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E V A L U A T I O N  O F  T H E  S E I S M I C  E F F E C T  O F  A N  

U N D E R G R O U N D  E X P L O S I O N  

A. S. Bykovtsev and D. B. Kramarovskii  UDC 550.348+539.375 

1. Introduction. In order to evaluate the seismic effect created by underground explosion on the surrounding objects 

apart from the normal results of  experimental studies it is possible to use mathematical modelling for studying these processes. 

In modelling the effect of an explosion in solid material around a cavity with explosive it is normal to separate zones of 

displacement (zone 1), crushing (zone 2), crack formation (zone 3), and elastic deformation (zone 4) [1-3]. From the analysis 

of actual data [4] it is known that the radius of zone 1 does not exceed two and a half explosive charge radii, the radius of zone 

2 reaches ten explosive charge radii, and the radius of zone 3 is 3-100 explosive charge radii (Fig. 1, r 0 is radius of a cavity 

with explosive, r t is the radius of zone 1, r 2 is that for zone 2, r 3 is that for zone 3). Use of the results of theoretical studies 

makes it possible to determine the size of these zones more accurately for a specific material or rock. A quite complete account 

of the main characteristics of the effect of an explosion and calculation schemes which make it possible to predict the size of 

zones around a cavity with explosive are provided in [2, 3, 5-9]. 

In [10-13] the dimensions o f  zone 3, the sizes of lumps into which the material is broken and their distribution with 

respect to the axis of the explosion are determined. Work in [11, 14] is devoted to studying the development of  star-shaped 

cracks under conditions of antiplane deformation. 

In the majority of these works either the features of stresses close to the edge of a propagating crack or the size of the 

different zones of explosive effect are determined. In the main the explosive source studied was either a spherical charge or 

a balsthole charge of infinite length (plane charge). A study of the seismic effect of an explosion rested mainly on analyzing 

the experimental data. In order to construct a more physically real model of an underground explosion it is necessary to 

consider the finite length of a blasthole charge and different orientation of it with respect to surrounding objects. 

2. Model Description. In order to construct a three-dimensional model of an underground explosion we make the 

following assumptions. 
1. The process occurs in an unbounded isotropic elastic material. 

2. In this material as a result of detonation of a blasthole charge of finite length a star-shaped system of separation 

cracks starts to propagate (Fig. 2, W is blasthole length, AB is the blasthole itself, the width of the star-shaped crack is assumed 

to equal the blasthole length, and the length of the crack is assumed to be unchanged in any section of  the blasthole charge). 
3. Crack parameters such as length and opening are connected with explosive parameters and characteristics of the 

surrounding material, and they are determined on the basis of supplementary calculations. 

4. In performing supplementary calculations for the overall scheme of an explosion (Fig. 1, here in contrast to Fig. 

2 for simplicity only a section of the blasthole charge is shown) the radius of crack formation zone r 3 is determined which is 

assumed to equal the length of the model crack (Fig. 2). Also for the general scheme (Fig. 1) an estimate is made of the volume 

of cavities which form as a result of expansion of the cavity with explosive and the increase in the randomness of oriented 

cracks in zone 2 and radical cracks in zone 3. Opening of model cracks (Fig. 2) is selected so that the overall volume of the 

cavity obtained as a result of developing these cracks equal the volume of cavities obtained by the general scheme (Fig. 1). 

5. Zones 1 and 2 do not markedly affect formation of the wave field in zone r > r 3 because as follows from the work 

given above the radius of zone 3 is much greater than that of zones 1 and 2 and larger radial cracks which develop carry more 

information about the explosive source than a crack developing randomly in zone 2 (considerably shorter length). 

6. In order to describe the crack system we use a dislocation approach developed in [14-17, 18] with which in the 

whole area of failure as a boundary condition we prescribe the value and direction of the movement vector ['B (B x, By, Bz) on 
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a Cartesian coordinate system or B (B r, B~, Bz) on a cylindrical coordinate system, B x, B z (correspondingly B r, Bz) are shear 

components of the movement vector and By and Ba are separation components]. Since cracks comprising a star-shaped system 

are assumed to be separation cracks, then shear components of the movements vector will equal zero. 

As far as the number of  large radial cracks and their propagation rate are concerned, then answers to these questions 

may be obtained from analyzing experimental data. It follows from [10] that the 'process ceases when 4-6 cracks remain.' 
Estimates of  crack propagation rates with an explosion for different materials are provided in [19]. 

In contrast to many existing models of an explosive source, in the model suggested, first, we consider a system of 

separation radial cracks, and second, for them we determine quite accurately such parameters as length and opening. 

These assumptions make it possible to formulate a mathematical statement of the problem for studying features of 
seismic emission from an explosive source with a radial crack system. 

3. Statement of  the Problem. Let in an elastic unbounded isotropic material at the initial instant of  time start to 

propagate at a constant rate v a system of n (n > 1) discontinuities with width W distant from each other at the same angle 

a0 (Fig. 3). 
In this case the equations for material movement will be wave equations 

1 a2~ 1 a2~i  

aq~- 2 ~-:',aqs~- d a?' c, 

where 

a 2 a 2 0 2 

A = 0"-~ + a? + --'Oz2' i ---- X, y ,  z; 

cp and c s are longitudinal and transverse wave velocities; potentials q~ and 9(,t,• XI, y, XI, z) are connected with the displacement 
vector by the relationship 

U = grad tb + rotW, div~ = 0. 

Boundary conditions at the edges of discontinuities are prescribed in the form 

when 0 < z < W (Fig. 3), and 

u = B H(t- r/t), a,~ = a~ = O, 

U =0,~=~=0, 
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when z < 0 and z > W with tx = 2 rk /n ,  k = 0 . . . . .  n - 1, r 2 = x 2 + y2, tx = arctg(y/x).  Here  H is the Heavis ide  function; 

B a is the component  of  the movement  vector at the discontinuity (B a = const); aij are stress tensor components;  r,  ~x, z are 

cylindrical  coordinates.  The initial conditions are zero,  and at infinity the material  is at rest. 

4. Cons t ru c t i o n  of  the  Solut ion.  In order  to obtain a stringent mathematical  solution of the problem it is sufficient 

to consider the sector 0 < tx _< 27r/n (in view of  symmetry) .  However ,  this approach is often connected with serious 

mathematical  problems.  Therefore ,  following the principles developed in [15, 16, 18] based on using the superposit ion principle 

we present a general  wave field caused by propagation of a set of  n discontinuities in the form of  the sum of  wave  fields created 

by each of these discontinuities individually. In view of this in this case it will be sufficient to consider  the problem when n 

= 1 and the solution for each subsequent discontinuity with n > 1 will have the same form taking account of  changes in 

variables connected with rotation by angle tx o. This simplified approach leads to the situation that there is no considerat ion of 

surface and reflected waves which arise around discontinuities comprising the star-shaped system. These waves may  only have 

a marked effect in the immediate  vicinity of  discontinuities and it is possible to assume that the overal l  picture of  the wave field 

does not change at a distance f rom them. A solution for the problem of a discontinuity starting with veloci ty v and which ends 

up complex (shear with separation) was obtained by means of the Kanyar method in [17] and in the notation of  this work 

considering that shear components  of the movement  vector for equal zero have the form 

u,= ~+ ~,i= x,y,~, 

u ~," = t : " ' ( x ,  y ,  z ,  t) - u " " ( x ,  y ,  z - w ,  t) 

- U V " ( x  - ~ ,  y ,  z ,  t - ~ / v )  + UV" (x  - 5~, y ,  z - IV, t - ~ , ~ / v ) ,  

U~(x, y, z, t) = A { | F  - f l~ar r  ( / ~  - /-O + [F~ - fl~ar~lH~2}, 
2 s 

~ ( x ,  y, z, t) = A{ 12y2ard~ - F ] ( / ~  - /'~2) + [2~ arc 2 - P'3 ]/{2}, 

~ ( x ,  y, z, t) = AI(~,, ~ + 1 ) I~  + r ~ l ~ ,  

f.f~(x, y, z, t) = - A  [~,~ln~ + ~ ]/-:~. 

(4.1) 

Here 

sin?, = Y / P l ,  cosy2 = x / p  z, sint/ = Y / P v  cos~/ = x / p  v 

P l  = a z R '  Pz  = a R ,  R 2 = x 2 + y2 + zZ, y = c v / v  ' 

X y Z 

W = - ~ , ~ 1 ~ ( 2 ~ , ~  - : : ,  �9 - ~,~) - 2 ~ ( 1  + : ~ - ~ - ' , .  ~ _ ,  , + 2 y < ' ~ ' ~  ' ' ,  

~ . "  = - �9 I~,,,Czq - r  - ,q) + z y 0 q  - ,:,:~, , .  k,.- '  + (,,~ - ,,;)~ ~,~ ~ " ,  

Fp., = (rzsin2W + 2ysinV')7~l ' ' ,  "re,.. = 0rlc~ + 2yc~ 

~'Ssin~ arc'~i' = arctg c t ~  , 
a t <  '~ -- arctg v E ~:o~----~' 

/~.,[(y - r l c c ~ ) '  + (7~Jsinq,)'] 

t" l + ~ l  's 
Ln~2'" = In f ie . ,  - ~'%~ + r~sin~' 1~'" = In /~v, ' 

'$ O[ 
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H. .  = , / ~  + r - 3~..,. ~ = % / R .  ~ = % / p ~ .  

~ = ( w  - x ) ~ , / p , .  ~ ,  = l .  3 .  = ~ = c / c . .  

v , . .  = r  ~,  = 2v" - ~' .  a = B I ( . ( ~ ) .  

~ . "  = 2 n ( ~ ) H ( ~ ,  - ~ , . . ) .  ~ ' *  = H ( ,  - ~, . . )  

(~  is discontinuity length, W is width). 

In order to use solution (4.1) it is necessary to determine the length of cracks and their intrinsic opening. For this it 

is necessary to f'md the radius of zone 3 (Fig. 1) and the volume of the cavity which forms as a result of expansion of the cavity 

with explosive and crack growth around it. 

5. Determination of  Crack  Length and Average Opening. We assume that external mine pressure P0 operates at a 

distance from the explosion cavity and in the future we shall assume that as a result of the final stage of development of a 

camouflet explosion from a blasthole charge in a brittle material in the explosion cavity q and within the system emerging from 

it consisting of n radial cracks of length r 3 there is some detonation product pressure P1. We also assume that the temperature 

of the detonation products is close to that of the material. Then gas pressure may be determined from the volume of the cavity 

and cracks by means of the gas law on condition that the volume of gases which forms as a result of detonation under normal 

conditions is known. Assuming that crack length r 3 is much greater than cavity radius r 1 (at least r 3 -> 3rl), in future we shall 

assume that the whole volume of gases which form with detonation of an explosive charge equals the volume of the cavities 

formed by a system of n radial cracks. 

In order to determine crack length it is also necessary to introduce an additional condition which would describe the 

final failure process, i.e. crack stopping. We assume that with completion of the development of a system of n radial cracks 

each of them will be in limiting equilibrium and the stress intensity factor K I at their tips will equal the critical factor for crack 

stopping KIc. We also assume that in each section perpendicular to the blasthole charge (Fig. 1) the material is in a condition 

indistinguishable from plane strain. 

We give briefly an approximate solution of this problem following from the main suggestions of an approach given 

in [13]. 

In order to determine gas pressure P1 we estimate the volume of the cavity and cracks. We assume that on a circle of 

radius r 3 passing through.the tips of cracks radial stress with a value P1 operates. The material within the circle (r < r3) will 

be compressed by all-round pressure P1. Then the change in rock volume within the circle (r < r3) along the blasthole length 

has the form 

AV, = 2.~P,W(1 - 2v) ( l  + v)(~ - ~ ) / E ,  

where W is blasthole length (width of discontinuities); , is Poisson's ratio; E is Young's modulus. 

Movement of a circle of radius r 3 under the action of internal pressure P1 and external mine pressure P0 leads to an 

additional change in volume 

AV z = 2a~W~(I + v)lPx - 2/)o(1 - v ) l / E .  

The total increase in gas volume due to expansion of the cavity and crack opening along the length of  the blasthole 

with r > 3r I is estimated by the expression 

A v  ffi a v ,  + a v  2 = 4 # W ~ ( l  - v2) (p ,  - p o ) / e .  (5.1) 

Unknown pressure PI in (5.1) is found from the gas law 

e , ( # r v ~  + a v )  = e v , .  (5.2) 

Here V n is the volume of  explosion products under normal conditions (pressure P = Pn and temperature T = Tn). 

By substituting (5.1) in (5.2) we have 
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P1 = E[AI - 1 + (1 + 2A2(2F l - -fio)L ~ + A~)~/21/(2A2L2), (5.3) 

FI = PrtVn/ (2~EWr~l); -Po = PO/e; L -~" r3/r l ;  
A t = A2Po L2, A 2 = 4(1 - v2). 

In the case when r 3 -> 3r 1-from (5.3) we obtain 

Po 1 . /  Pn VnE 
e ,  = - ;  + -i v = w  o - ,2)~ + ~. 

Then in order tO determine the crack length we use a solution [13] for the stressed state of  a star-shaped system 

consisting of n discontinuities equal in length distributed through the same angles and under the effect of internal pressure equal 

to the difference in gas pressure P1 and external mine pressure P0- In the case of limiting equilibrium we have the condition 

[13] 

K,  - :Z ~4-~-;~,/, ( P ,  - Po) = K . .  (5.4) 

In dimensionless form relationship (5.4) may be presented as: 

Here 

(5.5) 

~.,~ = K , /  (E ,Ir -e, = p /  e.. 

Relationship (5.5) connects the charge parameters (V n, rl) and rock parameters (P0, Ktc, E, v) with crack length r 3 
and the number of cracks n. 

For Po = 0 and r 3 ~ 3r 1 relationship (5.4) is simplified. 

Wnr3(i _ 2 ) ,  r~ -- Wn/~k( 1 _ 2 ) -  
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In determining average crack opening it should be noted that in [18] it was shown that the form of seismic emission 

does not depend markedly on a function describing the jump in displacement in a rectilinear section of the failure surface, and 

with an equal volume of  cracks and dislocation discontinuities the form of the seismic signal is almost the same. Therefore in 

future we shall assume that the average vector for the jump in displacements in each of n discontinuities is the same and it may 

be determined from the relationship 

a v  _ ~ q  (1 - v2 ) ( ?1  - So) .  
nq W En 

6. Analysis of  the  Results.  The expressions obtained entirely characterize the test model and make it possible to 

determine the length and opening of  radial cracks as a function of material, explosive charge, and external mine pressure 

parameters. If as an explosive we take granulite AS-8 with V n = 850 liter/kg, r 0 = 0.024 m, W = 2.7 m, and explosive 

weight in the blasthole of 5 kg, then for marble with E = 3.101~ Pa and Klc = 3 MPa 'm 1/2 [13] we obtain with external mine 
pressure P0 = 1.5"107 P a r  3 = 4 .2m,  and opening Ba av = 0 .08mwhenthenumberof  radial cracks n = 4andBc~ av = 0.053 m 

when n = 6. 

Given in Fig. 4 are curves for the dependence of the value L = r3/r o on material parameters I(ic obtained from 

relationships (5,3) and (5.5). Curves 1-4 correspond to Po = P0/E = 0; 0.0005; 0.001; 0.002. In order to plot the curves in 
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Fig. 4 the explosive was granulite AS-8, the blasthole was 2.7 m long, the blasthole radius was 0.024 m, and the explosive 

weight in the blasthole was 5 kg. Thus, from Fig. 4 knowing previously or determining by experiment the material parameters, 

external mine pressure, and initial blasthole radius, it is possible to fred the length of the radial cracks which form. The reverse 

is also true: by measuring the length of radial cracks formed as a result of an explosion it is possible from Fig. 4 to determine 

such an important material parameter as Kic. 
Given in Fig. 5 are theoretical seismograms plotted from solution (4.1) for the number of radial cracks n = 4 (solid 

lines) and n = 6 (broken lines). Crack length was assumed to equal 0.64 m, the width was 2.7 m, opening was 0.0015 m when 

n = 4, and 0.001 m when n = 6, and their propagation rate was 700 m/sec. Velocities were Cp = 2940 m/see, and c s = 1650 

m/see. The coordinates of the point of observation are x = 5 m, y = 1 m, z = 3 m (the coordinate system shown in Fig. 3). 

From Fig. 5 it is possible to conclude that the form of the seismograms obtained is governed to a considerable extent 

by the explosive energy and the parameters of the surrounding material. 

This algorithm for calculating seismic emission from an explosive source may be used effectively for estimating the 

seismic effects in pits during extraction of economic minerals where simultaneously several rows of blastholes are exploded 

by some scheme. We dwell on analyzing the results of blasting with simultaneous initiation of  blasthole charges. 

Explosive breaking of ore with a layered system of working is carried out mainly using successive-transverse and 

successive-longitudinal explosive initiation schemes. Presented in Fig. 6 is a general scheme for explosive breaking of ore with 

a continuous layered system of working and stowing of the worked-out space (a is view from the side, b is view from in front, 

c and d are views from below for successive-longitudinal and successive-transverse schemes, A - A ,  B - B  are vertical and 

horizontal sections of the working respectively, 1 is ore mass, 2 is stowed mass, 3 are observation points for which seismic 

effects will be calculated). 

For a successive-longitudinal scheme (Fig. 6c) numbers 1-8 denote the sequence of  initiation of rows of blasthole 

charges: at the start the first row of charges is exploded, then the second, etc. With a successive-transverse scheme charges 

are exploded in groups consisting of several rows of blasthole charges in the order shown by numbers in Fig. 6d. The delay 

time between the explosion of rows and groups of charges is 0.025 see, and the distance between blastholes is 0.9 m. 

The equations provided above entirely characterize a single explosive source. In carrying out drilling and blasting work 

it is normal to explode at one stroke a large number of blasthole charges (in Fig. 6c, d the overall breaking scheme is 

presented; normally the number of blastholes along axis x is 24 and the total number of blastholes in a layer is 24 x 8 which 

are exploded in groups of 24 charges simultaneously with a delay of 0.25 see). Construction of the explosion models for 

successive longitudinal and successive-transverse schemes also rests on the superposition principle: the overall wave picture 

created by explosion of blasthole charges is represented by the sum of wave fields created by each blasthole individually. It 

is assumed that explosion of a single charge does not affect the nature of the occurrence of  the explosive process of  another 

charge. The parameters of radial cracks which arise near a blasthole are determined by the relationships provided above as if 
it were a single charge. 

Presented in Fig. 7 are theoretical seismograms plotted by solution (4.1) for successive-longitudinal and successive- 

transverse initiation schemes for explosive charges (curves 1 and 2 respectively). The coordinate system is shown in Fig. 6. 

The number of blastholes is 24 x 8. The coordinates of the points of observation were as follows (in meters): x = 5.175, y 
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= -1 .5 ,  z = 2.65 (Fig. 7a); x = 10.35, y = -1 .5 ,  z = 2.65 (b); x = -5 ,  y = 4, z = 3.7 (c). The first two observation 

points are at the boundaries of the broken layer in the stowing mass, and the third is in the roof. The points of observation are 
shown in Fig. 6 by triangles and numbers 1-3. 

From Fig. 7 it is possible to draw the following conclusions: 
- in theoretical seismograms it is easy to reveal areas corresponding to the arrival of a seismic wave from each delayed 

group (in this case eight of them) which makes it possible to analyze the wave field as a whole and individually for each 
delayed group; 

- the amount of displacement in the rock mass (seismic effect) with initiation of explosive charges by a successive- 
transverse scheme appears to be greater than by a successive-longitudinal scheme. This may be observed for the overall 
displacement vector U = (Ux 2 + Uy 2 q- Uz2) I/2. 

The second conclusion may be important for practice with the aim of introducing into production a successive- 
longitudinal scheme since according to production instructions it is normal to use a successive-transverse breaking scheme. 
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