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w 1. Introduction 

Let  f (z )  be an entire funct ion of several complex variables of finite order o 
and  normal  type  (in wha t  follows, we shall always let the variable z represent an 

n 

n-tuple (z 1 , . . . , zn) and  ]]z]] ~- ( ~ zj~.) 1/2 is the Eucl idean norm). 
j = l  

Following the classical case of functions of one variable [7], we introduce the 
- -  In l f (rz)  l 

functions h(z) = lim and  h*(z) ~ lim h(z'),  and we call h*(z) the radial  
r P  ~ ' - ->z  r --> co  

indicator  (of growth) funct ion [4, 5, 6]. 
Bo th  h(z) and h*(z) are posit ively homogeneous of order ~; t h a t  is for t > 0, 

h(tz) = teh(z) and  h*(tz) ~- teh*(z). Lelong has fur ther  shown t h a t  h(z) -~ h*(z) 
except on a set of R 2~ Lebesgue measure zero, and  since bo th  are posit ively homo- 
geneous of order Q, h(z) ~ h*(z) for almost  all z E S 2~-1, the uni t  sphere in C ". 
The funct ion h*(z) is plur isubharmonic and  is independent  of  the  point  in C" 
chosen as origin (thus, i f  f ( z )  ~ O, i t  will always be possible to assume, wi thout  
loss of generali ty,  t ha t  f(0) # 0). 

There are certain properties of the  classical indicator funct ion of one variable 
which have no counterpar t  for n variables (n ~ 2). The classical indicator  funct ion 
is continuous [7, p. 54], bu t  Lelong [6] has shown t h a t  this is no longer necessarily 
t rue  for n ~ 2. His me thod  was to construct  (for all ~) a non-continuous pluri- 
subharmonic funct ion complex homogeneous of order ~. 

For  funct ions of one variable, the growth of the  funct ion f ( z )  is determined 
by  the  densi ty  and  distr ibution of the zeros [7]. In  part icular,  the regular i ty  of the 
dis tr ibut ion of the  zeros determines the regular i ty  of the funct ion f ( z )  and the 
regular i ty  of  the  indicator  function.  Our criteria for regular i ty  of growth will be 
the following: Le t  E be a measurable set of positive numbers  and  E r = E 13 [0,  r). 

meas (Er) 
I f  lim -- 0, E is said to be a set of zero relative measure (an E~ 

r 
r - - >  o9 
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Definition. A function f(z) of finite order ~ and normal type will be said to be 
In If(rz) I 

of completely regular growth along a ray (rz), r E [0, oo), if lim r ~' -- h*(z) 
r .--> o o  

where r takes on all values in the complement of some E~ f(z) will be said to 
be of completely regular growth for a (measurable) set D if f(z) is of completely 
regular growth for almost all z E D (i.e. except perhaps on a set of Lebesgue measure 
zero). The E~ will in general depend upon z. 

Paragraphs 2 and 3 extend several results known to be true for the classical 
indicator function to the case of several variables. In w 4, it is shown that  if in some 
region there are not too many zeros of the function, then the indicator function 
satisfies a Lipschitz condition in the projection on the unit sphere, and hence by 
homogeneity is continuous in the cone containing the region with vertex at the 
origin. 

w 2. Global properties of the distribution of zeros 

To investigate the behavior of the function, we shall need some inequalities 

In E f(rz) [ 
relating the functions h/, ~ -- ~ and h*(z) on compact sets. 

L E ~ A  2.1. I f  f(z) is of order ~ and finite type, there is a constant T o such that 
Ih*(z) l <= Tollz[I ~. 

Proof. I f  B is the type of f(z), then h*(z) ~= B[EzlL Furthermore, h*(z) ~= h(z), 
so there exists a T > 1 such tha t  in every complex line in which f(z) ~ O, 
h(z) ~ -- TBllzI[e (see [7, p. 21]). But  then, by the upper semicontinuity of h*(z), 
Eh*(z)l ~ TBHzll ~. Q.E.D. 

L~MMA 2.2. Let k,(z)(t E [0, oo)) be a family  of plurisubharmonic functions 

uniformly bounded above on each compact set and let k ( z )=  lira k,(z). Then for 
t---> oo  

every compact set K and every continuous l(z) ~ k(z), given s ~ O, there exists 
T~ such that t ~ T~ implies k,(z) ~ l(z) + ~ for all z E K. 

Proof. The proof can be found in Hhrmander [1], p. 283. 
There exists a real valued positive C + function a(z) with compact support 

1 
such that  a(z) depends only on tlzl] and f a(z)dV = 1. Let as(z ) = ~ a(z/~) (d ~ 1) 

and h*(z )=  fa s ( z ' - - z )h* ( z ' ) dV ' .  Then h*(z) is C ~ I t  follows from the mean 
value property of the plurisubharmonie function h*(z) tha t  h*(z) ~ h*(z), and it 
follows from the upper semicontinuity of h*(z) tha t  lira h*(z) ~- h*(z) (pointwise 
convergence), s+0 



:ENTIRE F U N C T I O N S  OF SEVEI~A:L Y A R I A B L E S  A N D  TI tEI ]~  ASYMI~TOTIC G:I:COWT/~ 1 4 3  

L ~ M A  2.3. For  every compact set K in C ~, given e >  O, 1 ~ ~ > O, 
exists an .R,~, ~ such that 

In If(rz) l 
- - -  < h*(z) ~- s for r > R~, and z E K h : , . ( ~ )  = : = = . . 

there 

Proof. The p roof  follows immedia te ly  from L e m m a  2.2. 
We now establish some of  the  global proper t ies  of  the  zero set of  an ent i re  

funct ion of f ini te order  and  normal  type .  To do this, we shall need a measure  of 
the  zero set. We  follow here the  deve lopment  of Lelong [3]. Le t  

dz j=l ~2j dzj and  d~ = ~ O 

i i 
We  in t roduce  the  cur rent  of in tegra t ion  ~ = - -  dfl~ In [f(z) l. Let  fi = ~- dfl~ ]lz]l 2 

i a 
and ~ = ~ d f l ~ l n ] ] z - - a [ l  2 ( z ~ a ) .  

The powers tiP/p! are elements  of  vo lume of complex dimension p,  and the 
powers aPa/p! are elements of  vo lume of complex dimension p in the  complex  
project ive  space C P  "-~ of complex lines emanat ing  f rom a. Assuming f (a)  # O, 
we pose the  measures 

f in- -1  1 
a =  ~A and  ~ . - -  . - l ~ A a :  - 1 .  

( n -  1)! 

The common suppor t  of  a and  ~ is jus t  the  zero set of  f (z) .  We int roduce  
/ .  i t .  

the  funct ions a,(r) = ] a and  v.(r) ---- / v.. Bo th  are posi t ive increasing 

Ilz-aH<<_ r Hz-all  < r 

funct ions of  r. Then  

( n -  1)! ao(r) 
~ ( r )  - ~ . - 1  r :~_  ~ . ( 2 . 0 0 )  

I f  we wri te  z i = xj ~- iyj, t hen  the  Laplac ian  is 

A =  § @) = 
j = l  ~ : 7  = azj0~.  " 

An easy ca lcu la t ion  shows t ha t  

Z ~ ft,-1 1 (A ln]f(z)]) - -  (2.01) 
----~A(n_ I)! --2z n! 

;7~ n 

The volume of the unit ball in G" is ~T and the area of the unit sphere is 

Let ~z.'"(~)-i be the measure of area of the unit sphere centered at a. 
( n -  1)! " 
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LEM~IA 2.4. (Jensen formula)  I f  f (a)  4= O, then 

r r 

f _ (n-1), f __ ,n-1),2=o f ln[f(a+rw)Io,(:L -ln,f(a),. 
o o llwll = 1 

Proof. The  classical Jensen  formula  is val id  in eve ry  complex line. The  lemma 
then  follows f rom in tegra t ing  over  all complex lines. Q.E.D. 

Since we shall be pr imar i ly  concerned wi th  the  case a = 0, we shall wri te  ~(r) 
to m e a n  %(r), ~(r) to  mean  %(r), and  (o2~_ 1 to  mean  w~~ 

T ~ o n ~  2.1 . .Let  f (z)  be a funct ion of f ini te  order Q and normal type such that 
r 

- -  ~ h * ( w ) ( % . _ l .  t Then l im re 2x" 
r . - ~  oo 

o IIw]] = 1 

Proof. B y  L e m m a  2.4 we have  

N(r)  ( n -  1)! f ln]f(rz)] lnlf(0)l 

Ilwll = 1 

in lf(rz) l 
B y  L e m m a  2.3, given e > 0, ~ > 0, for  r suff icient ly large re 

h~(z) ~- s on the  uni t  sphere. Combining and  le t t ing r -+  ~ and  s -~  0, we get  
_ _  N ( r )  (n  -- i)! / "  
lim ~ -  ~ 2~ n J h~(w)%n_l  . 
1".-~ o0 

ltwll = 1 

B y  L e m m a  2.1, we can app ly  the  Lebesgue domina ted  convergence theorem,  
f rom which i t  follows t h a t  

- -  ~ lim h*(w)(o2n_ 1 ~- h*(w)(%~_ 1 . Q.E.D. lim,._,~ re - -  ~-+o 2~n 2~n 
Ilwl] = 1 [Iw[t ~ 1 

COROLLAI~u lim 
r --> oo 

rel]~o 

v(r) e f v(t)dt 
Proof. J r ~ = r e t 

r 

~(r) - -  N ( r )  
lira r T  ~ e e l i m  re 
r . + o o  r *-~ oo 

v(r) e ~ ( n -  1)! / "  
- -  < J h*(w)~o2n_l. re -~ 2~n 

IIwll = 1 

N(el]er) QN(eller) 
- -  --~ ~ re - -  e (el/er)~ f rom which one has 

Q.E.D. 

_Remark. I t  follows f rom the  corol lary t h a t  if  f (z)  is an ent ire  funct ion of  f ini te  
order  ~ and  f ini te  t ype  B t h a t  
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~(r) ( n - l ) ! - -  ~(r) 
lira rQ - -  ~ . - 1  l i m  r~+2._ ~ ~ e ~ B .  
r .--~- oo r - - > ~  

L]~z~A 2.5. U r 

- r r 
A = l i m  ~- ,A_=l i_~m ~o 

r --~ oo r - ~ o o  

r 

{_; f (i) ,-~lim ~ -~ 

r 

(ii) ,--,~li--~m ~ ~ .  

Proof. See Levin [7, p. 34]. 

is a locally bounded function and 

- - ,  we have for o~ > O, 

T H E O ~  2.2. Let f(z) be an entire function of order Q and normal type. I f  
f(z) =~0 and if f(O) ~ 0 ,  then 

~(r) e (n--  1)! f 
< J h*(w)~%_l lim r ~ 2n" 

r ---~ o9 
]lwll = 1  

and equality holds if f(z) is of completely regular growth in C". 
~(r) N(r) 

Proof. By Lemma 2.5, lim ~ -  _<_ e !im ~ - -  I f  f(z) is of completely regular 
r - - > ~  r - + o o  

growth, it is of completely regular growth along almost all rays and so is of com- 
pletely regular growth along almost every ray in almost every complex line passing 
through the origin. Let (uw) (llwll : 1) be a complex line in which f(z) is of com- 
pletely regular growth along almost every ray. Since it is of completely regular 
growth on a dense set of rays, it is of completely regular growth in the sense of 
one variable [7, pp. 141--142] and so by the theorem for one variable, [7, p. 173], 
setting %(r) ~ (number  of zeros of f(uw) of modulus less than  r}, we have 

2z  

lira %(r) ~ j h(dOw) dO 
t ~  

- -  o 

0 

This holds for almost all complex lines. Integrat ing over all complex lines and 
applying Fatou 's  lemma (since all the integrands are positive) 

f v(r) f l,A ~a-* Q(n -- 1)! h*(w)~o2,_l > lira - 7  ~ lim ~,-1 
2 ~  ~ .  r~ 

i lw l l  = 1  , - > ~  , - ~ o o  I lz l l  ~ r 

f ( n -  1)! o,~ -1 nw(r ) 
li___m_m s ( n -  1)! r ~ 

r -->oo C P  n - 1  
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( n -  1)! f 
>= n"-~ ( n -  1)! li_m_m r ~ 

r--~- co 
c p n  -- 1 

2ze 

( n - - 1 ) ,  f Otto - 1  e f h(ei~ dO 
?/:rt--1 ( n -  1)! 2Jr 

But 
everywhere in the above equations. 

C p n -  1 0 

> e ( n -  1)! f 
= 2~" h ( w ) ~ 2 . _ l  �9 

IIwtl = 1  

h*(z) = h(z) almost everywhere on the unit sphere, so equality must hold 
Q . E  3 ) .  

w 3. Functions of completely regular growth in a region 

We now introduce a notation which will be useful in what follows. Let D be 
any subset of C n. We denote by  

D r = { t z ;  z E D ,  t E [ 0 , r ] }  

D ~ = { t z ;  z E D ,  t E [ O ,  co)} 

We show that  if f(z) is of completely regular growth in a region in which the 
indicator function is harmonic, then the density of zeros in that  region is quite small. 

LE~MA 3.1. Let n > 2 and let (rwo) be a ray of completely regular growth 

(w;llwl] -- 1, I [ w -  w011 < v/2} and define (XD(r) = / (r. (HWoll 1). Let D 
Then there is a constant k(~) such that Dr J 

lim rO+2,,_ 2 -- k(~) 2~" 
r ---> co 

Ilall =1 

Proof. Since f(z) is of completely regular growth along the ray (rWo), for any 
fixed So, f(sw,)4=O for almost all s = > s  o . For such s ~ s  o , we form the sphere 
of radius ~]s centered at (sw0). Then by  Lemma 2.4 

(~ 1)[ 
f lnlf(SWo + vsa)l~o2._l -- lnlf(SWo) I 

JlaJI =1  
z ] s  z ] s  

>-- $.gn--i t2n--~ >~ . - i  (~,~o(3sV/4) t2,-1 
O 3s~l 

~wo(3Sv/4) 
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We now divide by  s, integrate  f rom s 0 to r, and  interchange the order of  
integration: 

]Jail  = 1  s o s o 

/ a~wo(3s~]/4)ds 
> lq(~) s2,_ 1 

s o  

We first  examine the  r ight  hand  side of this inequali ty.  Le t  r = So(1 + ~/4) '~ q- e 

for some integer m such %ha% 8o(1 + ~]/4), ~ < (1 ~- ~/4). Le t  

D s = D , ~  (q = 1 ,  . . . ,  m ) .  

I f  So(1 + ~]/4) s-1 < s < so(1 q- r]/4) q, then  Dq C B(sw o ; 3s~]/4) (the ball of 
8Z 

radius 3sr]/4 centered a t  swo), since z' 6Dq  means t h a t  z ' - -  satisfies 
Ilzll 

8Z 
][z' - zl] = ~ - z = > - t l z l l l  < ~ s / 4 ,  a n d  l l z ' -  SWol] < vs/2 s o  l l z -  SWolI < 3s~/4. 

aq 

D q aql-- 1 

2n--1 a n d  noting t h a t  (~q -1  < 8 < ~bq ~ c b q _ l ( l  -~- 7~/4) ,  w ' e  h a v e  Dividing by  % 

aq aq aq 

~.-2 daD(S) 2n-1 Gwo(3s 4)d s s:~ 1 
a s ct s 

aq--1 as--1 aq--1 

a s aq 

~7/4 f day(s)faswo(3s~7/4)ds 
o r  (1  -~- ~/4) 2n-1 S 2 n - 2  ~ S 2 n - 1  

aq--1 aq--1 

Summing over all q, we have 

r r 

k 2 ( ~ )  S 2 n - 2  ~ 27~ n 092n--1 S S 

so r l all = 1 s o s 

In tegra t ing  the left hand  side of this last  inequal i ty  by  parts,  we have 

~I0 +v14) ~I0 + v14) 
f daD(S) GD(8)] r/(l+*~/4) f aD(S)d8 aD(8) trl(l+"]4) 

82rt__2 - -  ~ |  -~- (2n - -  2) s2,~-1 >~ : ~ - 2 ,  
8 is,, 8 J s,, 

so s o 
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We now examine the r ight  hand  side of the  inequali ty.  For  all e > 0 and 
8, 1 > ~ > 0, and  for s sufficiently large, lnlf(sw o ~- ~sa)[ ~ (h~(w o + ~a) + e). s v 
b y  lemma 2.3, which implies t h a t  asymptot ica l ly  

r 

I l a l l = l  So 

r e 
< o(r~) + - 

r 

< o( o, + 8)O)2n--lf"O--'~' 
l l a [ l = l  s .  

f (h~(wo + V a) + ~ ) ( D 2 n - - 1 -  

Ilall=l 

Since (rWo) is a ray  of completely regular growth,  by  [7, p. 144], for r sufficiently 
r 

1 f ln[f(SWo)Id8 1 
- -h* (wo) -  s. Hence, for r sufficiently large, large, 77 s 

$o 

~ 1)' 
r ~+~"-~ - resX"-V -< k~(v) 2~" 

for some constant  k. Le t t ing  r---~ oo 

o~,(r) ( ! n -  1)! 
lim r~+2~_ ~ < k4(v) 2e~ 
r--a. 

f h$(wo + va)co~._~ - h*(wo)) + 
IlaH=l 

and s --+ O, we f ind  

f h*(% + va)%._~ -- h*(wo)) 
[ ] a H = l  

ke 

for all & Applying the Lebesgue dominated  convergence theorem, since 
h*(w o + va) = lim h*(w o + va), 

0-+0 

(TD(r) ((~'b -- ])' f h.(wo + ~a)eo2n_l _ h.(wo)) Q.E.D. lira rO+2~_ 2 ~< k4(~) 2x ~ 
Hall =1 

T~wORE~ 3.1. Let f(z) be of finite order ~ and normal type. Let D be an open 
subset of the unit sphere such that f(z) is of completely regular growth in D. I f  in 
addition h*(z) i8 pluriharmonie in D~, then for any set K relatively compact in 

D, lim (~K(r) O. 
r - ~  r O + 2 n - - 2  - -  

Proof. :For each w C K,  there is an ~/~ such t h a t  the  set D w = {w' ;Hw'H = 1, 
[[w' - wll < 8%} is contained in D. Since ~Y is compact,  i t  is covered by  a finite 
number  of the  sets D', = {w' ;1]w'[I = 1, ]]w' - -  w[I < ~/~}. We shall index these 
sets D'w~, i = 1 . . . . .  N. Since the  set of  rays on which f(z) is of completely regular 

growth is dense in D, there is a w:.' such t h a t  llw,'.'- w~]] < %~ and  f(z) is of 

completely regular growth along the ray  (rw[). Then D' " ; w, c Dw[ = {w'  IIw'il ----- i ,  

llw' - -  w,"ll < 2n~,} a n d  {w'  ; liw'll = 1, ][w' - -  wTI I < 4V/w,} (::: D .  
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B y  L e m m a  3.1, we have  

. . ( r )  

l im r~+2,_ 2 --  0 .  
t - + c o  

O' tt ,~K(r) ~ "w ' ( r )  
i 

BUt  r~+2n_ 2 ~_< ~ re+2n_ 2 . Q.E.D. 
i = 1  

I n  the  ne x t  section we shall p rove  a converse to this  theorem.  
R e m a r k  1. I f  h*(z) is p lur iharmonic  in a region D, it  follows f rom the  homo- 

genei ty  of  h*(z)  t h a t  i t  is p lur iharmonie  in the  region D~.  
R e m a r k  2. I t  is ac tual ly  sufficient  to  assume h*(z) only harmonic  in D (see 

L e m m a  4.10). 

w 4. Regions of low density of zeros 

As was r emarked  af ter  Theorem 2.1, for  an ent i re  funct ion of  f ini te  order  and  
normal  type ,  the  quant i t ies  ~(r)/r ~ and  a(r) /r  ~+2n-2 are bounded.  In  this  chapter ,  
we shall invest igate  regions in which the  dens i ty  of  zeros as de te rmined  b y  t h e  
measure ~ is small - -  t h a t  is, regions D for which aD(r) ~- o(r~ We base 
our  work  on the  paper  of  Lelong [3] in which he works out  an  n-dimensional  
analogue of  the  classical H a d a m a r d  theorem.  We shall a lways assume t h a t  

f(0) # 0. 1 
We form the  canonical  po ten t ia l  b y  taking  hn(a ,  z) - -  it z _ ail2n_ 2 (n ~ 2) 

and  expanding  it  in a ne ighborhood of  the  origin z = 0 in a series of homogeneous  
polynomials  (a # 0) 

1 
hn(a, z) - -  [[a[[2n_ 2 -J- P l ( a ,  z) + P2(a, z) 2c . . . Pi(a,  z) -[- . . . .  

The  polynomials  P z ( a ,  z) are harmonic  in z. We define 

1 
en(a, z, q) = - -  h , (a ,  z) -[- [[a[12n_ 2 -~- P l ( a ,  z ) -] -  . . . -~- Pq(a, z) . 

The n  en(a , z, q) as well as all its par t ia l  der ivat ives  up  to  order  q are zero in a 
ne ighborhood of  the  origin. Le t t ing  k n = (n - -  2)!/2~ n-l ,  we form the  integrals Iq(z) = 

kn (~(a)e~(a, z, q), where q is the smallest in teger  such t h a t  ~ converges 

0 
(which is equiva len t  to  the  condit ion t h a t  q be the  smallest integer  such t h a t  

co 

~(t) f ~(t)dt 
lira t - ~  ~ 0 and  j ~ < ~ hold simultaneously) .  
t --> oO 

0 



150 A~XIV FSR ~ATE~ATI~. Vol. 9 NO. 1 

I f  f(z) is of  f inite order ~, then  we can write f(z) = Q(z) exp (P(z)), where 
Is(z ) In [Q(z)], q ~ e, and  P(z) is a polynomial  of  degree q' ~ e. I f  f(z) is 
of normal  type,  t hen  Q(z) is also of  order (at most) ~ and  normal  type  (with 
respect to order ~). 

L~M~A 4.1. Let h*(z) be the indicator function of f(z) and let k*(z) be that 
of Q(z) (with respect to order ~). Then (i) f(z) is of completely regular growth along 
a ray (rz) if and only if Q(z) is of completely regular growth along (rz); (ii) h*(z) 
is continuous at a point z o if  and only i f  Ic*(z) is continuous at %; (iii) h*(z) satisfies 
a JLi2schitz condition lh*(w) -- h*(w')l ~ KJ]w -- w'Ir (s ~ 1) on a subset of the 
unit sphere if and only if  ]c*(z) does; (iv) i f  q ~ e -- 1, then lc*(z) ~ O. 

Proof. Le t  q' be the degree of P(z). We decompose P(z) into homogeneous 
q" ~ __P(rz) q' 

polynomials:  P ( z ) ~  ~pi(z) .  Let  l(z)-~ l im Re r" o I f  ~ ~, then  l(z)~--0 
i = O  r - ~  

and the l imit  exists along all rays.  I f  q' = ~, l(z) = Re pq.(z), and again the l imit  
exists along all rays.  Hence 

h(z) = k(z) + l(z) a n d  so h*(z) = k*(z) + l(z) 

from which (i) and  (ii) follow. 
Le t  j = ( j l , . - - , J , )  be a mult i - index wi th  IJl = j l  d- . - .  d - j , .  We expand  

q" 

p~. in its Taylor  series expansion around w, Ilwll = 1, p~, = ~ ai (w) (z -  w) i. 
j = 0  

In  particular,  i f  w' is such t h a t  llw']l = 1, since ay(w) is hounded  on the uni t  
sphere and  Ilw' --  wlI ~ 2, 

qt 

II~epq,(w') - ~ep~, (w) l  < fpq,(w') - p ~ , ( w ) l  = I X  a~(w)(w' - w)Jl < Tllw' - -  wJI 
j = l  

for some appropriate constant  T, from which (iii) follows. 
I t  is shown in [3] t h a t  g = e --  1 implies t ha t  Q(z) is of  minimal  t ype  wi th  

respect to Q, so k ( z ) ~ k * ( z ) ~ O  in this case. I f  q < Q - - 1 ,  then  Q(z) is of 
order less t h a n  ~, so again k(z) ~ k*(z) ~ O, from which (iv) follows. Q.E.D. 

Thus,  in considering questions of cont inui ty ,  Lipsehitz conditions on subsets 
of  the  uni t  sphere, or regions of completely regular growth for h*(z), it  is enough 
to consider the funct ion Q(z), or a l ternate ly  ]~(z)= In lQ(z)l. 

For  entire functions of one variable,  the Cartan es t imate  [7, p. 19] is used to 
es t imate  the  funct ion off  the  zero set. We develop here an n-dimensional counter- 
par t  (n > 2) which will serve the same purpose. 
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L~M~I~ 4.2. Let D be an open set contained in the ball of radius r about the origin 

and let .4 = / ~ .  Then given W, 1 ~  W ~ O, there exists a set Q of measure 

f ~(a) CA less than Wr 2~ such that for z ~ Q, ii z _ ai]2~_ ~ ~ Wr2~_2 . 
D 

Proof. We m a y  assume t h a t  Ilzll H 2r. Le t  a' = aiD, the measure a restr icted 
f .  

to D, and  a ' ( t ) =  ] a' .  
o J  

[ l~-al l_<t 

~ ' ( B )  
We pose ~'(z) = sup 

B~= ~ ( B )  

Then 

B a ball containing z and  2 Lebesgue measure. 

3r 3r 

f f d(r: (t) a: ( t )[ : ,  2) f + F ( z )  = [1 z __ a[12._ 2 - -  t 2 . _  2 = t 2 . _  ~ + (2n - -  ~ : y  d t  ~ ~(z)r2lx~ 
D 0 0 

so z ; F ( z ) > ~  C z ; K~D(Z ) > 

By the H a r d y  maximal  theorem (cf. [2], p. 67) 

42n 42n  

2{z ; 5 ' ( z )  > s} H - -  ~(1)  = - -  A 
8 8 

, _ -  4 K, .  Q.E.D. so 2 z ' F ( z ) ~  ~ C Wr 2". I t  remains to choose C =  2, 

We shall be dealing wi th  functions which are harmonic  in a given region, and  
we shall need an est imate of their  growth locally. The following lemma will be 
nsefuh 

LEMMA 4.3. I f  g(z) iS a harmonic function for ]Iz]I H R and Ag(r) = max  g(z), 
then there is a constant K such that tl=[j=r 

r /R 
Ag(r) H [Ag(R) -- g(0)]K [1 -- r/R] 2" + ]g(0)t for  r < R .  

Proof. We first assume _R = 1. We begin wi th  the Poisson integral repre- 
sentat ion 

where z92,_1 
1 

0 - -  
~r n -- 1 

1 f g(z) - t2~._i g(w) 
l l w H ~ l  

is the surface area of the 

f g(w)r -- g(O) we have 
[[wll = 1  

1 - I I z l l  ~ 

I[w - zl[ 2" ~ 2 . - ,  

unit sphere [[w[[ = 1. Subtract ing 
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1 
g(z) = Q2,,-1 f g(w) l[w - zl?' 

I1 - -  Ilzllm - -  ]}w - -  zll2~ 1 

Hwll = 1  

I f  we set g(z) = 1, 

, f 0 --  ~,~-1 
IIw}} = 1  

[1 --[lzlI 2 - l l w  - z{{2"j 
k Ilw - -  zlI ~ 

F r o m  which 

1 
- -  g ( z )  - -  Y 4 . - 1  

o~_,._1 + g (0) .  

(D2n_ 1 �9 

f [ / g O )  g(w)] llw - ~II ~ ~o~,,_~ g(o) 
_ f l - I l z l { ~ - I lw -z l l ~ : ]  - .  

Ilwll = 1  

Taking the  absolute value of bo th  sides, we have  

I( 1 + r )  : ~ -  1 @r2[ 
lg(z)l _< [Ag(1) - -  g(0)] (1 - -  r) :~ + lg(0)l " 

I f  R =~ 1, we mere ly  divide z b y  R to  reduce i t  to the  above  euse. Q.E.D. 

LEMM~. 4.4. Given e > O, there exists s > 0 such that i f  ~ < q + 1 and D is a 

set with a e D implying Hail ~ sr (Hz{{ = r), then I a(a)e~(a, z, q) measurable < 8?  9 

~or r sufficiently large. D 
, ]  

for 

Proof. In  [3] it  is shown t h a t  there  exist  constants  z and  Cl(n, q) such t h a t  
IIzll [Iali ~ - - ,  
T 

c~{Izll ~*1 

f I f . /  a(a)e~(a , z ,  q) ~ C S  +1 ]lail2~_l+q . 
D })all ~ s t  

Thus,  if s ~ l / %  

In tegra t ing  the  r ight  hand  side by  par ts ,  we have  

o9 o0 

(~(a)e~(a, z, q) < (srf~+q_ ~ § C~r q+l .] ~ < C2r ~+~ .1 t~.+q 
D sr  sr  

since lira r2n_l+ ~ --  0. Since f(z) is of order  at  most  
r --> oo 

suff icient ly large, a(t) ~ C3t ~+~-2 and so 

and  normal  type ,  for  t 
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]fa(a)en(a,z ,q)  <=C2C3rq+lfte-q-2dt 
D sr 

~ C4r~+l(sr)e-q -1 : C4rOs~-q -1 " 

F i n a l l y  we choose s so large  t h a t  t he  i n e q u a l i t y  is sat isf ied.  Q .E .D .  

L]~M~i 4.5. Given s ~= O, there is a constant Co(n,q,s  ) such 
1)o = 1) n {a  ;b l t  <= sr} (llzll = r), then 

J I of*'l , a(a)EPl(a, z) + . . .  + Pu(a, z)] _--< Co [lail2~_2+q �9 
Do 

that i f  

Proof. I t  is shown  in [3] t h a t  t h e r e  are  pos i t ive  c o n s t a n t s  b~. ~ such  t h a t  

[P~(a, z) + . . .  + P~(a, z)[ ~= i]a]]2=_z+ ~ [1 + b,,xs -~ + . . .  + b,.qs -~] 

f r o m  wh ich  t h e  l e m m a  follows. Q .E .D .  

LEMMA 4.6. Let HwoI ] : 1. Then given e > 0 
> 0 such that 

measure~z~_ 1 {w' ; I]w'][ : 1 , ][w' - -  Wol ] <: 6 ,  

and 3 > O, there exists an 

k*(w') >: k*(Wo) - ~ > 

Proof. Since k*(z) is u p p e r  s emicon t inuous ,  t h e r e  is a 3 o > 0 such  t h a t  
k*(z) ~= k*(wo) + e/42"+2 for  ]]z ~ Wol ] < 6 o. T h e n  t h e r e  is a 31 _~ rain (30, 6) such  
t h a t  t he  po lyd i sc  A(wo; 3i) c {z; []z - -  Wo[ [ < 6o}. 

B y  p l u r i s u b h a r m o n i c i t y ,  

1 f k*(Wo) < ~2~ k*(z)dV < k*(wo) + 4~+2 
01 

a n d  so 

measurec~ {z ; z E A(wo; 61), k*(z) <~ k*(Wo) - -  e/4} ~ - -  

n~2n 
Y~ 0 I 

4 2 n + 1  �9 

I f  we  n o w  cons ide r  t h e  po lyd i sc  A'  = A(w0; 6i/4), we h a v e  
n~2n  

Y'~ O 1 
measurecn  { z ; z e A ' , k * ( z ) ~ : k * ( W o ) - - e / 4 } ~ =  42~ . 

Since A ' C  B(wo;%/n-31/2 ) a n d  since t he  d i a m e t e r  is t h e  longes t  l ine s e g m e n t  
in B(w o ; ~r 

measure~2._  x {w' ;[]w'[I = 1 , w'  e A'  a n d  tw' e A'  fo r  some t ,  k*(tw') > 

k*(Wo) - ~/4} 
n~2n 

>= 4 ~n ~ / E 3 ,  - 2 ~ / ~ 4  2o-~" 
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Le t  B be the  t ype  of the funct ion Q(z) (B < ~) .  Then for IIwll = 1, 
by  L e m m a  2.1. Thus 

k*(z) --  k* = k* (1 - l lzl l  ~~ =< T011 - l izlI~l .  

I f  we restr ict  ~ so t h a t  ]1 --]]z]] ~] < s /2T o for ]lz - Woll < 6 .  then  

k*(z/llzll)l < e/2 and  

measure~2n- 1 
37c=5~ =-1 

]k*(w)] =< To 

LE~MA 4.7. Let B be a set of measure less than Wr ~ and let 

lk*(z) - 

Q.E.D. 

> O. For 

[Iw[[~-- 1, let E w = {t ; tw E B}  and E = { w ;  measure Ew ~ ~r}. Then. 
T '  W 

measure~o:=_l (E) < ~2~ for some constant T' .  

_Proof. Let  g be the  characteristic funct ion of B and  To r2=-~ the  area of the 
sphere of radius r. Then 

~'r]2 0 

For  any  w such t h a t  measure (Ew) ~ St, we have 
measure {t : t ~ ~r/2 , tw C.B} ~ ~r/2 , so i f  ~] ---- measure~e~_~(E) 

To r :~-1 uCr 2 < Wr :~ or ~ < T0~:----;. Q.E.D. 

Lx~MA 4.8. Zet D be an open subset of the unit sphere S 2n-1 and D' = $2~-1~D. 

Let J(z) --- kn f a(a)e~(a, z, q) . Then J(z) is harmonic in D| 

D'r o 

Proof. Since any  point  in D~ lies outside the support  of the  measure a(a) 
restr icted to D ' ,  we can differentiate under  the  integral sign. Bu t  --  lfIz --  all 2~-2 
is harmonic for z # a. Q.E.D. 

T]t~ORnM 4.1. Let f(z) be an entire function of order ~ and normal type such 
that Q is not an integer and f(O) # O. Let D be an open subset of the unit  sphere. 

subset K of D ,  %:(r) ~ [ a  = o(r~+:~-2), then h*(z) is I f  for relatively every comTact 

continuous in D~ and satisfies a Lipschitz condition ]h*(w) --  h*(w') ] ~_ T(K)]]w -- w' H 
in K .  
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Proof. By homogeneity, it is enough to prove h*(z) continuous in D. By 
Lemma 4.1, it is sufficient to prove the theorem for Q(z) and k*(z). I f  q ~ ~ -- 1, 
k*(z) ~ 0 and the theorem is immediate, so we assume p ~ q -~  1. 

The proof of the theorem, which is quite long, will be divided into several parts. 
(i) Since K is relatively compact, there is an open subset D' of D such that  

K is relatively compact in D' and D' is relatively compact in D. Let  
D" = $2"-1~D '. We begin by  defining the function 

J(z) : ]c~ f a(a)en(a, Z, q) 
o.I 

D%0 

which is well defined by  virtue of Lemma 4.4. I f  [Iz[1 -- r, it also follows from 

Lemma 4.4 that  for r and s sufficiently large k~ [ a(a)e~(a, z. q) ~ r ~. 
Furthermore, by  lemma 4.5, D%o\D,'J 

If E ~(a)[P~(a, z) + . . .  + PJa,  z)] < Co(n, q, 8)r~ ilc~ll~_~+,. 
Dnsr DUst 

I t  follows from the remark after Theorem 2.1 that  
for some constant C. 

Integrating by  parts, we have 

I f 
D~sr 0 

[ ,  
a..(r) = ] ~  <= ~(r) <= Cr~+:n-: 

Dnr 

sr 

- -  t2n_~+ q r ~ ~- (2n - -  2 -~ q)r q t2~_1+ q 
0 

S r  

Cs~ ~~ ~- (2n -- 2 @ q)rqC f te-q-idt 
0 

<= Cl(n, q, s)r~ 

so for r large enough, J(z) ~ C2r e for some constant C2. We now define j(z) = 
lim J(rz)/r ~~ and j * ( z )=  limj(z'), which are bounded above on the unit sphere 
�9 .-~ oo zt.-->z 

and positively homogeneous of order ~. 
(ii) We have the identity In [Q(z) l = f a(a)en(a, z, q), so In ]Q(rw')] = 

/ I  

] a(a)e~(a, rw' ,  g) ~ J(rw') for I[w'l] = 1. Again applying Lemma 4.4, for r k~ 

and s' sufficiently large, k~ a(a)en(a, rw', q) =< ~ r and by  Lemma 4.5, 
D'co ~D's, r 
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!/ I /~ a(a)[Pl(a, rw') + . . .  + Pq(a, rw')] <= Co(n, q, s)r u HaH2n_2+ u . 
D' "r D's" r 

In tegra t ing  by  parts  and making use of the hypothesis  t h a t  for large enough 
t ,  (~D,(t)~. /~t e+2n-2 for arbi t rar i ly  small #, we have 

$' r  

f (~(a) d~.,(t) Ilall:~=2+~ / J - -  ~2n--2-}-q 

D's, r 0 

< 

sr r 

t2,_~+ q r q -~ (2n -- 2 + q)r q -tz,_l+ ~ 
0 

$'r 

~r~ f 4C ~ ~- ~t(2n --  2 -~- q)r q to-q-~dt 
0 

roe 

2co 
for r sufficiently large so t h a t  /~ is sufficiently small. Thus 

In ]Q(rw')] < k~ a(a) [la - -  ~u~ll 2"=~ § - 7 -  § J(rw') 
D'spr  

and so k(w')  <~j(w').  :But then  k*(z) <~j*(z) since both  are homogeneous of 
order Q. We also observe t h a t  by  L e m m a  2.1, this also implies t h a t  j (z)  is bounded 
below on the  uni t  sphere. We note  t h a t  f rom the  above estimates,  we also have 

f (~(a) 3er ~ 
- -  > J ( r w ' )  IIw'll = 1 In [Q(rw')[ ~ k~ [la - -  rw'll 2~-2 ~- 4 = ' " 

D'~, r 

(iii) Le t  ~ = d ( K , D " ) >  0 and let w E K .  Le t  w' be such t h a t  
]lw' - -  wI[ < ~/4. B y  L e m m a  4.8, J(z)  is harmonic  in D~o. 

B y  (i), there is a constant  C2 such t h a t  J(z)  <_ C2 r~ for [[z[[ = r, r sufficiently 
large. 

Le t  r = J ( }  + rw) for ][}]] < a r / 2 .  Then r _< C2(1 ~- ~]2)er Q and  
J(rw' )  = r - -  w]), J ( r w ) =  r Applying L e m m a  4.3 to the  harmonic  
funct ion r 

J(rw' )  - -  J (rw)  : r - -  w]) --  r < A~_~(0)(r[w' - -  w]) 

(~r )  2 K l ] w ' - - w H  
< A~_+(o) ~-  ~, (�89 

<_ K(~)r~l[w' - wlI . 
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On dividing by  r ~ and  let t ing r - +  oo th rough  a sequence of values of which 
J(rw') /r  ~ -->j(w'), we have t h a t  j (w' )  - -  j (w)  < Tol]W' - -  wl] for some cons tant  T 0. 
On reversing the roles of  w and  w' in the  above reasoning, we get t h a t  
j(~v) - j ( w ' )  < Tollw - w'll so [j(w') - j ( w ) ]  <= To]]W' --  w[I. Since J(z)  is har- 
monic in D',  by  Fa tou ' s  lemma, j*(z) is subharmonic there,  and  hence j(z)  = 
j*(z) almost  everywhere in D '  [5]. B u t  then  by  cont inui ty ,  j (z)  = j*(z) every- 
where in D', so j*(z) is continuous in D'. I f  I]w - -  w'll > a/4, surely there is 
a constant  T 1 such t h a t  ]if(w) - - j*(w' ) [  < TlIlw - -  w'  H since j*(z) is bounded 
on the uni t  sphere. Thus, there is a T ( K )  such t h a t  [j*(w) --  j * ( w ' ) l  < T(K)][w --  w'[l 
for w E K .  

(iv) Re turn ing  to the  funct ion r we let $ = 2rw, 0 < 2 < a / 4 .  Then 
K(or + a/2)ere2 

J([1 + 2]wr) --  J(wr)  < = Tot~ Let  8 > 0 be given, and  
J(rnw) 

let rn be a sequence such t h a t  r~--> ~ and  j * ( w ) - - - ~  : < - - ~  Then 

[ wr~ \ (1T~ ~)~ so j * ( w ) -  -4-8 J(wr~/1 ~ 2) g(wr~) - -  g I ~ + - 2 )  <= --  T~ < ~ for 0 --< 2 ~< a/4. 

8 38 
For  a ' ~  so small t h a t  T02 < ~ -  for 2 g ~ ' / 4  and  j * ( w ) - - - ~  < 

( 1 - ~ ' / 4 ) ~  for 2 < ~ ' / 4 ,  we s e e t h a t  there exists a sequence r ' = =  

r n 38 J(wr)  
(1 + ~ ' / 4 )  such t h a t  j * ( w ) - - ~ -  : < - - r ~  holds for all r such t h a t  r ' ~ < r _ <  

! 

r'~(1 -1- ~ ) .  Since j * ( w ) i s  bounded  on the  uni t  sphere, the choice of ~' is 
\ 

independent  of w. Since J(wr)  - -  J (rw' )  <~ T0r~llw -- w'l[ for []w -- w'[[ < ~'/4 and 
since Ij*(w) --  j*(w')T ~ T(K)[Iw --  w'N, there is a fi > 0 (independent of w) such 

J(w'r)  
t h a t  j*(w') --  8 _ < - -  holds on a sequence r~'--> ~ for all r such t h a t  

r n < r  < 1 + rn for all such t h a t  I I w ' - w l I < f l .  

(v) Le t  w E K and  let s > 0 be given. We begin wi th  the inequal i ty  established 
in (ii) 

f a(a) 3st ~ 
In  tQ(rw')[ + kn Ila - -  rw'll 2~-2 + 

D ' s ,  r 

Let  ~ = rain , 

exists a set E,  E = (w'; l lw' lI  = 1, 
measur%2~_ 1 (E) > ~ .  

> J(w'r)  , Ilw'll -~ 1 . 

B y  L e m m a  4.6, there is an V~ > 0 such t h a t  there 

Ilw' - wll < ~, [k*(w') --  k*(w)l < e} wi th  
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Since aD,(r) -= o(r~+2n-2), b y  L e m m a  4.2 and L e m m a  4.7, there  exists an R o 

f ~(a) such t h a t  for  r > R0, Ila - -  rw'll 2=-2 -< r% for w' E E '  wi th  measur%2n_ 1 (E') < 
D r t t t r  

~ / 2  excep t  perhaps  for a set of  r of  measure  less t h a n  ~'r/8. Since we have  
I t convergence almost  everywhere  there  exists an  R0 such t h a t  for r > Ro, k*(w') -i- e 

In [Q(rw')] 
> r~ except  on a set of  o)2~_~ measure  less t h a n  ~]J4. Then,  for  r~ > 

I 
m a x  (R o ,/?g), there  exists a w o E E and  an r, r~ =< r __< (1 -t- o~'/4)r~ such t h a t  

in IQ(rw;)[ 
k*(w) -~- 4s > k*(W'o) + 3s > @ 2e 

In [Q(rw'o) l 1 [ "  (l(a) as 
> r~ § -~ k~ J ]la - -  rW'oli ~ - 2  -4- -~ 

~)rsp r 

Z (rw'o) 
_ - -  "* ' > j* (w)  2~ > r~ > 3  (Wo)- -e  - -  , 

and  since e was a rb i t ra ry ,  k*(w) >_j*(w) in D' .  Since bo th  are homogeneous  
of  order  e, k*(z) > j*(z) in D ' ,  and  b y  (i) t h e y  are equal  in D ' ,  f rom which 
the  desired resul t  follows. Q.E.D. 

As in the  case of  one variable ,  the  case e = q mus t  be t r e a t ed  separate ly .  
I t  was established in [3] t h a t  for  Q = q, f(z) is of  normal  t y p e  if  and only  i f  the  

integrals  [a (a )Pq(a ,  z) are bounded  in absolute value on all compacts  independen t  

o f  R .  [l.ll__l~d 

LEI~IMA 4.9 . .Let  ]lwll = Ilw'II = 1. 
T'Hw --  w'tl 

IPJa, w) - P~(a, w3l <~ ilall2n_z+~ 

Then there exists a constant T '  such that 

Proof. The polynomial  Pq(a, w) is homogeneous  of  order  q in w. Le t  k 
be a mul t i - index of  order  2n, and  let  w = (x~, Yl . . . .  , xn, Yn) be a 2n-tuple.  

Tk 
Then  Pq(a, w) = ~ ck(a)w k, and  there  are constants  Tk such t h a t  ]ck(a) I < ]lal]2n_2+ ~ ; 

Ikt =q 
Tk is independen t  of  a. B y  per forming a ro t a t ion  (if necessary) we m a y  assume t h a t  
w----- ( 1 , 0 , . . . , 0 , 0 ) .  Le t  a '  be the  ro t a t ed  a, and  let  k 0 =  (q, 0 . . . . .  0 ,0) .  
Then  

[Pq(a, w) - -  P~(a, w')l = l%(a') - -  %(a')w 'k~ --  Z ck(a')w'k[ 
[~I=q 
k ~  ko 

_< [%(a')l I1 - -  x'xl Ix; q-1 -4- . . .  -4- II +lkk#l~ ~ Ick(a')] Iw'kl 

1 ~q 
llall2n_2+q [qTk, -4- ~ Tk] ][w - -  w'l] 

Ikl =q 
k~= S 0 
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since I I - -x~ l_< l lw- -w '} l  and Ix ; l_<l ,  and since lY~] < l l w - - w ' ] ]  for all 
i, [x;[ < l l w - w ' l l  for i #  1. Q.E.D. 

THEOlCE~ 4.2. Let f(z) be an entire function of order 0 and normal type such that 
is an integer and f(O) # O. _Let D be an open subset of the unit sphere. I f  for every 

f fd(YK(t) relatively compact subset K of D, %:(r) = ~r satisfies A(K)  ~ t~_2+ q < ~ ,  
% o 

then h*(z) is continuous in Do~ and satisfies a Lipschitz condition 

Ih*(w) - -  h*(w')l  < T(K)IIw - -  w'll i n  K. 

Proof. By homogeneity, its is enough to prove h*(z) continuous in D. By 
Lemma 4.1, it is sufficient to prove the theorem for Q(z) and k*(z). If q < ~ -- 1, 
k*(z) = 0, and the theorem is immediate, so we assume ~ = q. Since Q(z) is also 

type, we have / (y(a)Pq(a, z) bounded in absolute value on every corn- o f  normal 

Hatl_<s 

pact  set independent of s. Since Pq(a, z) is homogeneous of order q, there is 

i , , / i  
Hail<s 

TaHzH q 
constant T~ such that  f~(a ,  z) l <_ l!aliZ~_~+q [3, p. 376]. 

(i) Since K is relatively compact, there is a compact subset D'  of D such 
that  K is relatively compact in D'. We set D" = S 2 " - I ~ D  ' and introduce the 
functions 

Js(z) J ~ 2 ) ( z ) .  

D ~  D'  s 

This is well defined by virtue of Lemma 4.4. Also, by  Lemma 4.4, for s' sufficient- 
I 

]y large and for ][z n - r  so large that  s ' r > s ,  we h a v e ] k ,  I a(a)e,,(a, z, q) < 
rq; and by  Lemma 4.5, J D%\D",,, 

DHs,r D~s,r 

< Co(n, q - 1, s)r ~-1 f ~(a) 
D~s,r 

MakiI~g use of the majoration (YD.(t) ~ (Y(t) <_ Ct q+2n-2 and integrating by  parts, 
we have 
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and  

$ ' r  

rq_l f &rD.(t ) 
i l a i [ z . - 3 + u  - Tq -1 f t 2 n - 3 + q  

DUs, r 0 

s'r 

Ii - -  t2._3+ q r q-1 q- (2n - -  3 q- q)r q-1 tz._2+q 
0 

C8'r q q- (2n - -  3 q- q)Cs'r q = C'r q 

I k. f ~(a)PJa , z) + ~. f ~(a)PJa , z) [ 
D~s ' r~D ' s  II a II < s  

f a(a)Pq(a, z) -- k~ f a(a)Pq(a, z) l ~_ [C a + A(D')Tq]r ~ . 
Ilall < rs" D ' s , r~D"  s 

Thus,  for r suff icient ly large, there  is a posi t ive cons tant  A 0 independen t  of  s 

such t h a t  J,(z) < A0llzli q. We int roduce  the  funct ions 

J , ( r z )  - 
j,(z) = lim - -77-  < AoIIzll q , j(z) = l im j , ( z ) ,  j*(z) = l imj(z ' )  < AollzHq. 

r---> r s --> oo z'.--~-z 

All of  these are posi t ively  homogeneous  of  order  q. 

(ii) lnIQ(rw')l - Js(rw') = kn f a(a)en(a, rw', q) + kn f a(a)en(a, rw', q --1) 
D" m ~ D '  s Dt s 

for I]w'[[ : 1. Le t  s > 0 be given. B y  L e m m a  4.4, there  is an s" such t h a t  for r 
f 

sufficiently large, I kn { a(a)en<a , rw' , q) < er-~ ~ . We choose s o so large tha t ,  
I J 3 
D ' o o ~  D's .  r 

/ d(YD,(t) s 
posing C o=Co(n,q,s") of  L e m m a  4.5, t2~_2+ q _ ~ - .  F o r  s ~ s  o and  r so 
large t h a t  s"r ~_ s, ,o o , J  0 

k, f a(a)e,(a, rw',q)~[k, f a(a)[Pl(a, rw')+...+P~(a, rw')] I 
D ' s . r ~  D" s D t s . r ~  D s 

daD,(t) 8F q 

< Co(n, q, g')r~ J _ t~.-2+~ <_ -~ 
$ 

b y  L e m m a  4.5. Also, by  L e m m a  4.5, for r suff icient ly large 
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a(a)e (a 
D'$ 

In [Q(rw')l 
Thus rq ~ - -  

, r w ' , q - -  1) tk~fa(a)[P~(a,rw')§247 1 
D" s 

f daD,(t sr q Co(n, q - -  1 , 1 ) r  ~ - 1  t 2 . _ 3 +  ~ < - - ~  . 

0 

J,(rw') 
rq -~ e for s ~ s o and  r suff ic ient ly  large; hence, for 

s >__ so, j,(z) -k s ~ k(z) so j*(z) >__ k*(z), and  j,(z) and  j*(z) are bounded  below 
on the  uni t  sphere for  s ~ s o since k(z) is. 

(iii) Le t  oc ~ d (K ,D")  and  assume [[w-- w'l[ < a/4. B y  L e m m a  4.9, 
J!2)(rw) J~2)(rw') [ 

rq rq <__ A(D')T'Hw -- w'[I, and  since Pq(a, z) is homogeneous  of  

order  q, the  l imit  exists along all rays.  B y  Lem m ~ 4.8, J~)(z) is harmonic  in D~ 
and b y  (i), for  8 ~ s o and  r large enough,  there  is a cons tant  A 0 such t h a t  
J!l)(rw') 

r~ ~ A '  0 un i formly  in s. B y  applying the  same reasoning as in (iii) of  

Theorem 4.1, we conclude t h a t  there  is a cons tan t  T o independen t  of  s and  w 
such t h a t  ] j , (w)-- j~(w') l  _< T0llw- w'[[. I t  t h en  follows t h a t  j(z) and  j*(z) 
sat isfy the  same inequal i ty .  

J!2)(rw) 
(iv) Since lim r ~  exists along all rays,  b y  v i r tue  of  L e m m a  4.9, we 

r --> o9 

can repea t  the  reasoning in section (iv) of  Theorem 4.1; we see t h a t  for all w E K,  
there  exist  sequences r~ --~ o~ and  constants  cd and  fl ( independent  of  w and  s) 
such t h a t  

J,(rw') 
j,(w') -- e ~ rq ~ j,(w') -I- e for Ilw' - wll < 

and all r such t h a t  r n < r  < r n ( 1  + , ' / 4 ) .  
co 

f da~,(t) aD,(r) 
(v) The  inequal i ty  t2n_2+ ~ < oo implies lira r2~_2+ q - -  0 [3, p. 373]. Given 

r --->- ~ 
0 

e > 0, by  choosing s o sufficiently large, we have  for s ~ s o and  r suff icient ly large 

f 
ln[Q(rw')[ -l- er q -{- J 

.~tS# r 

o(~) 
Ila - rw'll 2~-~ >- Js(rw') 

for  all IIw'}l = 1 b y  (ii). B y  repeat ing the  reasoning in (v) of  Theorem 4.1, we con- 
clude t ha t  

~*(w) + 48 > js(w) - 2~ for w e K .  (4.00) 
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Thus  k*(w) + 6e > l imj,(w),  and  since s was a rb i t ra ry ,  k*(w) ;>j*(w) since 
$ - + o 0  

k*(w) is upper  semieontinuous.  Since bo th  are homogeneous  of  order  q, k*(z) = j*(z) 
in K,  f rom which the  theorem follows. Q.E.D. 

LEM~A 4.10. I f  g(z) is a real valued function harmonic and plurisubharmonic 
in an open set E, then g(z) is pluriharmonic in N. 

Proof. I f  g(z) is harmonic  in E,  it  is C ~, hence continuous.  Le t  z 0 6 E.  Then  
for a ny  sphere S~, ~-1 eontered  at  z0, the  average over  S ~  - I  is g(zo). I f  in 
some complex line th rough  z0, g(Zo) were s t r ic t ly  less t h a n  its average over  the  
disc centered  at  z0, b y  con t inu i ty  i t  would be less over  a whole ne ighborhood of  
complex lines, and  hence g(z0) would be s t r ic t ly  less t h a n  its average over  S~2 -x, 
which would be a contradic t ion.  Thus  equa l i ty  holds in eve ry  complex line, and  
g(z) is p lur iharmonic .  Q.E.D.  

T~EO~E~ 4.3. Let f(z) be an entire function of order ~ and normal type such 
that f(O) :/: O. Let D be an open subset of the unit sphere such that for any relatively 
compact subset K of D 

(i) (~K(r)= 0(~ ~+2~-2) for e not an integer 
oo 

f daK(t) (ii) t2~_2+~, < oo for ~ an integer. 
0 

Then i f  f(z) is of completely regular growth in D, h*(z) is pluriharmonic in Doo. 

q 

Pro@ We wri te  f(z) = Q(z) exp (P(z)), and  we decompose P(z) = ~ pi(z) 
j = O  

I~e P(rz) 
into homogeneous  polynomials .  Le t  l(z) = l im r ~ Then  h*(z) = k*(z) -[- l(z). 

r - + o o  

I f  ~ < q ,  l(z) = 0, and  if  ~ = q ,  l(z) = I~e pq(z); hence,  i t  is sufficient to consider 
k*(z). I f  q < ~ - - 1 , k * ( z ) = 0  and we are through,  so we m a y  assume t h a t  
e < q + l .  

Le t  K be a compact  subset  of  D~.  Given e > 0, for  a lmost  all z, there  
exists an  E~ E z such t h a t  for r ~ E ,  and  r suff ic ient ly  large 

- 2 s  + k * ( z )  < - -  ~ § - - - -  
J ( r z )  

Q(rz) < < j*(z) @ e = k*(z) d- s 
r ~ - -  7 - -  

B u t  then  by  (iv) of  Theorem 4.1 

- -  3e  + k * ( z )  < - -  _< k * ( z )  + s 

for all r sufficiently large (depending on z). 
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B y  (iii) of  T h e o r e m  4.1 and  the  con t inu i ty  of  k*(z) 

J(rz ' )  
- -  4s- t- /c*(z ' )  < - 7 -  < k * ( z ' )  ~- 2s for [ [ z ' - - z l [ <  ~ .  

J(rz)  
Since is ha rmon ic  in Doo , ]c*(z) in D~ is the  un i fo rm l imi t  on compac t  

r ~ 
sets of  ha rmon ic  funct ions  and  hence is ha rmon ic  in D~.  B y  L e m m a  4.11, i t  is 

p lur iharmonic .  
P a r t  (ii) is p r o v e d  the  same w a y  using the  equ iva len t  pa r t s  of  T h e o r e m  4.2. Q.E.D.  
Remark .  I t  is clear t h a t  the  Lelong cons t ruc t ion  [3] is va l id  for all subha rmonic  

funct ions  of  f ini te  order  ~ (the po lynomia l  P(x )  will jus t  be ha rmon ic  in this case). 
Since we have  only  made  use of  the  proper t ies  of  ha rmon ic  and  subha rmon ic  
funct ions,  the  resul ts  of  w 4 are also appl icable  to the  case of  subha rmon ic  funct ions  
wi th  the  obvious  modif ica t ions  on condit ions on Au, the  measure .  One m u s t  
t h e n  replace the  word  p lu r iha rmonic  b y  harmonic ,  of  course. 
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