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Physiology in Fractal Dimensions: Error Tolerance 
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The natural variability in physiological form and function is herein related to the 
geometric concept o f  a fractal. The average dimensions o f  the branches in the tracheo- 
bronchial tree, long thought to be exponential, are shown to be an inverse power law 
o f  the generation number modulated by a harmonic variation. A similar functional 
fo rm is f ound  fo r  the power spectrum o f  the QRS-complex o f  the healthy human 
heart. These results fol low f rom the assumption that the bronchial tree and the car- 
diac conduction system are fractal forms.  The fractal concept provides a mechanism 
fo r  the morphogenesis o f  complex structures which are more stable than those gen- 
erated by classical scaling (i.e., they are more error tolerant). 
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1. INTRODUCTION 

Early in this century D'Arcy Thompson explored problems of  scale, size, and shape 
in the natural sciences (9). He developed the idea that biological processes have un- 
derlying physical constraints which led him to the formulation of  several important  
scaling relations in biology-describing (e.g., how proportions tend to vary as an an- 
imal grows. His approach relied on a key assumption, namely, that biological pro- 
cesses, like their physical counterparts, are continuous, homogeneous, and regular). 
Observation and experiment, however, suggest the opposite. Most biological systems, 
and many physical ones, are discontinuous, inhomogeneous, and irregular (6,2). 
Thus, physiologists, have been led to ask questions of  the kind: "Is there a charac- 
teristic scale factor that governs the decrease in mean bronchial measure from the tra- 
chea to the terminal bronchioles?";  "Does the type of  architecture seen in the 
pulmonary tree share any basic morphogenetic link with branching networks in the 
heart, vascular tree, kidney, and liver?"; "Is regular sinus rhythm really r e g u l a r -  
does it have a characteristic scale of  time?". 

Questions like these, which have been of  traditional interest in biology, can now 
be addressed using concepts developed in nonl inear  dynamics  s y s t e m s  theory .  As its 
name suggests, this discipline is concerned with systems whose output is not a linear 
function of  its input. Nonlinear relations are the rule in biology, both in dynamic 
processes and in static structures. In this discussion we are primarily concerned with 
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the role of  static structure in physiology, and how the description of  that structure 
has changed since Thompson first introduced the classical scaling concept of  simili- 
tude (13). 

A significant contribution to the study of  nonlinear form and function was made 
by the development of the mathematical concept offractals.  Since its introduction in 
the last decade, the fractal concept has already permeated the physical sciences, with 
applications to the study of turbulence, meteorology, astronomy, magnetization, and 
polymer chemistry, to name but a few (6). The first papers discussing fractals in a bio- 
medical context have only recently appeared, and so herein we spend some time de- 
veloping the background in this relatively new field, focusing on our incipient efforts 
to apply nonlinear analysis and fractal constructs to physiology and medicine (2,14,5). 

2. W H A T  IS A FRACTAL? 

The term "fractal" refers to objects (processes) that are characterized by a frac- 
tional dimension. It should be pointed out that operationally there are three differ- 
ent uses of the term fractal: geometrical, statistical, and correlational. The geometry 
of  Euclid is concerned with continuous lines and simple smooth forms that uniformly 
fill spaces of  integer dimensions. These static forms of classical geometry are found 
almost nowhere in nature, being as they are the result of  human intellect and machin- 
ery. In Fig. 1 we contrast a few examples of  geometric solids with a typical pattern 
arising in nature. The branching pattern could be the root  system of a bush, a static 
discharge leading to the breakdown of a dielectric, or any of a number of other phys- 
ical or biological phenomena. The main difference between the two types of  objects 
is that the classical ones have well defined heights, widths, and depths, whereas the 
fractal one does not. If one were to magnify the surface of  a Euclidean object it would 
appear at some scale to be smooth and regular. On the other hand, the irregular struc- 
ture of an ideal fractal object appears no smoother under magnification than it does 
full size. At each level of  magnification more  and more structure is revealed; the Jr- 

FIGURE 1. Examples of smooth continuous Euclidean objects are shown in 1A. A typical natural 
object that does not have a classical description, i,e,, a fractal, is shown in lB .  
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regular structure that is uncovered is a function of  the magnification. Said differently, 
if one were to measure the length of  one of  the tendrils depicted in Fig. lb,  its length 
would depend on the size of the measuring instrument. In the limit that the ruler be- 
comes infinitesimally small, the length of  the tendril becomes infinitely long. This de- 
pendence of  the size of the object on the measuring instrument is one of  the defining 
properties of  a fractal (6). 

A second example of  a fractal is that of  a curve treated as a geometric object. In 
Fig. 2 we construct such a fractal curve from the superposition of  a number of  inde- 
pendent Fourier components. We begin with a mode having a fundamental frequency 
flo, and a unit amplitude, and add to it a second periodic term of  frequency bflo, 
with amplitude 1/a, and to these add a third periodic term of  frequency b2flo, with 
amplitude 1/a 2, and so on [cL Fig. 2a]. The resulting function is an infinite series of  
periodic terms, each term of  which has a frequency that is a factor b larger than the 
preceding term and an amplitude that is a factor o f  1/a smaller. The curve generated 
by this function is depicted in Fig. 2b. At first glance, this curve wt~uld seem to be 
a ragged line with many abrupt changes in direction. If  we now magnify a small re- 
gion of  the line, as in the second drawing (Fig. 2b), we see that the enlarged region 
appears qualitatively the same as the original curve. If we now magnify a small region 
of  this new line, as in the third drawing, we again obtain a curve that is qualitatively 
indistinguishable from the first two. This is the property of  "self-similarity" (13). 

The German mathematician Karl Weierstrass was the first to give these ideas a 
mathematical form. A generalization of  the Weierstrass function was first suggested 
by L6vy and later extensively discussed by Mandelbrot and subsequently by Berry and 
Lewis (1): 
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FIGURE 2. A line is constructed from the Weierstrass function with a = 4, b = 8 and flo = 1. In 2A, 
the separate contributions of the Fourier series to the line is depicted. In 2B, various regions of the 
finial are magnified to illustrate its "self-similarity" [from West and Goldberger {3)]. 
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W(t) = ~], 1 [1--eibn~ot]e ir 
t t = - - o o  CI n 

(2.1) 

where the phase ~b~ is an arbitrary real constant.  The Weierstrass function was the 
first explicit representation of  a continuous function that is nowhere differentiable, 
and appears to be the first example of  a fractal function. Thus, we see that  because 
the generalized Weierstrass function (2.1) has no smallest period, i.e., the period 
1/bnflo ~ 0 as n --, oo, it consists of  a superposition of  smaller and smaller wiggles. 
The degree of irregularity is determined by the fractal dimension of  the curve. This 
dimension is greater than the topological dimension of the curve which is unity, but 
smaller than the Euclidean dimension of  the plane which is two. Thus,  for a fractal 
curve of  dimension D we must have 1 < D < 2. To calculate D we examine some of 
the mathematical  properties of  a fractal function. 

The self-similarity property of  the above curve can be observed directly from (2.1) 
by reorganizing the terms in the series for ~bn = 0 to obtain: 

W(t )  = 1/aW(bt) ,  (2.2) 

which has the solution: 

W(t )  = A t  ~, (2.3) 

where A is constant and/z  is determined by direct substitution to be: 

~ = l n  a / In  b. (2.4) 

The fractal dimension D for the curve generated by (2.1) with ~b~ = 0 is given by 2 - 
D =/z  [cf. (2.4)] so that: 

D = 2  - I n  a / In  b, (2.5) 

which for the parameter  values used in Fig. 2, a = 4 and b = 8, is D = 1.333. 
Thus, geometrical fractals are families of  shapes containing infinite levels of  de- 

tail. On smaller and smaller scales, the intrinsic structure is similar to that of  the larger 
form,  a property called self-similarity. As the fractal dimension increases f rom one 
to two, more and more detail is generated in planar structures. The same is true as 
the fractal dimension decreases between three and two. An apparently solid, three- 
dimensional ,  object  becomes more  and more  "surface- l ike"  as the dimension 
decreases, as in the case of  the lung that we discuss subsequently. 

The set of  phases [ ~bn } may be chosen deterministically as we did above, or ran- 
domly as we do now to generate a statistical fractal. I f  (~n is a r andom variable uni- 
formly distributed on the interval (0,270, then each choice of  the set of  values [4~n I 
constitutes a member  of  an ensemble for  the statistical function W(t) .  I f  the phases 
are also independent as b ~ 1 +, then W(t)  is a Gaussian random variable. The con- 
dition 1 < D < 2 is required to ensure the convergence of  the sum (2.1). 

Consider the increment in W(t) ,  
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A W ( t ,  T)  = W ( t  + T)  - W ( t )  

1 eibn~ooT ] 
= ~=-oo b n~2-a) [1 - exp[ib~flot  + ion] (2.6) 

and assume that the 4~n are independent random variables uniformly distributed on 
the interval (0,270. The mean square increment: 

C ( T )  = ( l A W ( t ,  T)I2),  

= ,=~_~ b,~ 2_ ,,, [1 - cos(b"120V)] (2.7) 

where the ~ subscript on the brackets denotes an average over an ensemble of  real- 
izations of the ~bnzfluctuations. The righthand side of  (2.7) is independent of  t (i.e., 
it depends only on the difference T, so that A W ( t )  is a stationary random process). 

Note that (2.7) has the same form as the real part of  the extended Weierstrass func- 
tion (2.1) when ~bn = 0. If we shift the summation index in (2.7) by unity we obtain 
the scaling relation (1): 

C ( b T )  = b 2 ( 2 - D ) C ( T ) ,  (2.8) 

which is of the same form as (2.2) with a 2 = b 2 (2 -D)  [cf. (2.5)]. Thus, we see that the 
correlations of  the extended Weierstrass function, like the function itself, is self- 
affine. Here again the solution to the renormalization group relation is a modulated 
inverse power law: 

C ( T )  = B T  2~, (2.9) 

where again # has the value given by (2.4). 
The dynamic process described here has a multiplicity of time scales that are man- 

ifest in a power spectrum with a broad profile of  response times. One discovers that 
the process in question shows structures (fluctuations) over multiple orders of  tem- 
poral magnitude, e.g., minutes to milliseconds in such physiological processes as say 
the heart beat, in the same way that fractal forms exhibit detail over several orders 
of spatial magnitude in such physiological structures as the lung (2). Consider the 
Fourier transform of (2.9) from which we obtain the power spectrum: 

S(o~) = e _ i ~ t c ( t ) d  t -  B (2.10) 
00 0 ~ 2 ~ +  1 ' 

where B is assumed to be a constant. A fractal scaling between variations of  differ- 
ent time scales lead to a frequency spectrum having the inverse power-law distribu- 
tion (2.10). 

The key feature of the geometrical, statistical, and temporal fractals is the lack o f  
a f u n d a m e n t a l  scale. There is no minimal unit of  length in the geometric case, each 
size varies inversely with the measuring scale. Similarly, there is no fundamental pe- 
riod in the time domain. Perhaps the most subtle is the lack of  scale for  stochastic 
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processes, which implies that the random fluctuations in the statistical process are the 
same on all scales. 

The above examples illustrate three related properties of  fractal forms: self- 
similarity, heterogeneity, and the absence o f  a characteristic scale. These geometric 
features are characteristic of  a variety of seemingly unrelated biological forms: the 
tracheo-bronchial tree, the His-Purkinje  conduction system of  the heart, the chor- 
dae tenineae, the biliary network the vascular tree, and the urinary collecting system 
to name a few. The fractal dimension D has proven to be a useful way to character- 
ize the geometric and/or  dynamic structure of a number of  these biological systems. 

3. PHYSIOLOGY IN FRACTAL DIMENSIONS 

To firmly fix these ideas, let us consider the human lung as a paradigm of biolog- 
ical complexity. We see from the plastic cast (Fig. 3) that a human lung has two dom- 
inant features, organization along with irregularity and richness of  structures, both 

FIGURE 3. The plaster cast of a human lung is depicted [from West and Goldberger (13)]. 
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of  which are required to perform the gas exchange function for which the lung is de- 
signed. The plaster cast suggests that the lung may  have the properties of  heteroge- 
neity, self-similarity (over some range of  scales) and the lack of  a smallest scale. 

Before exploring the implications of  assuming the lung is a fractal structure, let us 
review the classical model of  the mammal ian  lung. Consider the number  of  branches 
emanating f rom the trachea. I f  z is the generation number,  then since there are two 
stems leaving each vertex, there is a geometric increase in the number  of  branches 
(i.e., N ( z )  = 2ZN(0)). This simple scaling argument  was used to determine the size 
of  the airways. It was assumed by Weibel and Gomez (I0) that the diameter of  an air- 
way scaled as d( z )  = qd ( z  - 1) between successive generations, this scaling assump- 
tion led to an exponential decrease in the size o f  the diameter. For the first ten 
generations the average diameter of  the airway in the human lung seems to satisfy the 
exponential relation, d(z )  = d(O)e -rz  where I '  = I n ( I / q )  with q < 1. Subsequently, 
there is a marked deviation f rom this exponential fo rm (Fig. 4) where In d( z )  versus 
z is depicted. Weibel and Gomez assume that a new diffusive mechanisms is initiated 
at z = 10 and this mechanism leads to a second exponential.  We wondered if in fact 
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FIGURE 4. T h e  d a t a  o f  W e i b e l  a n d  G o m e z  (10) (0) is c o m p a r e d  w i t h  t h e  p r e d i c t i o n  o f  t h e  c l a s s i -  

ca l  s c a l i n g  m o d e l  ( - - ) .  
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there is a better fit to the data that does not require the introduction of this second 
mechanism (12). 

We replot the Weibel-Gomez data on log-log graph paper and observe that there 
appears to a dominant inverse power-law behavior in the average diameter with z. 
This dominant behavior is observed in (Fig. 5) and is not just characteristic of  hu- 
mans, but is also observed in dogs, rats and hamsters. In all of  these data sets there 
appears to be a harmonic variation of the data points around the inverse power-law 
curve. In order not to anticipate the fit of  the fractal model to the data we defer dis- 
cussion of the fit until we have developed the fractal theory (12). 

The first question to ask before applying the fractal idea is what has been omit- 
ted in the classical scaling argument that might possibly account for the inverse power- 
law behavior and the harmonic variation of the average size of an airway. The prop- 
erty that has been neglected in the theoretical discussions is the multiplicity of scales 
present in each generation of the bronchial tree. If we denote these scales by F then 
d(z) in fact becomes d (z ,F )  and the quantity being graphed has been averaged over 
the F-scales: 

E ( d ( z ) )  = p ( r ) d ( z , P ) d r .  (3.0 
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FIGURE 5. The data from Raabe et al. (8) for the average diameter of the mammalian lung is com- 
pared with the predictions of the fractal (renomalization) lung model of West et al. (12). 



Physiology in Fractal Dimensions: Error Tolerance 143 

The distribution of  scales p (F),  in part, determines the functional form of  the average 
diameter (d  (z)). The quantity p (F )dF  is the probability that a particular scale in the 
interval (F,F + dF)  is present in the measured diameter. Weibel and Gomez implicitly 
use p ( F )  =/~(F - P0), i.e., a single scale to characterize the bronchial tree which, as 
we have seen, results in the exponential form of  ( d ( z ) ) .  We must determine the form 
of  p (F) in the general case to determine how ( d (z)) differs from the exponent form. 

Rather than prescribing a particular functional form of  the probability density, 
West et al. (12) formulated an argument based on scaling of  the parameter F. Con- 
sider a distribution having a finite central moment, say a mean value F. Now, follow- 
ing Montroll  and Shlesinger (7), we apply a scaling mechanism such that p (F) has 
a new mean value P/b:  

p(r,P) - ,  p ( r , P / b )  (3.2) 

and we assume this occurs with relative frequency 1/a. We apply the scaling again so 
that the scaled mean is r / b  2 and occurs with relative frequency 1/a 2. This scaling 
process is repeated again and again and eventually generates the distribution: 

P(I~) ocp(~) + 1 p(bl~) + 1 a ~5 P (b2~) + " '"  (3.3) 

where we have introduced the dimensionless variable ~ -- I ' /F .  Thus using (3.3) to 
evaluate the average diameter we obtain: 

_ 1 
((d(z))> or ( d ( z ) )  + 1 ( d ( z / b ) )  + ( d ( z / b 2 ) )  + a - ~  " ' "  (3.4) 

where the double bracket denotes the average with respect to the distribution (3.3). 
Introducing the normalization contact C given by: 

o~ = C ( a , b )  

the series (3.4) can be written in the more compact form: 

(3.5) 

1 
( (d(z) ) )  = - (<d(z/b)))  + C(a,  b) (d(z)> (3.6) 

a 

as the number of terms in the series becomes infinite. 
We note the renormalization group relation (RG) (3.6) that results f rom this argu- 

ment (4). Here we restrict our attention to the dominant behavior of  the solution to 
this RG relation. If we separate the contributions to ((d(z)))  into that due to singular- 
ities, denoted by ds(z) ,  and that which is analytic, then the singular part of  (3.6) sat- 
isfies the functional equation: 

ds(z)  -- 1 d s ( z / b ) .  (3.7) 
a 
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The solution to (3.7) is determined by direct substitution to be: 

ds(z)  = A ( z ) / z  ~ (3.8) 

where as in (2.4) 

/~ = In aAn b (3.9) 

and 

A ( z )  = A ( z / b )  = k Anexp[i27r lnz / ln  b]. (3.10) 
t l : - - o o  

The solution to (3.7) therefore gives the average diameter as a modulated inverse 
power-law, since A (z) is a harmonic function in In z with period In b [West and Gold- 
berger (13); West, Bhargava and Goldberger (12)]. Therefore the multiple scales in 
the average bronchial diameter should decrease with generation number, not as an ex- 
ponential, but as a type of modulated inverse power law. 

In Fig. 5 we indicate the fit of (3.10) to selected data from Raabe et al., (8) by using 
a log-log linear regression to compute a slope and intercept and shown by the solid 
line. The further details of the fitting technique are contained in West et al. (12), It 
is evident that the fractal model captures the essential features of the lung cast data, 
both qualitatively and quantitatively, thereby vindicating the fractal model of the 
lung. 

From the above consideration we see that the mammalian lung is representative of 
a fractal structure due to the broad distribution in scales in each generation of the 
bronchial tree. In addition to this static structure, we also find fractal dynamic pro- 
cesses in physiology. The example considered here is the voltage pulse traversing the 
His-Purkinje conduction system of the heart [Goldberger, Bhargava, West, and Man- 
dell (3)]. The His-Purkinje system is shown in (Fig. 6) to have a ramified structure 
which bears a remarkable resemblance to the self-similar bronchial tree. Even here 
we have conjectured that the repetitive branching of the His-Purkinje system repre- 
sents a fractal set in which each generation of self-similar sequencing imposes greater 
and greater detail on the process. At each fork in this network the cardiac impulse 
activates a new pulse along each conduction branch, thus yielding two pulses for one. 
In this manner, a single pulse entering the proximal point of the network with N dis- 
tal branches, will generate N pulses at the interface of the conduction network and 
the myocardium. Here we see a voltage pulse emanating from the pacemaker nodal 
region of the heart become shattered into a number of equal amplitude pulses. Each 
pulse travels a different path length to reach the myocardium and there superimposes 
to form the classical QRS pulse. The distribution in path lengths resulting from the 
fractal nature of the branches gives rise to a distribution of decorrelation times rc 
among the individual spikes impinging on the myocardium. The unknown distribu- 
tion p(rc)  can be obtained using an argument parallel to that just used for spatial 
scales in the lung. 

If the correlation function for a single pulse has an exponential form with corre- 
lation time re, i.e., exp[ - t / rc ] ,  then that constructed for the QRS complex has the 
form: 
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FIGURE 6. The His-Purkinje conduction system of the human heart is sketched. 

c( t )  = e x p [ - t / r c ] p ( r c ) d r e .  (3.11) 

The correlation time rc is referenced to the time to traverse the longest path in the 
conduction system. This, of  course, depends not just on the length o f  the path, but 
also on the velocities in each branch which in turn depend on branch diameters. If  
the path lengths and traversal times are distributed in a scaling fashion with shorter 
total path lengths and time being rarer, then we use the argument leading to (3.7) by 
considering a sequence of shorter correlation times rc/b each with a small probabil- 
ity 1/a. Thus, we obtain the RG relation for the correlation function: 

C(t) = b /aC(b t ) ,  a, b > 1. (3.12) 

The solution to this functional equation is of  the form: 

C(t)  = A ( t ) t  ~-1 (3.13) 

where/~ - In a/ ln  b and again A(t) is in general a harmonic function in In t but with 
period In b. The power spectrum S(oD for the QRS pulse is obtained by taking the 
Fourier t ransform of the correlation function C(t)" 

f_i S(co) = e-i~'tC(t)dt. (3.14) 
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I f  A (t) is slowly varying in time or is constant, the integral in (3.14) can be evaluated 
using a Tauberian Theorem to be: 

1 
S(o~) - - - .  ( 3 . ] 5 )  

Thus, according to this argument the QRS waveform should have an inverse power- 
law spectrum. In Fig. 7 is depicted the power spectrum of  normal  ventricular depo- 
larization (QRS) wave form f rom 21 healthy men. The dominant  behavior is clearly 
that  of  an inverse power law. (3) 

Here we can draw a number  of  tentative conclusions: 

1. Bronchial architecture is a consequence of  nature having selected a structure 
with no fundamental  scale of  length. 

2. The structure of  the His-Purkinje conduction system of  the heart is selected for 
by nature so as to have no fundamental  scale of  time. 

These conclusions force us to ask why nature prefers not to have a scale. Why are 
fractal structures apparently preferred in biological systems? 
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FIGURE 7. The power spectral density of normal depolarization (QRS) waveform from 21 healthy 

men is shown [from Goldberger et  al. (3)]. 
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4. T O L E R A N C E S  TO F L U C T U A T I O N S  

The two physiological systems we have discussed in some detail clearly suggest that 
nature may prefer fractal structures to those generated by more traditional scaling. 
The reason as to why this is the case may be related to the tolerance that fractal struc- 
tures (processes) seem to posses over and above those of  classical structures (pro- 
cesses). Said differently, fractal processes are more adaptive to internal changes and 
to changes in the environment than are classical ones. Let us construct a simple quan- 
titative model for error response to illustrate the difference between the classical and 
fractal models (I 1). 

Consider the theoretical average diameter of  the lung given by classical scaling, 
d ( z )  = d(O)e -rz. Assume that the scaling parameter  P is made up of  two pieces: a 
constant r0 and a random piece ~ that can arise f rom random changes in the envi- 
ronment during morphogenesis or f rom errors in the code generating the structure of  
the lung. Thus, regardless of  whether the errors are produced internally or externally, 
the average diameter of  an airway is given by: 

(d (z ) )~  = d(O)e-r~ (4.1) 

where ( )~ denotes an average over an ensemble of  realizations of  the G-fluctuations. 
To evaluate this average we must specify the statistics of  the G-ensemble. For conve- 
nience we assume ~ is a zero-centered, Gaussian random variable with ~ = 0 and 
o.2 = ~2. Thus, (4.1) is evaluated to be: 

(d (z ) )~  = d ( O ) e - r ~  a2z2/2 (4.2) 

so the error grows as e ~ The assumed statistics for ~ have no significance except 
that they provide a specific functional form for the error that can be used to compare 
the classical and fractal models. 

In the fractal model of  the lung let us assume that the power-law index consists of  
two pieces: a constant piece t~o and a random piece ~. Here again the average diam- 
eter is averaged over the G-fluctuations 

A(z) (e_~lnz)~" (4.3) 
( d ( z ) ) ~ -  z ~'~ 

Again using a zero-centered Gaussian distribution to evaluate the G-average we obtain: 

(d(z ) )~  - A (z)  e x p [ o 2 ( l n z ) 2 / 2  ] (4.4) 
z#O 

so that the error in the fractal model grows as exp[trZ(ln z)2/2].  
We define the error generated in the average diameter in either model as: 

ej(z)  = ( d ( z ) ) / d ( z ) j  (4.5) 

where j  = c, f and d(z ) j  denotes the average diameter in the absence of  error for the 
classical (c) and fractal ( f )  model. In Fig. 8 we graph e:(z) for both the classical 
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F IGURE 8.  The error between the model prediction and that prediction with a noisy parameter is 
shown for the classical scaling model and the fractal model [from West (1 1) ] .  

and fractal models. We see that the classical model propagates error in an exponen- 
tial way, so that by the twelfth or thirteenth generation, the predicted size of the air- 
way with and without error differs by a factor of five. An organism with this 
sensitivity to error (or to fluctuations in the environment during morphogenesis) 
would not survive over many generations of the species. 

On the other hand we see that the fractal model is essentially unresponsive to er- 
ror; it is very tolerant of the variability in the physiological environment. It is evident 
that this error tolerance can be associated with the renormalized distribution of  scales 
constructed in the preceding section. This distribution ascribes many scales to each 
generation in the bronchial tree, therefore any scale introduced by the error is already 
present, or nearly so, in the original system. Thus the fractal model pre-adapts the 
mammalian lung to certain genetic errors and variations in the growth environment. 

We may now draw two more tentative conclusions: 

3. The modulated inverse power law describes systems that are more error-tolerant 
than those described by classical scaling. 

4. The lack of  favored scales promotes the tolerance of  variability in physiologi- 
cal systems and favors fractal structures and processes. 
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5. CONCLUSION 

We have discussed two physiological examples in some detail, the mammalian lung 
and the His-Purkinje conduction system of  the heart. In both cases we implement a 
renormalization argument to obtain an observed inverse power law (as well as the har- 
monic modulation). From this discussion we infer that inverse power laws often sug- 
gest underlying fractal phenomena. In turn the phenomena may well be fractal 
because of  the tolerance of  such structures and processes to variability. 
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