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On Positive Solutions of Emden Equations
in Cone-like Domains

CATHERINE BANDLE & MATTS ESSEN

Communicated by J. SERRIN

1. Introduction

Let x=(x...,X,) be a typical point in RY and denote by (r,6),
6cSN 1= {x:|x| =1}, r=|x|, its polar coordinates. Let £2 be a domain on
the unit sphere S¥~! with a boundary 82 of class C2. We define a cone in RY to
be a set of the type

% ={x:reRt,0c 2}
In this paper we study the positive solutions of the generalized Emden equation
(1.1 AMu—+ruy=0 in¥, oERp>1
satisfying Dirichlet boundary conditions
1.2 u=0 on &¢ — {0}.

Because of its relevance to physics and its rich mathematical structure the
Emden equation has attracted the interest of many mathematicians, starting with
Fowler (¢f., e.g., the survey of WonG [Wo].)

The structure of the radially symmetric solutions of (1.1), (1.2) is now com-
pletely understood [GS, BM]. General positive solutions in RY were studied by
Gipas & SPRUCK in a substantial paper [GS]. They were able to determine the
precise behaviour near isolated singularities and deduce some nonexistence results,

We say that a solution of our problem is regular if it belongs to C*(%) N
C°%(% \J &%) and satisfies (1.1) and (1.2). We also consider singular solutions,
denoted by u,. They are of class C*(%)/N\ C%%¥ \J 6% — {0} and discontinuous
at 0. It is known that for certain ranges of p such solutions exist [BL]. In Section 2
we extend a nonexistence theorem of Gipas & Spruck [GS]. For a sector, i.e.,
a cone in R?, it is expressed as follows.
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Theorem 1.1. Let S®») = {(r,0):r>0,0< 0 <<wvm,vc(0,2]} be a sector.
For 1<p=max{l+Q2+o0)»,1— 2+ 0)v}=:p* problem (1.1), (1.2)
possesses neither regular nor singular solutions besides u = 0.

The bound is sharp since for p> p* solutions of the form u = r~@+N@=1 4 (f)
are known to exist [BL]. For ¢ = O this result is already found in [BL]. We give
a simpler proof, which also inciudes the non-existence of singular solutions.

It should be noticed that if we perform a Kelvin transformation

x

(1.3) V=R v(y) = |x[V7? u(x),
then (1.1), (1.2) becomes

(1.11) Av(y) + ‘ylfN—Z—o'ﬁ’p(N—Z)Up —_ 0 in (g
(1.29 v=0 on %.

From this observation it follows that every statement concerning the behaviour
of a solution near zero leads to a statement on its behaviour near infinity. A solu-
tion of (1.1), (1.2) will be called regular at infinity, if the transformed function v(y)
is regular at zero, or equivalently if

(1.4) lim u(x) |5V 2 = 0.

In Section 3 we determine the precise asymptotic behaviour of the solutions
which are regular at zero or at infinity. For a sector we get

Theorem 1.2. If u is regular and o = —2, then there exists a positive constant
Uy such that hm " u(re®) = ug sin (8/v) uniformly in 6. If u is regular at infinity

and o = 2 then there exists a positive constant u,, such that 11m Fu(re®) =

Uy Sin (u/0v) umiformly in 0.

In Section 4 we derive a non-existence theorem based on an identity of Puccl

& SErRIN [PS] and on the results of Section 3. We also study the question whether
solutions can be ordered.

The following notation will be used throughout this paper. If two positive func-

X
tions f and g satisfy in X the inequalities ¢, £%< ¢, for some positive
constants ¢, and c,, we shall write fa g in X. The letter C stands for generic
constants depending only on £ and N.

2. Nonexistence result and asymptotic estimates

2.1. In polar coordinates the Laplace operator has the form
1 &
A:-—FN—I (rN 1 ) + =Dy,

where /\, is the Beltrami operator on the sphere SN I, Let v >0 be the first
eigenfunction of

2.1 Doy -op =0 in 2, =0 ondQ.



Emden Equations 321

It is supposed to be normalized such that

2.2) [wdd=1,

df denoting the area element on S¥~1,
If we multiply (1.1) by v, integrate the resulting expression over £ and use
Jensen’s inequality we get for the “mean value”

u(r) := [ u(r, 6) y(6) db

0

the differential inequality

(2.3) A —

u -+ r'uf

A

0,

Y e

where A, is the radial part of A and o is the lowest eigenvalue of (2.1). Observe
that
) d 0
"2 SLC VL i
(2.4) b —=r &Paﬁrﬂ L

where

N—2 N —2\?
A=y, = — 5 + w"‘k_'z— s

B=N—1+2i.

We note that if x is a given variable and y is defined by (1.3), we have
u@) [x [T =0 [y wx) [x[77 = 0(y) |y[ 7

2.2. Next we derive an elementary lemma for positive radially symmetric solu-
tions of
2.5) Lv =<0 for r>0.

Lemma2.1. () If B> 1, then the function w(r) :=r~*uv(r) is decreasing.
() If B=1, then w(¥) is an increasing function.

Proof. From (2.5) we have
(2.6) Pw'(r) < ofw'(e)  if r=o.

Hence if w'(¢) = 0 for some g, then w'(r) =< 0 for all r = . Suppose that the
statement (i) is false. Then w'(¥) > 0 on an interval (0, r;], which together with
the positivity of w implies that

2.7 Ii_gr(} w(r) = wy << co.
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From (2.6) we get for r << R<<ry,

8.
w(R) — wir) = 1)
g—1
For r— 0 the left-hand side is bounded because of (2.7), while the right-hand
side tends to infinity. This is a contradiction and (i) is thus established.
(i) Suppose that w== 0 does not increase everywhere. Then by (2.6) there exists
a positive number ¢ such that w'(¢) << 0 and we have

[r—‘ﬂ"f‘l . R*ﬁ-l—l].

W =rf@w@) =:—art, r=p

where g > 0, and
.
wr) = wl) —a [ 1P dt— —oo, (r—o0).
4
Since w is non-negative, this is impossible and we have proved the lemma.

Let us consider the functions w,(r) :=r "u(r) and w_(r) := r 7-u(r),
u(r) being defined in Section 2.1. We note that
2.8) L =N—1+2p.>1, f =N—1+4+2y_<1.
From the previous arguments we obtain
Corollary 2.2. (i) w.(r) is non-increasing and ;lalfio Wi (R) =: wi < oo,

(ii) w_(r) is non-decreasing and li_)I{)l w_(r) =:wy < oo,
2.3. We shall prove the following non-existence result.
o+ 2 ! o+ 2

Vi 1
gular positive solutions of (1.1), (1.2) exist in %.

Theorem 2.3. If p < max {1 — } =:p*, no regular or sin-

Proof. Let us assume that our problem has a nontrivial solution u. If w, =
r~*u(r), where i =7y,, it follows from (2.3) and (24) with f=pf, =N —
1+ 2y, that

R
(2.9 RW. (R —rfw () + [ STy (s)Pds =0, 0<r<R.
By Corollary (2.2)(i), w,. is non-increasing, hence

R
RPW, (R) + wy (R [ s°*HotPhds <0, r<R.

Letting r—0, we see that § — A+ ¢ - pA> —1 and

(2.10) W (R) wo(R)™? + CRP~DA+e+l <
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Integrating (2.10) from r to R, we obtain
R
Q1) (p— Dt W' 7 — w(R)'?) + C [ se Ittt g < 0.

Since the left-hand member is bounded as r-—0, it follows that

(2.12) pP—Dy,+0+2>0.

If wl >0, the left-hand member in (2.11) is unbounded as R —oco, which
contradicts the inequality. We conclude that wi = 0.

The next step is to do the same calculations for A =vy_ and f=p§_. By
Corollary (2.2)(ii), w_ is non-decreasing, and we obtain

R
—w_ (AP +w_ () [P s < 0.

r

Letting R—oc, we see that § — A1+ o+ pA << —1, and
(2.102) —w_(P) w_(r)? 4 Cre—Dr-totl <
Integrating (2.10a) from r to R, we obtain

R
Clla) (p— D7 W B P— w_()!77) + C [ se-Dr-+otl go < 0.

Since the left~hand member in (2.11a) is bounded as R-—>oo, it follows that

2.129) p—Dy_.+o+2<0.

If wy > 0, the left-hand member in (2.11a) is unbounded as r— 0, which
contradicts the inequality. We conclude that wy = 0.
We have proved Theorem 2.3 and

Corollary 2.4. If there exists a nontrivial regular or singular solution of (1.1)
and (1.2) in €, then (2.12) and (2.12a) hold and

() Jim . (R) = wh =0,

(i) 11{133 w_(R) = wy = 0.

The bounds in Theorem 2.3 are sharp because if

N o0, N=273
r<r<{iy, DIV ~3), N>3,
there exist solutions of the form (c¢f. [BL])
(2.13) u(r, 0) = p~CT2E-D 4(6)
where «(0) satisfies the boundary value problem
(219
Aga—%@—z—;f?)ww:o in 2, «—0 onaQ.
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Another consequence of (2.11) is stated in

Corollary 2.5. If u is any regular or singular solution of (1.1), (1.2), then there
exist positive constants ro, | and ¢, such that

O iF 0<wi = li_g& W (r) < oo, then

(2.15) u(r) &~ wg r'+, r—0,
(2.16) u(r) < cyp@DE-D > 0> 0.
(i) if wg = oo, then

Ur) < cpmCHRC=D 0 < r < oo,
A result complementary to Corollary 2.5 is given in

Corollary 2.6. Let u be a regular or singular solution of (1.1), (1.2). Then there exist
positive constants ¢, and ¢, such that
) u(r) = ¢,/ for all ¥ < r,,
(i) u(r) = ¢’ for all r = R.
Proof. From (2.4) and (2.5), we have
w_(D)=rfwl(), 0<r=<1

(we note that g = f_<C 1), and thus by Corollary 2.4(ii)

A=t Pu_(D) < w_(r) = r~7-u(r).

Since —f+1+4+y_.=—N+42—y_=y,, the first statement is proved. The
second follows if we apply (i) to the transformed problem (1.17), (1.2').

3. Local behaviour

3.1. For the arguments of this Section, we shall need Green’s function K(x, y)
for the Laplace operator in the cone ¥, satisfying, for fixed y€ ¥

(31) Ax1<(x5 y) = —6()6 - y)5

where x€ %, K(,y) =0 on &% and K(x,y)—0 as |x|—oo, x€ 4.

Such a function exists (¢f. [B]; further references can be found in [ELe]).
Moreover, for |x|> |y|, we have the classical representation formula of Bou-
LIGAND [B]:

(32 Keo ) = || 3

i=1 V(N — 2 + 4o,
where |£2] is the Lebesgue measure of £2, w, is the n'™ eigenvalue of (2.1) and
¥ (0) is the corresponding eigenfunction, normalized with respect to the L*-

¥.(6,) ¥,.(0,)
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norm (¢f. [B, LF]). Furthermore, 8, << 0 <, areroots of #(f + N — 2) — w,
= 0. We note that «; =y, and f;, =y_. If |x|<C|y|, the roles of x and y
in (3.2) are interchanged.

We shall need several estimates.
Lemma 3.1. Let ¢> 0 be given. Let ¥, be denoted by V. If x,y€ ¥, then
(33) Ky~ PO)PO) |x[yf- 0< x|{< T —9) [y,
G4 K(x,y) ~ PO PO,) [x[- |y 0<|y|(+ ) <]x]
If |x|=r, then

17

(3.5) 0< -87K(x, )< CPO) PO, x|y~ o< |x|< (O —¢) ]yl
b7

(3.6) 0< —--a;K(x, » = C¥(0,) P(,) ley“'l P+ o<|y|Q+9<|x]|.

The constants of comparison depend also on e.

Proof. For the first two estimates, we refer to [A, Lemma 1]. Estimates (3.5) and
(3.6) are consequences of (3.2) and estimates (i)—(iii) in [ELe, Section 4].

Let P(Ro, R) =% N{Ry < |x|<< R}. Green’s function K(x,y) in the
domain 2(0, R) can be written as K(x, y) — K(x%, y), where x}% is the reflection
of x in the sphere {|x| = R}. From Lemma 3.1, we see that

37 0< - Ki(x,3) < CP(0,) ¥(0,) |- [yP

for 0<|y|(1+e)<|x|=R, x,y€%, where n is the inner normal in the
domain 2(0, R).
Similarly, if K,(x, y) is Green’s function in the domain Z(R,, oo), then

8
(3.8) 0< = Ky(x, y) = C¥(0,) POy |x [+ [y~
for |x}=R0; Ix|< (A —9]y|, x,y€%.

Lemma 3.2.
“ Clxlh }yl”-, lf[xlé ;yl’
Q[K(x,y)dexéiclxly_ ly‘h’ lf]x|;[y|

Proof. Since we have Lemma 3.1, it suffices to estimate K(x,y) in
{—i;—l =|x|=2y |} N €. We begin with the case N = 3. By the maximum prin-
ciple, we have

x—p 2—N
Kx,y) = I——Aw—l—— = sy(x — )
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where Ay is the area of SV~!. Since

[ sy(x —») db, = min (|x 77, [y,
SN—1

it is easy to deduce the lemma in this case. When N = 2, we consider the func-
tion H(y)= [ K(x,y)db,, which is harmonic in ¢/ {{y/<|x]} and &N
o

{ly|> |x]} and is continuous in @. Since we can control H on the sets & /N
x!

{[y[ =|T{}, g N{y|=|x|} and €N{y|=2|x|}, the lemma is true also

in this case.

Let Ky(x,») be Green’s function for the Laplace operator in Z(R,, R),
where y € @(R,, R). Then the function

» 0Kp 0K,
o) =u0) — [ FEE@N U@ o) — [ (5 y) ux) do()
|x[=R |l =Ro

vanishes on 02(R,, R). Here n represents the inner normal in Z(R,, R) and do(x)
is the area measure. The Riesz representation formula gives

(3.9) v(y) = f Ko(x, ) (—Do(x)) dx = [ Ko(x,y) (—Du(x)) dx.

G(Ro,R) PD(Ro,R)
The maximum principle implies that
Ko(xa y) é Kl(x: J’), X, y 6 @(RO:v R)
and thus that

oK, oK
(3.10) S BN =), x| =R yEIR B).

In the same way, it follows that

oK,
cn

(.11 %{;ﬁ(x’ N=——(7. [x]=Ro,y€ P (Ro, R).

Furthermore, we have
(312) KO(x> )’) é K(xa y)’ X, Y E @(ROa R)'

Let us define u(x) = 0, xd . Assuming that 2R, = |y| = R/2, we use (3.9),
(3.10)—(3.12), (3.7) and (3.8) to deduce that

uN= [ KCoy)|x| ux)’ dx
D(Ro,R)

-+ C{Ro_”— f w(O,) u(x)do, |yl-+ R+ y iR (b, u(x) do, \yl“} .

|x[=Ro
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We define M(r) =supu(y) for |y|=r. Combining the last inequality
with Lemma 3.2, we obtain

r R
G13) M= C{"y‘ [ M(sy? s -ds + 7+ [ M(s)? T 77 ds
Ro ;

+ (T,;;)y_ #(Ro) + (%)h W(R) } 2R, <r < R/2.

Let . =@+ 2/(p— 1D +y.. If M@E) =nQ)r €= and 3(R) =
#(R) R~CT2=1 it follows from (3.13) that

r R
G14) 7n=C {i’x' [ n(s)? s~ ds + [ p(s)? 5T R ds
Ro r

+ »(Ro) Ry *r*~ + »(R) R"‘+r"+} , 2R, =r=RJ2.
Note that if a solutions to (1.1), (1.2) exists, then Theorem 2.3 implies that

(3.15) 21-< 0<< ..

We are now in a position to prove the main results of this section.

Theorem 3.3. Let there exist a nontrivial positive solution u of (1.1), (1.2).
Q) If M@)retDe=D 50 a5 r—>0, then there are positive constants ¢, and
¢, such that

= M(r) = e+ for all r < 1.

@) If M@)rePP=D 0 as r—oco, then there exist positive constants c,
and c, such that

- S ME) = e~ for dll r =1y,

Proof. By assumption, we bave 5(r) -0 as r— 0 and consequently, »(R,)~— 0
as Ro—0. Letting R,— 0 in (3.14) and using (3.15), we obtain

r R
(3.16) n( = C{rx‘ f () s~ % ds + P f n(s)? sV %+ ds + »(R) R_"+r"+} )
0 r
r= R/2.

We wish to eliminate the first term in the right-hand member of (3.16). To do so,
we introduce

0= r<r

sup %(t), r=R,
Y@y =
P(R), r = R.
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Then the sum of the two terms containing integrals in (3.16) is dominated by

r*- f Y(s)P s~ 175 ds L+ pr+ f Y(s)P s71 %+ ds
0 r

1 [eS)
= f Prs)? s 1 7% ds + f Y(rs)P s~ 7+ ds,
0 i

which is an increasing function of r. From (3.16), we then deduce that
Y = C{r"“ [Py s 2 ds A i [ W(s)P 5T R ds + clr"+}
0 r

where ¢; = »(R) R™*+,
Since ¥(r)—>0 as r— 0, there exists R, such that

C I%— ’_1 T(Rl)p_l < %s
Cr- [P s 7% ds <3 ¥(), 0<r<R.
0
Thus, if R = 2R,, we see that

(3.17) ) < 2Cr"+{foo Y(s)? s~ 1%+ ds + cl} .

Let H() = [ ¥(s)’ s~' 7% ds + ¢;. Since H'(r)= —W(r)" r~' %, it follows

from (3.17) that
—H'(r) H)™? < Crep= D1,
Integrating this inequality from 0 to r, we obtain

x(p—1)
H(I")l—p ——H(O)l—p éT

If H(0) = oo, it follows that

O0< e H@r*, r=R,.
On the other hand,

r+H(r) = r"+{f P(s)P s 1% ds +¢;p — 0, r—0.

The contradiction shows that H(0) is finite. We now use (3.17) to conclude that

p(r) = *+2CH©O), r=R,.
This implies that
M) = p—E+2/@—D 7(r) < ¢, 1.

for all sufficiently small r. The first estimate is now a consequence of this result
and Corollary 2.6.

In order to prove the second statement, we apply assertion (i) to the trans-
formed problem (1.19), (1.2") (we note that |y|~"+v(y) = |x|7"- u(x) (cf. Sec-
tion 2.1)).
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Remarks.

(1) Part (i) or (ii), respectively, of Theorem 3.3 depends only on the behaviour
of uin ¢ N{|x| =< R} or ¥ N {|x| = R} andis not affected by the behaviour
of u in the complementary part of the cone %.

(2) A related result can be obtained from [KKO] for solutions belonging to cer-
tain Sobolev spaces. The estimates there do not apply under our assumptions.

Corvollary 3.4. Let u be a positive solution of (1.1), (1.2).

() If u is regular and if in addition ¢ = —2, we have M(r) ~ r'+ as r—0.

(i) If u is regular at infinity and if in addition p(N —2) = o + N, we have
M)~ - as r—oo.

Proof. If u is a regular solution, then by definition u is continuous in €N {|x| << R}
and hence M(r)— 0 as r— 0. Thus the first assertion follows from Theorem 3.3
@).

If u is regular at infinity, then the transformed function v is regular at the origin
(¢f. (1.3)) and satisfies (1.1"), (1.2"). Assertion (i) applied to v yields

max v(y) ~ lyP+  as y—>0.
Y| =r

Since |y|7"+v(y) = |x|77- u(x), we obtain (ii).

Remarks.

(1) A solution of the form u(r, 0) = r=©+2/=D x(h), considered in (2.13), is
regular if o << —2. It is regular at infinity if p(N — 2) > o + N.

{2) The most regular solutions at zero (infinity) which problem (1.1), (1.2) can
admit behave like u~ "+ as r—=0 (u~ - as r—>o0).

Corollary 3.5. Let u> 0 satisfy (1.1), (1.2).
@ If u=0@") as r—0, then |Vu|=0@+") as r—0.
(i) If u=O0@") as r—oo, then |Vu| = O("-"") as r—oo.

Proof. We follow an argument found in [GS, To]. Let u be a regular solution and
let

u(x) ;=€ ulex), v=—Q2+o-+yp),
which satisfy the equation
(3.1%) Ao+ 2 | x["u(ex) =0 in¥%, v=0 on 0%.
By our assumption on u, we have
(3.19) T 2 ylex)? < ¢

for all £€(0,1) and |x|= R,.
Let us consider (3.18) in the domain I7 = € N {ro/2 < |x| << 2r,}, where
2rg < Ro. If [x|=ro/2 or |x|=2r,, we know that v(x) < C& 7+~



330 C. BANDLE & M. EssiEN

Let /2 be harmonic in [7 and such that s = v on &//. In a standard way (cf.
[Wi]) we prove that

IVAa(x)| < C o™, |x] = ro.

The function w := v — A is a solution of (3.18) and vanishes on &//. Since the
known term &1°*2u(ex)? is uniformly bounded in 77 for all £¢ (0, 1), regularity
theory tells us that [Vw| is uniformly bounded on |x| = r,. Hence

(ero) ™! [Vu(ex)| = iy |[Vo(x) | < C(e 7+ 7+ + rgth

which proves assertion (i).
The second assertion is obtained by applying (i) to the transformed problem

(1.1, (1.2).

Remark. The above method applies also to higher derivatives.
Finally, we discuss the asymptotic behaviour of the very regular solutions.

Corollary 3.6. Let u be a positive solution of (1.1), (1.2) and let v be as in (2.1).
@ If u=O0@"+) as r—0, then Ii_I)I(?)[ (e, 6y = [wla 2 w(O) wi; the con-
vergence is uniform in 6.
(i) If u= 0(0™) as r—>oo, then lim r"-u(r, 0) =yl 2 w(0) ws, uniformly
in 0.
Remark. We recall that (¢f. Section 2)
wg = lig)l wi(r) = li_gg F(r),

Wo = lim w_(r) = ango ().

=00

Proof. Let Kgz(x,y) be Green’s function in (0, R) = €N {0 < |x| < R}
Consider the function

vx) = [ Kz(x,»)[y[u()” dy,
2(0,R)

which is a solution of
Mo+ " =0

in 2(0, R) vanishing on ¢2(0, R). By our assumption, M(r) < cr’+, 0 <r=1.
Since Kx(x, y) = K(x, y), we can deduce the following estimate from Lemma 3.2.

3.20) v(X) =y (“+RY), 0<r<R=1l, u=0+2+y(p—1D>0.

The function u# — v is harmonic in 2(0, R), vanishes on % and coincides with
u(x) on {|x|= R}N\¥. We conclude that

2 ,
u(x) — v(x) = f 7 Kelx, R0,) u(R, 6) RN-1df, x€ 20, R).
Q2 4
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From Bouligand’s formula (3.2), we deduce that

0
lim r"’+% Kg(x, RO,) = c,9(0,) v(8,) R-~!
y

r—>0
uniformly in 0, and 6,. Consequently, if 6 = 6,, then

lim sup |r~"+u(r, 0) — c,p(0) RN *T7-i(R)| = ¢, R”
r—>0

uniformly in 6. We note that y, +y_ =2 — N.
Choosing R arbitrarily small, we obtain

lim +~"+u(r, 6) = c,p(0) wy .

To determine c,, we multiply this equation by (0) and integrate the resulting
expression over L. This proves the first part of Corollary 3.6.

Again applying a Kelvin transformation, we deduce the second part of Corol-
lary 3.6.

Remark. Some of these results are also true for solutions of the equation
(1.1’ Du+ruftu=0, ocR,p>1

with Dirichlet boundary conditions on &% \ {0}. If u is a nontrivial solution of
this problem, we introduce

M (r) =supu,(y) for |y|=r,
M(@r) = sup |u(p)| for |y|=r,

where u, = max (4, 0) and we define u to be zero outside €. The proof of Theo-
rem 3.3 will also give us the following result.

Theorem 3.3'. Assume that there exists a nontrivial solution u of (1.1") with
Dirichlet boundary conditions on % \ {0}.
@) If M (r)r°PP=D 0 a5 r— 0, then there is a positive constant ¢ such
that
M. () =cr’+ forall r<r,.

(i) If M@) re™@=D 0 as r—0, then there is a positive constant ¢ such
that

M@= o’ for all ¥ Z ry.

There are analogous results at infinity.

Clearly, Corollary 3.5 also holds for solutions of (1.1").

Let us assume that u is a solution of (1.1”) with Dirichlet boundary conditions
on #%\ {0} and that M(r) is defined as above. If M(r) = O("+) as r—0,
the same argument as in the proof of Corollary 3.6 shows that

lim sup {r~7+u(r, 0) — c,3:(0) R~ u(R)| < ¢, R*
r—>0
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where u(R) is defined as in Section 2. (This time, however, u is not necessarily
non-negative). Hence

| (R™7+u(R) — Ry 7*u(R) ¢z | = ¢,(R* + RY).

Letting R and R, — 0, we conclude that Iling R™7+u(R) = w§ exists and that
uniformly in 0,
lim =y, 0) =yl p(0) wi

There are analogous results at infinity (to be compared to Corollaries 2.2 and 3.6).

4. Consequences

4.1. We start with a non-existence result based on a Pohojaev-type identity
introduced by EsTeEBAN & Lions [EL] and developed by Pucct & SErRRrIN [PS]
for domains which are starshaped. (A domain 7 is starshaped if there exists a
point xo € I such that the line-segment x,x is contained in I7 when x¢€ IL)

From Theorem 2.3, it is known that a necessary condition for the existence
of a positive solution of (1.1), (1.2) is that

41 6+2<
() _y+<p_1 —V--

Theorem 4.1. Assume that (4.1) holds and that

4.2 oiINp—-D—-(@+D.
Then the problem (1.1), (1.2) has no positive solutions such that
4.3) M@) re2@=0 0, r—0,r-—>o0.

Proof. Suppose such a solution u exists. We wish to apply the Pucci-Serrin iden-
tity in the domain @’ = 2(R,, R) (¢f. Section 3). However, &’ is not necessarily
starshaped and u does not vanish on 99’ /N . Therefore, we have to modify
the arguments in [PS]. Choosing #(x) = x and a to be constant, Proposition 1
in [PS] gives in our case that

“4.4)

ou 0 7
{xiﬁ(x, u, Vi) — e u}

o, xjﬁ_x,- PP au s
= NF(x, u, Vu)— |[x[" u!*?(c(1 + py™* — a) — (1 + ) |Vul?,
where repeated indices 7 and j are understood to be summed from 1 to N and
Fxuq)=1%qP — [x["u(p+ D
We apply the divergence theorem to (4.4). If » is the outer normal, it says that
[divedx = [v-nds.
g 05
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On 89' /N 0¥, we know that u vanishes and we can use arguments from [PS].
Since x-n =0 on &%, there is no contribution from this part of the boundary
in the final formula. 82’ N € is the union of ¥ N {|x| = Ry} and €N {{x| =
Since we have (4.3), we can use the estimates from Theorem 3.3 and Corollary 3.5,
which say that

M@ = 0@, r—0; |Vu| = o+, r—0;
M(R)= O(R-), R—>o0; |Vu|=O(R"-""), R-—>oo.

A computation shows that when R,->0 and R-—>oo, the contributions from
89’ N€ tend to 0. Here (4.1) is crucial: in fact we have

0’+N+(P"1)7++27+>N_2+27+>Qa
c+N+{(p— Dy +29.<N—2+2y_<0,

which is what is needed for these conclusions to hold.

Assuming that the integral is defined, we obtain
[(VuPGW—2)—a) — |x P TI(N + 6) (p + 1) — @) dx = 0.
% N

For a=3%(N — 2), it is clear that the integral is defined. If (4.2) holds, then
the coefficient in the second term is non-vanishing, and thus u must be 1dent1ca11y
zero. We have proved Theorem 4.1.

Remark. The case ¢ =31 N(p —1)—(p+1) or equivalently p = (N -+ 2
+ 20)/(N — 2) is special. If € = RV, ground-state solutions of the form

u(r) = AVN -+ o) (V — 2) (42 + 2oy 20t
exist, which for o> —2 obviously satisfy (4.3).

4.2. We now investigate the asymptotic behaviour of solutions which are not regu-
lar at zero or at infinity and which satisfy

4.5 TR Dyy< ¢ for r<r, (r=R).

Lemma 4.2. Assume that u is a positive solution of (1.1), (1.2), that
N—2—-26<0, where d=(0+2)/(p—1

and that (4.5) holds for r— 0. Then for any sequence {r,} tending to 0, there exists
a subsequence {rnj} such that

}_1)% r;,‘;.*z)/("‘” ux) = o(0) in 2'(9Q),

where o is a nonnegative solution of (2.14). For sequences tending to infinity, the
analogous conclusion holds if

N—2—-2>0.
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Remarks.
(1) N— 2 — 26 40 is equivalent to (4.2).
(2) If lim sup /2M(r,) > 0, the subsequence can be chosen in such a way that

n—>o

o will be a positive solution of (2.14).

Proof. We give the details for sequences tending to zero. Let y = r~ T2/ —1y
Then v satisfies

(4.6) U+ (IN—1—=20)v,+r20pp—r20(N—2—80)v+r?ov?=0.

With the change of variable 7=y logr, we obtain

“.7 2o, +yo N —2—20)+ Dgp — (N —2 —0) v+ 1P =0.

We choose y = —(N — 2 — 28) &= 0 and obtain

4.8) Y20y — v) + DN — (N — 2 — 8 v + o = 0.

Multiplying (4.8) by v, and integrating the resulting expression over £, we get
dE@) _

2 2
4.9 ek y Qf v; do,
where
E@):=1y? fvfd@—% f |Vov|?df—30(N—2~0) [v*di+(p+ 1 fu"“dﬂ.

Q2 02 Q2 Q

Thus, for <0,

0
(4.10) EQ) — E() = [ [v}dfdr=:9).

L

Since E(t) is increasing, ¢(t) is decreasing. Furthermore, we have
411 (1) — 20(t) = — Ey(0),
where

E@) = [|V|?dd + 0N —2—0) [v*d0 —2(p+ 1) [ v"*! db + 2E(0).
0 2 o

The same argument as in the proof of Corollaray 3.5 gives
Lemma 4.3. If v is uniformly bounded as r— 0(co), then all its derivatives with
respect to t and 8 are uniformly bounded for associated values of t (the relation

depends on the sign of v).

Hence E; is uniformly bounded on (— oo, 0) and we have
0
4.12) ¢ty = [ PE @ dr, 1<0.
t

Thus ¢ is uniformly bounded and we have proved
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Lemma 4.4. If (4.5) holds, then

0
4.13) [ [v}dddr<oo.
- 2

From (4.11), we see that
@'(t) = 29(t) — Ei(1) = 2¢(— o0) + &(t) — E,(?)

where £(t)— 0, t— —oc, and Ej € Lip (— oo, 0) (¢f. Lemma 4.3).
If limsup |@'(t)| > 0, (4.13) must be false. We conclude that

t—— 00

(4.14) fvtzd()—>0, f— — oo,
2
Integrating (4.8) with respect to ¢, we obtain

0
€vf0,0) —v(t,0) + [V, 0)dr =0, <0
t

where
V(e 0) =y (Do — (N — 2 — & v + vP).

For n€ C(2) and for f(1) = [ V(t, 0)y(0) d, we get
2

f v(t, 0) n(0) df = € f 0,0, 9) 5(6) do + fo e fr) dr.

From (4.14), we see that u(¢, )~ 0 in 2'(Q) as t—> — co. Hence

0
(4.15) f e f)dv—~>0, t—>—oo0.
t
According to Lemma 4.3, f and f’ are uniformly bounded on (— oo, 0). If
e, <0, fe), <O,
g(t)_{o, t>0, F(t)_{o, t>0,

then (4.15) says that F=g(t)—0 as ¢-— — oo. According to Pitt’s form of
Wiener’s theorem (c¢f. Theorem 10a, p. 211 in [W]), it follows that F(r)—0 as

t— —oo, ie.,

(4.16) [ (Do — 0N —2—8) v+ ") O) @) dd — 0, ¢ —oco.

o
We can now go back to the variable r. If {r,} is a sequence tending to zero, and
if v,(0) = v(r,, 0), it follows from Ascoli’s theorem that {v,} has a subsequence
{v,,j} which is uniformly convergent on compact subsets of 2 as j— co and Tp; = 0.
If v,— , then the function o« is a weak solution of (2.14) and thus a classical so-
lution. If in particular lim sup M(r,, v) > 0, we can choose the subsequence in

n—> 00

such a way that « is not the trivial solution. (In this step, we alsouse Lemma 4.3).

Remark. By choosing another subsequence, we can assume that both {z,} and {Asv,}
are uniformly convergent on compact subsets of 2. Letting #— — oo in (4.10),
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we see that

3 [|Vex2d0 + 30N —2—0) [a?dd—(p+ D)7 [a?"'db
0 2 22

0

=y [ [v}dfdt— E©0),
—co 2

and that the integral in the left-hand member is independent of the choice of the
subsequence {r,,j}.

Remark. It remains to treat the case y = N — 2 — 2§ = 0. With the change of
variables ¢t = logr, (4.6) becomes

(4.8) U + Dgv — (p+ 1)1 P = 0.
The analogue of (4.9) is
(4.9
% (% Qf v} df — <% Qf |Vv|? dB—[—%Qf 2 dd—(p+ 1) Qf ot d0)> = 0.

It is easy to see that in a bounded domain, solutions of (1.1), (1.2) cannot
be ordered. The question is open whether this statement is true in cones. It has
been proved in [BL] that for ¢ =0 and p << (N + 2)/(N — 2), no regular
solution u lies under any singular solution u, of the type r~2@~Y x(f). Let us
add some supplementary remarks.

Lemma 4.5. Let u, = r @Dy (0) and v, = r =D n(6) be two
singular solutions of (1.1), (1.2). If u, = v, in €, then u,= v,

Proof. The positive difference d(0) = x,(0) — «.(0) satisfies the differential
inequality

2
o‘+2(N_2_cr—i—

e p—1 g <
4.17) Dod = p_1>d+pocl d=0.

From this, it follows that

(4.18) 0= [(x8¢d — dDgey)dd = (1 —p) [ o} db < 0.
2 Q

Equality holds only for d==0, which proves the assertion.

This proof together with Lemma 4.2 implies

Lemma 4.6. Let u and v be two solutions which are not regular at infinity but
which satisfy (4.5) for all r = R. If

lim sup% =1,
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then

i u(x)
im sup —— =
roo U(X

in the sense of Lemma 4.2.

The next result extends the result in [BL, Theorem 6.1] on the non-existence
of stationary solutions under singular solutions.

Theorem 4.7. Let U be a positive solution of (1.1), (1.2) satisfying
PUX)Zc, x€¥€
where 6 = (o + 2)/(p — 1).
(i) Assume that N — 2 — 20 << 0. Then there is no nontrivial regular solution u
with u< U.

(i) Assume that N — 2 — 20 > 0. Then there is no nontrivial solution u regular
at infinity with u =< U.

Proof. We give here a proof completely different from that in [BL, Theorem 6.1].
(i) Suppose that a regular solution u = U exists. Then V = U — u satisfies:

AV +prw= V<0, x€4¥.

This together with Green’s identity yields

r oV ou
—_— —_ — - <7 _ Lo
M!I (u - Van> ds f(uAV VM) dx = (1 p)Jru v dx.

o

If we choose 92’ = P(R,, R) (cf. Section 3.1), then, since u and V vanish on
0D' N 0%,
ov ou
1 ———V—=ld=(1— “u?

(4.19) Tovff<u - V8n>ds__(1 p)g[ru 0 dx
where 'y = 09" N {|x| = Ry} and I'= 69’ N {|x| = R}. From Corollary 3.5,
we know that r~7+u(x) and r'~7+|Vu| are bounded as x— 0.

We assert that it follows from our assumptions on U and u that r'*° V¥,
r’u(x) and r'*° |Vy/| are uniformly bounded for 0 < r < oo. To see this, we use

the arguments in the proof of Corollary 3.5with » = —o¢ — 2 + p 6. Consequently,
using (4.1), we see that

ov 7

(420) Ff <u—87 - V%) ds| < cRN=2+vs—8 . op—v-—06_ 0, Ry—0,
av ou )

(421) ]Ff <u—én—— VE’[) ds| = C_RN‘Z—Z()__>0, R—> o0,

Inserting (4.20) and (4.21) into (4.19), we get a contradiction.
The proof of (ii) is similar and we omit the details.
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Note added in proof. The case ¢ =4 N(p — 1) — (p -+ 1) which was left open
in Theorem 4.1, has recently been studied by H. EGNELL ““Positive solutions of
semilinear equations in cones” (to appear). Existence and nonexistence of solutions
depend on ¢ and the shape of £.
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