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Abstract- Linear analysis of renal blood flow fluctuations, in- 
duced experimentally in rats by broad-band (pseudorandom) 
arterial blood pressure forcing at various power levels, has been 
unable to explain fully the dynamics of renal autoregulation at 
low frequencies (1). This observation has suggested the possi- 
bility of nonlinear mechanisms subserving renal autoregulation 
at frequencies below 0.2 Hz. This paper presents results of 3rd- 
order Volterra-Wiener analysis that appear to explain adequately 
the nonlinearities in the pressure-flow relation below 0.2 Hz in 
rats. The contribution of the 3rd-order kernel in describing the 
dynamic pressure-flow relation is found to be important. Fur- 
thermore, the dependence of 1 st-order kernel waveforms on the 
power level of broadband pressure forcing indicates the pres- 
ence of nonlinear feedback (of sigmoid type) based on previ- 
ously reported analysis of a class of nonlinear feedback systems 
(ll). 

Kcywords--Renal autoregulation, Nonlinear modeling, Wiener 
kernels. 

INTRODUCTION 

Renal blood flow autoregulation (i.e., the process by 
which vascular hemodynamic impedance is adjusted to 
minimize fluctuations in blood flow caused by fluctua- 
tions in blood pressure) is critical for maintaining fairly 
constant filtration rates by the kidneys (3,13). Two im- 
portant  mechanisms subserving renal autoregulation are 
the myogenic and the tubuloglomerular feedback (TGF). 
The myogenic mechanism is vascular in nature and causes 
changes in blood vessel diameter and mechanical char- 
acteristics (e.g., stiffness) in response to changes in local 
vascular pressures. The TGF mechanism is governed by 
flow-rate dependent concentration changes in tubular 
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fluid, sensed at the macula densa, and alters the imped- 
ance characteristics of  the preglomerular vessels through 
still unknown mechanisms (17). 

The frequency response characteristics of  the two 
mechanisms have been studied in rats (1,4,15), and the 
general conclusion is that the myogenic mechanism causes 
a resonance (decreased impedance) over the frequency 
range f rom 0.1-0.2 Hz, while the TGF mechanism is ac- 
tive in the frequency range below 0.06-0.08 Hz where in- 
creased impedance is observed. The combined action of  
the two mechanisms attenuates the effect of  blood pres- 
sure fluctuations on blood flow at frequencies less than 
0.1 Hz, while the effect is accentuated in the 0.1-0.2 Hz 
frequency range. 

Recent studies in rats have used broad-band arterial 
pressure fluctuations to separate the dynamical proper- 
ties of  the two renal autoregulatory mechanisms (2,4). The 
advantages of  broadband forcing as an excitation in lin- 
ear and nonlinear system identification have been well 
documented, and the associated modeling techniques have 
gained in popularity over the last 20 years (7,9,10). Sup- 
pression of  noise and reduction of  experimentation time 
are among these advantages. Another major  advantage 
is the ability of  this approach to discern quantitatively the 
linear and nonlinear dynamic characteristics of  the sys- 
tem under study. This has been demonstrated in a num- 
ber of applications, mostly in the area of  neurophysiology. 
To explore the efficacy of  this approach in renal auto- 
regulation studies in rats and to extend the results of  
Holstein-Rathlou et al. (4), we have used broad-band ar- 
terial pressure forcings at various power levels. Our ob- 
jective is to obtain nonlinear characterizations of  the 
pressure-flow dynamic relation over the entire frequency 
range f rom 0 to 1 Hz within a broad dynamic range of  
blood pressure fluctuations. These nonlinear character- 
izations (in the form of  Volterra-Wiener models) can be 
used to examine the nonlinear dynamics of  renal auto- 
regulation mechanisms. To this purpose, we employ a 
technique for Volterra-Wiener kernel estimation (12), 
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which allows accurate system identification to be extended 
to 3rd-order nonlinearities within the experimental con- 
straints of  this application. 

The Experimental Procedures and Data Collection 
section describes the experimental preparat ion and data 
collection procedures. The Nonlinear Modeling Method- 
ology section presents a summary of the data analysis and 
nonlinear modeling technique. The Results section presents 
the results, and the main conclusions are summarized in 
the Conclusions and Discussion section. 

EXPERIMENTAL PROCEDURES 
AND DATA COLLECTION 

Experiments were performed on male Sprague-Dawley 
rats weighing 210-370 g. The animals had free access to 
food and tap water prior to experiments. Anesthesia was 
induced by placing each rat in a Plexiglas chamber con- 
taining 5% halothane administered in 25% oxygen and 
75% nitrogen through a Fluotec Mark-3 vaporizer. A tra- 
cheostomy was performed and the rats were placed on 
a servo-controlled heated operating table which main- 
tained their body temperature at 37~ 

The rats were connected to a small animal respirator 
(Harvard  model 683) adjusted to maintain arterial blood 
pH between 7.35 and 7.45 with a mixture of  25% oxygen 
and 75% nitrogen. Tidal volume ranged from 1.9-2.5 ml, 
depending on body weight, with a frequency of  57-60 
breaths per minute. The final concentration of halothane 
needed to maintain Sufficient anesthesia was approxi- 
mately 1%. A polyethylene catheter (PE 50) was placed 
in the right jugular vein for infusions. After a priming 
dose of 6 mg gallamine triethiodide (Flaxedil) in 1 ml 0.9% 
saline, a continuous intravenous infusion of 60 mg gal- 
lamine triethiodide in 10 ml 0.9% saline was given at 
20 ml/min.  

The abdomen was opened through a midline incision 
extended to the left flank. The distal aorta was dissected 
free and cannulated at the bifurcation with a Teflon tube 
filled with blood freshly obtained from a littermate. To 
avoid clot format ion in the tube, Heparin was added to 
the blood in a concentration of  10 unfl:s/ml. The Teflon 
tube led to a glass tube where low viscosity silicone oil 
made an interface with the blood. A polyethylene tube, 
also f l led  with silicone oil, connected the glass tube to 
a stainless steel bellows 3 cm in diameter and 5 cm long. 
The bellows was filled with the low viscosity oil and con- 
nected to a linear motor  (Ling Dynaraic Systems Ltd.,  
Royston, England) controlled by an IBM AT computer .  
The left kidney was placed in a Lucite cap and superfused 
with saline preheated to 37~ 

The left kidney was denervated by dissecting the renal 
artery, carefully stripping away all nerves and wiping the 
artery with a solution of 5% phenol dissolved in ethanol. 

The ureter was cannulated to ensure free flow of  urine. 
Experiments were started after a recovery period of 1 hour 
during which a plasma infusion corresponding to 15 
ml /kg  body weight was given to replace surgical fluid 
losses. A constant infusion of  plasma at a rate 1.5 ml /  
kgBW/h was given throughout  the experiment. 

Arterial pressure was measured in the superior mesen- 
teric artery with a catheter (PE 90) filled with heparinized 
saline (10 U/ml)  connected to a Statham-Gould P23dB 
pressure transducer. Renal blood flow was measured in 
the left renal artery with an electromagnetic flow probe 
(Carolina Medical Electronics, King, NC) connected to 
an electromagnetic blood flow meter (Biotronics Labo- 
ratory, model BL-610, Silver Spring, MD). 

Measurements of  renal blood flow and arterial blood 
pressure were made while broadband fluctuations were 
induced in the arterial blood pressure. These were gener- 
ated by the bellows pump through the blood filled can- 
nula inserted into the distal aorta at the bifurcation. The 
linear motor  that moved the bellows was driven by a 
power amplifier (Hewlett-Packard, HP  6824A) controlled 
by an IBM AT computer  through a digital-to-analog con- 
verter (Data Translation). The input to the D/A converter 
was derived f rom a constant-switching-pace symmetric 
random signal (CSRS) which exhibits the spectral prop- 
erties of  band-limited white noise (8). A unique seed was 
used for the random number  generator in each experi- 
ment. The series of  random numbers was supplied to the 
D/A converter at a frequency of 2 Hz. The maximum am- 
plitude of  the pump excursion is established by the volt- 
age supplied to the pump f rom the power supply. Three 
different levels were used in each experiment to vary the 
power of  the forcing, Four experiments on different prep- 
arations were performed at each level, yielding a total of  
12 arterial pressure and 12 blood flow data records. 

The rats were allowed to stabilize to the forcing for 
at least 2 minutes. After this period the renal blood flow 
and arterial pressure signals were recorded on a TEAC 
R-61 cassette data recorder for off-line analysis. When 
the data were replayed f rom the tape recorder, the sig- 
nals were passed through a second order low-pass But- 
terworth anti-aliasing filter with the cutoff  frequency set 
at 1.5 Hz,  and were then sampled with a 12-bit analog- 
to-digital converter (Data Translation) connected to a mi- 
crocomputer  with an Intel 80286 CPU.  

The three different levels of  arterial pressure forcing 
used in each of  the four preparations (as measured by the 
RMS value of  the resulting pressure fluctuations) varied 
f rom experiment to experiment, and they formed three 
groups: low (3.86-5.66 mmHg) ,  medium (6.33-7.96 
mmHg) ,  and high (10.40-12.41 m m H g )  level, according 
to the RMS values of  arterial pressure fluctuations shown 
in Table 1. 

The experimental data used for analysis were obtained 
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TABLE 1. Mean and Root-Mean-Square (RMS) values of arterial 
pressure (AP) and renal blood flow (BF) for 3 different power 

level forcings and four experimental preparations (rats). 

AP AP BF BF 
Data Set No. Mean, RMS, Mean, RMS 
(Exp. Prep.) Power Level mmHg mmHg ml/min ml/min 

1 High 94.19 10.40 5.72 0.83 
Medium 109.13 6.33 6.24 0.50 
Low 105.69 3.99 6.42 0.33 

2 High 88.96 11.58 3.97 1.06 
Medium 99.21 6.92 4.12 0.65 
Low 102.38 3.86 4.54 0.39 

3 High 92.26 12.41 4.15 0.88 
Medium 96.41 7.69 4.81 0.56 
Low 105.32 5.28 5.71 0.37 

4 High 112.29 11.64 10.62 1.26 
Medium 115.08 7.96 10.11 0.82 
Low 118.54 5.66 9.24 0.71 

Note that the mean values generally decrease with increasing power 
level. 

over 256 seconds with a sampling rate of 2 samples per 
second (Nyquist frequency of I Hz), after digital low-pass 
filtering (using a 20th order Hamming window) to avoid 
aliasing. Experimental data from 2 medium and 2 low 
forcing levels of arterial pressure and corresponding blood 
flow data records were subjected to 2nd-order polyno- 
mial trend removal. Each data-record containing 512 
data-points was de-meaned (by subtracting out the mean 
value) and normalized by dividing with the RMS value 
of  each data-record. Thus, regardless of  different arte- 
rial pressure forcings, all analyzed data sets had zero mean 
and unit variance. 

NONLINEAR MODELING METHODOLOGY 

The experimental data were analyzed in the context of  
the Volterra-Wiener approach to nonlinear system iden- 
tification (7). A 3rd-order Volterra model was considered 
as the nonlinear dynamic relation between the system in- 
put x ( t )  (arterial blood pressure) and the system output 
y ( t )  (renal blood flow): 

fo ~ 
y ( t )  = ko + k l ( r ) x ( t  - r)  dr  

+ f f k z ( r l , r z ) X ( t  - z l ) x ( t  - r2) dr i  dr2 

o 

oo 

+ f f f k 3 ( ' r l , r 2 , r 3 ) x ( t  - r l ) x ( t  - r2) 
o 

x x ( t  - 7"3) dTl dr2 drs  (1) 

whe, re the Volterra kernels [k o, k l ,  k2, k3} characterize 
the dynamic properties of  the system. The zeroth-order 
kernel is simply a constant offset value, and the lst-order 
kernel ki ( r )  represents the linear component of  the sys- 
tem dynamics. The 2nd-order kernel k 2 ( r l ,  r2) and 3rd- 
order kernel ks ( r  1, r2, r3) represent quadratic and cubic 
(nonlinear) system dynamics, respectively. 

When the input x ( t )  is Gaussian white-noise (GWN), 
the functionals of Eq. 1 can be orthogonalized to yield 
the corresponding Wiener model of 3rd-order (19): 

y ( t )  = ho + h ~ ( r ) x ( t  - r ) d r  

+ h z ( r i  , r z ) X ( t  - r i ) x ( t  - r2) dr l  dr2 

~. o 

fo 1 - P h 2 ( r , r ) d r  

ls;s + h 3 ( r l , r 2 , r 3 ) x ( t  - r i ) x ( t  - r2) 

~. o 

• x ( t  - r 3 ) d ' r l d ' r 2 d 7  3 

- 3 P j j  - r) (2) 

0 

where P is the power level of  the GWN input. The Wie- 
ner kernels are, in general, distinct from the Volterra ker- 
nel,; of  a system, although both sets yield equivalent 
input-output models (if complete). Wiener introduced his 
orthogonalized series in order to provide a practical way 
of estimating individual kernels from actual input-output 
data. For details of this approach and recent developments 
in this area, the reader is referred to a number of books 
and monographs on the subject (7-10,14,16,19). 

For the 3rd-order models of Eqs. 1 and 2, the relations 
among the Volterra and Wiener kernels are: 

ko = ho - P h2 (r ,  r)  d r  (3a) 

fo ~ 
kl  = h i ( r )  - 3 P  h3(r,X,X) dX (3b) 

k 2 ( r l , r 2 )  = h 2 ( r l , r 2 )  (3c) 

k3(T1,T2,T3) = h3(TI ,T2,73)  . (3d) 

Since the true order of the system under study is usu- 
ally unknown, practical estimation of kernels is based on 
the orthogonalized functional hierarchy suggested by Wie- 
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ner. Orthogonalization schemes have been developed for 
input ensembles other than GWN, e.g., multilevel pseudo- 
random inputs, Poisson spike-train inpul:s, etc. (for par- 
tial review see [7]). The most commonly used technique 
for kernel estimation has been the cross-correlation tech- 
nique proposed by Lee and Schetzen in 1965 (6). Many 
investigators have proposed alternative kernel estimation 
techniques through the years, which are, applicable un- 
der different sets of conditions and exhibit distinct blends 
of  advantages and disadvantages. The cross-correlation 
technique, although popular, is far from being an opti- 
mum choice. Its main drawback is that it requires strict 
whiteness of  the input and long data-records in order to 
yield kernel estimates of  satisfactory accuracy. Among 
the many attempts to relax these requirements and im- 
prove estimation accuracy, Korenberg's exact orthogo- 
nalization technique (first proposed in 1987) is notable 
(5). A technique that employs Laguerre expansions of the 
system kernels was originally proposed by Wiener (19) and 
was first implemented by Watanabe and Stark (18). An 
improved implementation of  this technique has been pro- 
posed recently by Marmarelis (12) and has been shown 
to exhibit significant advantages in certain cases where: 
(a) the input may deviate from whiteness; (b) the experi- 
mental data-records are relatively short; and (c) the system 
memory extent is long relative to the system bandwidth 
(i.e., the kernels need to be estimated over many time 
lags). Such a situation is found in this application to renal 
autoregulation data: the pressure forcing input inevita- 
bly deviates from whiteness due to uncontrollable exper- 
imental reasons; the experimental data-records can not 
be too long due to preparation instabilities; the system 
memory is long relative to the system bandwidth (which 
dictates that at least 60 lags be computed along each ker- 
nel dimension). Furthermore, this technique allows com- 
pact representation of the kernels (due to the Laguerre 
expansion) making possible the practical estimation of  ac- 
curate 3rd-order kernels from short experimental data- 
records. 

This technique employs the orthonormal set of  La- 
guerre functions [Lj( t ) ]  to expand the system kernels, 
e.g., 

kn(rl  . . . . .  r . )  

= ~_] . . . ~ _ ] c , , ( j ~  . . . . .  j . ) L j , ( r , ) . . . L j . ( T . )  (4) 
Jl Jn 

where [ c. (Jl . . . .  Jn)] are the (unknown) expansion coef- 
ficients. Then the Volterra model of  Eq. 1 becomes: 

y( t )  = ko + ~ c~ ( j )vj( t )  + ~a ~ c 2 ( J ~ , j 2 ) v j l ( t ) v j 2 ( t )  
J Jl J2 

+ ~a~-]~ac3(jl,j2,j3)Ujl(t)vj2(t)Uj3(t) (5) 
Jt J2 J3 

where 

fo 
v j ( t )  = L j ( r ) x ( t  - r )  dr  (6) 

and/~ is the extent of  the system memory (i.e., the ker- 
nels attain negligible values for r >/~). 

Similar expressions result from the Wiener model of 
Eq. 2, where the Wiener functionals take the f o r m  o f  
multidimensional Hermite functions in terms of  the { vj] 
variables. The unknown expansion coefficients can be 
subsequently estimated by a least-squares fitting using the 
known signals (or discretized d a t a ) y ( t )  and {vj(t)}. 

The technique has been tested thoroughly with com- 
puter simulations and yields accurate kernel estimates un- 
der the constraints discussed above. Its application to 
actual renal data is presented in the following section. 

RESULTS 

The main result of  this study is that the use of  a 3rd- 
order Volterra-Wiener model can describe rather accu- 
rately the nonlinear pressure-flow dynamic relation in 
renal autoregulation. Although Volterra-Wiener applica- 
tions to date have been largely limited to 2nd-order mod- 
els, we were forced to extend our analysis to 3rd-order 
because the 2nd-order model appeared unable to explain 
certain significant features in the relation between the 
pressure and the flow signal, as demonstrated below. 
The extension to 3rd-order models was made possible by 
the Laguerre-expansion technique (LET) for three impor- 
tant practical reasons: (a) the compactness of  kernel rep- 
resentation by Laguerre expansions reduced the total 
number of  unknowns to be estimated; (b) accurate esti- 
mates can be obtained from relatively short data-records 
(less than 5 min experimentation time) within which the 
preparation may remain fairly stable; and (c) the method 
allows kernel estimation for experimental broadband 
stimuli that deviate from the requirements of  strict white- 
ness (an inevitable experimental reality in this application). 

As discussed in the Experimental Procedures and Data 
Collection section, experimental data from four differ- 
ent preparations (rats) using three different levels of  
broadband pressure forcing (high, medium, and low) were 
analyzed. Table 1 shows the mean and RMS (standard 
deviation) values of  each data set. Pressure-flow data- 
records of  512 samples each (sampled at 0.5 s, for a record 
length of  256 s) were processed using LET to obtain lst-, 
2nd-, and 3rd-order kernels. Kernel estimation was per- 
formed by LET using the following parameters: number 
of  kernel lags M -- 60 (corresponding to memory extent 
of  30 s) and number of  discrete-time Laguerre functions 
L -- 8 (resulting in a total of  165 distinct expansion coef- 
ficients for the 3rd-order model). The model predictions 
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were computed and compared to the actual data in each 
case. The 3rd-order models were able to reproduce (pre- 
dict) the actual flow data for the corresponding pressure 
data with remarkable accuracy in all cases. Table 2 sum- 
marizes the average (over the four preparations) normal- 
ized mean-square errors (NMSE) of  the model predictions 
for each level of  pressure forcing (low, medium, high) and 
for each model order (lst, 2nd, 3rd). Note that the lst- 
order model involves only the lst-order kernel, the 2nd- 
order model involves the lst- and 2nd-order kernels, and 
the 3rd-order model involves the lst-, 2nd-, and 3rd-order 
kernels. These results clearly demonstrate the significance 
of the 3rd-order kernel in representing the nonlinear pres- 
sure-flow dynamics. Note that the NMSEs also decrease 
with increasing power level of  pressure forcing. 

To further illustrate the significance of the 3rd-order 
kernel in renal autoregulation, we show in Fig. 1 a typi- 

TABLE 2. Average normalized mean-square errors (NMSE) 
of 1st-, 2nd-, and 3rd-order Wiener model predictions 

for four experimental preparations, 

Model Order 

Power Level 1 st-Order 2nd-Order 3rd-Order 

High 6.86% 6.67% 1.51 % 
Medium 15.04% 14.70% 4.17% 
Low 18.70% 18.63% 7.20% 

The NMSE decreases with increasing power level and model order. 

cal blood pressure signal (trace 1), the corresponding 
blood flow signal (trace 2) for an experimental run at me- 
dium power level, along with the lst-order (trace 3), 2nd- 
order (trace 4), and 3rd-order (trace 5) residuals (i.e., 
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FIGURE 1. Typical arterial blood pressure signal at the medium power level (trace 1 ), the associated blood flow signal (trace 2), the I st- 
order residuals (trace 3), the 2nd-order residuals (trace 4), and the 3rd-order residuals (trace 5) based on Volterra-Wiener models. Note 
the broad band nature of these experimental pressure-flow signals, and the absence in the 3rd-order residuals of the "f low depressions'" 
seen in the 1st- and 2nd-order residuals. The amplitude units for the pressure-flow signals are normalized to unit variance (see the Experi- 
mental Procedures and Data Collection section). 
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prediction errors) based on Volterra-Wiener models of the 
respective order. We observe that the 1 st-order model ex- 
plains much of  the flow signal (NMSE = 11.64%) but 
leaves certain significant "flow depressions" (e.g., around 
t = 55, 102, and 215 s in the lst-order residuals) unex- 
plained. The 2nd-order model slightly improves the pre- 
diction (NMSE = 10.96%) but does not remove the 
aforementioned "flow depressions" that are still evident 
in the 2nd-order residuals. However the 3rd-order model 
seems to capture these "flow depressions" and removes 
them from the 3rd-order residuals. This suggests that a 
significant 3rd-order nonlinearity is involved in the auto- 
regulation process, and it can account for almost all 
nonlinear dynamics in this application. Note that the am- 
plitude of  the pressure-flow signals has been normalized 
to unit variance (see the Experimental Procedures and 
Data Collection section) and, therefore, the units are ar- 
bitrary. The actual physical units can be obtained by mul- 

tiplying the normalized amplitude by the corresponding 
RMS values given in Table 1. 

The same point is illustrated in the frequency domain 
by showing in Fig. 2 the spectrum of the actual normal- 
ized flow data (solid line) and the spectra of the lst-, 2nd-, 
and 3rd-order model predictions, plotted with dotted, 
dashed, and dot-dashed lines, respectively. It is evident 
from Fig. 2 that the 3rd-order nonlinearity makes a sig- 
nificant contribution to the flow spectrum below 0.3 Hz. 
This is further illustrated in Fig. 3, where the spectra of  
the residuals are shown along with the flow spectrum. The 
inadequacy of  the lst-order (linear) and 2nd-order mod- 
els below 0.3 Hz is evident by the high power spectral den- 
sity of the respective residuals, especially below 0.12 Hz. 

Similar results were obtained in all experiments, with 
certain variability observed among different preparations, 
as expected. For instance, the average spectra of the flow 
data and the model predictions for 1st-order (dotted line), 
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FIGURE 2. C o m p a r i s o n  o f  power spectral densities (PSD) of the normalized blood flow data of Fig. 1 (sol id l ine) and the 1st-order (dotted 
l ine), 2nd-order (dashed line), and 3rd order (dot-dashed line) model predictions. Note the increased PSD of blood flow at frequencies 
below 0 .03 Hz and over the resonant region 0 . 1 - 0 . 2  Hz. The  1st* and 2nd-order model predicted blood flow spectra exhibit greater devia- 
tions at frequencies below 0 .03 Hz than does the 3rd-order model predicted blood flow spectrum. 



Nonlinear Analysis of Renal Autoregulation 597 

z 
w 
d3 
J 

I-- 
~9 
W 
0- 

0~ 
bJ 

0 
0- 

4.00 

3.60 

3.20 

2.80 

2.40 

2.00 

.1.60 

1.20 

0.800 

0,400 

0.0 

SPECTRA OF FLOW DATA AND OF 1ST, 

W ,  

2ND & 3RD ORDER MODEL RESIDUALS 

0.0 0 �9 O�9 400 O. 600 0.B00 1.00 

FREQUENCY [HZ] 

FIGURE 3. Comparison of power spectral densities of the normalized experimental blood f low data of  Fig. 3 (solid line) with the 1st-order 
(dotted line), 2nd-order (dashed line), and 3rd-order (dot-dashed line) residual spectra. Note the significant residual power spectral density 
at frequencies below 0.3 Hz for  both the 1st- and 2nd-order model residuals. 

2nd-order (dashed line), and 3rd-order (dot-dashed line) 
are shown in Fig. 4 for the medium level group�9 Likewise 
the average spectra of  the residuals and flow data for me- 
dium level are shown in Fig. 5. 

Note that the aforementioned "flow depressions" in 
the lst-order residuals are more pronounced for medium 
and low level of forcing, and the degree of 3rd-order non- 
linearity (as measured by the percentage contribution of  
the 3rd-order kernel) follows the same pattern, as shown 
in Table 2. This suggests that the presence of nonlinear 
autoregulation is least evident at the high level of forc- 
ing, leading us to suggest that the TGF may become "over- 
whelmed" at high levels of  pressure forcing. 

Turning to the obtained lst-order kernel estimates, we 
note that they vary slightly for different preparations at 
the same forcing level, but exhibit significant changes of  
waveforms for different levels of forcing�9 For instance, 
Fig. 6 shows the lst-order kernel estimates for low (solid), 
medium (dotted), and high (dashed) levels of  forcing for 

a single preparation (rat). Note that the amplitude units 
are arbitrary, since the pressure/flow data have been nor- 
malized (see figure caption)�9 We observe that these wave- 
forms become more damped as the level of  forcing 
increases. This is suggestive of nonlinear feedback, based 
on previously reported analysis and simulation results of  
a class of  nonlinear feedback systems (1 I). The changes 
observed experimentally in the 1st-order kernel estimates 
may be explained, in general, by a system of  this class 
with negative compressive (sigmoid type) feedback. In or- 
der to test this hypothesis, a necessary (but not sufficient) 
condition is that the differences between these kernels ex- 
hibit the same waveform (11). Indeed, the computed dif- 
ferences of  the low and medium level kernels from the 
high level kernel are shown in Fig. 7 and appear to have 
rather similar waveforms. This observation suggests that 
the mechanisms of renal autoregulation may employ neg- 
ative compressive (e.g., sigmoid type) feedback. 

The average 2nd-order kernel estimates are shown in 
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Fig. 8 for high, medium, and low level of forcing, re- 
spectively. They exhibit distinct shape:s, indicative of  the 
complexity of  the underlying nonlinear feedback config- 
uration. Their amplitude is about one order of magnitude 
smaller than their lst-order counterparts. Note that we 
can draw inferences regarding the relative significance of  
the lst-order and 2nd-order kernels by comparing their 
respective amplitudes, because the pressure/flow (input/  
output) data have been normalized to unit variance. Thus, 
the shown amplitude units are not physical but allow such 
comparisons of  relative significance. 

The same comments apply to the obtained 3rd-order 
kernel estimates, for which we show Lhe average 3-D cut 
at T3 = 0 in Fig. 9 for high, medium, and low level of  
forcing, respectively. The high dimensionality (4-D) of the 
3rd-order kernel points to the desirability of reducing the 
3rd-order model to a more compact block-structured 

model, involving linear and static nonlinear components. 
We note that the 3rd-order (as well as the 2nd-order) ker- 
nel estimates vary significantly in shape for different forc- 
ing levels (i.e., variance of pressure fluctuations), as well 
as for different mean values of  applied pressure (which 
essentially determine the "operating points" on the non- 
linear feedback curves). This suggests that precise analy- 
sis of these high-order kernels be based on measurements 
obtained from a single preparation (rat) and for distinct 
pressure forcings (i.e., averaging will probably obscure 
the detailed analysis of  these waveforms as they change 
for different forcing levels). 

CONCLUSIONS AND DISCUSSION 

All previous studies of  the dynamic characteristics of  
renal autoregulation of  blood flow have used linear sys- 
tems analysis (1,2,4,15). The methods employed have been 
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either cross-spectral methods using the Fast Fourier Trans- 
form (2,4,15), or have employed autoregressive-moving 
average (ARMA) models to characterize the transfer func- 
tion for renal autoregulation (1). Calculations of the co- 
herence function (4), and/or the residual spectrum for the 
models (1), have clearly shown the presence of significant 
nonlinearities in the frequency range below 0.1-0.12 Hz. 
This is especially important since it is in this frequency 
range where the autoregulatory mechanisms are active in 
minimizing perturbations in renal function caused by fluc- 
tuations in the arterial pressure. The sole reliance on linear 
methods may have caused significant bias in the deter- 
mination of the transfer function for the system, and de- 
velopment of appropriate methods to characterize the 
nonlinear properties of the autoregulatory system is there- 
fore highly warranted. 

The present study shows that practicable estimation of 
3rd-order Volterra-Wiener models from short experimen- 

tal records is possible with a kernel estimation technique 
using Laguerre expansions (12). These 3rd-order models 
account for almost all nonlinear dynamic relationships 
in the experimental broadband pressure-flow data. In par- 
ticular, it has been shown that the 3rd-order kernel plays 
an important role in explaining sudden "depressions" in 
renal blood flow (possibly due to the TGF mechanism) 
in response to broadband arterial blood pressure forcing. 
This is probably due to the fact that the sigmoid-type non- 
linearity (with the two-sided limiting characteristics ob- 
served previously in TGF) requires at least a 3rd-order 
term to approximate it (i.e., a lst-order, and 2nd-order 
term wilt not approximate the essential characteristics of 
a sigmoid nonlinearity). These "flow depressions" could 
not be explained in the past using linear analysis meth- 
ods, and they are responsible, at least in part, for the fail- 
ure of previous linear models in the frequency range below 
0.12 Hz. 
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The present measurements were by necessity conducted 
in anesthetized animals, and it cannot be excluded that 
the anesthetics may have influenced the results. However 
using linear analysis of  broadband pressure-flow data, 
identical results have been obtained from experiments 
where the rats have been anesthetized with either the gas 
anesthetic halothane as in the present study, or with the 
thiobarbiturate inactin (2,4,15). In fact, the sudden "de- 
pressions" in renal blood flow were originally observed 
in inactin anesthetized rats (unpublished results). There- 
fore, we do not believe that the choice of anesthetic has 
affected the results to any major extent. It would of course 
be preferable to perform the experiments in conscious, 
unanesthetized animals, but this is not possible with the 
existing technology. 

It is anticipated that the present method will be  useful 

in determining the functional consequences of  several 
nonlinear phenomena occurring at the level of the single 
nephron. Thus, measurements of single nephron blood 
flow using laser Doppler flowmetry have demonstrated 
the presence of two oscillatory components (21). The ma- 
jor oscillatory component has a frequency of 0.03-0.04 Hz 
and is caused by the TGF mechanism (3). Because of time 
lags and its nonlinear characteristics, the TGF system ap- 
pears to enter into a stable oscillatory mode (3). In addi- 
tion, a smaller oscillatory component with a frequency 
of  0.12-0.14 Hz can be also found in the single nephron 
blood flow (21). The origin of  this component is presently 
unknown. An important question is what physiological 
role these self-sustained oscillations at the single neph- 
ron level play in the overall regulation of  renal hemody- 
namics. Because of the inherent nonlinear properties of  
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self-sustained oscillators, such studies will require the use 
of  nonlinear methods. 

In spontaneously hypertensive rats (SHR), the regu- 
lar oscillations observed in the various variables at the sin- 
gle nephron level are replaced by irregular fluctuations 
(20). Most likely, this is due to a transition of  the TGF 
system to a dynamic range dominated by chaotic dynam- 
ics (21). Again, the functional consequences of this change 
at the organ level are not known, and the elucidation of 
this question will undoubtedly require the use of nonlin- 
ear methods for systems analysis. 

In the present study the waveform of the 1 st-order ker- 
nel varied with the power level of the forcing. The changes 
observed are suggestive of  nonlinear negative compres- 
sive (sigmoid type) feedback in the renal autoregulatory 
mechanisms. This inference is based on previously pub- 
lished analysis and simulations of  a class of nonlinear 
feedback systems (11). The precise determination of the 

underlying feedback configuration (probably composed 
of two loops corresponding to the two autoregulatory 
mechanisms) and the identification of the functional 
characteristics of the various feedforward and feedback 
components are currently under study. This is a task of  
considerable complexity due to the fact that several pos- 
sible configurations must be explored. The identification 
of the various components of this nonlinear feedback con- 
figuration may lead to an equivalent (and more compact) 
block-structured model. 

The present results are a first glance at the nonlinear 
dynamics of  renal autoregulation (with the detail and 
quantification afforded by the Volterra-Wiener approach) 
and they are far from the final word on this subject. Fu- 
ture work will apply these methods to study the implica- 
tions of the nonlinearities at the single nephron level for 
the regulation of overall renal hemodynamics. In addi- 
tion, future work must address the important issue of con- 
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FIGURE 8. The average 2nd-order kernel estimates for the high, 
medium, and low power level forcings, The minimum and maximum 
amplitudes of the 2nd-order kernels are ( - 0 . 0 4 4  and 0.022) for 
high, ( - 0 . 0 8 8  and 0.025) for medium, and ( - 0 . 0 5 3  and 0.032)  
for low power level forcings. The amplitude units are arbitrary since 
the pressure/flow data were normalized. In general, the 2nd-order 
kernel units are: (output units)/(input units)2/(time units) z. The two 
time-lag axes (r 1 ,f2) range from 0 to 30 seconds. 

FIGURE 9, The average 3rd-order kernel estimates 13D-cut at 
T3 = 0) for the high, medium, and low power level forcings. The 
minimum and maximum amplitudes of the 3rd-order kernels are 
( - 0 . 0 1  and 0.03) for high, ( - 0 , 0 1 5  and 0.024)  for medium, and 
( - 0 . 0 2 7  and 0.0471 for low power level forcings. The amplitude 
units are arbitrary since the pressure/flow data were normalized. 
In general, the 3rd-order kernel units are: (output units)/(input 
units)3/(time units) 3. The two time-lag axes (T1 ,r2) range from 0 
to 30 seconds. 

verting the high-order kernel characterizations of  the 
autoregulatory process into an understandable compact  
block-structured model. This is expected to facilitate the 
physiological interpretation of  the modeling results. 
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