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§ 1. Introduction

Let f(z) be an entire function of several complex variables of finite order o
and normal type (in what follows, we shall always let the variable z represent an

n-tuple (z,...,2,) and || = (> 2%)"® is the Euclidean norm).
=1
Following the classical case of functions of one variable [7], we introduce the
— In|f(rz —
—lf%)—[ and A*(z) = lim A(z'), and we call h*(z) the radial

7>z

functions A(z) = lim
indicator (of growth) function [4, 5, 6].

Both A(z) and A*(z) are positively homogeneous of order p; that is for ¢ > 0,
h{tz) = °h(z) and h*(fz) = t°hA*(z). Lelong has further shown that A(z) = A*(2)
except on a set of R*™ Lebesgue measure zero, and since both are positively homo-
geneous of order o, h(z) = h*(z) for almost all z € 8!, the unit sphere in C".
The function A*(z) is plurisubharmonic and is independent of the point in C"
chosen as origin (thus, if f(z) =£ 0, it will always be possible to assume, without
loss of generality, that f(0) &= 0).

There are certain properties of the classical indicator function of one variable
which have no counterpart for » variables (n = 2). The classical indicator function
is continuous [7, p. 54], but Lelong [6] has shown that this is no longer necessarily
true for » = 2. His method was to construct (for all g) a non-continuous pluri-
subharmonic function complex homogeneous of order .

For functions of one variable, the growth of the function f(z) is determined
by the density and distribution of the zeros [7]. In particular, the regularity of the
distribution of the zeros determines the regularity of the function f(z) and the
regularity of the indicator function. Our criteria for regularity of growth will be
the following: Let £ be a measurable set of positive numbers and X, = EN [0, 7).

. meas (E,) o :
If lim — = 0, E is said to be a set of zero relative measure (an E°-set).

F— 00
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Definition. A function f(z) of finite order ¢ and normal type will be said to be
In|f(rz)|

of completely regular growth along a ray (rz), r €[0, ), if lim e h*(z)

r—=>w

where 7 takes on all values in the complement of some E’-set; f(z) will be said to
be of completely regular growth for a (measurable) set D if f(z) is of completely
regular growth for almost all z € D (i.e. except perhaps on a set of Lebesgue measure
zero). The E’-set will in general depend upon z.

Paragraphs 2 and 3 extend several results known to be true for the classical
indicator function to the case of several variables. In § 4, it is shown that if in some
region there are not too many zeros of the function, then the indicator function
satisfies a Lipschitz condition in the projection on the unit sphere, and hence by
homogeneity is continuous in the cone containing the region with vertex at the
origin.

§ 2. Global properties of the distribution of zeros
To investigate the behavior of the function, we shall need some inequalities

In| f(rz)|

7'9

relating the functions Ay, = and A*(z) on compact sets.

Lemma 2.1, If f(z) is of order o and finite type, there is a constant T, such that
[h*(@)| = Tl

Proof. If B is the type of f(z), then A*(z) < B|¢/[®. Furthermore, h*(z) = h(z),
so there exists a T > 1 such that in every complex line in which f(z) == 0,
h(z) = — TB|zl¢ (see [7, p. 21]). But then, by the upper semicontinuity of A*(z),
[R*(z)] < TBJ}|. Q.E.D.

Levma 2.2. Let k(2)(¢ €[0, ) be a family of plurisubharmonic functions
uniformly bounded above on each compact set and let k(z) = lim k(z). Then for

t— o0

every compact set K and every continuous l(z) = k(z), given & > 0, there exists
T, suchthat t = T, tmplies k(z) = 1(z) + ¢ forall z € K.

Proof. The proof can be found in Hormander [1], p. 283.
There exists a real valued positive C® function «(z) with compact support

. x(z[0) (6 = 1)

s

such that «(z) depends only on |}z and f a(2)dV = 1. Let o,(2)

and k¥(z) = foca(z’ — 2)h*(z")dV’. Then hf(z) is C°. It follows from the mean
value property of the plurisubharmonic function h*(z) that A¥(z) = k*(z), and it
follows from the upper semicontinuity of A*(z) that lim 2¥(z) = h*(z) (pointwise
convergence). >0
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LeMmMa 2.3. For every compact set K in C", given ¢ >0, 1 = > 0, there
exists an Ry . such that

_ Inifra))

by, (2) po =hf@)+ e for r=R;, and z€K .

Proof. The proof follows immediately from Lemma 2.2.

We now establish some of the global properties of the zero set of an entire
function of finite order and normal type. To do this, we shall need a measure of
the zero set. We follow here the development of Lelong [3]. Let

n

n 3
1,=3 545 and d=3

J

a -
P 6_2'] dz; .

We intr(.)duce thé current of integration 7 = ;i‘dzdz In|[f(z)]. Let p = —;‘dzds |12
and o, = %dzdz Injz — a* (z & a).

The powers p?/p! are elements of volume of complex dimension p, and the
powers «f/p! are elements of volume of complex dimension p in the complex
projective space CP"! of complex lines emanating from @. Assuming f(e) == 0,
we pose the measures

n—1
a:r/\m and vazn—n;ir/\oc:‘l.

The common support of ¢ and » is just the zero set of f(z). We introduce

the functions o,(r) = f g and v,(r) = f v,. Both are positive increasing

) la—ali<r la—al{ <7
functions of r. Then

(n — Dl a,(r)

va(r) = —F 7,2n—2 . (200)

If we write z; = z; + iy;, then the Laplacian is

n < 62 82 n a2
o3 (2 B as
2 o} ' Ay} jgl 02,0Z;

j=1
An easy calculation shows that

ﬁn—l 1 ,Bn

g=1A m =5 (A Injf(z)}) (2.01)

n!
n"
The volume of the unit ball in " is oy and the area of the unit sphere is
27" )

TR Let o{)_; be the measure of area of the unit sphere centered at a.
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Lemma 2.4, (Jensen formula) If f(a) & 0, then

r r

()t — 1) (D)dt — 1!
f ”(t) S Ui f ‘;f._)l Gk f In|f(a + rv)lofl_, — ()] .

7T 27"
0 0 JJw|| =1

Proof. The classical Jensen formula is valid in every complex line. The lemma
then follows from integrating over all complex lines. Q.E.D.

Since we shall be primarily concerned with the case a = 0, we shall write »(r)
to mean %,(r), o(r) to mean oy(r), and w,,_, to mean w{_,.

TaeorEM 2.1. Let f(z) be a function of finite order o and normal type such that

v(t)dt — N(r) (n — 1)!
f(0) ==0. Let N(r) = Then lim o = Py h*(w)w,,_; -
0 e lleli=1
Proof. By Lemma 2.4 we have
N@r)  (n— 1) f In|f(rz)| In|£(0)|
© 2" P
fewll =1
. . In|f(rz)|
By Lemma 2.3, given &> 0, §> 0, for r sufficiently large prs =
h¥(z) + & on the unit sphere. Combining and letting r — 0 and &-—0, we get
— Ny _(n— 1) N
lim e = o b3 (w)ws, -

e ol =1

By Lemma 2.1, we can apply the Lebesgue dominated convergence theorem,
from which it follows that

— N _ 1) fh* (n — 1)! fh* .
:f:o e = 615; oy 3 W)Wy, 1 = T omr (w)wg,_1 - Q.E.D.
flwlt =1 (|l =1

— »(r) _ ep(n — 1)!
COROLLARY. lim — = B h*(w)ws,_y -
T fwli=1

P »(r) _ e /' y(t)dt _ N(eVer) oN (eer) ; hich b
roof. o =70 =0 5 = e (eerye rom whic one as
— (1) — N(r)
= wED

Remark. It follows from the corollary that if f(z) is an entire function of finite
order ¢ and finite type B that
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— ) (=1 — o)
m = =" lim T S e B,

Lemma 2.5. If ¢(r) is a locally bounded function and
- = ¢ 7’) $(r)

A= , 4 =1lim 7 we have for « >0,
() A4
e f¢ }é—
=0 9
(t)dt A
(ii)li;m{— 40 }21

Proof. See Levin [7, p. 34].

THEOREM 2.2. Let f(z) be an entire function of order o and normal type. If
f(2) =0 and if f(0).=+0, then

. vr) _e(n — 1!
g_nilo — = o h*(w)w, 4

Jlwlf=1
and equality holds if f(z) is of completely regular growth in C".

) . N .
Proof. By Lemma 2.5, lim ) = ¢ lim b If f(z) is of completely regular

r—o0 T =

growth, it is of completely regular growth along almost all rays and so is of com-
pletely regular growth along almost every ray in almost every complex line passing
through the origin. Let (uw) (||w]] = 1) be a complex line in which f(z) is of com-
pletely regular growth along almost every ray. Since it is of completely regular
growth on a dense set of rays, it is of completely regular growth in the sense of
one variable [7, pp. 141—142] and so by the theorem for one variable, [7, p. 173],
setting n,(r) = {number of zeros of f(uw of modulus less than 7}, we have

1.6

T —>0

This holds for almost all complex lines. Integratmg over all complex lines and
applying Fatou’s lemma (since all the integrands are positive)

o(n — 1)! 'V(’I') . 1 zAog!

h*(w)wy,_y = lim — = lim g

n
276 7’-—>w r->00

it =1 lzl=r

) (n — 1) og™t n,(r)
= lim f A O YR
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I

(n — 1)! f x ! , 7,{7)
2 m— ) =

T
CPn—l ~> 00

2
(n — 1)! / ot o /
i o 1) 2 T(e°w)do

cpr—1
o{n — 1)!
2x7"

v

h(w)w,, 1 .

i

llw}f=1

But A*(z) = A(z) almost everywhere on the unit sphere, so equality must hold
everywhere in the above equations. Q.E.D.

§ 3. Functions of completely regular growth in a region

We now introduce a notation which will be useful in what follows. Let D be
any subset of C*. We denote by

D, ={tz; z€D, t€[0,r]}
D, ={tz; z€D, t€[0, )}

We show that if f(z) is of completely regular growth in a region in which the
indicator function is harmonic, then the density of zeros in that region is quite small.

Levma 3.1, Let n =2 and let (rwy) be a ray of completely regular growth

(lhwgll = 1), Let D={w;|w| =1, |w— wy <n/2} and define op(r) = f c.

Then there is a constant k(n) such that D,
— op(r) {(n — !
lim et = kn L_z—nn—— h*(wy + 9a)ws,_1 — k¥ (wy)

llell=1

Proof. Since f(z) is of completely regular growth along the ray (rw,), for any
fixed sp, f(swy) == 0 for almost all s = s,. For such s = s, we form the sphere
of radius #s centered at (sw,). Then by Lemma 2.4

(n — 1)!
ot f In|f(swy -+ nsa)|wg,_, — | f(swp)]
flaf =1
(n— 1! [o.0d_ (n— 1) " d
n — 1)! G ()l n — 1) 4
Z 7_[n—l f t2n—1 Z 9‘["_1 Otswn(gs??/él) f t2n_—l
0 B
4
Ouoy(357/4)
> ki(n) — sz

8§



ENTIRE FUNCTIONS OF SEVERAL VARIABLES AND THEIR ASYMPTOTIC GROWTH 147

We now divide by s, integrate from s, to », and interchange the order of
integration:

n — 1) f o | f In|f(sw, —[— nsa)|ds B fln[f(swo)lds

s
Haﬂ 1 %

Tyuo,( B877/4)ds
> Icl (17) f 2n——

We first examine the right hand side of this inequality. Let r = s,(1 + 5/4)™ + ¢

for some integer m such that 1 -1 5/4). Let

r

—_— <

so(1 + 7/4) (
D = DSo(1+17/4)4\ se(l+7/4)11 g=1,...,m).

If s(1 + n/4)~! <s < s(1 + n/4)%, then D, c B(swy; 3sn/4) (the ball of

82
radius 3sy/4 centered at sw), since 2z’ € D, means that 2z’ = - satisfies

o — szH = Ia—lell <sfd, and ' — | <2 5o l’z—é‘woll<38n/4
Henee, if a, = so(1 -+ 7/4)?, (¢, — a,_;) f o <f (3sn/4)ds
Dy -1
Dividing by o' and noting that a, , <s < a, = a,_,(1 4 5/4), we have
aq aq
1—a, /o 1 - (Bsm/4)d
(vaan?;[—q) f dGD(S) S 2n—~ f 38/’]/4 ds < f . 2:7/1
7 21 q a1
“q “q
n/4 dop(s) T (387/4)ds
or T gl | ez = ) T e
(1 + n/4) $ 8
g1 g1

Summing over all ¢, we have

/(L+5/4)

A R P f o + 00l [ nife)id

s~ S

s lal=1 s

Integrating the left hand side of this last inequality by parts, we have

r/(1+2/4) r/(1+n/4)

dop(s op(s) ]+l ap(8)ds  op(s) AT
[ -2 e [ 2

8 s " s s

S S
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We now examine the right hand side of the inequality. For all ¢ > 0 and
6,1 > 6 > 0, and for s sufficiently large, In|f(swy + nsa)| < (Af(w, + na) + ) - °
by lemma 2.3, which implies that asymptotically

< ofr?) -+ f(h:sk(wo + na) + e)wz,,_lfs@—‘ds

llell=1 S0

j In|f(sw, -+ nsa)lds
Wy, 1

Nlell=1 s
re
<o(r?) + — / (b3 (wo + na) + &)wg,_; .
llall=1

Since (rw,) is a ray of completely regular growth, by [7, p. 144], for » sufficiently

1 In|fswy)|ds 1 o
large, =) — 5 > E h*(w,) — ¢. Hence, for r sufficiently large,

<6D(T/(1 + 71/4)) GD(SO)) - (?7)<(n — 1!

r@+2n—2 7,@8(2)"—2 27"

_/ b (wy + @) w0y, _y — ﬁ*(w0)> L ke

llafl=1

for some constant k. Letting r — oo and &£—0, we find

— o) (n — 1) \ .
lim gotn—z < ka(n) o b (wo + na)owy,_y — B*(w,)
e fall=1
for all 6. Applying the Lebesgue dominated convergence theorem, since
B*(wy + na) = lim &5 (w, + 7a),
50

—_— — 1!
lim —i?% < ky(n) ((—”—g)— f W (ay - m@)aog_y — k*(wo)) QE.D.

T lall =1

TreEOREM 3.1. Let f(z) be of finite order o and normal type. Let D be an open
subset of the unit sphere such that f(z) is of completely reqular growth in D. If in
addition h*(z) is pluriharmonic in D, then for any set K relatively compact in

. ok(7)
D, lim o= =

r=>00

Proof. For cach w € K, there is an 7, such that the set D, = {w";|w']| = 1,
[lw" — wl| < 8#,} is contained in D. Since K is compact, it is covered by a finite
number of the sets D, = {w';|w’| =1, |w’ — w|| < n,}. We shall index these
sets D,',,i, t=1,...,N. Since the set of rays on which f(z) is of completely regular

growth is dense in D, there is a w] such that [Jw] — w;|| <7, and f(z) is of
completely regular growth along the ray (rw}). Then D, < Dy = {w';|w = 1,
llw" — wil| < 2n,} and {w' ;]| =1, |’ — w]] < 47,} c D.
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By Lemma 3.1, we have

UD:,"'(T)
Iim “—IT =0.
r—>o 7@+2n 2
ap’a(r
ok(r) N D"’-( )

But Q.E.D.

T S 2 T

In the next section we shall prove a converse to this theorem.

Remark 1. If h*(z) is pluriharmonic in a region D, it follows from the homo-
geneity of A*(z) that it is pluriharmonic in the region D,.

Remark 2. It is actually sufficient to assume A*(z) only harmonic in D (see
Lemma 4.10).

§ 4. Regions of low density of zeros

As was remarked after Theorem 2.1, for an entire function of finite order and
normal type, the quantities »(r)/r® and o(r)[r¢*t?*~2 are bounded. In this chapter,
we shall investigate regions in which the density of zeros as determined by the
measure o is small — that is, regions D for which op(r) = o(r**>~2). We base
our work on the paper of Lelong [3] in which he works out an n-dimensional
analogue of the classical Hadamard theorem. We shall always assume that
£(0) + o.

1
We form the canonical potential by taking h,(a,2) = m_—z (n = 2)

and expanding it in a neighborhood of the origin z = 0 in a series of homogeneous
polynomials (e == 0)

1
k. (a, z) = W:é + Py(a, z) + Pyla,2) + ... Pla,2) + .. ..

The polynomials P,(a,z) are harmonic in z. We define

1
e(a,2,9) = — h,(a,z) | W__"__z + Pya,2) + ...+ Pya,2).
Then e,(a,2,q) as well as all its partial derivatives up to order ¢ are zero in a
neighborhood of the origin. Letting k, = (n — 2)!/27"~", we form the integrals I,(z) =
. : dw(t)
k, | o(a)e,a, 2, q), where ¢ is the smallest integer such that Sl converges

0
(which is equivalent to the condition that ¢ be the smallest integer such that
ee]

. o) v(E)dt .
lim = 0 and T < 0 hold simultaneously).

q+2
t—>w 0
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If f(z) is of finite order p, then we can write f(z) = Q(z) exp (P(z)), where
I(z) =In|Q@z), ¢=¢, and P(z) is a polynomial of degree ¢' <. If f(z) is
of normal type, then @(z) is also of order (at most) ¢ and normal type (with
respect to order p).

Lemya 4.1. Let h*(z) be the indicator function of f(z) and let k*(z) be that
of Q(z) (with respect to order o). Then (i) f(z) s of completely regular growth along
a ray (r2) if and only if Q(z) is of completely regular growth along (rz); (i) h*(z)
is continuous at a point z, if and only if k*(z) s continuous at zy; (iil) h*(2) satisfies
a Lipschitz condition |h*(w) — b*(w')| < Kljw — w'|f (s £ 1) on o subset of the
unit sphere if and only if k*(z) does; (iv) if ¢ <o — 1, then k*()=0.

Proof. Let q" be the degree of P(z). We decompose P(z) into homogeneous
(TZ)

polynomials: P(z) = Zp,(z) Let I(z) = lim Re . If ¢’ < p, then Il(z) =0

r—>o0

and the limit exists along all rays. If ¢’ = p, (z) = Re p (), and again the limit
exists along all rays. Hence

Mz) = k(z) + l(z) and so A*(z) = k*(z) + I(2)

from which (i) and (ii) follow.
Lot 5= (j;1,---,J,) be a multi-index with |j| =4, + ...+ j,. We expand

kd .
py in its Taylor series expansion around w, |w|| =1, py = > a(w)z — w).

In particular, if w’ is such that |w'] = 1, since a;(w) is bounded on the unit
sphere and | — w|] < 2,

[Re py(w') — Re pp(w)| = [pg(w’) — py(w)| = Ji aw)(w' — w)| < Tiw' — v
=1

for some appropriate constant T, from which (iii) follows.

It is shown in [3] that ¢ = ¢ — 1 implies that @(z) is of minimal type with
respect to g, so k(z) = k*(z) = 0 in this case. If ¢ < ¢ — 1, then Q(z) is of
order less than ¢, so again k(z) = k*(z) = 0, from which (iv) follows. Q.E.D.

Thus, in considering questions of continuity, Lipschitz conditions on subsets
of the unit sphere, or regions of completely regular growth for A*(z), it is enough
to consider the function @Q(z), or alternately I (2) = In |@(z)].

For entire functions of one variable, the Cartan estimate [7, p. 19] is used to
estimate the function off the zero set. We develop here an n-dimensional eounter-
part (n = 2) which will serve the same purpose.
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Lemuma 4.2. Let D be an open set contained in the ball of radius r about the origin
and let A = f o. Then given W, 1> W > 0, there exists a set Q of measure
c4

aHZn 2 = W7,2n——2 .

Proof. We may assume that [jz]} < 27’. Let ¢’ = o|,, the measure o restricted

to D, and o.(f) = f a’.

less than Wr™ such that for z€Q, / T

la—ali <t
- (B
We pose o'(z) = sup%—((ﬁ)l , B a ball containing z and 1 Lebesgue measure.
B>z
Then
3r 3r
o(a) do,(t)  o.(8) , / a,(t)
RS A A |- — 2 < 21
f HZ a[|2n— f t2n—2 t2n—2 0 + (2” ) t2n. 2 dt U( )/I' An
0 0
| 7 oF: | } J Iy C’A}
50 |73 F@) > g © |25 Kaon(d) > 3

By the Hardy maximal theorem (ef. [2], p. 67)

42n 2n

Mz;o'(z) > s} g?v(l) = —S—A

Wytn—2 C

We shall be dealing with functions which are harmonic in a given region, and
we shall need an estimate of their growth locally. The following lemma will be
useful.

Lemma 4.3. If g(2) is a harmonic function for ||l < R and A,(r) = max g(z),
then there is a constant K such that lizlj=r

CA 4K,
so Az Flz) > < Wr*. It remains to choose € = 4™K_. Q.E.D.

r/R

Ay (r) <[4, (R) — g(0)]K ““W + g0} for r<R.

Proof. We first assume R ==1. We begin with the Poisson integral repre-

sentation
1 L — [P
9(z) = o f Q(W)mﬁwzn_l
flewlf=1
where £2,, ; is the surface area of the unit sphere |w| = 1. Subtracting
1

= g(w)wy,_ — g(0) we have
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1 [T — [Rf]2 — llw — 2™

Doy d o — 2l ]

Wo;, 1 + g(O) N

I Rl L

llw — 2P

From which

1 — [zl — Jjw —
Izl H?]lezn 2] }w%_l 0.

[t = g {

flwli=1

1

2n—

[l — 2]

Taking the absolute value of both sides, we have

+ )" — 14
” — |+ o).

If R+1, we merely divide z by R to reduce it to the above case. Q.E.D.

lg(z)] < [4,(1) — g(0) ]]

LemMMA 4.4. Given & > 0, there exists s > 0 suchthatif o <<q+ 1 and D isa
f al(a)e,(a q)) < &r?
D

Proof. In [3] it is shown that there exist constants = and C(n, q) such that

for |lal] > M

measurable set with a € D implying ||la|| = s7 (|2l = 1), then
for v sufficiently large.

Oyllzl ™
lenl@, 2, q)I<W:m .

’f ae.(a, z q)’ < ¢ttt f]]a(:f‘a1+9'

llal = sr

Thus, if s > 1/7,

Integrating the right hand side by parts, we have

— Cyp*g(sr) o [ o)de o o(t)dt
a)e, (@, 2, q) (sr)Ftat + Cyr? fAnta < Oyt 2nte
o(r) :
since lim irg = 0. Since f(z) is of order at most p and normal type, for ¢

r—c0

sufficiently large, o(f) =< C3¢*t*% and so
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0
'f o(a)e,(a, z, q)[ < 0,0%*! f 107173t < O (sr)e 17t = Oyr2se™171
D sr

Finally we choose s so large that the inequality is satisfied. Q.E.D.

LeEMMA 4.5. Given s =0, there is a constant Cyn,q,s) such that if
Dy =Dn{a;la =sr} (kll =7), then

a(a)

o "

f a(@)[Pi(a, 2) + ... + Pya,2)]| =G,

D, D,

Proof. Tt is shown in [3] that there are positive constants b, , such that

ll211"*

Paa,2) -+ Pyt A S gy [ Baas™ D7)
from which the lemma follows. Q.E.D.

LeMMA 4.6. Let |wy| = 1. Then given ¢>0 and 6> 0, there exists an
n >0 such that

measure,, - {w' ;W[ =1, [[w —wl <5, E¥w') = k*(w) — e} >1n

Proof. Since k*(z) is upper semicontinuous, there is a J, > 0 such that
k*(z) < k*(w,) -+ &/4"*? for |z — wy| < 8. Then there is a §, =< min (d,, ) such
that the polydise A(wy; 6;) C{z; |z — woll << 8}

By plurisubharmonicity,

1 &
k*(w,) = pp f k*(2)dV = k*(wo) + oz
A(woidx)
and so

nen

measuren {z ;2 € A(wg; 8y), k*(2) < k*(w,) — ¢/4} < 4—2;31 .

If we now consider the polydisc A’ = A(w,; 5,;/4), we have
n $2n
measuregs {z;2z €A’ , k¥(z) = k¥(w,) — ¢/4} = —Zz,,—l .
Since A’ B(wy;4/7d,/2) and since the diameter is the longest line segment
in B(wg;\/16,/2),
measure,, . {w';|wll=1, w €4’ and tw €A’ for some ¢,k*({tw’)=
k*(wo) — &[4}
s 2 g2
> —_— == pu—
= 4 A/mé 24/nd
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Let B be the type of the function Q(z) (B << o). Then for |w] =1, [k¥*(w)] =T,
by Lemma 2.1. Thus

z 2
k*(z) — &* (@) k*<@> (1 — 1)

If we restrict §; so that |1 — [z|l¢| < &/27, for |z — wy| << §;, then |k*(z) —
k*(z/llf)| < e/2 and

= Toll — |kl -

3o
measure,, | {w';[w] =1, k*w')=k*w)— e} = W Q.E.D.
Levma 4.7. Let B be a set of measure less than Wr™ and let > 0. For
(w| =1, let E,={t;tw€ B} and E = {w; measure K, = (r}. Then

4

measure,,  (B) <-—g— for some constant T'.

¢

Proof. Let y be the characteristic function of B and Ty’ the area of the
sphere of radius 7. Then

T, f 22 < T f w2 < W,
irf2 0

For any w such that measure (£,) > {r, we have
measure {¢:¢ = {r/2, tw €B} > ({r/2, soif n= measurewzn_l(E)

é- 2n—1 CT 22nW’
T, [E} ponl 17‘2— < W™ or 5 < —‘T-O'éjig . Q.E.D.

LeMMA 4.8, Let D bean open subset of the unit sphere S and D’ = S '\ D.
Let J3)=k, / ola)e,(@, 2z, q) . Then J(z) is harmonic in D,.

D

Proof. Since any point in D, lies outside the support of the measure o(a)
restricted to D’,, we can differentiate under the integral sign. But — 1/|z — af*~?

is harmonic for z = a. Q.E.D.

TaEOREM 4.1. Let f(z) be an entire function of order ¢ and normal type such
that o 1s not an integer and f(0) & 0. Let D be an open subset of the unit sphere.

If for every relatively compact subset K of D, ox(r) = f o = o(ret72), then h*(z) is
KT

continuous in D, and satisfies a Lipschitz condition |h*(w) — h¥*(w')] < T(K)|lw — w'||
m K.
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Proof. By homogeneity, it is enough to prove A*(z) continuous in D. By
Lemma 4.1, it is sufficient to prove the theorem for Q(z) and k*(z). If ¢ <o — 1,
£*(z) =0 and the theorem is immediate, so we assume o << ¢ - 1.

The proof of the theorem, which is quite long, will be divided into several parts.

(i) Since K is relatively compact, there is an open subset D’ of D such that
K is relatively compact in D’ and D’ is relatively compact in D. Let
D" = 8=\ D'. We begin by defining the function

J@) =k, | o(a)e,(a, z q)
S

which is well defined by virtue of Lemma 4.4. If (]| =, it also follows from

Lemma 4.4 that for » and s sufficiently large |k, / o(a)e,(a, 2. q)| = 7°.
Furthermore, by lemma 4.5, D7\ D",

f o(@)[Py(a,2) +- . . . + Pyfa, 2))

D"

o(a)
= Oo(n: 9, S)qulf Mzn-—z-g-q :

sr

It follows from the remark after Theorem 2.1 that op.(r) = f 0 < o(r) < Cretin?
for some constant C. o
Integrating by parts, we have

] ola) v dop(£)
o [ | [ 5]

D”

r

sr
sr

op(t) T ope(t)dt
= pn-trq L?‘q+(2n~2+Q)ﬂf‘tzD,,_—1ﬂ
0

sr

=< Cs 9% + (20 — 2 -+ g0 f e dt
0

< Cyln, q, 8)r°

so for r large enough, J(z) < C.r? for some constant C,. We now define j(z) =
lim J(rz)[r* and j*(z) = lim j(2’), which are bounded above on the unit sphere

r—>00 >z

and positively homogeneous of order p.

(ii)) We have the identity In [Q(2)] = Icnfa(a)en(a, 2,q), so In |@Q(rw')| =
k, f ala)e,(a,rw’ ,q) + Jirw') for |w] = 1. Again applying Lemma 4.4, for r
D’OO
and s’ sufficiently large,

€
k, / a(a)e(a, rw', q)| = ~4—7~0; and by Lemma 4.5,

D \D "sr
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o(a)

f o(@)[Py(a, rw’) + ... 4 Pa, rw’)]’ = Cy(n, q, s)r’Df ”—a“—z;_z—rq .

or s’r

D

Integrating by parts and making use of the hypothesis that for large enough

t, op(t) < ut?t** for arbitrarily small u, we have
B O N
r “a”2n—2+g - : t2n—2+g

sr

ap(t) | op(t)dt
= t2n—2—|—q 0 7.9 + (2”’ — 2 + Q)rq t2n—1+q
0
s'r
er?

-— . q —q—1
4O()—l—[u(Zn 2—!—q)r ftQ = dt

0

e
2C,

[IA

for r sufficiently large so that u is sufficiently small. Thus

—1 3ere
n Q)| = E, [ ola) [”a————} + =+ Tw)

7w'|| 4

and so k(w') < j(w'). But then k*(z) < j*(z) since both are homogeneous of
order o. We also observe that by Lemma 2.1, this also implies that j(z) is bounded
below on the unit sphere. We note that from the above estimates, we also have

r@
In |QUr)| - k. f o) = Jew), ) =1.

. lla — rw'|f"? 4

(i) Let o« =d(K,D") >0 and let w€K. Let w be such that
lw" — w|| < /4. By Lemma 4.8, J(z) is harmonic in D..

By (i), there is a constant C, such that J(z) < Cy? for |z|| = r, r sufficiently
large.

Let (&) = J(& + rw) for ||§| <oar/2. Then (&) < Cy(l + «/2)2r¢ and
Jrw') = ¢(r[w — w]), Jrw) = ¢$(0). Applying Lemma 4.3 to the harmonic
function (&),

J(rw') — J(rw) = $rlw’ — w]) — $(0) < A _ o (rw —w]) <
<4 ( ) 2K |lw' — w|
— “Lo—q(0) 2/ « (%)2"

< K(w)réjw” — wf .
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On dividing by 72 and letting »-— oo through a sequence of values of which
J(rw')[r® — j(w'), we have that jw') — j(w) < Tyllw’ — wj for some constant 7.
On reversing the roles of w and w' in the above reasoning, we get that
jw) — jw') < Tow — w]| so [j(w) —j(w)| < Tghw' — wl. Since J(z) is bar-
monic in D', by Fatou’s lemma, j*(z) is subharmonic there, and hence j(z) =
j*(z) almost everywhere in D’ [5]. But then by continuity, j(z) = j*(z) every-
where in D', so j*(z) is continuous in D’. If |w — w'|| > «/4, surely there is
a constant 7, such that [j*(w) — j*(w')| = Tw — w'| since j*(z) is bounded
on the unit sphere. Thus, there is a 7'(K) such that [j*(w) — j*(w')| < T(K)jjw — w'||

for w € K.
(iv) Returning to the function ¢(&), we let &= Arw, 0 <1 <«/4. Then
K(o)Co(1 + /2)0r°A '

J([1 -+ AJewr) — J(wr) < > = Ty Let &> 0 be given, and
J(r,w
let 7, be a sequence such that 7, — oo and j*w)— :i— = ——(T@—) . Then
7 J( wrn)< Tyreh " € TZ<J(wrn/1—}—7L)f 0 <1 <alt
(wrn)'—— 1_;_)‘ :(l—f-l)gso‘? (’M))—4—- (=] 7’5’, or U= :O‘/'
3¢

AN

€
For o« =« so small that T4 <7 for 1=«'/4 and j¥w)— i

€
(1 4 o'[4y [j*(w) — -2—] for 1 <<a&'/4, we see that there exists a sequence 7, =

3e J (wr)
such that j*w) — vy =

T, ,
(—lm holds for all » such that », <r <

2.4
r (1 -+ Z) . Since j*(w) is bounded on the wunit sphere, the choice of «' is

‘r@

independent of w. Since J(wr) — J(rw') < Tylw — w'|| for [jlw — w'|| < a'f4 and
since |j*(w) — j*(w')] = T(K)|w — w'|l, thereisa g > 0 (independent of w) such
J(w'r)

that j*w') — e = e holds on a sequence 7,— oo for all r such that

“l
n<r< (1 -+ Z) 7, for all w’ such that [w' — w|] << B

(v) Let w € K andlet ¢ > 0 be given. We begin with the inequality established

a(a) Ser?

In |QUrw')| + knD,, m -+ = Jw'r), wi =1.

( K)) . By Lemma 4.6, there is an #; > 0 such that there

exists a set H, E={w;|w| =1, [w —w]|<d, |k*w)— k¥w)| <<e} with
measure,,,  (H) > 5,

Let 6= min(ﬁ , FE——
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Since op(r) = o(r*t*»"?), by Lemma 4.2 and Lemma 4.7, there exists an R,
06)
w'|

7,/2 except perhaps for a set of r of measure less than «'r/8. Since we have
convergence almost everywhere there exists an R, such that for » > R;, k*(w') ¢

In [@(rw’)]
=

such that for » > R, / o — =z < 1% for w’ € B’ with measure,,  (E) <

except on a set of w,,_; measure less than #,/4. Then, for r, >

max (R, , B;), thereexistsa wj €HF andan r, r, <r < (1 + &’/4)r, such that

\ , In Q(ruy)|
k() 4 de > H(wg) + 86 = — — + 2
ln[Q(er
=T f llo — rwouz" 2
J(Two) , .
= T ) — e > ) — %,

and since ¢ was arbitrary, k*(w) > j*(w) in D’. Since both are homogeneous
of order o, k*(z) >j*(z) in D., and by (i) they are equal in D’ , from which
the desired result follows. Q.E.D.

As in the case of one variable, the case ¢ = ¢ must be treated separately.
It was established in [3] that for ¢ = ¢, f(2) is of normal type if and only if the

integrals f o(a)P,(a, z) are bounded in absolute value on all compacts independent
of B, yayr

Lemma 4.9. Let |w|| = [w'l = 1. Then there exisis a constant T' such thot

|P,(a, w) — P (a, w)| <M
o o = laff

Proof. The polynomial P, a,w) is homogeneous of order ¢ in w. Let %k
be a multi-index of order 2n, and let w = (xy,¥;,...,%,, ¥, be a 2n-tuple.

T
Then P (a, w) :mz (@)wF, and there are constants T, such that ¢, (a)] < ﬂ—”szer—q ;
T, isindependent of a. By performing a rotation (if necessary) we may assume that

w=(1,0,...,0,0). Let o’ be the rotated @, and let k, = (g,0,...,0,0).
Then
|Py(a, w) — Pa, w')| = |g (@) — ¢ (@' )w"™ — > cy(a’yw™|
boi?
< leg(@)] 1 — o] Ja™ ... 4 1] + Z le(a’)| [w™|

1 k,—sk
< MTT.;?; [qT, +lk|§; Tl llw — w']

k5 ky
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since |1 — 27| <|lw —w/|| and |z;] <1, and since |y;] <|w — w'|] for all
i, lol <w—w| for i 1. QED.

ToreorEM 4.2. Let f(z) be an entire function of order o and normal type such that
o 18 an integer and f(0) == 0. Let D be an open subset of the unit sphere. If for every

doglt
relatively compact subset K of D, olr) = f o satisfies A(K) = f t'zT_I%(% < o0,
0

K

then h*(z) 1is continuous in D, and satisfies a Lipschitz condition

(¥ (w) — h*w')| < T(K)jw — w'| in K.

Proof. By homogeneity, its is enough to prove h*(z) continuous in D. By
Lemma 4.1, it is sufficient to prove the theorem for @(z) and k*(2). If ¢ <p—1,
k*(z) = 0, and the theorem is immediate, so we assume g = ¢. Since @(z) is also

of normal type, we have f o(a)P,(a , z) bounded in absolute value on every com-

llali<s
pact set independent of s. Since Pj(a,2) is homogeneous of order g, there is

a constant C, such that f o(a)Py(a,z) | < CJl|". TFurthermore, there is a

e <8

T 1

constant T, such that [Pya,z)! < ”*“2,,_*2“

; [3, p. 376].

(i} Since K is relatively compact, there is a compact subset D’ of D such
that K is relatively compact in D’. We set D" = 8"\ D’ and introduce the
functions

=k, f Jen(®, 2, q) + &, f o(@)Py(a, 2, ¢) = V() + JO) .

This is well defined by virtue of Lemma 4.4. Also, by Lemma 4.4, for s’ sufficient-

ly large and for ||| = r so large that s'r > s, we have |k, f o(a)e,(a, z, q) <
7% and by Lemma 4.5, D"\ D’

k, f olaye (a,z,q — 1) < }kn / o{a)[Py(a, 2) + ...+ P,_,(a,z)]

D, D"

s’r

< Cy(n, ¢ — 1, s)rt lfHaHz" 3Tg -

Making use of the majoration op.(t) < o(t) < Ot ~? and integrating by parts,
we have
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s’r

oo 0@ / dop-(t)

”a“2n—3+q - t2n—3+q
D

sr

op-t) |77 3 ope(t)dt
=;ﬂ:mL 1t 4 (20 — 3 4 g lfm
0

<O ++ (2n — 3 + ¢)Cs'rt = CO'r?

and k, f o(@)Pya ,2) + k, f o(a)Py(a , z)
D7y N\ D% lefi<s
= ’k" f o(@)Pa, z) — k, f o(a)Pya,2)| <[C, - A(D)T, .
[lafl < s’ D's’r\D’s

Thus, for r sufficiently large, there is a positive constant A, independent of s
such that J,(z) << Ajj#|>. We introduce the functions

. EYRN JS(TZ) T . . I .
Jule) = lim — = < AR, j(z) = lim ji(2) , j*(2) = lim j(z') < Ayl -

r—> 5§00 z'->z

All of these are positively homogeneous of order g¢.
() i@ — Low) =E, [ ot@esara’sq) + ko [ o@pee g -1
D'OO \D/S DIS

for ||w'|| = 1. Let ¢ > 0 be given. By Lemma 4.4, there is an s” such that for »
b [ o@ete, )

D'\ D57

sufficiently large,

g
< % . We choose s, so large that,

[ood

dop. (1) &
pr—2+g = '370

posing C, = Cy(n, ¢, s") of Lemma 4.5,
large that s"r > s, Py

. For s > s5 and 7 so

k, f a{a)e,(a, rw’, q) < |k, f o(@)[Py(a, rw’) + . .. + Pya, rw)]
Do, \D's D/ o)\ D’

s*r

» dUD/(t) er?
< Cyln, g, s")r Pt < Y

s

by Lemma 4.5. Also, by Lemma 4.5, for r sufficiently large
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lcf efa,rw ,g—1) <k

f o(@)[Py(a,rw') + ...+ Py_,(a, rw’) H

Dy

dop.(t) ert
< Cy(n,q — l,l)r“‘lfm< 3

0

In [Q(rw)| _ J(ruw) g
Thus o < v + ¢ for s >s, and r sufficiently large; hence, for
8 2 8y, Ji(2) + & = k(2) so j*(z) > k*(z), and j,(2) and j*(z) are bounded below
on the unit sphere for s > s, since k(z) is.

(iii) Let x=d(K,D") and assume [w — w'| <o«/4¢. By Lemma 4.9,
IOrw)  JO(rw')
T
order ¢, the limit exists along all rays. By Lemma 4.8, J®(2) is harmonic in D/,
and by (i), for s > s, and r large enough, there is a constant A4, such that
JO(rw)
7'.1
Theorem 4.1, we conclude that there is a constant 7, independent of s and w
such that [j,(w) — j,(w")| < Tyllw — w'|. It then follows that j(z) and j*(z)
satisfy the same inequality.

J(z)( w)

< AWD)T'|w — w'|, and since P,(a,z) is homogeneous of

< A, uniformly in s. By applying the same reasoning as in (iii) of

(iv) Since lim exists along all rays, by virtue of Lemma 4.9, we

r—ow

can repeat the reasoning in section (iv) of Theorem 4.1; we see that for all w € K,
there exist sequences 7, — o and constants &’ and f (independent of w and s)
such that

Jw') —e <

Jw') ,
A <gw)+e for JJw —w|<p

and all r such that 7‘,, <r <r,(14 a'/4).

dop(t) op(r)
(v) The inequality Pamtrg < ®© implies hmm = 0 [3, p. 373]. Given

> 00

g > 0, by choosing s, sufflclen’cly large, we have for s > s, and r sufficiently large

m = J(rw’)

In|@(rw’)| + e® + f

for all [lw']] =1 by (ii). By repeating the reasoning in (v) of Theorem 4.1, we con-
clude that

E*w) + 4e > j(w) — 2¢ for we€K. {4.00)
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Thus k*(w) + 6¢ > l—ir_n-js(w), and since & was arbitrary, &*(w) > j*(w) since

k*(w) is upper semicontinuous. Since both are homogeneous of order ¢, k*(z) = j*(2)
in K, from which the theorem follows. Q.E.D.

LrvMa 4.10. If g(2) is a real valued function harmonic and plurisubharmonic
in an open set K, then ¢(z) s plurtharmonic in K.

Proof. If ¢(z) is harmonic in ¥, it is C®, hence continuous. Let z, € E. Then
for any sphere Si*~! contered at z, the average over Si*™' is g(z). If in
some complex line through z,, ¢g(z,) were strictly less than its average over the
disc centered at z,, by continuity it would be less over a whole neighborhood of
complex lines, and hence g(z) would be strictly less than its average over i+,
which would be a contradiction. Thus equality holds in every complex line, and
g(2) is pluriharmonie. Q.E.D.

THEOREM 4.3. Let f(z) be an entire function of order o and normal type such
that f(0) = 0. Let D be an open subset of the unit sphere such that for any relatively
compact subset K of D

(1) ox(r) = o(r°*t*™ %) for o mnot an integer

.. do(t) .
(i) Tzt < © for o an integer.
0
Then if f(z) s of completely regular growth in D, h*(z) is pluriharmonic in D.

Proof. We write f(z) = Q(z) exp (P(2)), and we decompose P(z) = zq: p:(z)

. . . Re P(rz)
into homogeneous polynomials. Let I(z) = lim —%

If 9 <q,lz) =0, andif ¢ = q,1(z) = Re p,(z); hence, it is sufficient to consider
E*z). If ¢ <o —1,k*2z)=0 and we are through, so we may assume that
e<gq+ L

Let K be a compact subset of D,. Given &> 0, for almost all z, there
exists an E’set K, such that for ¢ E, and r sufficiently large

Q(rz) J(rz)

— 2R S —e <

. Then h*(z) = k*(z) -- I(z).

But then by (iv) of Theorem 4.1

J(rz)
—3e Fk*2) < — 7 <k + e

for all r sufficiently large (depending on =z).
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By (iii) of Theorem 4.1 and the continuity of k*(z)

%) < E*@2') + 2¢ for |2 — 2]l << 9,.

) =

— de + k() <

J(rz)
Since (7*’ is harmonic in D_ , k*(z) in D_ is the uniform limit on compact

sets of harmonic functions and hence is harmonic in D,. By Lemma 4.11, it is
pluriharmonie.

Part (ii) is proved the same way using the equivalent parts of Theorem 4.2. Q.E.D.

Remark. Tt is clear that the Lelong construetion [3] is valid for all subharmonic
functions of finite order ¢ (the polynomial P(x) will just be harmonic in this case).
Since we have only made use of the properties of harmonic and subharmonic
functions, the results of § 4 are also applicable to the case of subharmonic functions
with the obvious modifications on conditions on Aw, the measure. One must
then replace the word pluriharmonic by harmonic, of course.
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