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On Positive Solutions of Emden Equations 
in Cone-like Domains 

CATHERINE BANDLE & MATTS ESSI~N 

Communicated by J. SERRIN 

1. Introduction 

Let x = ( x l , . . . , x , )  be a typical point in R N and denote by (r, 0), 
0 E S N - I : =  {x: Ix] = 1}, r = Ixl, its polar coordinates. Let D be a domain on 
the unit sphere S N- 1 with a boundary OD of class C z. We define a cone in R N to 
be a set of the type 

, '  = {x: rE R+, 0E 

In this paper we study the positive solutions of the generalized Emden equation 

(1.1) Auq- r~uP=O in r a E R ,  p >  1 

satisfying Dirichlet boundary conditions 

(1.2) u = 0 on beg _ {0}. 

Because of its relevance to physics and its rich mathematical structure the 
Emden equation has attracted the i nterest of many mathematicians, starting with 
Fowler (cf., e.g., the survey of WONa [Wo].) 

The structure of the radially symmetric solutions of (1.1), (1.2) is now com- 
pletely understood [GS, BM]. General positive solutions in R N were studied by 
GIDAS & SPRUCK in a substantial paper [GS]. They were able to determine the 
precise behaviour near isolated singularities and deduce some nonexistence results. 

We say that a solution of our problem is regular if it belongs to C2(~) #1 
C~ k/gcg) and satisfies (1.1) and (1.2). We also consider singular sohttions, 
denoted by u s. They are of class C2((g)/5 CO(Cg k/Ug -- {13}) and discontinuous 
at 0. It is known that for certain ranges o fp  such solutions exist [BL]. In Section 2 
we extend a nonexistence theorem of GIDAS & SPRUCK [GS]. For  a sector, i.e., 
a cone in R 2, it is expressed as follows. 
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Theoreml .1 .  Let  S ( r ) : ( ( r ,  0 ) : r ~ 0 , 0 < 0 < r ~ , r C ( 0 , 2 ] }  be a sector. 
For l < p < : m a x ( 1 - l - ( 2 + a )  r , l - - ( 2 + a ) r } : : p * ,  problem (1.1), (1.2) 
possesses neither regular nor singular solutions besides u ~ O. 

The bound is sharp since for p ~ p* solutions of  the form u - -  r - ( 2+~) / (p -  0o~(0) 
are known to exist [BL]. For  a = 0 this result is already found in [BL]. We give 
a simpler proof, which also includes the non-existence of singular solutions. 

It  should be noticed that if we perform a Kelvin transformation 

x 
( 1 . 3 )  y - -  [ x 1 2  , v ( y )  : ] x [  u - 2  u ( x ) ,  

then (1.1), (1.2) becomes 

(1.1') Av(y) § ] y l -N-2 -~  p : 0 in 

(1.2') v : 0 on 6cg. 

From this observation it follows that every statement concerning the behaviour 
of a solution near zero leads to a statement on its behaviour near infinity. A solu- 
tion of (1.1), (1.2) will be called regular at infinity, if the transformed function v(y) 
is regular at zero, or equivalently if 

(1.4) l im u ( x ) I x ]  N - 2  = 0 .  

In Section 3 we determine the precise asymptotic behaviour of  the solutions 
which are regular at zero or at infinity. For  a sector we get 

Theorem 1.2. I f  u is regular and a ~ --2,  then there exists a positive constant 
Uo such that lira r -~ u(re i~ = Uo sin (0/r) uniformly in O. I f  u is regular at infinity 

r --->-0 
and a <= --2,  then there exists a positive constant u~ such that lim r' u(re ~~ = T "~ Or 

uoo sin (u/Or) uniformly in O. 

In Section 4 we derive a non-existence theorem based on an identity of  PuccI  
& SBRRXN [PS] and on the results of Section 3. We also study the question whether 
solutions can be ordered. 

The following notation will be used throughout this paper. I f  two positive func- 

tions f and g satisfy in X the inequalities c~ < f ( x ) <  c2 for some positive = g ( x )  = 

constants c~ and c2, we shall write f ~  g in X. The letter C stands for generic 
constants depending only on s and N. 

2. Nonexistence result and asymptotic estimates 

2.1. In polar coordinates the Laplace operator has the form 

A=r--~_ 1 rN-1~r +~-A0, 
r 

where A0 is the Beltrami operator on the sphere S N-~. Let ~ ~ 0 be the first 
eigenfunction of  

(2.1) A0~v @ co~v = 0 in .(2, ~v = 0 on ~f2. 
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It is supposed to be normalized such that 

(2.2) f w dO = 1, 
t2 

dO denoting the area element on S N-1. 
If  we multiply (1.1) by % integrate the resulting expression over g2 and use 

Jensen's inequality we get for the "mean value" 

h(r) := f u(r, O) w(O) dO 
D 

the differential inequality 

(D 
(2.3) •rU ~ @ r~{t p < O, F2 U 

where zkr is the radial part of A and co is the lowest eigenvalue of (2.1). Observe 
that 

(D 

(2.4) Zkr r2 

where 

z 0 [ 0 
r - (~-  )__ r e -  (,-- ~] 

er L ~r JJ 
= : L  

V 
13=N- -  1+2~ .  

We note that if x is a given variable and y is defined by (1.3), we have 

u(x) Ix] -~+ = v(y) [y]-'-, u(x) Ix[ "~- = v(y) ]yl -~+. 

2.2. Next we derive an elementary lemma for positive radially symmetric solu- 
tions of 

(2.5) Lv <= 0 for r > 0. 

Lemma 2.1. (i) I f  t3 > 1, then the function w(r) : =  r -a v(r) is decreasing. 
(ii) I f  13 <= 1, then w(r) is an increasing function. 

Proof. From (2.5) we have 

(2.6) rr -<- ~r if r > ~. 

Hence if w'(~) _< 0 for some ~, then w'(r) <= 0 for all r > ~. Suppose that the 
statement (i) is false. Then w'(r) > 0 on an interval (0, rl], which together with 
the positivity of w implies that 

(2.7) lim w(r) = Wo < cx~. 
r-+0 
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From (2.6) we get for r < R < r ~ ,  

r~w'(rO 
w(R) --  w(r) _>_ ~ [r -r --  R-~+I] .  /~-1 

For  r - +  0 the left-hand side is bounded because of (2.7), while the right-hand 
side tends to infinity. This is a contradiction and (i) is thus established. 
(ii) Suppose that w =A 0 does not increase everywhere. Then by (2.6) there exists 
a positive number ~ such that w'(o) < 0 and we have 

w'(r) <= r -~ (~w'(~)) = : - -ar  -~, r >= 

where a~> 0, and 

w(r) <= w(o~) --  a / t -~ dt -+ --  ~ ,  (r -+ cx~). 

Since w is non-negative, this is impossible and we have proved the lemma. 

Let us consider the functions w+(r) : =  r-'/+~t(r) and w_(r) : =  r-~-~(r), 
~(r) being defined in Section 2.1. We note that 

(2.8) /3+ : = N - -  1 + 2 ~ + >  1, /3_ : = N - -  1 + 2 ~ , _ <  1. 

From the previous arguments we obtain 

Corollary 2.2. (i) w+(r) is non-increasing and lim w+(R) = : w + < ~ .  
R - +  o o  

(ii) w_(r) is non-decreasing and lim w_(r) -~ : Wo < c~. 
r---~ 0 

2.3. We shall prove the following non-existence result. 

a + 2 a -t- 2 t s/n- Theorem2.3. I f  p ~ m a x  1 - - ,  1 = : p * ,  no regular o r  
~+ )~- J 

gular positive solutions o f  (1.1), (1.2) exist in c~. 

Proof. Let us assume that our problem has a nontrivial solution u. If  w+ = 
r-Z~(r), where 2 = ~+, it follows from (2.3) and (2.4) with /3 =/3+ = N -  
1 + 27+ that 

R 

(2.9) Raw+(R) ~ ' s ~-z+~+pz = --  r w+(r) q- f w+(s) p ds < O, 0 < r < R .  
r 

By Corollary (2.2)0), w+ is non-increasing, hence 

R 

R~w~(R) + w+(R)P f s ~-~+~+p~ ds =< 0, r < R. 
g 

Letting r - + 0 ,  we see that f l - - ~ . - k a + p 3 . > - - I  and 

(2.10) w+(R) w+(R) -p + CR (z'-l)a+~ ~ O. 
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Integrat ing (2.10) f rom r to R, we obtain 

R 

(2.11) (p - -  1) -1 (w+(r) 1 -P - -  w+(R) 1 -P) + C f sW- as <= o. 
r 

Since the left-hand member  is bounded  as r - +  0, it follows tha t  

(2.12) ( p - -  1) y + + a + 2 ~ 0 .  

I f  w + > 0, the lef t-hand member  in (2.11) is unbounded  as R -+  ~ ,  which 
contradicts  the inequality. We conclude that  w + = 0. 

The  next step is to do the same calculations for  2 = Y -  and  /3 = /3_ .  By 
Corol lary  (2.2)(ii), w_ is non-decreasing,  and  we obtain 

R 

--W'._(r) r ~ -~- w_(r )  p f s e-a+~ ds <= O. 
r 

Lett ing R -+  cx~, we see tha t  /3 - -  2 + a + p2 < - -  1, and  

(2.10a) --w'__(r) w_(r) -p  + Cr (p-1)y-+~+I ~ 0. 

In tegra t ing (2.10a) f rom r to R, we obtain  

R 

(2 .11a)  (p  - -  1 ) - '  (w_(R) ~-p-  w (r)'-P) + C f S (p-1)7-+a+I as ~ O. 
r 

Since the lef t-hand m e m b e r  in (2.11a) is bounded  as R - +  cx~, it follows tha t  

(2.12a) (p - -  1) ~_ + (r + 2 < 0. 

I f  w o > 0, the lef t-hand member  in (2.11 a) is unbounded  as r--> 0, which 
contradicts  the inequality. We conclude that  Wo = 0. 

We have proved  Theorem 2.3 and 

Corol la ry2 .4 .  I f  there exists  a nontrivial regular or singular solution o f  (1.1) 
and (1.2) in (g, then (2.12) and (2.12a) hold and 
(i) l im w+(R) = w + = O, 

R - +  tx~ 

(ii) lin~ w_(R) -~ Wo = O. 

The bounds  in Theorem 2.3 are sharp because if 

{ cx~, N = 2, 3, 

P * < P <  ( N §  1 ) / ( N - - 3 ) ,  N > 3 ,  

there exist solutions of  the fo rm ( e l  [BL]) 

(2.13) u(r, O) -~ r -(~ 0r 

where afrO) satisfies the boundary  value p rob lem 

(2.14) 

~0~ N -  2 - -  o~ + o~ p = 0 in ~ ,  ar = 0 on 0g2. 
p ~ l  p - -  
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Another consequence of (2.11) is stated in 

Corollary 2.5. I f  u is any regular or singular solution o f  (1.1), (1.2), then there 
exist positive constants ro, 1 and c2 such that 

(i) /f  0 < w  + : = l i m w + ( r ) < o o ,  then 
r-->0 

(2.15) fi(r) ~, w + r e+, r --> 0, 

(2.16) ~(r) ~ e~r -(~+2)/(p-1), r ~ ro > O. 

(ii) /f  w0 + = ~ ,  then 

~t(r) ~ czr -(~+2)l(p-1), 0 < r < cx~. 

A result complementary to Corollary 2.5 is given in 

Corollary 2.6. Let u be a regular or singular solution of(1.1), (1.2). Then there exist 
positive constants ca and c2 such that 

(i) fi(r) ~ clr ~+ for all r ~ ro, 
(ii) ~(r) ~ czr ~- for all r ~ R. 

Proof. From (2.4) and (2.5), we have 

13 t w'_(1) ~ r w_(r), 0 < r < 1 

(we note that /3 -----/3_ < 1), and thus by Corollary 2.4(ii) 

(1 --/3)-1 rl-fiw'_(1) ~ w_(r) = r-~-~(r). 

Since --/3 -k 1 -k ~- = - -N  + 2 -- V_ : V+, the first statement is proved. The 
second follows if we apply (i) to the transformed problem (1.1'), (1.2'). 

3. Local behaviour 

3.1. For the arguments of this Section, we shall need Green's function K(x, y) 
for the Laplace operator in the cone cg, satisfying, for fixed y E cg 

(3.1) AxK(x, y) = - -~(x  --  y) ,  

where x E ~ ,  K ( . , y ) = 0  on gc~ and K(x,y)--~O as I x l - > o %  xECg. 
Such a function exists (cf  [B]; further references can be found in [ELe]). 

Moreover, for I x I > l Y [, we have the classical representation formula of BOU- 
LIGANI~ [B]: 

oo [Xlfi n ly[CCn ~Jn(Ox) ~Drn(Oy ) 
(3.2) K(x, Y) ] 1 S',O,n=I ] / (N--  2) 2 + 4~% 

where ]~2] is the Lebesgue measure of D, co n is the n ta eigenvalue of (2.1) and 
~n(O) is the corresponding eigenfunction, normalized with respect to the L =- 
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norm (el [B, LF]). Furthermore, /3~ < 0 < 0~, are roots of t(t -]- N - -  2) -- % 
= 0 .  W e n o t e t h a t  0 q = 7 +  and /3t ----- 7_. If  I x I <  [Yl, theroles o f x a n d y  
in (3.2) are interchanged. 

We shall need several estimates. 

Lemma 3.1. Let e > 0 be  given. Let ~ be denoted by gt. I f  x, y E ~f , then 

(3.3) K(x, y) ~ ~(Ou) ~(Oy) lx[V+ lylr-, O <  ]xl < ( 1 -  e) ly[, 

(3.4) K(x,y)~Tt(Ox)~(Oy)lxlY-ly[ ,+, 0 <  [ y l ( l + e ) < ;  Ix[. 

I f  l x l = r, then 

8 
(3.5) o < ~ g (x ,  y) < c~(Ox) ~(o , )  Ixl,+ -~ lyl" , 

8 
(3.6) 0 <  ---iT g(x, y) < C~(O,) ~'(0,)Ixl ' --~ lyl "+, 

0 <  Ix / < (1 -- e ) ly l ,  

0< lyl(1 +~)<  Ixl. 

The constants of comparison depend also on e. 

Proof. For the first two estimates, we refer to [A, Lemma 1]. Estimates (3.5) and 
(3.6) are consequences of (3.2) and estimates (i)-(iii) in [ELe, Section 4]. 

Let ~(Ro, R)=-~A{Ro<IxI<R}. Green's function K , ( x , y ) i n  the 
domain N(0, R) can be written as K(x, y) -- K(x*, y), where x~ is the reflection 
of x in the sphere {Ixl = R). From Lemma 3.1, we see that 

(3.7) 0 < -~n Kl(x, y) <= CkF(O,) }[J(Oy) Ix I ' - -1  ly l '+ 

for 0 <  ]y] (1 - t - e ) <  Ix[ = R, x, yECg, where n is the inner normal in the 
domain ~(0, R). 

Similarly, if K2(x, y) is Green's function in the domain ~(Ro, cx~), then 

a 
(3.8) O< -~nK2(x, y) <= Cg'(Ox) g'(Oy) Ixl r+-1 lyl y- 

for Ixl=Ro, l x l < ( 1 - e )  lyl, x , y ~ .  

Lemma 3.2. 

f K ( x , y ) d O x < {  Clx[r+ly[y-' 
,, = lx l , - l y l ,+ ,  

if lxl ~ [Yl, 
V tx l~  [yl. 

Proof. Since we have Lemma 3.1, it suffices to estimate K(x,y) in 
/ 1 . . ]  ~ 

We e. nw . t o ase .yt em.ximumpr . 

ciple, we have 
I x -  yi 2 -u  

K(x, y) < . - -  su(x --  y) 
= AN 



326 C. BANDLE & M. ESSI~N 

where A N is the area of S N-1. Since 

f su(x - y) dOx = min (Ix?% lyl) 2-N,  
S N -  1 

it is easy to deduce the lemma in this case. When N = 2, we consider the func- 
tion H ( y ) =  f K ( x , y )  dO x, which is harmonic in ~ n { l Y l <  Ixl} and cg• 

t2 

{ l y [ >  lxl} and is continuous i n ~ .  Since we can control H on the sets c gn  

{[Y[ = ~ } ,  (g/"~ {tY[ = ]X]} and cg/% {]y[ = 2 [ x ] } ,  the lemma is true also 

in this case. 

Let Ko(x, y) be Green's function for the Laplace operator in N(Ro, R), 
where y E N(Ro, R). Then the function 

0Ko 0Ko 
v(y) = u(y) -- f ~ (x, y) u(x) da(x) -- f (x, 

Ix[ = R  Ixl = g o  

vanishes on 8N(Ro, R). Here n represents the inner normal in N(Ro, R) and da(x) 
is the area measure. The Riesz representation formula gives 

(3.9) 
.@(Ro,R) 

The maximum principle implies that 

Ko(x, y) <= K~(x, y), 
and thus that 

8Ko 8K~ 
(3.10) On (x, y) <= ~ (x, y), 

,;(y) - f Ko(x, y) (-A~(x)) dx = f Ko(x, y) (--Au(x)) dx. 
~(Ro,R) 

x, y E ~(Ro, R) 

Ix = R, y E ~(Ro, R). 

In the same way, it follows that 

(3.11) OKo (x, y) < I(,O_._.= (x, y), 
On = On 

Ix = Ro, YE ~(Ro, R). 

Furthermore, we have 

(3.12) Ko(x,y)<=K(x,y), x, yE~(Ro ,  R). 

Let us define u(x) = 0, x ~ ~. Assuming that 2Ro <= tYl <= R/2, we use (3.9), 
(3.10)-(3.12), (3.7) and (3.8) to deduce that 

u(y) <= f K(x, y) Ix V u(xy dx 
~.~(Ro,R) 

+ C{RU- f ~(O~)u(x)dO.[yF -4-R -y+ f ~(O.)u(x)dO~fylV+} �9 
Ix[ = R o  txl = R  
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We define M ( r ) =  sup u(y) for [ y [ =  r. Combining the last inequality 
with Lemma 3.2, we obtain 

(3.13) M(r)  <= C r 7- M(s)  p s ~r+1-3r as ~- 1.7+ f M(s)  p s ~+1 -~+ ds 
R o r 

+ fi(Ro) + fi(R) , 2Ro ~ r ~_ R/2. 

Let Z-~ = (~r -k 2)/(p --  1) + y~. If M(r) = ~(r) r -(~+2)/(p-x) and ~(R) = 
v(R) R -(~+2)/(p-1), it follows from (3.13) that 

(3.14) rl(r ) < C r ~- f W(sy s -~-x- ds + r~+ f W(sy s -~-~+ ds 
R o r 

+ v(Ro) RoZ-r z- + v(R) R-Z+rZ+}, 2Ro ~ r R/2.  

Note that if a solutions to (1.1), (1.2) exists, then Theorem 2.3 implies that 

(3.15) Z - <  0 <  Z+. 

We are now in a position to prove the main results of this section. 

Theorem 3.3. Let  there exist a nontrivial positive solution u o f  (1.1), (1.2). 
(i) I f  M(r)r(~+2)/(P-1)--~ 0 as r -+ O, then there are positive constants cl and 

c2 such that 

clr v+ <= M(r)  <= c2r:~+ for  all r ~ ro. 

(ii) I f  M(r)  r (e+2)/(p-1) ~ 0 as r ~ 0% then there exist positive constants el 
and e2 such that 

clr v- <= M(r)  ~ e2r v- Jbr all r >= ro. 

Proof. By assumption, we have ~/(r) -+ 0 as r -+  0 and consequently, *(Ro) -+ 0 
as Ro--> 0. Letting Ro-> 0 in (3.14) and using (3.15), we obtain 

(3.16) ~(r) ~ C r z- ~](s) p s - l - X -  ds -~ r z+ f w(s)~ s-'-~+ ds + ~(R) R-Z+r z+ , 
0 r 

r ~ R/2.  

We wish to eliminate the first term in the right-hand member of (3.16). To do so, 
we introduce 

sup ~(t), r ~ R, 

~ ( R ) ,  r > R.  
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Then  the sum of  the two terms containing integrals in (3.16) is d o m i n a t e d  by 

rx- f T(s)p s-~-x- ds + rX+ ~(s)P s-l-x+ d~ 
0 r 

1 

= f ~(,'s)" s-2 -~_ ds + ~ W(rs) p ~-' -x+ ds, 
0 1 

which is an increasing funct ion of  r. F r o m  (3.16), we then deduce that  

where el = v(R) R -x+. 
Since ~ ( r ) - -~  0 as r - +  0, there exists R1 such that  

c [z-[- '  ~'(R0 "-~ < ~, 

Crx- f T(s)P s-1-Z-  ds <~17t(r), 0 <  r < R~. 
0 

Thus,  if  R = 2R~, we see tha t  

(7 } (3.17) N(r) <= 2Cr x+ T(s)p s - l - z+ ds 6- cl . 
t g  

Let  H(r) = ? 7J(s) p s - l -z+ ds 6- el. Since H'(r) = - -~(r )  p r -1-'z+, it follows 
r 

f rom (3.17) tha t  
--H'(r)  H(r) -p <= Cr x+(p-1)-I . 

In tegra t ing  this inequali ty f rom 0 to r, we obtain  

H(r )  1 -p  __ H(O) I - p  ____< 

I f  H(O) = cx~ it follows tha t  

0 < c <= H(r) r z+, 
On the other  hand,  

C g X + ( p -  1) 

Z+ 

r < R 1 .  

{; } rZ+H(r) = rZ+ T(s)p s-X-z+ ds 6- cl -+ O, r-+ O. 

The  contradic t ion shows tha t  H(0)  is finite. We now use (3.17) to conclude tha t  

~(r) < r~+ 2CH(0), r < R1. 
This implies tha t  

M(r) = r -(~+2)/(p-I) ~7(r) <= czr 7+. 

for  all sufficiently small r. The  first est imate is now a consequence of  this result 
and Corol lary  2.6. 

In order  to prove  the second statement,  we apply  assert ion (i) to the t rans-  
fo rmed  p rob lem (1.1'), (1.2') (we note tha t  ]y[-~'+v(y)= ]x[ -7-  u(x) (eft Sec- 
t ion 2.1)). 
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Remarks.  
(1) Par t  (i) or (ii), respectively, of  Theorem 3.3 depends only on the behaviour  

of  u in  ~f A {Ixl ~ R} or c~ n {Ixl ~ R} and i s  not  affected by the behaviour  
of  u in the complementary par t  of  the cone c~. 

(2) A related result can be obtained from [KKO] for  solutions belonging to cer- 
tain Sobolev spaces. The estimates there do not  apply under  our  assumptions. 

Corollary 3.4. L e t  u be  a positive solution o f  (1.1), (1.2). 
(i) I f  u is regular and i f  in addition a >~ --2,  we have M(r) ~ r e+ as r ~ O. 

(ii) I f  u is regular at infinity and i f  in addition p ( N  -- 2) >= ~ + N, we have 
M(r) ~ r e- as r -+ c o. 

Proof. If  u is a regular solution, then by definition u is continuous in ~ A {I x l < Ro} 
and hence M(r) -+ 0 as r --> 0. Thus the first assertion follows f rom Theorem 3.3 
(i). 

If  u is regular at infinity, then the t ransformed function v is regular at the origin 
( c f  (1.3)) and satisfies (1.1'), (1.2'). Assertion (i) applied to v yields 

max v(y) ~ l Y 17+ as y -+ 0. 
lyl =r 

Since ]y1-7+ v(y) = lx1-7- u(x), we obtain (ii). 

Remarks.  

(1) A solution of  the form u(r, 0) = r -(~+2~/(p-1) o~(0), considered in (2.13), is 
regular if a < --2.  It  is regular at infinity if p ( N  -- 2) > ~r + N. 

(2) The most  regular solutions at zero (infinity) which problem (1.1), (1.2) can 
admit behave like u ~ r 7+ as r---~ 0 (u ~ r 7- as t - + c o ) .  

Corol lary3.5 .  Let  u >  0 satisfy (1.1), (1.2). 
(i) I f  u = O ( r  7+) as r--~O, then IVu] = O ( r  ~+-1) as r -+O.  

(ii) I f  u =  O(r ~-) as r--~co,  then I V u / =  O(r v--a) as r - + c o .  

Proof .  We follow an argument found in [GS, To]. Let  u be a regular solution and 
let 

v(x) : =  d u(ex), v = - - (2  + a + 7+P), 

which satisfy the equation 

(3.18) &v -9 d +~+2 lxl ~ u(ex) p = 0 in oK, v = 0 on Ug. 

By our  assumption on u, we have 

(3.19) e v+a+2 u(ex) p ~ e 

for  all e 6 ( 0 , 1 )  and l x t ~ R o .  
Let  us consider (3.18) in the domain  H = c~ A {ro/2 ~ Ix ] < 2ro}, where 

2ro < Ro. If  Ix[ = ro/2 or txl = 2ro, we know that  v(x) <= Ce"+'+r~o+. 
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Let h be harmonic in H and such that h = v on #H. In a standard way (ef. 
[Wi]) we prove that 

lVh(~)l _-< c~+Y+r~ +-I, l~t = to. 

The function w : =  v --  h is a solution of (3.18) and vanishes on OH. Since the 
known term e~+~+Zu(ex)P is uniformly bounded i n / 7  for all e E (0, 1), regularity 
theory tells us that IVw I is uniformly bounded on Ix] = ro. Hence 

(~ro) ~+~ ]vu(~x)I < r;+~ lV~(x)l < c(~,+y+r~+y+ + r; + ')  

which proves assertion (i). 
The second assertion is obtained by applying (i) to the transformed problem 

(1.1'), (1.2'). 

Remark. The above method applies also to higher derivatives. 
Finally, we discuss the asymptotic behaviour of the very regular solutions. 

Corollary 3.6. Let u be a positive solution of  (1.1), (1.2) and let ~p be as in (2.1). 
(i) I f  u :  O(r y+) as r--> O, then lira r-~+u(r, O) = II~I]22~o(0) w+; the con- 

r'--~-O 

vergenee is uniform in O. 
(ii) I f  u = O(r ~-) as r-+ oo, then lim r-Y-u(r, O) = I[~o[l~ -z ~o(O) wL uniformly 

inO. 

Remark. We recall that (c f  Section 2) 

w + = lim w+(r) = lim r-e-+~(r), 
r ~ O  r ~ O  

wL = lim w (r) = lira r-Y-fi(r). 

Proof. Let KR(x, y) be Green's function in N(O, R) = cg/5 (0 < Ix[ < R}. 
Consider the function 

v(x) := f KR(x, y) ]yl~u(y) ~ dy, 
~(o,R) 

which is a solution of  

Av + r~ p = 0 

in ~(0, R) vanishing on ~ ( 0 ,  R). By our assumption, M(r) <= cr y+, 0 < r <= 1. 
Since KR(x, y) <= K(x, y), we can deduce the following estimate from Lemma 3.2. 

(3.20) v(x)<=car y+(r ~ '+Ru) ,  O < r < R ~  1, # = ~ r - ? 2 - ~ 7 + ( p - -  1 ) > 0 .  

The function u -- v is harmonic in N(0, R), vanishes on cg and coincides with 
u(x) on {lxl = R}/h cg. We conclude that 

u ( x )  - v(x) = KR(x, ROy) u(R, O) R u-1 aOy, x ~ ~(0,  R). 
~2 
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F r o m  Bouligand 's  fo rmula  (3.2), we deduce that  

!im r-'e+-~yny KR(X, ROy) = c2~(Ox) ~(Oy) R ~--1 

uniformly in 0 x and Oy. Consequently,  if 0 = Ox, then  

lira sup Ir-~+u(r, O) -- c2~0(0) RN-2+~-~t(R) I <= clR" 
r --~-0 

uniformly  in 0. We note  that  7+ -k y_ = 2 - -  N. 
Choosing R arbi trar i ly small, we obtain 

l im r-~+u(r, 0) = c2~o(0) w + . 
r - + 0  

To determine c2, we mult iply this equat ion by ~p(0) and integrate the result ing 
expression over  ~ .  This proves the first pa r t  of  Corol lary  3.6. 

Again applying a Kelvin t ransformat ion,  we deduce the second par t  o f  Corol-  
lary 3.6. 

Remark. Some of  these results are also true for  solutions of  the equat ion 

(1.1") ~u-~r~Iu]P-lu=O, ~rER, p >  1 

with Dirichlet  boundary  condit ions on ~cg \ {0}. I f  u is a nontrivial  solution o f  
this problem,  we introduce 

M+(r) = sup u+(y) for l y l  - -  r ,  

M(r) = sup [u(y)] for [y[ = r, 

where u+ = max  (u, 0) and we define u to be zero outside cg. The  p r o o f  of  Theo-  
rem 3.3 will also give us the following result. 

Theorem 3.3' .  Assume that there exists a nontrivial solution u of  (1.1") with 
Dirichlet boundary conditions on ~r \ {0}. 
(i) If M+(r) r (~+2)/(p-1) --~ 0 as r---> O, then there is a positive constant c such 

that 
M+(r) <= cr ~+ for all r < ro. 

(ii) I f  M(r) r(G+2)/(P-1)---~ 0 as r-+ 0, then there is a positive constant c such 
that 

M(r) ~ cr ~+ for all r <= ro. 

There are analogous results at infinity. 

Clearly, Corol lary  3.5 also holds for  solutions of  (1.1"). 
Let  us assume that  u is a solution of  (1.1") with Dirichlet boundary  condit ions 

on ~cg \ {0} and tha t  M(r) is defined as above.  I f  M(r) = O(r ~+) as r - +  0, 
the same a rgument  as in the p r o o f  of  Corol lary 3.6 shows that  

lira sup lr-V+u(r, O) -- czv(O) R-v+h(R) I < c lR ~ 
r--+O 
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where if(R) is defined as in Section 2. (This time, however, u is not necessarily 
non-negative). Hence 

] (R-~+~(R) --  RV+~(R)) c2 [ ~ e~(R ~ + R~). 

Letting R and Ra -+ 0, we conclude that lim R-~'+~t(R) = w ff exists and that 
R-*-0 

uniformly in 0, 
lim r-7+u(r, 0) = II~0lls 2 ~0(0) w + . 
r-+0 

There are analogous results at infinity (to be compared to Corollaries 2.2 and 3.6). 

4. Consequences 

4.1. We start with a non-existence result based on a Poho~aev-type identity 
introduced by ESTEBAN & LIONS [EL] and developed by PuccI  & SERRIN [PSI 
for domains which are starshaped. (A domain H is starshaped if there exists a 
point Xo E H such that the line-segment XoX is contained in H when x E H.)  

From Theorem 2.3, it is known that a necessary condition for the existence 
of a positive solution of  (1.1), (1.2) is that 

a - k 2  
(4.1) --Y+ < _ - - - - 7 <  - - r - .  

Theorem 4.1. Assume that (4.1) holds and that 

(4.2) a =~= �89 N ( p  - -  1) - -  (p -k 1). 

Then the problem (1.1), (1.2) has no posit ive solutions such that 

(4.3) M(r)  r (~ 19 _+ 0, r -+ 0, r -+ oo. 

Proof. Suppose such a solution u exists. We wish to apply the Pucci-Serrin iden- 
tity in the domain ~ '  = ~ ( R o ,  R)  ( c f  Section 3). However, ~ '  is not  necessarily 
starshaped and u does not vanish on 0~ '  #~ cg. Therefore, we have to modify 
the arguments in [PS]. Choosing h(x) = x and a to be constant, Proposition 1 
in [PS] gives in our case that 

~u ~u au 
(4.4) ~ x i ~ ( x ,  u, Vu) - -  xj ~xj Oxi 

= N ~ ( x ,  u, V u ) - -  Ix[ ~ ul+P(a(1 -kp)  -~ --  a) --  (1 -k a)]Vu[ 2, 

where repeated indices i and j are understood to be summed from 1 to N and 

~ ( x ,  u, q) = �89 ]q[ z - -  ]xl ~ uP+'(p -k 1) -~ �9 

We apply the divergence theorem to (4.4). If  n is the outer normal, it says that 

f div v dx = f v " n ds. 
s &.c'.~, 
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On 0 N ' / 5  ~<g, we know that  u vanishes and we can use arguments  f rom [PSI. 
Since x �9 n = 0 on ~cd, there is no contr ibut ion f rom this pa r t  o f  the boundary  
in the final formula .  0 N '  t% <g is the union of  cg A {I xl = R0} and  cg/5 {} x ] = R. 
Since we have (4.3), we can use the est imates f rom Theo rem 3.3 and  Corol lary  3.5, 
which say that  

M(r) = O(rV+), r---~ O; IVul = O(r~+-l), r-+ O; 

M(R) = O(R~-), R-->:x~; IVul = O(RT--'),  R--->cxD. 

A computa t ion  shows that  when Ro --> 0 and R--> cx~, the contr ibut ions f rom 
8 N '  A ~ tend to 0. Here  (4.1) is crucial: in fact we have 

- k N - k ( p - -  1) y + - k 2 y + > N - - 2 q - 2 Y + > 0 ,  

(~ + N + ( p - -  I )7_ -k 27_ < N - -  2 + 27_ < O, 

which is wha t  is needed for  these conclusions to hold. 

Assuming tha t  the integral is defined, we obtain  

f (]VuI 2 ( �89  - -  2) --  a) -- Ixl u.+l((N + ~) (p + 1) -1 - a)) dx = 0. 
<g 

For  a = �89 ( N  - -  2), it is clear that  the integral is defined. I f  (4.2) holds, then 
the coefficient in the second te rm is non-vanishing,  and thus u must  be identically 
zero. We have proved  Theorem 4.1. 

Remark. The case ~ = � 8 9  1 ) - - ( p q -  1) or  equivalently p = ( N - k 2  
q- 2 ~ r ) / ( N -  2) is special. I f  ~ = R N, ground-state  solutions of  the f o r m  

u(r) : {2 ~/(N + a) (N  - -  2) I(2-" -k rZ+~)} (N-z)/(~+~) 

exist, which for  ~ > - - 2  obviously satisfy (4.3). 

4.2. We now investigate the asymptot ic  behaviour  of  solutions which are not  regu- 
lar at zero or at  infinity and which satisfy 

(4.5) r :~  < c for r <  ro (r > R). 

L e m m a  4.2. Assume that u is a positive solution of  (1.1), (1.2), that 

N --  2 - -  2 ~ <  0, where d = (~r + 2)/(p - -  1) 

and that (4.5) holds for r--> O. Then for any sequence {r,} tending to O, there exists 
a subsequence {r,s } such that 

lim/.~+2)/(v-~) u(x) -- ~(0) in ~ ' ( ~ )  
j-+ oo ~i 

where o~ is a nonnegative solution of  (2.14). For sequences tending to infinity, the 
analogous conclusion holds if" 

N - - 2 - - 2 ~ > 0 .  
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Remarks.  
(1) N -  2 - -  20 =~ 0 is equivalent to (4.2). 
(2) I f  lim sup r~M(rn) ~ 0, the subsequence can be chosen in such a way that 

n-->  oo 

c~ will be a positive solution of (2.14). 

Proof. We give the details for sequences tending to zero. Let u = r - ( ~ + z ) / ( P - l ) v .  

Then v satisfies 

(4.6) Vrr + r - l ( N  - -  1 - -  20) Vr-~ r -2 /~0 v - -  I ' ' -2  6 ( N  - -  2 -- 6) v + r -2 v" --  O. 

With the change of  variable t : ; ~  log r, we obtain 

(4.7) 72vtt -]- 7vt(N - -  2 --  20) + &ov -- 6(N -- 2 --  6) v - / v  p : O. 

We choose V ----- - - ( N -  2 - -  20) =~ 0 and obtain 

(4.8) 1:2(Vt t --  Vt) + GoV -- 6(N -- 2 --  6) v + v p = O. 

Multiplying (4.8) by vt and integrating the resulting expression over Q, we get 

_ _  2 dO, (4.9) dE(t) ~,2 f v, 
dt Q 

where 

E( t )  : :  �89 f vZdO_�89 f i V o v [ 2 d O _ � 8 9  _ 6) f v 2 d O + ( p +  l) -1 f vP+IdO. 
~2 0 42 ~2 

Thus, for t < 0, 
0 

(4.10) E(O) - -  E ( t )  - 1:2 f f v 2 dO & = : 9 ( 0 .  
t 

Since E(t )  is increasing, q0(t) is decreasing. Furthermore, we have 

(4.11) 9 '( t)  - -  29( 0 - -  --E~(t) ,  

where 

E~(t) = f ]V0vl 2 dO q- 6 ( N - -  2 --  6) f v 2 dO - 2(p + 1) -~ f V p + I  dO ~- 2E(0). 
s Q Q 

The same argument as in the proof  of  Corollaray 3.5 gives 

Lemma 4.3. I f  v is uniformly bounded as r ~ O(oo), then all its derivatives with 
respect to t and 0 are uniformly bounded for  associated values o f  t (the relation 
depends on the sign o f  I:). 

Hence /71 is uniformly bounded on ( - - 0 %  0) and we have 

0 

(4.12) 9(t)  ---- f e2(t-~)El(T) dT, t < O. 
t 

Thus ~ is uniformly bounded and we have proved 
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Lemma  4.4. I f  (4.5) holds, then 

0 

(4.13) f f d, dO dr < c~. 
- - 0 0 5 2  

F r o m  (4,11), we see tha t  

~0'(t) : 2~0(t) - -  El( t )  = 2~0(-- oo) + e(t) --  El ( t )  

where e(t) ~ 0, t - +  - -  0% and E1 E Lip ( - -  0% 0) (cf. L e m m a  4.3). 
I f  l im sup I~'(t)l > 0, (4.13) must  be false. We conclude that  

t - + - -  0o 

(4.14) f v~ dO--->O, t--> - - c o .  
52 

Integrat ing (4.8) with respect  to t, we obtain 
0 

etvt(O, O) --  vt(t, O) + f e t-~ V(r, 0) dr  = 0, t < 0 
t 

where 
V(t, O) = y-2(Aov --  r --  2 --  8) v + vP). 

F o r  ~/C C~(f2) and for  f ( t )  --  f V(t, O) ~1(0) dO, we get 
52 

0 

f v,(t, o) ~(o) dO = e t f vt(O, O) ~1(0) dO + f e t -~ f ( r )  dr. 
52 52 t 

F r o m  (4.14), we see tha t  v(t, . ) - + 0  in ~'(-Q) as t - + -  oo. Hence  
0 

(4.15) f et-~ f ( r )  d z -+  O, t--> - - o o .  
t 

According to L e m m a  4.3, f and f '  are uniformly bounded  on (--r 0). I f  

e t, t < O, / f ( t ) ,  t < O, 
g(t)  = O, t ~ O, F(t)  = [0 ,  t ~  0, 

then (4.15) says tha t  F *  g ( t ) -+  0 as t - +  - -  oo. According to Pitt 's  f o r m  of  
Wiener 's  theorem (cf. Theorem 10a, p. 211 in [W]), it follows tha t  F(t)--> 0 as 
t - - >  - -  o o ,  i . e . ,  

(4.16) f ( & o V - - O ( N - - 2 - - O )  v + v P ) ( O ) v ( O ) d O  ~ O, t - + - - o o .  
52 

We can now go back  to the variable r. I f  {rn} is a sequence tending to zero, and 
if v,(O) = v(rn, 0), it follows f rom Ascoli 's  theorem tha t  {v,} has a subsequence 
{v,j} which is uni formly convergent  on compac t  subsets of  D as j - +  o0 and % --> 0. 

I f  vn ---> o~, then the funct ion ~ is a weak solution of  (2.14) and thus a classical so- 
lution. I f  in par t icular  l im sup M(r, ,  v) > 0, we can choose the subsequenee in 

n---~ oo 

such a way tha t  0~ is not  the trivial solution. (In this step, we also use L e m m a  4.3). 

Remark.  By choosing another  subsequence, we cart assume that  bo th  {v,} and {AoV,} 
are uniformly convergent  on compac t  subsets o f  s Lett ing t--> - -  cx~ in (4.10), 
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we see that 

�89 f ]V0~l 2 dO + �89 O ( N  - -  2 - -  6) f ~ 2  dO -- (p + 1) -1 f~, '+'  dO 

0 
= 7 2  f f vZ dO dt _ E(O), 

--oo~Q 

and that the integral in the left-hand member  is independent of  the choice of  the 
subsequence {%}. 

Remark.  I t  remains to treat the case 7 = N - -  2 - -  26 = 0. With the change of 
variables t = log r, (4 .6)becomes 

(4.8') v .  + ~0v - -  (p + 1) -1 v p = 0. 

The analogue of (4.9) is 

(4.9') 

( )) __  1_ v --  ~ VovlZ dO+ ~2v2 - -  dt z f f  t dO �89 f [  �89 D f dO (1)@ 1)-l f l)p+l dO = 0 .  

I t  is easy to see that in a bounded domain, solutions of  (1.1), (1.2) cannot 
be ordered. The question is open whether this statement is true in cones. I t  has 
been proved in [BL] that for a = 0  and p < ( N + 2 ) / ( N - - 2 ) ,  no regular 
solution u lies under any singular solution us of  the type r -2/(p-I) e~(0). Let us 
add some supplementary remarks. 

Lemma 4.5. Let  u~ = r - ( a + a ) / ( p - 1 )  0 % ( 0 )  and v s = r - ( ~ + 2 ) I ( p - 1 )  0r be two 

singular solutions o f  (1.1), (1.2). I f  us <= v~ in ~f, then us ==- v~. 

Proof. The positive difference d ( O ) =  ~ 2 ( 0 ) -  ~1(0) satisfies the differential 
inequality 

(4.17) LXod p - - 1  N - -  2 P - -  d + pc~f -~ d <= O. 

From this, it follows that 

(4.1s) o = f (~1 Aod -- dAo c,1) dO ~ (1 -- p) f do, f dO <~ O. 

Equality holds only for d ~ 0, which proves the assertion. 

This proof  together with Lemma 4.2 implies 

Lemma 4.6. Le t  u and v be two solutions which are not regular at infinity but 
which satisfy (4.5) f o r  all r > R. I f  

r u(x) lm sup----z-w, < 1, 
r + oo VlXJ 
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then 

in the sense o f  L e m m a  4.2. 

r 
u(x) 

lm s u p - -  = 1 
, - + o o  v(x) 

The next result extends the result in [BL, Theorem 6.1] on the non-existence 
o f  stat ionary solutions under  singular solutions. 

Theorem 4.7. Let  U be a positive solution o f  (1.1), (1.2) satisfying 

? U ( x )  <= c, x E  ~, 

where 8 = (a + 2)/(p - -  1), 

(i) Assume that N - -  2 - -  28 < O. 
with u <= U. 

(ii) Assume that N --  2 - -  28 > O. 
at infinity with u <= U. 

Then there is no nontrivial regular solution u 

Then there is no nontrivial solution u regular 

Proof.  We give here a p roo f  completely different f rom that  in [BL, Theorem 6.1]. 
(i) Suppose that  a regular solution u ~ U exists. Then V = U - -  u satisfies: 

/k V -k pr~u p -  1 V <= O, x E cg. 

This together with Green's  identity yields 

s('" .u) s s u--~-~n - -  V ~ n  d s =  ( u A V - -  V A u ) d x < = ( 1 - - p )  r ' u P V d x .  

~ ' =  N(Ro,  R) (c f  Section 3.1), then, since u and V vanish on 

fuOV Ou) 
(4.19) rowrf \ On - g ~  ds <= (1 -- p) ~'f r~u" 8 dx 

where Fo = 0 ~ ' A  {lxl = Ro} and /~ = 0 N ' / ~  {Ixl = R). F r o m  Corollary 3.5, 
we know that  r -~+ u(x) and r 1-~+ IVu t are bounded  as x - +  0. 

We assert that  it follows f rom our  assumptions on U and u that  r l+a Ivvl, 
reu(x) and r 1+~ IVul are uniformly bounded  for  0 < r < cx~. To see this, we use 
the arguments in the p roo f  of  Corollary 3.5 with v = --~r - -  2 q- p & Consequently,  
using (4.1), we see that  

(4.21) u--~- n - -  V--~n ds <= cRm-Z-2~ R - - - ~ .  

Inserting (4.20) and (4.21) into (4.19), we get a contradiction. 
The p r o o f  o f  (ii) is similar and we omit the details. 

I f  we choose 
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Note added in proof. The case ~r = �89 N (p - -  1) - -  (p q- 1) which was left open 
in Theorem 4.1, has recently been studied by H. EGNELL "Positive solutions of  
semilinear equations in cones" (to appear). Existence and nonexistence of  solutions 
depend on ~r and the shape of  ~2. 
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