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During implementation of the PODMODELI-program for the equations of  gas dynamics [1] it became clear that the 

equations have many partial invariant solutions, most of  which have not been studied previously. Such solutions require special 

analysis, which sometimes is not trivial. Our attention was attracted by solutions generated by the rotation group O(3), which 

is allowed by the equations of gas dynamics. What is specific here is that solutions invariant under 0(3) (see, e.g., [2]), which 

are known as spherically symmetric solutions, are singular invariant solutions from the standpoint of  group analysis. For the 

group O(3), however, the necessary conditions for the existence of nonsingular partially invariant solutions are rank two and 

defect one. These solutions are characterized by the fact that their invariant components are spherically symmetric, but their 

velocity vector component tangential to the sphere is nonzero. It turned out that a fairly broad class of  new solutions is opened 
up here�9 

The aim of this study is to demonstrate that such solutions do exist and to make a general analysis of them. The 

kinematics and dynamics of the respective motions of  the gas are very involved and the details are not yet very clear. A 

singular vortex is distinguished as an exact solution with a special initial distribution of the tangential component. Particular 

examples of such exact solutions are given here. In addition, we consider the case of steady-state flow of  an incompressible 
liquid, where solutions of  the singular vortex type exist and are fairly foreseeable�9 

1. Spherical Coordinates. In the space R3(x), in addition to the Cartesian coordinates of the point x = (x, y, z) and 

the corresponding components of the velocity vector u = (u, v, w), we introduce the spherical coordinates (r, 0, ~,) by the 
formulas 

(1.1) 
x = r s i n 0 c o s q o ,  y = r s i n 0 s i n %  z = r c o s 0  

and the corresponding velocity vector components (U, V, W) 

U = u sin 0 cos qo + v sin 0 sin r + w cos 0, (1.2) 

V = u cos 0 cos qo + v cos 0 sin ~2 - w sin 0, 

W = -u s inqo  + veos~o. 

On spheres with r = const the component U is equal to the normal component of the velocity vector and (V, W) is its 

tangential component. The vector (V, W) is characterized by its magnitude H and the angle r of deviation from the meridian: 

V = H c o s w ,  W = H s i n w .  (1.3) 

In these variables the basis operators of the rotation group 0(3) allowed by the equations of gas dynamics are 

X7 = - sin ~Oo - cos ~oetg 00~0 + cos ~(s in 0)-xOw, 

Xs = cos ~oO0 - sin ~octgO0. + sin ~o(sin g)-aO~, 

x g  = o~,. 

Here a0 = a/ao, and so forth. 

(1.4) 
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In the variables (1.1), (1.2) the initial equations of gas dynamics have the form 

DU + p-lp~ = r - l (V:  + W=), 

DV + (pr)-:po = r - l k - U V  + ctg0H'2) ,  

D W  + (pr sin O)-lp~ = r - I ( - U W -  ctg OVW), 

D p + p d f v  u=O,  D S = O ,  p =  f(p,5') ,  

(1.5) 

where p is the density, p is the pressure, S is the entropy of the gas, and D and div are operator 

D = Ot + UO,. + r - i V &  + (rsinO)-lwo,p, 

d i v u  = r-2(r=U),. + (rsinO)-l(cosOV + sin 0V0 + H r )  
(1.6) 

(the indices denote the respective partial derivatives). The function f in (1.5) specifies the equation of state for the gas. 

2, Representation of  Partially Invariant  Solutions. In the space of the variables t, r, 0, ~, U, H, co, p, S the group 

0(3) with operators (1.4) has the invariants t, r, 0, U, H, p, S. The desired quantity co here is a "root" of the function. 

According to [3], therefore, partially invariant solutions of rank two and defect one are possible, in which U, H, p, S depend 
only on t and r, and co generally is a function of all the independent variables t, r, 0, ~o. The initial representation of the 
desired partially invariant solutions thus has the form 

u = u ( t , r ) ,  H = J r ( t ,  r ) ,  p = p ( t , r ) ,  s = s ( t , r ) ,  ~ = ~(t,,.,o,v). (2.1) 

When this representation is substituted into the system (1.5) and the second and third equations are combined the 

system breaks up into two subsystems: an invariant subsystem 

DoU q - p - l p r  = r - l H  :, Do(rH) = O, DoS = 0 (p = f ( p , S ) )  (2.2) 

with the operator D O = 0 t + UO r, and a supplementary subsystem 

ksinODow + sinOcoswwe + sinww~, = - cosOsinw, 

s inOsinwwe-cosww~ = c o s O c o s w + h s i n O ,  

where we have introduced auxiliary functions, which depend only on t and r: 

(2.3) 

k = r /H,  h = k(p-IDop+ r -2 ( r2U)r )  �9 (2.4) 

Here and below we assume that H # 0. If H = 0, then by (1.3) the tangential component of the velocity vector is 

zero and the system (1.5) is transformed into the familiar system of equations of the spherically symmetric motions of a gas. 

New results exist, therefore, only if the redefined system (2.3) of two equations for one "root" of the function co has 

solutions. 

To prove that the system (2.3) has solutions it is convenient to look for them in the implicit form 

~(t,r,o,~o,. ,)  = 0 ( ~  r 0). 

Then the function @ should be an invariant of two linear differential operators obtained from Eqs. (2.3): 

fl l = k sin O Do + s in0cosw~e + sinw 0~ - cos O sin w &,,, 

122 = sin 0 sin woo - cos wO~ + (cos 0 cos ~o + h sin 0)&,. 

(2.5) 

(2.6) 
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Calculation of the commutator of these operators leads to the identity 

[~21. ~22] + cos 0 sin cof~ 1 - -  (cos 0 cos o~ + h sin 0)f22 = sin 20(kDoh - -  h 2 - -  1)0~. 

It follows that the operators (2.6) are in involution if and only if the functions k and h satisfy the equation 

kDot~ = h 2 + 1. (2.7) 

This equation along with (2.4) complements the invariant subsystem (2.2) to a system that is closed in the unknowns 

U, H, p, S, and h. By (2.7) the system (2.3) is passive and its general solution depends on an arbitrary function of two 

variables. 

To construct the general solution of the system (2.3) we replace t and r by two independent variables, the Lagrangian 

coordinate ~ = ~(t, r) and modified time r = r( t ,  r),  in accordance with the equations 

D o ( = 0 ,  ~(0, r ) = r ,  k D o r =  1, r (0 ,  r ) = 0 .  (2.8) 

Then kD 0 = O r. In this case Eq. (2.7) is integrated and with the condition h(0, r) = 0 it gives h = tan r .  When we go over 

from the operators (2.6) to the operators f13 and f14 from the formulas sin 0fl 3 = cos o~fl 2 and f14 = sin e0f~ 1 - -  cos  6ofl 2 and 

replace co by 

71 = cos r sin 8 cost,, - sin r cos0 
(2.9) 

the new operators are 

f/3 = cosw0T + 0e, f14 = sinOsinw0T + 0~. (2.10) 

Two invariants of the system of operators (2.6) have already been found: they are } and ~7. The system (2.10) is integrated to 

find the third invariant ~', which defined implicitly by 

~/1 - ~7 ~ s in( (  + ~;) = cos r cos cos w + sin r sin O. (2. 1) 0 I 

Accordingly, the general solution of the system (2.3), where kD 0 = 0 r and h = tan r, expressed in the implicit form (2.5), 

is 

F(~ ,  '7, ( )  = 0 (2.12) 

with an arbitrary function F. 

3. Analysis of  the Solution. The problem of constructing the solution of the system (2.3) can be considered from a 

different standpoint. The first of these equations is evolutionary relative to the modified time r: 

w~ = - cosw we - (sin w / s i n  O)w~ - ctg O sin w. 

Its solution ~(~', 0, ~o) is determined by setting the initial condition 

w(0, O, 9)  = wo(0, ~) .  

(3.1) 

(3.2) 

If with this solution we set 

N ( r ,  8, 9)  = sin 0 sin ww0 - cos ww~ - cos 0 cos w - rg  r sin 0, 

the second equation in (2.3) is N = 0. It does not contain the derivative with respect to r and, therefore, imposes a necessary  

condition on the function (3.2), namely, 

N(0 ,  0, ~) = 0. (3.3) 
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Fig. 1 

Fig. 2 

Assumption 1. The solutions of Eq. (3.1) satisfy the identity 

sin ON~- + cosOcoswNo + s in~N~ = N 2 + ctgOcoswN. 

By virtue of this identity it follows from (3.3) that N(z, 0, 9) for all ~-, i.e., the condition (3.3) is also sufficient. 
Solving Eq. (3.1) by the method of characteristics reduced to integrating the system of ordinary differential equations 

dO J dqa j sin w' dw' 
d--~ = cosw' ,  d r  = s i n O "  d-'~" = - c t g O ' s i n w '  (3.4) 

with the initial data for T = 0 

0'(o)  = 0, ~ ' (o )  = ~,, J ( o )  = ~o (0 ,~ , ) ,  (3.5) 

where the function r o is the same as in (3.2). By Assumption I this solution gives rise to the solution of the entire system 

(2.3), if and only if o~ 0 satisfies Eq. (3.3). 

On the other hand, the equations of the particle trajectories dx = d t  = u, written in spherical variables (1.1)-(1.3) 
with modified time ~-, have the form 

dr dO dip sin w (3.6) 
d---r = kU, "~r = cosw, d'--~ = sin0" 

Here r = ~(z, 0, ~); the last two equations coincide with the first two equations of the system (3.4). Hence the 

characteristics Of Eq. (3.1) are radial projections of the gas particle trajectories onto a unit sphere S~ (r = 1). The solution of 
the system (3.4), therefore, describes spherical trajectories of particles and the evolution of the angle 6o along those 
trajectories. 

It is confirmed directly that the invariants ~7 and ~" from (2.9) and (2.11) as well as the quantity a = sin 0' sin w' 

retain constant values along the characteristics. The equation of the characteristics (3.4), which determine spherical particle 
trajectories, are integrated automatically in the form 
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cos O' = cos r cos 0 - sin r sin 0 cosw, 

s i n O ' s i n ( p ' -  qo) = s i n r s i n w ,  s inO's inw'  = sinOsinw, 
(3.7) 

where ~o = %(0, ~o). 

We obtain a clear geometric representation of the behavior of spherical particle trajectories, if we turn to Cartesian 

coordinates on a sphere S~, setting r = 1 in Eqs. (1.1). Then the point (0, ~,) is specified by the vector x = (x, y, z) and the 

point (0', ~o'), by the vector x' = (x', y ' ,  z'). In this notation Eqs. (3.7) lead to the following description of motion on the 
sphere S,: 

Rx ' ( r )  = l ( r ) x  + m sin r (R = V ~ + y2). (3.8) 

Here 

l = c o s r s i n a + s i n r c o s O c o s w ,  m = ( - y s i n w ,  z s i n w , -  cosw). (3.9) 

Assumption 2. During motion (3.8) the spherical trajectory of any point x is a great circle (geodesic circle) on St 
and its translation (relative to r) is equal to unity. 

As proof it is sufficient to note that there is only one (apart from sign) vector x o that is independent of the time r and 
satisfies the equation (the symbol a-b denotes the scalar product of vectors a and b) 

x ' - x o  = 0 (Ixol = 1) .  (3.10) 

Indeed, for any r by virtue of (3.8) Eq. (3.10) reduces to the system 

X - X 0  = 0 ,  m ' X o = 0  
the only solution of which is given by 

([xol = 1), 

Rxo = ( - y ,  x, 0) cosw + ( - x z ,  - y z ,  R 2) sinw. (3.11) 

The vector Xo indicates the point on St, called the pole of the spherical trajectory (great circle), whose plane is 
perpendicular to x0. 

4. Initial Distribution. By virtue of the above the final solution of the system (2.3) comes down to finding the 

function Wo(0, 9), which should be solved by Eq. (3.3). Direct substitution confirms that this equation has two independent 
integrals, which are obtained from (2.9) and (2.11) for r = 0: 

0o = sin0coswo, k /q - -  0o2sin((o + 4)  = cos0coswo.  (4.1) 

The sought solution w0 can be found in implicit form from a complementary relation of the form rio = X(~'o) with an arbitrary 
given function X. Therefore, Wo is determined to within an arbitrary function of one argument. 

The function WoO, ~) should be single-valued wherever it is defined (apart from the poles 0 = 0 and 0 = ~r). 

Isolating specific solutions may also require that the function be definite on the entire sphere S~ (completeness property). 

Assumption 3. The completeness property for ~ = ~r/2 on the entire sphere Sl, apart from the poles. 
Indeed, the first equation of (4.1) shows that it should be necessary that ~7o = 0. Then cos w 0 = 0 and w 0 = ~r/2. The 

second equation of Eq. (4.1) is satisfactory for ~'o = -~o. This means that X -- 0 in the complementary relation ~7o = X(g'0). 

5. Singular Vortex. The initial value Wo = ~r/2 determines a specific motion, which we shall call a singular vortex. 
The substitution Wo -- ~r/2 into the equation of spherical trajectories (3.8) leads to 

Xt = X COSt + R - l ( i z  X x)s in  T (R= V~  + y2), (5.1) 
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where the unit vector i s indicates the southern poles (z = 1) and • is the symbol of the vector product. The pole of the 

trajectory (5.1) is found from (3.11) for co = or/2: 

xo = R - l ( - x z ,  - y z ,  R2). (5.2) 

The solution obtained is invariant under rotations about the z axis. The vectors x, xo, and i~ lie in one diametral 

plane, and x.x o = 0. The relative position of the spherical trajectory that passes through a typical point x and its pole xo is 

shown in Fig. 1. 

The representation of  the spherical trajectories of particles reveals some distinctive features of the motion of a gas in 

a singular vortex. For example, by (5.1) we have z' = z cos ~'. Thereby, for ~" > 0 the points x' fill the spherical band ~" < 

0' < or - -  z and not the entire sphere St. Moreover, calculation of the component 9(x0) = xo.rot u(xo) that is normal to $1 

shows that the initial distribution of the velocity field at any point Xo, other than the poles, is fl(x0) = 0, i.e., this is a surface 
vortex-free distribution. For the poles x 0 = (0, 0, 4-1), however, f2(x o) = o o .  

6. Radial Motion. In the analysis above the value of the Lagrangian coordinate ~ (invariant of the system (2.3)) 

remained an arbitrary fixed value. The complete picture of the motion, in particular the physical trajectories of the gas 

particles, can be represented only with allowance for the radial motion, which is described by the solution of the invariant 

subsystem (2.2), (2.4), (2.8). The second and third equations of (2.2) are integrated in the form rH = Ho(~), S= So(~) with 

arbitrary functions H o and So of the Lagrangian coordinate ~. This leaves the following subsystem of equations of motion for 

the desired functions U, p, ~, r of the variables t, r: 

Vt + UU, + p-lpr = r-3Ho2(~), 

P-'(Pt + Upr) + r -2( r2V)r  = r-2Ho(()tgr,  (6.1) 

~t + U ~  = 0, rt + Ur~ = r -2Ho(~) .  

Here p = tip, S0(~)) with a given functionf. The initial data for the system (6.1) have the form 

u ( 0 ,  r)  = U o ( r ) ,  p (0 ,  r)  = p o ( r ) ,  r )  = = o.  (6.2) 

In the system (6.1) the functions H0(~) ~ 0 and S0(~) are considered to be preset arbitrarily. Presetting these functions 

distinguishes a specific class of gas motions. 

For example, with the choice H0 = L~", where L, n = const and So = const, the system (6.1) has self-similar 

solutions, in which the desired U, p, p, r depend only on k = r/t, a ~ = tl/"a(X). In those variables (6.1) reduces to a system 

of ordinary differential equations 

(U -- A)U I + p-lpl = L2A-3a2n 

A 2 p - I ( u  - A)pt -'1- (A2U) ' : La'*tg r,  

- + o = 0,   2(u - = 

where p = tip, S o) and the prime denotes the derivative with respect to X. 
For an special equation of state of the form p = Ap + B with constant A and B there exists a solution of the system 

(6.1), which describes isentropic motion (S O = const), in which U = 0, i.e., the gas particles have no radial motion. This 

solution is given by 

= r ,  H o = # r  2, 7 - = # t ,  p = p o ( r ) / c o s # t .  (6.3) 

Here 

po(r) = Poo exp( (#2 /2A )( r 2 - to2)) 

with the constants /z > 0, P0o, ro- If as the initial configuration we take a spherical layer 0 < rL < r < 1"2 and assign a 
distribution of the singular vortex type, i.e., co = or/2 for any r from the interval (r~, r2), then with time this spherical layer 

is compressed in the form of a toms-like body and collapses to a ring with given radii r~ < r: in the plane z = 0 at the time 
t = or/2/z. 
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It is useful to note that when Ho = const ;~ 0 extension of the variables leads to -'1~ = + 1. 

A list of other cases of simplification of the system (6.1), giving new forms of a special vortex, can be made on the 
basis of a complete group analysis of  the system. 

7. Steady-State Flow in an Incompressible Liquid. All of the conclusions in Sections 1-5 are valid in this case with 

the following additions. There is no Lagrangian coordinate ~ since the solution is independent of the time t. Therefore, H o = 

const and we can choose H o = 1. Without loss of generality, we assume that p = 1. The particle trajectories coincide with 

the field lines, along which r can be taken to be a parameter. The representation (5.1) of spherical trajectories (field lines) on 

the sphere S 1 in a singular vortex remains valid. The differential equations of radial motion (6.1) reduce to 

1 
- - -  ( r 2 U ) r  = t g r ,  r2UrT = 1. (7.1) UUr -t- Pr - -  r3, 

The first of  these equations gives the Bernoulli integral 

1 (7.2) 
U 2 + ~ + p = b (b = const),  

which defines the pressure p. For the remaining system of the last two equations of (7.1) we introduce the initial data r0, Uo, 
with which ~'(ro) = 0, U(r  o) = Uo > O. 

It can be easily checked that the system (7.1) admits the extension operator r3 r - -  U3 v - -  2pOp. Without loss of 
generality, therefore, we can assume that r~Uo = 1. With this proviso the solution of  the system (7.1) is 

sin r = th (r  - to), r2U = ch (r - to). (7.3) 

The singular vortex in this solution is distinguished by the value ~ = ~-/2 being given on the sphere So (r = ro), which 
corresponds to r = 0. 

A parametric representation of the field lines is obtained from (5.1) with allowance for (7.3). The field passing 
through the point (Xo, Y0, Zo) E So, which is described by 

xo r yo t h ( r  ro), 2 7  - -  

ro c h ( ~ - r o )  Ror - 

Yo r Zo t h ( r  ro), z -  Zo r (7.4) 
Y = ro ch ( r  - t o )  + R o r  - ch - To) '  

where r  0 = '2  + Y~ 2 + ; Ro = 2 + Yo 

Each field line (7.4) lies in the plane XoX + YoY = (R2/zo)z. A typical field line l, lying in the plane x = 0, is shown 

in Fig. 2. All of  the other field lines are obtained by rotations, first about the y axis and then about the z axis. This gives a 

general idea of the region occupied by liquid in a flow of the singular vortex type. At the center (r = 0) is a conical vortex- 

source combination with a 27r flow volume. The liquid flows through the sphere So and spreads in the form of a layer, which 

contracts to the plane z = 0. A toms-like plane, in which there is no liquid, exists near the segment [Zo[ < ro. 

In summary, a preliminary analysis has shown that the motion in a singular vortex is very complex. In the case of 

motion of a gas new peculiar features appear because in the given class of solutions the physical fields of  velocity, pressure, 

and density cannot be extended beyond possible barriers (e.g., into the region of negative pressures). Many questions about 
the details o f  the motion of a gas in a singular vortex, therefore, remain open. 
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