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Detection, representation, and identification o f  nonlinearities in biological systems 
are considered. We begin by briefly but critically examining a well-known test o f  sys- 
tem nonlinearity, and point out that this test cannot be used to prove that a system 
is linear. We then concentrate on the representation o f  nonlinear systems by Wiener's 
orthogonal functional series, discussing its advantages, limitations, and biological ap- 
plications. System identification through estimating the kernels in the functional se- 
ries is considered in detail. An  efficient time-domain method o f  correcting for  coloring 
in inputs is examined and shown to result in significantly improved kernel estimates 
in a biologically realistic system. 
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I N T R O D U C T I O N  

It is almost trite to state that  all biological systems exhibit some form of nonlin- 
ear behavior, such as saturation, in response to certain inputs. However,  it is not a 
trivial problem to decide what form of  nonlinear model might be appropriate  to de- 
scribe the system's response to a restricted class of  inputs. Indeed if the system or its 
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response is noisy, it is often difficult even to decide whether or not the system is 
linear. 

The techniques presently available for the identification of  nonlinear systems can 
basically be grouped into three classes: 

1. kernel, functional series, or nonparametr ic  approaches (e.g., Wiener and 
Volterra representations); 

2. cascade and block structured approaches (e.g., Hammerstein, Wiener, Uryson, 
LNL, and parallel cascade structures); 

3. parametric approaches (e.g., bilinear, state-affine, and nonlinear difference 
equation models). 

Recently we have considered cascade approaches to the identification of  nonlin- 
ear systems (26,40). Parallel cascade models for discrete-time systems were examined 
by Palm (53) and identification using such a model was undertaken by Korenberg 
(30). Billings (4) and coworkers [e.g., (45)] have summarized some of  their extensive 
work on system identification via nonlinear difference equation models. Orthogonal 
identification of nonlinear difference equation models for systems of  unknown struc- 
ture has been performed recently (31,35,36,51). 

In this paper we examine some of  the techniques available for the identification 
of  nonlinear systems via the Wiener kernel approach (see 46,56,69,70). Since nonlin- 
ear systems are in general more arduous to identify than their linear counterparts, sev- 
eral authors (e.g., 6,7,20,75) have proposed simple preliminary investigations to 
determine whether the system under study is nonlinear. Thus we start by considering 
a well known test for system nonlinearity. We then proceed to the Wiener kernel 
methods after a brief introduction to the Volterra functional series. 

TESTS FOR SYSTEM NONLINEARITY 

Billings and Voon (6,7) have recently proposed tests for system nonlinearity that 
are attractively simple and apparently very general. While these tests are very useful, 
they have sometimes been misinterpreted as providing sufficient conditions for lin- 
earity whereas in fact they generally constitute only necessary conditions. For exam- 
ple consider the following test. 

Let u (t)  be a signal with zero mean (first-order) and zero third-order moments and 
suppose that all even-order moments exist. Billings and Voon (7) give as examples of 
such signals a sine wave, and a Gaussian or ternary sequence. Let 

x ( t )  = u ( t )  + b , (1) 

where b r 0, be the input to the system to be tested and let y ( t )  be the correspond- 
ing output.  Define 

Oy,y,2(7") ~ ( y (  t - r )  - ~ ) ( y (  t )  - ~)2 . (2a) 



Identification of Nonlinear Systems 631 

Here the primes are used to denote that the mean has been subtracted from the sig- 
nal and overbars denote (infinite) time averages. Then Billings and Voon (6,7) assert 
that if the system is linear then the higher-order auto-correlation function 

(~y,y,2 ( r )  -- 0 Vr . (2b) 

Note that the test is a function only of  the output.  This test has become popular 
and for example Varlaki et al. (75) have praised it as being particularly simple and 
straightforward to apply. Indeed it is easy to show that every linear system must sat- 
isfy Eq. 2b and to this extent the test is extremely useful and constitutes a valuable 
contribution by Billings and Voon. Thus, if Eq. 2b is not satisfied (in practice, within 
specified confidence limits, since only finite-length time averages can actually be used) 
then there is a corresponding probability that the system is nonlinear, and the wider 
the confidence limits the greater the probability. However the test has been misused 
in that the converse (namely, if Eq. 2b holds for all r then the system must be linear) 
has sometimes been asserted, which is incorrect. Thus, contrary to such an assertion, 
it is possible for a nonlinear system to satisfy Eq. 2b for all r. In short, the fact that 
a system satisfies Eq. 2b says nothing about whether it is linear or nonlinear, as we 
show below. Before considering this we emphasize that b in the Billings and Voon test 
(see Eq. 1) is nonzero. Otherwise it would be trivial to construct a counter-example 
to the notion that satisfying Eq. 2b is sufficient for linearity. For example, let the in- 
put be x ( t )  = sin o~t, and the nonlinear system be a simple cuber. Then the output, 
y ( t ) ,  would simply be the sum of  sinusoids of  frequencies ~0 and 3~0 (odd-order har- 
monics and therefore of nonzero frequency) so that the output mean, )7, would equal 
zero. Hence, the right side of  Eq. 2a would be the infinite time average of  sinusoids 
of  odd-order harmonics and thus equal zero. However the Billings and Voon test does 
not permit use of  a simple sinusoid without an offset, since b :~ 0. Hence, the right 
side of  Eq. 2a will include the time average of  even-order harmonics (including the 
zeroth-order harmonic) and thus it is not clear that this time average would equal zero 
for all r. Therefore a more carefully constructed counter-example (to the belief that 
Eq. 2b suffices for linearity) is warranted, and this is presented after a final brief 
comment. 

It may seem obvious to the reader that one could not prove that a system is lin- 
ear using only a single test input. Might not a highly nonlinear system exist whose re- 
sponse to the particular input is zero? This is indeed a reasonable question, especially 
if no restrictions were placed on the allowable class of  nonlinear systems. However, 
in this paper we confine ourselves to systems having a Volterra or a Wiener functional 
expansion (see below). Moreover, we assume that a sufficiently "rich" test input is 
used, for example that u in Eq. 1 is white Gaussian noise. The response to such a test 
input fully characterizes a nonlinear system. If  the resulting system output were zero, 
then all the Wiener kernels (discussed below) would be zero, and the system response 
to any other input would be zero "almost everywhere." 

Turning to our counter-example, we now construct a simple nonlinear system (hav- 
ing both a Volterra and a Wiener functional expansion) which satisfies Eq. 2b even 
when the test input is sufficiently rich to identify the system. 

We will assume that u ( t)  in Eq. 1 is zero-mean white Gaussian noise. This clearly 
satisfies Billings and Voon's requirement of  having zero mean and zero third-order 
moments, as these authors have noted. Suppose that the system to be tested has the 
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Wiener model structural form, that is, a dynamic linear system with impulse response, 
h ( r ) ,  followed by a static nonlinearity. Furthermore suppose that  

s ~ h ( r )  d r  = 0 , (3) 

and that the static nonlinearity is an odd function. A linear system satisfying Eq. 3 
is often termed a high-pass system (having a zero steady-state response to a step in- 
put). For example 

h ( r )  = e -~ - 2e -2~, r >- 0 , 

clearly satisfies Eq. 3. As shown below, the use in our counter-example of  an impulse 
response satisfying Eq. 3 causes the nonzero offset b (in Eq. 1) to have no effect. For 
simplicity we will assume that the odd function for the static nonlinearity is a simple 
cuber so that  the system output  is 

[s ]' y ( t )  = h ( r ) x ( t  - r)  d r  . (4) 

It follows readily f rom Eq. 1 that  

fo fo h ( r ) x ( t  - r)  dr  = h ( r ) u ( t -  r)  d r  , (5) 

in view of Eq. 3. Consequently x in Eq. 4 can be replaced by u so that the system out- 
put is 

y ( t ) =  [ s 1 7 6  3 . (6) 

Therefore 37 = 0, and the right side of  Eq. 2a reduces to 

(~y,y,2(7") -~- y ( t  - r ) y 2 ( t )  . (7) 

Recall that our choice for u ( t )  was zero-mean Gaussian noise. It follows f rom 
Eq. 6 that the right side of  Eq. 7 is the infinite time average of an odd number  (nine) 
of  u factors and therefore equals 0 yr .  [Note that this result depends on the stimu- 
lus having a symmetric probability density function (zero odd-order moments).] Thus 
our nonlinear Wiener model satisfies Eq. 2b and is a counter-example to the notion 
that  this equation is a sufficient condition for linearity when the test input is as de- 
fined above. 

Our Wiener model also provides a counter-example to the belief that another pro- 
posed test f rom the literature suffices to establish linearity. The test (which can be 
used to establish nonlinearity) requires that the signal u in Eq. 1 belong to the separa- 
ble class of  random processes. Let f ( u l ,  u2; r) be the second-order probabili ty den- 
sity function of  the process u(t). Define 
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F g(u2 ,  o) ---- ulf(Ul,U2;tr) dUl 

If there exist functions gl ,g2 such that g(uz ,  a) = gl (U2)g2(or) for all u 2 and a, then 
u ( t)  is called a separable process (4,5). The Gaussian process, sine-wave process, and 
pseudo-random binary sequence are all separable processes (4). If the input u to the 
system to be tested is a separable process, then it has previously been asserted that the 
system is linear if and only if 

t~u2y,(7" ) ----- u2( t  -- r ) ( y ( t )  - - p )  = 0 Vz . 

Again, for a counter-example consider any Wiener model whose linear system satis- 
fies Eq. 3 and whose static nonlinearity is an odd function. Such a nonlinear system 
will erroneously appear to be linear according to the immediately above test, when 
u in Eq. 1 is a zero-mean Gaussian input. 

The fact that Eq. 2b is not a sufficient condition for linearity is illustrated in the 
following simulation. 

TESTING FOR LINEARITY: A PITFALL 

Our simulation example used a simple Wiener model system consisting of  a high- 
pass, dynamic linear subsystem satisfying Eq. 3 followed by a simple cuber static 
nonlinearity. 

The input was a 1,000 sample unity-variance, zero-mean Gaussian white-noise sig- 
nal (generated using the technique presented by Hunter and Kearney (23)) to which 
was added a unity offset. The simulation in this example was carried out using the 
NEXUS language for simulation, system and signal analysis (25). 

A one-dimensional correlation function 4~x,y, can be normalized (7) according to 
the formula 

~x'y ' (k)  = 

1 N--k 
~ ~]g_s ( x ( n )  - 2 ) ( y ( n  + k )  - p )  

(r (o)~,~, (0)) .5 

This procedure was used to normalize the correlation function defined by Eq. 2a. The 
result is plotted in Fig. 1 and lies within the 95% confidence limits of  +_ 1.96/x/N 
used for the test. Thus our Wiener model would erroneously appear to be linear, so 
that this test does not provide a sufficient condition for linearity. 

VOLTERRA F U N C T I O N A L  SERIES 

Consider a nonlinear, continuous, finite-memory, time-invariant, single-input, sin- 
gle-output, physically realizable (i.e., causal) system. According to the theorem by 
Frechet (12), such a system can be uniformly approximated, over a uniformly bounded 
equicontinuous set of inputs, to an arbitrary degree of  accuracy by a Volterra (1,2, 
80,81) series of  sufficient but finite order. If  the system is single-input single-output 
and the finite order is I then the series takes the form: 
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FIGURE 1. Plot of the (normalized) higher-order auto-correlation function (of Eq, 2a) (sometimes used 
in the past for testing whether a system is linear). The plot lies totally within the indicated 95% con- 
fidence limits, suggesting that the simulated system is linear, whereas it is in fact a nonlinear Wie- 
ner model, In this and remaining figures the lag is given in seconds, s. 

oo 

f ' ' "  f hi(7"l~ . . . .  ~Fj)x(t m 7 " 1 ) . . . X ( /  m 7"i) dTl . . . d ~  i 
i = 0  0 

oo 

fo" ff = h o +  h l ( r l ) x ( t - r l ) d r l +  h 2 ( T 1 , T 2 ) x ( t - - T I ) X ( t - - T 2 ) d T l d T 2  

o 
co 

+ . . .  + f . . . f h l ( r l  . . . . .  r z ) x ( t - T 1 ) . . . x ( t - r i ) d z l . . . d ' c i .  (8) 
o 

Here x ( t )  is the system input and the hi are the Volterra kernels, essentially multi- 
dimensional weighting functions in the Volterra series. In practice the upper limits of 
the integrals are set equal to T, the duration of the finite memory of the system. Iden- 
tification of a nonlinear system by a functional expansion essentially reduces to es- 
timation of the Volterra kernels in Eq. 8. Suppose that least-square estimates of the 
kernels are desired (i.e., estimates minimizing the mean-square error between the sys- 
tem output, y ( t ) ,  and the predicted output, given by the series of Eq. 8). Then, di- 
rectly obtaining these estimates requires solution of a simultaneous set of integral 
equations. The simultaneous set of equations can be avoided by using an orthogonal 
framework, following Wiener's (83) approach. 

W I E N E R  KERNEL A P P R O A C H  

In the late 1940s Norbert Wiener (reported by Lee (43)) realized the practical lim- 
itations of the nonorthogonal representation. In the most general form, the Volterra 
series is an infinite series (when I in Eq. 8 is infinite). By using the Gram-Schmidt or- 
thogonalization technique [e.g., (73)] Wiener orthogonalized the Volterra series, under 
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the important  assumption that the input is a Brownian process, which is the integral 
o f  a white (i.e., has a flat power spectrum) Gaussian process. It is usual now to 
present Wiener's derivation in terms of  a white Gaussian input. The resulting series, 
known as the Wiener series, can be written 

y ( t )  = k Gi[ki,x] , (9) 
i=0 

where the G i a r e  orthogonal.  That  is, if the input, x, is Gaussian white noise with a 
mean of  zero and a given power spectral density, then 

Gi [ki,x] Gj [ k j , X ]  = O i f i C j  

> O i f i = j  . 

Gi is the ith order Wiener G-functional,  where the G denotes that the functionals 
have been orthogonalized with respect to a particular stationary, Gaussian, white in- 
put process. 

Suppose that the power spectral density o f  the particular Gaussian white input is 
P so that x ( l ) x ( t  - e) = PS(e)  where 6 is the unit impulse function of  Dirac. Then 
the first few Wiener functionals are given via Gram-Schmid t  orthogonalization as: 

Go[ko,x] = k0 (10) 

Gl[kl ,x]  = k l ( r l ) x ( t - -  r l )dr l  (11) 

P P P 
=l tk2(Tl ,T2)x( t - -T1)x( t - -7 ,2)dTldT:2--Pl^  k2(T,1:)d.[ (12) Gz[k2,x] 

o 
Go 

G3 [ k 3 , x  ] = f f f k 3 ( r l , r 2 , r 3 ) x ( t - r l ) x ( t - r 2 ) x ( t - r 3 ) d r l d r 2 d r 3  
0 c o  

- - 3 P l t k 3 ( r l , r 2 , r 2 ) x ( t - - r l ) d r l d r 2  , (13) 

o 

where ki is termed the i th order Wiener kernel. 

Note: 

1. The Wiener kernels are not in general the same as the Volterra kernels of  cor- 
responding order. For example the zeroth-order Volterra kernel is simply the 
system output when the system input is zero, whereas the zeroth-order Wiener 
kernel is the mean output  for the particular white Gaussian input used. How- 
ever the corresponding first- and second-order Volterra and Wiener kernels are 
identical when the system has no higher-order kernels. Suppose that the non- 
linear system is a cascade of  a dynamic linear, a static nonlinear, and a second 
dynamic linear component  (i.e., an LNL system; see [29,40]). Then the Wiener 
kernels are directly proport ional  to the Volterra kernels of  corresponding or- 
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der, assuming both Wiener and Volterra series representations exist. (The 
Volterra series representation will exist, for example, if the static nonlinear com- 
ponent in the LNL cascade is describable by a polynomial or a power series.) 

2. It is frequently claimed that the Wiener series is more general than the Volterra 
series because an infinite or finite Volterra series exists only for an analytic sys- 
tem (i.e., in brief, a system for which certain functional derivatives of  all or- 
ders are defined). The kind of  convergence displayed by a Volterra series 
representation is pointwise in stimulus space. A Wiener series is an orthogonal 
series and so converges in the mean in the sense that the mean square error can 
be made arbitrarily small by including a sufficient number of Wiener func- 
tionals in the truncated series approximation of  the output.  (That is, the kind 
of  convergence displayed by a Wiener series is L2.) This explains why it has 
been claimed that a greater breadth of functionals is treated by the Wiener ap- 
proach, at the expense of  weaker convergence. For example, systems with dead- 
zones (e.g., saturation nonlinearities that have regions where changes in the 
input do not result in changes in the output) can still have an infinite Wiener 
series representation while not being exactly describable by a corresponding 
Volterra series. However this important  theoretical distinction has less practi- 
cal significance because identifying a physical nonlinear system via the func- 
tional approach always involves an approximation by a finite number of  terms. 
All that can be obtained in practice is a truncated Wiener series which can al- 
ways be transformed into a truncated Volterra series providing the same good- 
ness of fit. 

3. The Hammerstein model (comprising a static nonlinearity followed by a dy- 
namic linear system) cannot in general be represented by the Wiener functional 
expansion. As an example consider a squarer followed by a dynamic linear sys- 
tem. If the input to this Hammerstein system is Gaussian white noise (as is re- 
quired for use of the Wiener expansion) then the output of the squarer will have 
an infinite mean. This results in an infinite zeroth-order Wiener G-functional 
for our Hammerstein system and an infinite term in the proposed second-or- 
der Wiener G-functional (the first-order kernel is zero in this example). On the 
other hand Hammerstein systems in which the static nonlinearity is describa- 
ble by a polynomial do have Volterra series representations. This shows that the 
class of systems describable by the Wiener expansion is not, at least in one 
sense, wider than the class describable by a Volterra series (as is frequently con- 
tended) since the Wiener series class does not include the Volterra series class 
as a subset. Indeed there are an infinite number of  systems (e.g., many Ham- 
merstein models) having Volterra expansions which do not have Wiener expan- 
sions. Such systems may however have a generalized Wiener expansion, known 
as the Fourier-Hermite expansion, developed for a colored Gaussian input (see 
5 below). Moreover, the theoretical difficulty of  calculating the Wiener series 
for a Hammerstein model disappears when time is discretized, and so is not a 
practical issue. 

4. As is well known, the Gaussian input is unbounded (because the Gaussian 
probability density function is nonzero from minus to plus infinity), and the 
ordinary derivative of  a white Gaussian signal is not defined. Indeed, theoret- 
ically the input used to identify the Wiener kernels is not from the set of uni- 
formly bounded equicontinuous signals referred to previously in connection 
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with Frechet's theorem on approximation by finite order Volterra series. Again 
this is a distinction without much practical relevance because any physical in- 
put is bounded and sufficiently smooth, and lasts only over a finite interval of 
time. (In practice, of course, system identification generally uses sampled ver- 
sions of the input and output, forming discrete time signals, and for such sig- 
nals the truncated functional series becomes a multidimensional polynomial. 
Most importantly, there are relaxed conditions for convergence of successive 
polynomial approximations to the system.) 
Yasui (84,85) has considered generalizations of the Wiener series for colored 
Gaussian inputs, using "Fourier-Hermite" kernels. This work is related to 
Schetzen's (68) examination of identification using colored Gaussian signals, 
and to the work of Victor and Knight (78). 
The Wiener approach has been extended (77) to analyze stochastic nonlinear 
systems, as well as input-inaccessible nonlinear systems with multiple outputs. 
Henceforth, reference to an arbitrary system denotes a deterministic, causal, 
time-invariant, finite memory, continuous system. 

Suppose that we can characterize an arbitrary system in terms of its response to 
a Gaussian white noise input, for example by using the Wiener or Volterra series. 
Then we have effectively identified (nonparametrically) the system because we can 
now theoretically derive its response to any input. Thus it might appear that the best 
input for identifying a nonlinear system is Gaussian white noise. However, this re- 
markable notion is tempered by: 

1. The practical problems of actually generating true Gaussian white noise inputs 
(particularly in physical identification experiments). Deviations from the ideal 
white Gaussian input introduce estimation errors. Moreover, Victor (76) has 
studied how the information content of laboratory approximations of white 
Gaussian noise limits the ability to identify the terms of a functional expansion. 
He shows that the fractal dimension (specifically, the capacity dimension) of the 
laboratory test input signal limits the number of terms identifiable in an orthog- 
onal functional expansion representation. 

2. The numerical problems involved in obtaining the unknowns in the Wiener or 
Volterra series, namely the Wiener or Volterra kernels. Even with noise-free 
data, determining the Wiener kernels from moderate length input-output sig- 
nals by cross-correlation can result in major estimation errors (obviously de- 
pending on the kernel memory length). For example for a second-order Volterra 
(or Wiener) series the second-order kernel estimates are typically considerably 
less accurate than the first-order kernel estimates. Use of lengthy inputs to im- 
prove accuracy is frequently not feasible. Aside from computation time another 
problem is that the system characteristics may change over the duration of a 
lengthy experiment (i.e., the assumption that the system is time-invariant may 
no longer be warranted). 

3. The redundancy in Gaussian inputs arguably makes them less efficient than cer- 
tain pseudorandom signals (74). For example a very interesting, elegant, and 
promising method for determining "Volterra-like" kernels of a system based on 
multilevel M-sequences (preferably inverse-repeat) has been recently proposed 
by Sutter (74). The method determines extremely rapidly the kernel estimates 
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(even high-order kernels) from locations on the first-order cross-correlation 
function. If the system order is high, then unless the system has a relatively 
short memory length, a very long input sequence must be used to avoid over- 
lap of kernel slices. Such long input sequences cause problems when the system 
cannot be considered time-invariant over a lengthy period. If the system has 
lower order (e.g. second), then a much shorter stimulus length may suffice to 
avoid overlap. The technique further requires that the M-sequence input be ex- 
actly delivered to the system and this is not always possible. Note that the ker- 
nels recovered by the technique will in general depend upon the number of 
distinct input levels. For example, for a binary M-sequence, binary kernels are 
recovered whose diagonal values are indeterminable. Moreover the off-diago- 
nal kernel values (even the lower-order ones) will, for a higher-order system, in 
general differ from both the Volterra and the Wiener kernel values. Moreover, 
neither the Wiener nor the Volterra kernels can generally be computed from the 
binary kernels. 
The difference between Wiener and binary kernels may well be significant de- 
pending upon the application. For example, for an LNL cascade structure, the 
Wiener kernels are proportional (28,29) to the Volterra kernels provided that 
the latter exist. This proportionality enables a simple identification of the com- 
ponents of the LNL system (28-30,32). However, the simple proportionality 
with the Volterra kernels does not hold for the binary kernels. In addition a bi- 
nary input may be ineffective in evoking the nonlinear behavior of a system. 
For example, if the system is the sum of a Hammerstein structure and a non- 
Hammerstein structure, the Hammerstein component will not be detected by a 
binary input. It should be noted that a system may be continuous (in that 
"small" changes in the system input result in small changes in the system out- 
put) but the kernels of the system need not be continuous functions. Thus, it 
may not be possible to infer diagonal kernel values from off-diagonal values 
even if the system is continuous. Kernels, with diagonal values determined, can 
be obtained using more input levels, for example, a quaternary signal (74), al- 
though this will require a longer test stimulus. Nevertheless the Sutter (74) tech- 
nique holds great promise for analyzing nonlinear systems. 
The Volterra series may be orthogonalized for other inputs (see [38,55]), which 
may be more optimal in some sense. Moreover in many situations it may only 
be possible to monitor the input rather than manipulate it. Consequently it may 
be necessary to orthogonalize the Volterra series with respect to the given input. 

The problem of finding a practical method for determining the Wiener kernels 
proved a most difficult one to solve. Ideally one would like some device where each 
kernel could be adjusted until the desired output was obtained. Unfortunately no such 
device existed prior to the advent of digital computers. Wiener's approach was to rep- 
resent the kernels using an orthogonal set of basis functions, much in the way that 
a periodic signal may be represented using an orthogonal set in the Fourier series. The 
orthogonal set Wiener suggested was the set of Laguerre functions, because these 
functions can be represented by a series of phase-shift electrical networks called lat- 
tice networks (83). Thus Wiener's idea was to represent the kernels using Laguerre 
functions that are implemented practically by individual electronic components. By 
electrical manipulation involving the lattice networks, the coefficients of Hermite 
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polynomials of  the Laguerre functions, and therefore the Wiener kernels, could be 
altered. Of  course, Wiener's approach was not limited to the use of Laguerre func- 
tions for the set of  basis functions. 

Wiener argued that two systems might be considered equivalent if their responses 
to a Gaussian white noise input are minimally different in the mean-square sense. 
Thus suppose one of  the systems is the unknown nonlinear system to be analyzed or 
synthesized and the other the physical model implementing the Laguerre functions 
and Hermite polynomials. Then analysis or synthesis is considered complete when the 
components representing the Hermite polynomials operating on the lattice networks 
are adjusted such that the minimum mean-square difference between the outputs of  
the two systems in response to the same Gaussian white noise input is found. 

The benefits of  having an orthogonal representation of  these kernels (e.g., using 
the Hermite and Laguerre functions) are enormous. If the coefficients of  Hermite 
polynomials of  Laguerre functions, as implemented electronically, are indicated by 
a meter and modified by a gain control, then orthogonality ensures that manipula- 
tion of  the ith gain control affects only the ith meter and does not affect readings on 
the others. This corresponds to the fact that each additional term added to the Wie- 
ner series does not affect the coefficients of  the previous terms. Hence, if there are 
K gain controls, only K individual adjustments need be made. With refinements 
(33,82) to correct for the actual input and finite duration used in the identification 
experiment, the basis function approach to kernel estimation may indeed be practical. 
At present, the expansion of  Wiener kernels using basis functions is rarely employed 
in practice. The inaccuracies stem from estimating the coefficients by time-averaging, 
which is predicated on the assumption that the system input is a white Gaussian pro- 
cess applied for an infinite duration. Practical methods for expanding the kernels 
using basis functions were suggested by Watanabe and Stark (82) and Korenberg (33). 
In the latter method, the coefficients in the basis function expansion can be estimated 
accurately by orthogonalizing for the actual input and duration of the identification 
experiment (which we call "exact orthogonalization"). The orthogonalization enables 
rapid searching for a concise subset of  basis functions to approximate accurately the 
kernels. The coefficients obtained in both methods (33,82) are least-square estimates, 
and neither method is limited to inputs which are Gaussian, white, or lengthy. Ad- 
ditional major advantages of  the methods (33,37,82) are ready applicability to a sys- 
tem with lengthy memory, and robustness in the face of  heavy noise contamination. 

METHODS FOR DETERMINING THE WIENER KERNELS 

Lee and Schetzen (44) published a relatively simple time domain technique for es- 
timating the Wiener kernels that caused applications of functional series identifica- 
tion to flourish (e.g., 46,47,48,65,66,71). 

ESTIMATION OF THE WIENER KERNELS 
BY CROSS-CORRELATION 

Again let the input x ( t )  be zero-mean Gaussian white noise with power spectral 
density P. Lee and Schetzen (44) showed that the Wiener kernels could be estimated 
from 

1 
ki(~l  . . . . .  7i) = i!p--- ~ ( t )  - Gm[km,x]  x ( t -  71) . . . x ( t -  ri) �9 (14) 
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When all of the rl . . . . .  r; are distinct (i.e., unequal) this reduces to 

1 
k i (  r l  . . . . .  r i )  = .-:-~ y (  t ) x (  t - -  r l )  . . . x (  t - -  r i )  �9 

l i P '  
(15) 

Palm and Poggio (54) point out certain fundamental problems in calculating the 
diagonal values of third- and higher-order continuous time kernels. However, these 
difficulties are easily circumvented (4) using appropriate discrete stochastic inputs. For 
a discrete Gaussian input, replace y (t) in Eq. 15 by its discrete counterpart y (n), and 
the factors x ( t - r l ) . . . . .  x ( t - r i )  by Grad-Hermite (i.e., generalized multidimen- 
sional Hermite) polynomials (1,86) of the discrete counterparts of these factors. This 
enables the Wiener kernels to be evaluated along their minor and major diagonals (2). 
The same method is reviewed by Goussard, Krenz, and Stark (19), and has been well 
known for many years. Very nearly the same idea for measuring diagonal and off-di- 
agonal kernel values is contained in the Lee and Schetzen (44) paper (on pp. 246-247, 
and in particular their Eq. 34). However, they consider identification of a continuous- 
time system and consequently employ Dirac impulse functions in place of discrete delta 
functions in defining the "equivalents" of the Grad-Hermite polynomials. 

Goussard (17,18) has shown that improved Wiener kernel estimates are obtainable 
using a stochastic approximation technique. A very efficient method for measuring 
the Wiener kernels in the frequency domain via the fast Fourier transform algorithm 
was proposed by French and Butz (14). 

ADVANTAGES AND DISADVANTAGES 
OF THE WIENER A P P R O A C H  

1. The orthogonality of the G-functionals enables Wiener kernels to be obtained 
without the need to solve a set of simultaneous integral equations as would be 
required if Volterra kernels were to be estimated using cross-correlation. 

2. Rearranging the Wiener series of a given order yields the finite-order Volterra 
series which best approximates the system in the least-squares sense for that 
order and the particular Gaussian input used (46). 

3. Extending the truncated Wiener series approximation of a system to include 
higher-order orthogonal G-functionals does not affect the values of the G- 
functionals already estimated. 

4. As with the Volterra series, it may require a high-order truncation of the Wie- 
ner orthogonal series to represent a given nonlinear system accurately. 

5. Identifying higher-order Wiener kernels by cross-correlation is computation- 
ally unwieldy and time-consuming, and may result in only slight improvement 
in goodness of fit. 

6. The Wiener kernel values in neurophysiological applications (46,65) normally 
comprise a large parameter set, although the order of nonlinearities adequate 
for good approximation frequently remains at or below fifth ([9 Fig. 5], 
[10,16,39]). 

7. Over-parameterization may result in approximating the measurement-noise 
variance, as well as the system output variance, resulting in a less accurate model 
for data other than the actual input-output records used in the identification. 

8. Analogous orthogonalizations can be carried out for other inputs with special 
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auto-correlation properties, for example constant-switching-pace symmetric 
random signals (46,49), pseudo-random signals based on m-sequences (49), 
and multilevel inputs (52). Klein and Yasui (27) have shown how the kernels 
in the orthogonal expansions for different stimuli are related. Krausz (42) has 
shown how discrete Poisson white-noise can be used for kernel identification. 

9. Orthogonalization is also possible for inputs lacking special auto-correlation 
properties, but then expressions for higher-order orthogonal functionals may 
become prohibitively difficult to calculate (55). A simple method for exactly 
orthogonalizing the Volterra series for such an input, identifying the weight- 
ings in the orthogonal series, and then reconstructing the Volterra kernels 
through an efficient formula is given by Korenberg et aL (38). This technique 
also permits the diagonal kernel values to be determined accurately. A fast or- 
thogonal algorithm (35,36) for carrying out the kernel identification is also 
available. In addition, the exact orthogonalization for a given input can be 
combined (33) with parallel cascade identification, to yield fast robust kernel 
estimation applicable even when the system has lengthy memory (37). 

10. Gate functions ([8],[9, Appendix Eq. A6], [67,69]) of the input (or of func- 
tionals of the input) have been used to develop nonlinear system representa- 
tions in which the constituent terms are orthogonal for an arbitrary input. 
Each gate function has the value zero "everywhere" except over a single bin, 
where it has value unity. The bins for different gate functions do not overlap 
so that a set of such functions can be constructed to form an orthogonal ba- 
sis. While orthogonality does not depend here on the statistical properties of 
the input, the system representation is highly nonparsimonious, and basically 
amounts to storing the average value attained by the output when the input 
lies in given bins (or more generally when functionals of the input lie in given 
bins). Luminance-projection functions of Klein and colleagues [Appendix in 
(9)] provide an excellent example of gate functions that simplify interpretation 
of kernels, and explain a well-known psychophysical visual movement phe- 
nomenon, reverse phi motion (their Eq. A12). 

11. Walsh functions have also been used as a set of orthogonal functions to ex- 
pand the kernels by French and Butz (15). These authors constructed a set of 
kernels similar to the Wiener kernels, which, however, contained the dyadic 
convolution operation (13). The dyadic kernels could be measured more effi- 
ciently than the normal kernels. This efficiency must be tempered by the fact 
that higher order dyadic kernels than normal kernels may be required to model 
accurately certain systems (13). 

12. A valuable alternative to Wiener's stochastic input approach is the sum-of- 
sinusoids technique, which can be used to obtain rapidly estimates of the 
Fourier transforms of the kernels, and has been successfully applied in neuro- 
physiology (79). 

ESTIMATION OF THE WIENER KERNELS BY REPEATED 
TOEPLITZ MATRIX INVERSION 

The cross-correlation techniques suffer from the disadvantage that unless the in- 
put is almost exactly white and very long, poor estimates of the kernels may be ob- 
tained. In practice long input records are inconvenient and white inputs are almost 
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impossible to implement physically. Schetzen (68) has given equations (resulting from 
cross-correlation), which contain the Wiener kernels when the input is colored Gauss- 
ian (see also the work of  Bedrosian and Rice [3] and the book by Marmarelis and 
Marmarelis [46]). However a practical method of  solving these equations in the time 
domain for the kernels when the input is not white (and possibly non-Gaussian) has 
been lacking. 

A discrete-time, continuous, finite-memory, physically realizable system can be 
uniformly approximated to a given degree of  accuracy by a discrete Volterra series 
of  sufficient, but finite, order J: 

J [ I 

Y s ( n )  = ~], ~,, . . .  ~]  h j ( i l  . . . . .  i j ) x ( n  - -  i l ) . . . x ( n  -- i i )  . (16) 
j=O i1=0 ij=O 

(In Eq. 16, the term corresponding to j = 0 is the constant ho.) This approximation 
is uniformly convergent when x belongs to a given set of  uniformly bounded signals. 

Consider a second-order discrete-time finite memory Volterra series: 

I I I 

y ( n )  = ho + ~ - ] h l ( i ) x ( n  - i )  + ~], ~ ,  h 2 ( i l , i 2 ) x ( n  - i l ) x ( n  - i2) �9 
i=0  i i=0  i2=0 

(17) 

Assume that the input, x, is colored Gaussian. It follows that 

dPxy(J ) =-- y ( n ) x ( n  - - j )  

i 
= ~ ] h l ( i ) x ( n  - i ) x ( n  - j )  

i=0  

I 

= ~ ] h x ( i ) C k x x ( J  - i )  . 
i=0  

(18) 

Note that in the second and third lines immediately above, the term involving the 
second-order kernel was omitted since it vanishes under the time average. This is be- 
cause once the second-order term in Eq. 17 is multiplied by x ( n  - j ) ,  its time aver- 
age is taken over an odd number of  x terms and is therefore zero. (The term involving 
the constant ho was omitted for a similar reason.) Next, it can be shown that 

C x x y ( J l  , J2)  ~ ( y ( n )  - f ~ ) x ( n  - J 1 ) x ( n  - J2) 

I I 
= ~ ~ h 2 ( i l , i 2 ) x ( n  - i l ) x ( r t  - i 2 ) x ( r /  - j l ) x ( r / - J 2 )  

i1=0 i2=0 

- y x ( n  - J l ) x ( n  - -  J2) 

I I 

= 2 ~], ~ h z ( i l , i 2 ) q ~ x x ( J l  - i l )C~xx(J2 - i2 )  �9 
i1=0 i2=0 

(19) 

Schetzen (68) has obtained analogous equations involving the Wiener kernels, for a 
continuous-time system. These equations can readily be solved for the kernels in the 
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frequency domain by division (46,68). However, we examine here a simpler solution, 
which is achievable in the time-domain. 

Equation 18 can be solved for the first-order kernel by a linear Toeplitz matrix in- 
version (24). By an extension (33), Eq. 19 and analogous equations, involving higher- 
order kernels, can be solved by repeated Toeplitz matrix inversions very conveniently. 
While the method is illustrated here for identifying first- and second-order Volterra 
kernels (which are equivalent to the corresponding Wiener kernels for a system rep- 
resented by a second-order functional series), it can be used to obtain Wiener kernels 
of  all orders. 

Equation 18 holds for j = 0 ,  . . . .  I which leads to I + 1 linear equations in the I + 
1 unknowns hi (0) . . . . .  hi (I) .  The solution of  these equations may be undertaken by 
inversion of a matrix A = (aij-) which is Toeplitz (i.e., aij is constant for all elements 
having the same value of  i - j )  and symmetric. (Here ais = 4~xx(i - j )  .) A very effi- 
cient computer program (87) exists for inversion of  such matrices and may be used 
to obtain the values of  the first-order kernel hi (i) .  

To find the second-order kernel, define 

I 

g ( j l , i z )  = ~], hz(il , i2)dPxx(Jx - i i)  (20) 
i1=0 

for Jl ,  iz = 0 . . . . .  L Then Eq. 19 becomes 

I 

dPxxy(jl,J2) = 2 ~ g ( j l , i z ) ~ x x ( J 2  -- i2) (21) 
i2=0 

for  j l , j 2  = 0 . . . . .  L 
For a fixed Jl ,  first solve Eq. 21 for g ( j l ,  i 2 ) ,  i2 = 0 . . . . .  / ,  using Toeplitz matrix 

inversion. By repeating this for different values of j l ,  obtain g ( J l ,  i 2 ) ,  /2 = 0 . . . . .  I 
and Jl = 0 . . . . .  L Then solve Eq. 20 for hz ( i l ,  i2), il = 0 . . . . .  I for fixed i2 using in- 
version of  the same Toeplitz matrix. Repeating for different values of  i2 yields the 
kernel hz ( i l ,  i2) f o r  all il,  i2 = 0 . . . . .  L To improve accuracy, it is desirable to sub- 
tract the output due to the first-order kernel, h~ ( j ) ,  f rom the system output before 
computing the second-order cross-correlation on the left side o f  Eq. 21. 

The same procedure can be used analogously to identify higher-order kernels by 
Toeplitz matrix inversion. Since it is always the same Toeplitz matrix which is repeat- 
edly inverted, in certain applications it may be more efficient to store the inverse. Fi- 
nally, while the procedure is presented here for a Gaussian input, in practice we have 
obtained good results by this method for other stochastic inputs. 

EXAMP LE OF SIMULATED SYSTEMS 

The first simulated example was a simple Wiener model system, having a second- 
order functional series representation, consisting of  a low-pass, under-damped, 
second-order, dynamic linear subsystem (Fig. 2) followed by a simple squaring static 
nonlinearity. The memory of  the simulated Wiener model lasted for 40 sample val- 
ues. It should be noted that in this example all Wiener and Volterra kernels are iden- 
tically zero except for the second-order Wiener and Volterra kernels (which are equal 
in this case), and the zero-order Wiener kernel (which equals the output mean). The 
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FIGURE 2. The dynamic linear subsystem preceding the static nonlinearity in our simulated Wiener 
model used to illustrate kernel identification by repeated Toeplitz matrix inversion and by classical 
cross-correlation. The dynamic linear subsystem is a second-order low-pass underdamped system 
and the static nonlinear element is a simple squarer. 

first- and second-order kernels were estimated using both the technique outlined 
above and the traditional cross-correlation approach for white Gaussian inputs. 

The input was a 10,000 sample Gaussian colored noise signal generated using 

x ( n )  = w ( n )  - 0.5w(n - 1) - 0.5w(n - 2) 

where w is zero-mean, unity variance, white Gaussian noise produced using the tech- 
nique proposed by Hunter and Kearney (23). The auto-correlation function of the in- 
put, x, is shown in Fig. 3 where it can be seen that the degree of coloring is not 
pronounced. Again the simulations in this example were carried out in the NEXUS 
language for simulation, system and signal analysis (25). 

A negligible first-order Wiener (or Volterra) kernel was estimated for the simulated 
system. The estimation involved a linear analysis using Toeplitz matrix inversion (24), 
The output variance accounted for using this estimate was essentially zero (actually 
0.5~ as expected since the true first-order kernel is identically zero. 

Figure 4 shows the true second-order Wiener (or Volterra) kernel of the simulated 
system. The second-order cross-correlation estimate of the second-order kernel is 
shown in Fig. 5. The estimate involved determining the second-order cross-correla- 
tion after subtracting from the system output both the output mean and the output 
of the estimated first-order kernel (a very similar estimate was obtained when the 
mean alone was subtracted). [If the input had been white this would have been an ap- 
plication of the Lee-Schetzen (44) kernel estimation technique. While these authors 
specified that the input be w h i t e  Gaussian, other researchers might be tempted to dis- 
count the small amount of coloring of our input (as evidenced in Figure 3), and at- 
tempt kernel estimation by cross-correlation.] The poor approximation of this kernel 
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FIGURE 3. Autocorrelation function of the colored Gaussian input applied to the simulated Wiener 
model system used to illustrate the kernel identification procedures, 

estimate is due both to the finite record length and the failure to correct for the non- 
white input. Smoothing this estimate did not improve the approximation significantly. 

Figure 6 shows the second-order Wiener (or Volterra) kernel of the system esti- 
mated by the repeated Toeplitz matrix inversion approach (33) described above. Com- 
parison of Figs. 5 and 6 with Fig. 4 illustrates the improvement afforded by use of 
a very fast technique compensating for nonwhite inputs. The advantage of this method 
is particularly relevant since it is usually impossible to probe physical nonlinear system 

FIGURE 4, The true second-order Wiener (or Volterra) kernel of the simulated Wiener modeI system 
used to illustrate the kernel identification procedures, 
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FIGURE 5. Estimated second-order Wiener (or Volterra) kernel, of the system whose true kernel is 
shown in Fig. 4, obtained by second-order cross-correlation after subtracting from the system out- 
put both the output mean and the output of the estimated first-order kernel. (If the input had been 
white this would have been an application of the Lee-Schetzen kernel estimation technique,) 

with white inputs due to the inherent frequency response limitations of most input 
generators. 

For comparison, Fig. 7 shows the first- and second-order Wiener kernels, estimated 
by the method (33,37) which combines exact orthogonalization for the given input 
with basis function expansion of the kernels. Here the simulated (i.e., true) system 

FIGURE 6. Estimated second-order Wiener (or Volterra) kernel, of the system whose true kernel is 
shown in Fig. 4, calculated by the repeated Toeplitz matrix inversion approach. 
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was again second-order, and the basis functions employed were 14 decaying exponen- 
tials (37), the "white" Gaussian input length was 500 samples, and the memory length 
was 25 samples. As shown in Figure 7a the first-order kernel estimates (points) were 
virtually coincident with the true kernel values (solid line). The true second-order Wie- 
ner kernel (Figure 7b) was estimated (Figure 7c) with slightly more error, but still with 
far greater accuracy than obtainable by the Lee-Schetzen cross-correlation method 
(44) on such a short record. Running time for the estimation was comparable to that 
for the Toeplitz method for an equivalent number of points (ie., very fast). It should 
be noted that the good performance with the exponential basis functions shown here 
was not always observed in other applications, and frequently sinusoids, exponentially 
decaying sinusoids, or the discrete form of the Laguerre functions favoured by Wiener 
provide a more economical approximation of  the kernels (and hence more accuracy 
for a given number of  basis functions). A refinement over Wiener's basis function ap- 
proach is provided by the exact orthogonalization (33). This substantially eliminates 
the errors due to finite record length and deviations from a white Gaussian input, 
which plagued practical implementations of  Wiener's formulation. Exact orthogonali- 
zation also enables the potential benefit of  selecting any particular basis function to 
be assessed rapidly. Note that least-squares estimates (determined over the record 
length) could also be directly obtained of  the coefficients of the basis function expan- 
sion of  the kernels using the method of  Watanabe and Stark (82). 

USE OF T H E  WIENER FUNCTIONAL SERIES A P P R O A C H  
TO INFER M O D E L  S T R U C T U R E  

The Wiener functional series approach appears to be most useful when little a pri- 
ori knowledge of  the system under study is available. Inspection of  the kernels (or the 
equivalent cross-correlations) may lead to insight into the structural form of  an ap- 
propriate model for the nonlinear system. In suitable cases this enables subsequent 
use of  a block structured or cascade model approach. 

All of  the following tests for cascade structure are necessary but not sufficient con- 
ditions (unless further assumptions are made about the structure of  the system). For 
a dynamic linear subsystem followed by a static nonlinearity, called a Wiener cascade 
model (not to be confused with the Wiener functional series), it is necessary (26) in 
the discrete time domain that 

Oxxy(Jl,J2) = CC~xy(Jl)Oxy(J2) 

for all j l  and j2, where C is a constant, if ~bxy #= 0. Equivalently in the discrete fre- 
quency-domain (29) 

t I~xxy(~ l , ( .02)  = Ct~xy((.dl)~xy(O22) 

for all (.01 and 602 . 
For a static nonlinearity followed by a dynamic linear subsystem, called a Ham- 

merstein cascade model, it is necessary (26) in the discrete time domain that 

Ckxxy (Jl ,J2) = Dckxy (Jl ) ~ (Jl - J2) 



for all J l  and J2, where D is a constant, if daxy r O. Here the discrete delta function 
6( j )  = O, j ~ 0 and  6(0) = 1. Equivalently in the discrete frequency-domain (29) 

~xxy (0)1,092) = DC~xy( O~l -[-' 0')2) 

o o  

~] dPx~y(i,j) = EdPxy(i ) 
j=O 

for all ~ol and ~o2. 
For a system to have the LNL structure of  two dynamic linear systems "sandwich- 

ing" a static nonlinearity, it is necessary (40) that 

Oxxy(~o,0) = EOxy(~o) �9 

where E is a constant, if Oxy r O. Equivalently, in the discrete frequency-domain (29) 

0.25-  

Moreover,  the shape of  the first dynamic linear system in the LNL cascade is given 
(30,32) by the first non-negligible term of  the sequence dPxxy(j,O), q~xxy(J, 1) . . . . .  

Necessary conditions for more elaborate block structures are given by Haber (21). 

APPLICATIONS OF T H E  WIENER KERNEL A P P R O A C H  

The Wiener kernel representation has probably been most extensively used in bi- 
ology and physiology (see reviews in [46,65]). The work of  Stark and coworkers 
(66,71) in measuring the Wiener kernels of  the pupillary control system has already 
been cited above. By examining the first- and second- order Wiener kernels, Stark (72) 
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FIGURE 7. Estimation of kernels via the method which combines basis function expansion with exact 
orthogonalization, a. Estimated first-order kernel (points), superimposed on the true first-order ker- 
nel (solid line), (Figure cont inued on facing page.) 



Identification of  Nonlinear Systems 649 

0 

FIGURE 7 continued. Estimation of kernels via the method which combines basis function expan- 
sion with exact orthogonalization, b. true second-order kernel; c. estimated second-order kernel, 

inferred that the system could be approximated by a Hammerstein cascade model. 
This inference resulted from the dominance of values of the second-order kernel main 
diagonal (over off-diagonal elements) which closely resembled a scaled version of the 
first-order kernel. 

An early use of Wiener functional analysis was made by Marmarelis and Naka 
(47,48) in neural process modeling. They investigated a three-stage neural chain in the 
catfish retina, comprising horizontal, bipolar, and ganglion cells. Preliminary anal- 
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ysis indicated that this system could be approximated with little error by a second- 
order functional expansion. Marmarelis and Naka (47) injected an approximately 
white-Gaussian intra-cellular current stimulus and recorded the output neural pulse 
train at the ganglion cell stage. By repeatedly applying the same stimulus they gen- 
erated a poststimulus time histogram (which could be treated as a continuous output) 
of ganglion cell firing. They then identified the first- and second-order Wiener ker- 
nels relating the input current to this output. (Subsequently, Sakuranaga et al. [64] 
showed that repetition of the stimulus was unnecessary. Rather the kernels could be 
measured by cross-correlating the input with a "unitary" output, whose value was one 
at the time of an action potential and zero at all other times.) By examining these ker- 
nels Marmarelis and Naka inferred that the neural chain could be approximated 
mathematically by a Wiener cascade structure (in their case, a dynamic linear subsys- 
tem in the form of a low-pass differentiator followed by a half-wave rectifier). This 
represented an early attempt to use the functional series approach to infer a block 
structured model (26,40). 

The innovative application of the white noise approach by Naka and colleagues 
(e.g., the work of Sakai and Naka [57-62]) has led to major advances in our under- 
standing of signal processing in the outer and inner vertebrate retina. The strong sim- 
ilarity and slight discrepancy between light-evoked slow potential and spike kernels 
(57,64) has recently been analyzed and an explanation provided (41). In addition, 
Marmarelis and McCann (50) used the Wiener kernel approach to model the photo- 
receptor of the fly Calliphora Erythrocephala. By inspection of the kernels they in- 
ferred that the physiological system studied might be approximated by the Wiener 
cascade model. For a brief, recent review of white noise applications in visual neu- 
roscience, see reference (63). 

Hunter (22) studied the relation between frog single active muscle fiber stochas- 
tic length perturbations (input) and resulting muscle tension fluctuations (output). The 
Wiener model was found to provide an excellent fit to the experimental data, in con- 
trast to the Hammerstein model. Moreover the use of the nonlinear Wiener model 
avoided the need for input-dependent time-constants required when the input-output 
was modeled using a linear system alone. 

Korenberg, French and Voo (39), and French and Korenberg (16), have identified 
an LNL model for neural encoding by an insect mechano-receptor, using a recent ac- 
curate technique (35) to estimate the Wiener kernels. An LNL model has been applied 
successfully to as complex a structure as the cat's visual cortex (11). 

The orthogonal approach introduced by Wiener (83) for nonlinear system identi- 
fication has been extended and applied in many other areas. For example, a fast or- 
thogonal search method (34,35,36) has been developed to fit time-series data by a 
parsimonious sum of sinusoids which are not necessarily commensurate. This method 
is capable of eight times finer frequency resolution than attainable by a conventional 
Fourier series analysis. 

CONCLUSION 

The Wiener functional series approach has been used extensively in the analysis of 
nonlinear biological and physiological systems. Its appeal lies in the ability to model 
the mathematical relation between system input and output with no a priori knowl- 
edge of system structure. A concomitant disadvantage is that the resulting model may 
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m e r e l y  m i m i c  the  m a t h e m a t i c a l  o p e r a t i o n  o f  t he  sys tem u n d e r  s tudy  w i t h o u t  a f f o r d -  

ing  insight  in to  the  unde r ly ing  m e c h a n i s m  by wh ich  it is ca r r i ed  out .  H o w e v e r  on  cer-  

t a in  occas ions  (e .g. ,  in p a t t e r n  c lass i f i ca t ion  us ing  n o n l i n e a r  d i s c r i m i n a n t  func t ions )  

al l  t ha t  is r e q u i r e d  o f  the  n o n l i n e a r  r e p r e s e n t a t i o n  is the  ab i l i ty  to  p red ic t  the  sys tem 

o u t p u t .  In  o the r  ins tances  Vol t e r ra  and  W i e n e r  ke rne l  ana lyses  have  led to  in fe rences  

o f  m o d e l  s t ruc tu re .  

A very  ef f ic ient  t i m e - d o m a i n  iden t i f ica t ion  o f  W i e n e r  kernels  w h e n  the  inpu t  is col-  

o r e d  was i l lus t ra ted  here  o n  a s imple  example  o f  a W i e n e r  m o d e l  s t ruc ture .  T h e  iden-  

t i f i ca t ion  m e t h o d  utilizes r epea ted  Toep l i t z  m a t r i x  invers ion  to  ar r ive  rap id ly  at  kerne l  

e s t ima te s  t h a t  a re  s i gn i f i can t ly  i m p r o v e d  o v e r  t h o s e  o b t a i n e d  by  c r o s s - c o r r e l a t i o n ,  

e v e n  w h e n  the  i n p u t  is o n l y  l igh t ly  co lo red .  We  h a v e  a lso  p o i n t e d  o u t  an  e r ro r  f re -  

q u e n t l y  m a d e  in us ing  t w o  p r o p o s e d  tests o f  n o n l i n e a r i t y  o f  a sys tem.  In  p a r t i c u l a r ,  

we  h a v e  s h o w n  tha t  t h e r e  a re  i n f in i t e ly  m a n y  ( n o n l i n e a r )  W i e n e r  m o d e l  s t ruc tu res  

wh ich  sa t is fy  t he  pu t a t i ve  " s u f f i c i e n t "  c o n d i t i o n s  fo r  l inea r i ty  wh ich  h a v e  s o m e t i m e s  

b e e n  e r r o n e o u s l y  r e a d  in to  the  tests .  
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