

$$\Delta v + r^{\sigma} u^p = 0$$

in $\mathcal{D}(0, R)$ vanishing on $\partial \mathcal{D}(0, R)$. By our assumption, $M(r) \leq cr^{\gamma_+}$, $0 < r \leq 1$. Since $K_R(x, y) \leq K(x, y)$, we can deduce the following estimate from Lemma 3.2.

(3.20)
$$v(x) \leq c_1 r^{\gamma_+} (r^{\mu} + R^{\mu}), \quad 0 < r < R \leq 1, \quad \mu = \sigma + 2 + \gamma_+ (p-1) > 0.$$

The function u - v is harmonic in $\mathcal{D}(0, R)$, vanishes on \mathscr{C} and coincides with u(x) on $\{|x| = R\} \cap \mathscr{C}$. We conclude that

$$u(x) - v(x) = \int_{\Omega} \frac{\partial}{\partial n_y} K_R(x, R\theta_y) u(R, \theta) R^{N-1} d\theta_y, \quad x \in \mathcal{D}(0, R).$$

From Bouligand's formula (3.2), we deduce that

$$\lim_{r\to 0} r^{-\gamma_+} \frac{\partial}{\partial n_y} K_R(x, R\theta_y) = c_2 \psi(\theta_x) \psi(\theta_y) R^{\gamma_- - 1}$$

uniformly in θ_x and θ_y . Consequently, if $\theta = \theta_x$, then

$$\limsup_{r\to 0} |r^{-\gamma_+}u(r,\theta) - c_2\psi(\theta) R^{N-2+\gamma_-}\tilde{u}(R)| \leq c_1 R^{\mu_-}$$

uniformly in θ . We note that $\gamma_+ + \gamma_- = 2 - N$.

Choosing R arbitrarily small, we obtain

$$\lim_{n\to\infty} r^{-\gamma_+} u(r,\theta) = c_2 \psi(\theta) w_0^+.$$

To determine c_2 , we multiply this equation by $\psi(\theta)$ and integrate the resulting expression over Ω . This proves the first part of Corollary 3.6.

Again applying a Kelvin transformation, we deduce the second part of Corollary 3.6.

Remark. Some of these results are also true for solutions of the equation

(1.1")
$$\Delta u + r^{\sigma} |u|^{p-1} u = 0, \quad \sigma \in \mathbb{R}, p > 1$$

with Dirichlet boundary conditions on $\partial \mathcal{C} \setminus \{0\}$. If *u* is a nontrivial solution of this problem, we introduce

$$M_+(r) = \sup u_+(y)$$
 for $|y| = r$,
 $M(r) = \sup |u(y)|$ for $|y| = r$,

where $u_{+} = \max(u, 0)$ and we define u to be zero outside \mathscr{C} . The proof of Theorem 3.3 will also give us the following result.

Theorem 3.3'. Assume that there exists a nontrivial solution u of (1.1'') with Dirichlet boundary conditions on $\partial \mathcal{C} \setminus \{0\}$.

(i) If $M_{+}(r) r^{(\sigma+2)/(p-1)} \to 0$ as $r \to 0$, then there is a positive constant c such that

 $M_+(r) \leq cr^{\gamma_+}$ for all $r \leq r_0$.

(ii) If $M(r) r^{(\sigma+2)/(p-1)} \to 0$ as $r \to 0$, then there is a positive constant c such that

 $M(r) \leq cr^{\gamma_+}$ for all $r \leq r_0$.

There are analogous results at infinity.

Clearly, Corollary 3.5 also holds for solutions of (1.1'').

Let us assume that u is a solution of (1.1'') with Dirichlet boundary conditions on $\partial \mathscr{C} \setminus \{0\}$ and that M(r) is defined as above. If $M(r) = O(r^{\nu_+})$ as $r \to 0$, the same argument as in the proof of Corollary 3.6 shows that

$$\limsup_{r\to 0} |r^{-\gamma} u(r,\theta) - c_2 \varphi(\theta) R^{-\gamma} \widetilde{u}(R)| \leq c_1 R^{\mu}$$

where $\tilde{u}(R)$ is defined as in Section 2. (This time, however, u is not necessarily non-negative). Hence

$$|(R^{-\gamma_+}\widetilde{u}(R)-R_1^{-\gamma_+}\widetilde{u}(R)) c_2| \leq c_1(R^{\mu}+R_1^{\mu}).$$

Letting R and $R_1 \to 0$, we conclude that $\lim_{R \to 0} R^{-\gamma} + \tilde{u}(R) = w_0^+$ exists and that uniformly in θ ,

$$\lim_{r\to 0} r^{-\gamma_+} u(r, \theta) = \|\psi\|_2^{-2} \psi(\theta) w_0^+.$$

There are analogous results at infinity (to be compared to Corollaries 2.2 and 3.6).

4. Consequences

4.1. We start with a non-existence result based on a Pohožaev-type identity introduced by ESTEBAN & LIONS [EL] and developed by PUCCI & SERRIN [PS] for domains which are starshaped. (A domain Π is starshaped if there exists a point $x_0 \in \Pi$ such that the line-segment $\overline{x_0x}$ is contained in Π when $x \in \Pi$.)

From Theorem 2.3, it is known that a necessary condition for the existence of a positive solution of (1.1), (1.2) is that

$$(4.1) \qquad \qquad -\gamma_+ < \frac{\sigma+2}{p-1} < -\gamma_-.$$

Theorem 4.1. Assume that (4.1) holds and that

(4.2)
$$\sigma + \frac{1}{2}N(p-1) - (p+1).$$

Then the problem (1.1), (1.2) has no positive solutions such that

(4.3)
$$M(r) r^{(\sigma+2)/(p-1)} \to 0, \quad r \to 0, r \to \infty.$$

Proof. Suppose such a solution u exists. We wish to apply the Pucci-Serrin identity in the domain $\mathscr{D}' = \mathscr{D}(R_0, R)$ (cf. Section 3). However, \mathscr{D}' is not necessarily starshaped and u does not vanish on $\partial \mathscr{D}' \cap \mathscr{C}$. Therefore, we have to modify the arguments in [PS]. Choosing h(x) = x and a to be constant, Proposition 1 in [PS] gives in our case that

(4.4)
$$\frac{\partial}{\partial x_i} \left\{ x_i \mathscr{F}(x, u, \nabla u) - x_j \frac{\partial u}{\partial x_j} \frac{\partial u}{\partial x_i} - au \frac{\partial u}{\partial x_i} \right\}$$
$$= N \mathscr{F}(x, u, \nabla u) - |x|^{\sigma} u^{1+p} (\sigma(1+p)^{-1} - a) - (1+a) |\nabla u|^2,$$

where repeated indices i and j are understood to be summed from 1 to N and

$$\mathscr{F}(x, u, q) = \frac{1}{2} |q|^2 - |x|^{\sigma} u^{p+1} (p+1)^{-1}.$$

We apply the divergence theorem to (4.4). If n is the outer normal, it says that

$$\int_{\mathscr{D}'} \operatorname{div} v \, dx = \int_{\partial \mathscr{D}'} v \cdot n \, ds.$$

Emden Equations

On $\partial \mathscr{D}' \cap \partial \mathscr{C}$, we know that *u* vanishes and we can use arguments from [PS]. Since $x \cdot n = 0$ on $\partial \mathscr{C}$, there is no contribution from this part of the boundary in the final formula. $\partial \mathscr{D}' \cap \mathscr{C}$ is the union of $\mathscr{C} \cap \{|x| = R_0\}$ and $\mathscr{C} \cap \{|x| = R$. Since we have (4.3), we can use the estimates from Theorem 3.3 and Corollary 3.5, which say that

$$M(r) = O(r^{\gamma_+}), \quad r \to 0; \quad |\nabla u| = O(r^{\gamma_+ - 1}), \quad r \to 0;$$
$$M(R) = O(R^{\gamma_-}), \quad R \to \infty; \quad |\nabla u| = O(R^{\gamma_- - 1}), \quad R \to \infty.$$

A computation shows that when $R_0 \to 0$ and $R \to \infty$, the contributions from $\partial \mathscr{D}' \cap \mathscr{C}$ tend to 0. Here (4.1) is crucial: in fact we have

$$\begin{aligned} \sigma + N + (p-1)\gamma_{+} + 2\gamma_{+} > N - 2 + 2\gamma_{+} > 0, \\ \sigma + N + (p-1)\gamma_{-} + 2\gamma_{-} < N - 2 + 2\gamma_{-} < 0, \end{aligned}$$

which is what is needed for these conclusions to hold.

Assuming that the integral is defined, we obtain

$$\int_{\mathscr{C}} (|\nabla u|^2 (\frac{1}{2} (N-2) - a) - |x|^{\sigma} u^{p+1} ((N+\sigma) (p+1)^{-1} - a)) \, dx = 0.$$

For $a = \frac{1}{2}(N-2)$, it is clear that the integral is defined. If (4.2) holds, then the coefficient in the second term is non-vanishing, and thus *u* must be identically zero. We have proved Theorem 4.1.

Remark. The case $\sigma = \frac{1}{2}N(p-1) - (p+1)$ or equivalently $p = (N+2 + 2\sigma)/(N-2)$ is special. If $\mathscr{C} = \mathbb{R}^N$, ground-state solutions of the form

$$u(r) = \left\{ \lambda \sqrt{(N+\sigma)(N-2)} / (\lambda^2 + r^{2+\sigma}) \right\}^{(N-2)/(\sigma+2)}$$

exist, which for $\sigma > -2$ obviously satisfy (4.3).

4.2. We now investigate the asymptotic behaviour of solutions which are not regular at zero or at infinity and which satisfy

(4.5) $r^{(\sigma+2)/(p-1)}u(x) \leq c \quad \text{for } r \leq r_0 \quad (r \geq R).$

Lemma 4.2. Assume that u is a positive solution of (1.1), (1.2), that

$$N-2-2\delta < 0$$
, where $\delta = (\sigma + 2)/(p-1)$

and that (4.5) holds for $r \to 0$. Then for any sequence $\{r_n\}$ tending to 0, there exists a subsequence $\{r_n\}$ such that

$$\lim_{j\to\infty}r_{n_j}^{(\sigma+2)/(p-1)}u(x)=\alpha(\theta)\quad in\ \mathcal{D}'(\Omega).$$

where α is a nonnegative solution of (2.14). For sequences tending to infinity, the analogous conclusion holds if

$$N-2-2\delta>0.$$

Remarks.

- (1) $N 2 2\delta \neq 0$ is equivalent to (4.2).
- (2) If $\limsup_{n \to \infty} r_n^{\delta} M(r_n) > 0$, the subsequence can be chosen in such a way that α will be a positive solution of (2.14).

Proof. We give the details for sequences tending to zero. Let $u = r^{-(\sigma+2)/(p-1)}v$. Then v satisfies

(4.6)
$$v_{rr} + r^{-1}(N-1-2\delta) v_r + r^{-2} \Delta_{\theta} v - r^{-2} \delta(N-2-\delta) v + r^{-2} v^p = 0.$$

With the change of variable $t = \gamma \log r$, we obtain

$$(4.7) \qquad \gamma^2 v_{tt} + \gamma v_t (N-2-2\delta) + \bigtriangleup_{\theta} v - \delta (N-2-\delta) v + v^p = 0.$$

We choose $\gamma = -(N-2-2\delta) \neq 0$ and obtain

(4.8)
$$\gamma^2(v_{tt}-v_t)+\Delta_0 v-\delta(N-2-\delta)v+v^p=0.$$

Multiplying (4.8) by v_t and integrating the resulting expression over Ω , we get

(4.9)
$$\frac{dE(t)}{dt} = \gamma^2 \int_{\Omega} v_t^2 \, d\theta,$$

where

$$E(t) := \frac{1}{2}\gamma^2 \int_{\Omega} v_t^2 d\theta - \frac{1}{2} \int_{\Omega} |\nabla_{\theta} v|^2 d\theta - \frac{1}{2} \delta(N - 2 - \delta) \int_{\Omega} v^2 d\theta + (p+1)^{-1} \int_{\Omega} v^{p+1} d\theta.$$

Thus, for t < 0,

(4.10)
$$E(0) - E(t) = \gamma^2 \int_t^0 \int_{\Omega} v_t^2 d\theta d\tau =: \varphi(t).$$

Since E(t) is increasing, $\varphi(t)$ is decreasing. Furthermore, we have

(4.11)
$$\varphi'(t) - 2\varphi(t) = -E_1(t),$$

where

$$E_1(t) = \int_{\Omega} |\nabla_{\theta} v|^2 d\theta + \delta(N-2-\delta) \int_{\Omega} v^2 d\theta - 2(p+1)^{-1} \int_{\Omega} v^{p+1} d\theta + 2E(0).$$

The same argument as in the proof of Corollaray 3.5 gives

Lemma 4.3. If v is uniformly bounded as $r \to 0(\infty)$, then all its derivatives with respect to t and θ are uniformly bounded for associated values of t (the relation depends on the sign of γ).

Hence E_1 is uniformly bounded on $(-\infty, 0)$ and we have

(4.12)
$$\varphi(t) = \int_{t}^{0} e^{2(t-\tau)} E_{1}(\tau) d\tau, \quad t < 0.$$

Thus φ is uniformly bounded and we have proved

Lemma 4.4. If (4.5) holds, then

(4.13)
$$\int_{-\infty}^{0} \int_{\Omega} v_t^2 d\theta d\tau < \infty.$$

From (4.11), we see that

$$\varphi'(t) = 2\varphi(t) - E_1(t) = 2\varphi(-\infty) + \varepsilon(t) - E_1(t)$$

where $\varepsilon(t) \to 0$, $t \to -\infty$, and $E_1 \in \text{Lip}(-\infty, 0)$ (cf. Lemma 4.3). If $\limsup |\varphi'(t)| > 0$, (4.13) must be false. We conclude that

 $\lim_{t \to -\infty} \sup_{t \to -\infty} |\varphi(t)| > 0, \quad (110)$

(4.14)
$$\int_{\Omega} v_t^2 \, d\theta \to 0, \quad t \to -\infty.$$

Integrating (4.8) with respect to t, we obtain

$$e^t v_t(0, \theta) - v_t(t, \theta) + \int_t^0 e^{t-\tau} V(\tau, \theta) d\tau = 0, \quad t < 0$$

where

$$V(t, \theta) = \gamma^{-2}(\triangle_{\theta}v - \delta(N - 2 - \delta)v + v^{p}).$$

For $\eta \in C_0^{\infty}(\Omega)$ and for $f(t) = \int_{\Omega} V(t, \theta) \eta(\theta) d\theta$, we get

$$\int_{\Omega} v_t(t,\theta) \eta(\theta) d\theta = e^t \int_{\Omega} v_t(0,\theta) \eta(\theta) d\theta + \int_t^0 e^{t-\tau} f(\tau) d\tau.$$

From (4.14), we see that $v(t, \cdot) \to 0$ in $\mathscr{D}'(\Omega)$ as $t \to -\infty$. Hence

(4.15)
$$\int_{t}^{0} e^{t-\tau} f(\tau) d\tau \to 0, \quad t \to -\infty.$$

According to Lemma 4.3, f and f' are uniformly bounded on $(-\infty, 0)$. If

$$g(t) = \begin{cases} e^t, & t < 0, \\ 0, & t > 0, \end{cases} \qquad F(t) = \begin{cases} f(t), & t < 0, \\ 0, & t > 0, \end{cases}$$

then (4.15) says that $F * g(t) \to 0$ as $t \to -\infty$. According to Pitt's form of Wiener's theorem (cf. Theorem 10a, p. 211 in [W]), it follows that $F(t) \to 0$ as $t \to -\infty$, *i.e.*,

(4.16)
$$\int_{\Omega} \left(\bigtriangleup_{\theta} v - \delta (N - 2 - \delta) v + v^{p} \right) \left(\theta \right) \eta(\theta) \ d\theta \ \rightarrow \ 0, \quad t \rightarrow -\infty.$$

We can now go back to the variable r. If $\{r_n\}$ is a sequence tending to zero, and if $v_n(\theta) = v(r_n, \theta)$, it follows from Ascoli's theorem that $\{v_n\}$ has a subsequence $\{v_{n_j}\}$ which is uniformly convergent on compact subsets of Ω as $j \to \infty$ and $r_{n_j} \to 0$. If $v_n \to \alpha$, then the function α is a weak solution of (2.14) and thus a classical solution. If in particular $\limsup_{n \to \infty} M(r_n, v) > 0$, we can choose the subsequence in such a way that α is not the trivial solution. (In this step, we also use Lemma 4.3).

Remark. By choosing another subsequence, we can assume that both $\{v_n\}$ and $\{\triangle_{\theta}v_n\}$ are uniformly convergent on compact subsets of Ω . Letting $t \to -\infty$ in (4.10),

we see that

$$\frac{1}{2} \int_{\Omega} |\nabla_{\theta} \alpha|^2 d\theta + \frac{1}{2} \delta(N - 2 - \delta) \int_{\Omega} \alpha^2 d\theta - (p+1)^{-1} \int_{\Omega} \alpha^{p+1} d\theta$$
$$= \gamma^2 \int_{-\infty}^{0} \int_{\Omega} v_t^2 d\theta dt - E(0),$$

and that the integral in the left-hand member is independent of the choice of the subsequence $\{r_{n_i}\}$.

Remark. It remains to treat the case $\gamma = N - 2 - 2\delta = 0$. With the change of variables $t = \log r$, (4.6) becomes

(4.8')
$$v_{tt} + \Delta_{\theta} v - (p+1)^{-1} v^p = 0$$

The analogue of (4.9) is

(4.9')

$$\frac{d}{dt}\left(\frac{1}{2}\int\limits_{\Omega}v_t^2\ d\theta-\left(\frac{1}{2}\int\limits_{\Omega}|\nabla_{\theta}v|^2\ d\theta+\frac{1}{2}\int\limits_{\Omega}\delta^2v^2\ d\theta-(p+1)^{-1}\int\limits_{\Omega}v^{p+1}\ d\theta\right)\right)=0.$$

It is easy to see that in a bounded domain, solutions of (1.1), (1.2) cannot be ordered. The question is open whether this statement is true in cones. It has been proved in [BL] that for $\sigma = 0$ and p < (N+2)/(N-2), no regular solution *u* lies under any singular solution u_s of the type $r^{-2/(p-1)} \alpha(\theta)$. Let us add some supplementary remarks.

Lemma 4.5. Let $u_s = r^{-(\sigma+2)/(p-1)} \alpha_1(\theta)$ and $v_s = r^{-(\sigma+2)/(p-1)} \alpha_2(\theta)$ be two singular solutions of (1.1), (1.2). If $u_s \leq v_s$ in \mathcal{C} , then $u_s \equiv v_s$.

Proof. The positive difference $d(\theta) = \alpha_2(\theta) - \alpha_1(\theta)$ satisfies the differential inequality

(4.17)
$$\Delta_{\theta} d - \frac{\sigma+2}{p-1} \left(N - 2 - \frac{\sigma+2}{p-1} \right) d + p \alpha_1^{p-1} d \leq 0.$$

From this, it follows that

(4.18)
$$0 = \int_{\Omega} (\alpha_1 \bigtriangleup_{\theta} d - d\bigtriangleup_{\theta} \alpha_1) d\theta \leq (1-p) \int_{\Omega} d\alpha_1^p d\theta \leq 0$$

Equality holds only for $d \equiv 0$, which proves the assertion.

This proof together with Lemma 4.2 implies

Lemma 4.6. Let u and v be two solutions which are not regular at infinity but which satisfy (4.5) for all $r \ge R$. If

$$\limsup_{r\to\infty}\frac{u(x)}{v(x]}\leq 1,$$

then

$$\limsup_{r \to \infty} \frac{u(x)}{v(x)} = 1$$

in the sense of Lemma 4.2.

The next result extends the result in [BL, Theorem 6.1] on the non-existence of stationary solutions under singular solutions.

Theorem 4.7. Let U be a positive solution of (1.1), (1.2) satisfying

 $r^{\delta}U(x) \leq c, \quad x \in \mathscr{C}$

where $\delta = (\sigma + 2)/(p - 1)$.

- (i) Assume that $N 2 2\delta < 0$. Then there is no nontrivial regular solution u with $u \leq U$.
- (ii) Assume that $N-2-2\delta > 0$. Then there is no nontrivial solution u regular at infinity with $u \leq U$.

Proof. We give here a proof completely different from that in [BL, Theorem 6.1]. (i) Suppose that a regular solution $u \leq U$ exists. Then V = U - u satisfies:

$$\Delta V + pr^{\sigma} u^{p-1} V \leq 0, \quad x \in \mathscr{C}.$$

This together with Green's identity yields

$$\int_{\mathscr{D}'} \left(u \frac{\partial V}{\partial n} - V \frac{\partial u}{\partial n} \right) ds = \int_{\mathscr{D}'} \left(u \, \triangle V - V \, \triangle u \right) dx \leq (1-p) \int_{\mathscr{D}'} r^{\sigma} u^{p} V \, dx \, .$$

If we choose $\mathscr{D}' = \mathscr{D}(R_0, R)$ (cf. Section 3.1), then, since u and V vanish on $\partial \mathscr{D}' \cap \partial \mathscr{C}$,

(4.19)
$$\int_{\Gamma_0 \cup \Gamma} \left(u \frac{\partial V}{\partial n} - V \frac{\partial u}{\partial n} \right) ds \leq (1-p) \int_{\mathscr{D}'} r^{\sigma} u^p \, \delta \, dx$$

where $\Gamma_0 = \partial \mathscr{D}' \cap \{ |x| = R_0 \}$ and $\Gamma = \partial \mathscr{D}' \cap \{ |x| = R \}$. From Corollary 3.5, we know that $r^{-\gamma_+} u(x)$ and $r^{1-\gamma_+} |\nabla u|$ are bounded as $x \to 0$.

We assert that it follows from our assumptions on U and u that $r^{1+\delta} |\nabla V|$, $r^{\delta}u(x)$ and $r^{1+\delta} |\nabla u|$ are uniformly bounded for $0 < r < \infty$. To see this, we use the arguments in the proof of Corollary 3.5 with $v = -\sigma - 2 + p \delta$. Consequently, using (4.1), we see that

(4.20)
$$\left| \int_{\Gamma_0} \left(u \frac{\partial V}{\partial n} - V \frac{\partial u}{\partial n} \right) ds \right| \leq c R^{N-2+\gamma_+-\delta} = c R^{-\gamma_--\delta} \to 0, \quad R_0 \to 0,$$

(4.21)
$$\left| \int_{\Gamma} \left(u \frac{\partial V}{\partial n} - V \frac{\partial u}{\partial n} \right) ds \right| \leq c R^{N-2-2\delta} \to 0, \quad R \to \infty.$$

Inserting (4.20) and (4.21) into (4.19), we get a contradiction.

The proof of (ii) is similar and we omit the details.

C. BANDLE & M. Essén

Note added in proof. The case $\sigma = \frac{1}{2}N(p-1) - (p+1)$ which was left open in Theorem 4.1, has recently been studied by H. EGNELL "Positive solutions of semilinear equations in cones" (to appear). Existence and nonexistence of solutions depend on σ and the shape of Ω .

References

- [A] V. S. AZARIN, Generalization of a theorem of Hayman on subharmonic functions in an n-dimensional cone, AMS Transl. (2) 80 (1969), 119–138. Math. USSR Sb. 66 (108), (1965), 248–264.
- [BL] C. BANDLE & H. A. LEVINE, On the existence and nonexistence of global solutions of reaction diffusion equations in sectorial domains, Trans. Amer. Math. Soc. 314 (1989), 595–622.
- [BM] C. BANDLE & M. MARCUS, On the structure of the positive radial solutions for a class of nonlinear elliptic equations, J. reine angew. Math. (Crelle) **401** (1989)25–59.
- [B] G. BOULIGAND, Sur les fonctions de Green et de Neumann du cylindre, Bull. Soc. Math. France 42 (1914), 168-242.
- [ELe] M. Essén & J. L. LEWIS, The generalized Ahlfors-Heins theorem in certain d-dimensional cones, Math. Scand. 33 (1973), 113–129.
- [EL] M. J. ESTEBAN & P. L. LIONS, Existence and non-existence results for semilinear elliptic problems in unbounded domains, Proc. Royal Soc. Edinburgh 93 A (1982), 1–14.
- [GS] B. GIDAS & J. SPRUCK, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math. 34 (1981), 525-598.
- [KKO] V. A. KONDRATEV, I. KOPSCHEK & O. A. OLEINIK, On the best Hölder exponents for generalized solutions of the Dirichlet problem for a second order elliptic equation, Math. USSR Sb. 59 (1988), 113-127.
- [LF] J. LELONG-FERRAND, Etudes des fonctions surharmoniques positives dans un cylindre ou dans un cône, C. R. Acad. Sciences (Paris) 229 (1949), 340-341.
- [PS] P. PUCCI & J. SERRIN, A general variational identity, Indiana Univ. Math. J. 35 (1986), 681–703.
- [To] P. TOLKSDORF, On the Dirichlet problems for quasilinear equations in domains with conical boundary points, Comm. Part. Diff. Equ. 8 (7) (1983), 773-817.
 [Windows The Lordson Transform Princeton (1941)]
- [W] D. V. WIDDER, The Laplace Transform, Princeton (1941).
- [Wi] K.-O. WIDMAN, Inequalities for the Green function and boundary continuity of the gradient of solutions of elliptic differential equations, Math. Scand. 21 (1976), 17–37.
- [Wo] J. S. W. Wong, On the generalized Emden-Fowler equation, SIAM Review 17 (1975), 339-360.

Mathematisches Institut Universität Basel Switzerland

and

Department of Mathematics Uppsala University Sweden

(Received January 2, 1990)