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Measures of  spatial statistics have been available for estimating means, calculat- 
ing or assessing differences, estimating nearest neighbor distances, and such, but have 
not provided a general approach to describing variances. Because measures o f  het- 
erogeneity depend upon choosing a particular element size in the domain, estimates 
o f  apparent heterogeneity are larger with high-resolution observations than with low- 
resolution data. Many descriptors might be used to describe the relationships between 
apparent heterogeneity and the size o f  the observed spatial elements, but we have 
found that fractal relationships provide concise and precise descriptions of  many types 
o f  data over large ranges of  element sizes. Perhaps more importantly, the fractal ap- 
proaches give additional insight, such as measures o f  spatial correlation, and often 
suggest ways o f  approaching the underlying basis o f  the heterogeneity. 

Keywords-Chaos, Heterogeneity, Vascular branching, Regional blood flow, Spat&l 
correlation, Nearest neighbor distances. 

I N T R O D U C T I O N  

Spatial statistics is the general name given to methods of  assessment of  measures 
of  concentrations or densities of  objects in 2-space or 3-space. There is no inherent 
difference between statistical measures used for these domains and ordinary statis- 
tics applied in 1-space. Quite commonly  we consider the statistics of  something that 
is influenced by two variables, X, and Y, and per form an analysis of  variance or a 
multiple regression analysis to sort out the proportional influences of  X and Y on the 
variable f ( X ,  Y). In the elementary approaches to spatial statistics that we undertake 
here, the problem is actually simpler, for the two or three dimensions are of  the same 
sort, lengths in 2-space or in 3-space. Quite commonly  the processes may  be consid- 
ered isotropic, that is, there are no biases in the processes in favor of  one direction 
or another. Standard textbooks, e.g., those of  Rogers (8) and Snedecor and Cochran 
(9), give useful methods for assessing estimates of  means, o f  testing for  differences 
between regions, and so on, but in general do not recognize that the estimates of  vari- 
ance are dependent upon assuming a particular unit size in space or time. 

What  the standard approaches do not handle so effectively are measures of  vari- 
ance. There is no problem when there is only one way to examine the data,  for ex- 
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ample when the unit element is defined (e.g., the number of  arms per person). But 
when one has to define the size of  the spatial domain, as in assessing the density of  
stars in the sky, then the problem becomes clear: The estimate o f  variance is depen- 
dent upon the size o f  the elements used to measure the densities. The apparent vari- 
ance increases as the size of  the spatial elements decreases. This monotonicity in the 
apparent variances is inevitable whenever a domain has heterogeneous properties. 
What may become interesting and even insightful is that fractal relationships can of- 
ten be used to describe the apparent heterogeneity over some fairly large range of ele- 
ment sizes. This allows for a concise description of  the heterogeneity of  the property. 

An example has been our application to myocardial flow heterogeneities, where a 
simple power law relationship has proven useful (3). The general relationship found 
was: 

m 1 I-D, 
R D ( m )  = RD(mo) - -  

\ mo/ 
(1) 

where m is the mass of  the tissue element used to calculate RD and m0 is the arbi- 
trarily chosen mass for reference. The reason for calling this a fractal relationship 
rather than just a power law relationship is that the possible slopes o f  the relation- 
ship are bounded by limits, and the fractal dimension, D, gives insight into the na- 
ture of the data. In this particular case, the upper limit of  D = 1.5 for the coefficient 
of variation of the densities (or the relative dispersion, RD, which is the standard devi- 
ation divided by the mean) represents random uncorrelated noise, and the lower limit 
of  D = 1.0 represents uniformity of  the property over all length scales. 

A second reason is that the fractal dimension D gives a measure of  the spatial cor- 
relation between regions of  defined size or separation distance. The general expres- 
sion is: 

r = 2 3-2D - 1, (2) 

where r is the traditional correlation coefficient. This was derived by van Beek et al. 
(11), and we now recognize it to be general. If  a fractal relationship is a reasonably 
good approximation, even over a decade or so, then it will prove useful in consider- 
ations of  spatial functions and might be useful in provoking searches for the under- 
lying basis for correlation; for myocardial flow heterogeneities the basis would appear 
to be in the fractal nature of  the branching network. 

The goal of this paper is to give some insight into fractal variances and to illustrate 
the ideas expressed above, exploring them by numerical experimentation. The tests 
are posed by sets of  data in two dimensions, where the characteristics of  the data are 
known in advance and the degree of  correlation either known or calculable. We begin 
with an exploration of  random noise without correlation, then examine spatial func- 
tions with correlation. Finally, the topic is illustrated via an application to studies of 
myocardial blood flow. 

M E T H O D S  

To illustrate the problem and the approach to its solution, we begin by generat- 
ing a unit square surface on which are distributed points generated uniformly by the 
function rand(). In pseudocode this is: 
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For i = 1, 8192 (for example) 
Xi = rand () 
Yi = rand()  
End. 

An example of  the result is shown in Fig. 1. The points are not positioned uniformly, 
despite the fact that if enough were calculated they would approach statistical uni- 
formity. The problem is to estimate the variance in the density of  dots over the area 
and determine correlations or patterns, if any. 

The value of  the mean is known, 8,192 points per unit square. To measure the vari- 
ation in local point density we might overlay grids with differently sized pixels, as in 
Fig. 2. The R D  for the number of  points for the 4-pixel grid was 2.2%0, for the 16- 
pixel grid was 4.6%0, and for the 64-pixel grid was 8.9%. This was extended to finer 
grids. The plot of the logarithm of R D  vs. the logarithm of  the number of pixels is 
shown in Fig. 3. The expected slope is that with each quadrupling of  the number of  
pixels the R D  should increase by a factor of two. Fitting a linear regression to the 
logarithms (admitting that this may not be a completely appropriate regression in view 
of the fact that the original data were in a linear, not logarithmic, domain as critiqued 
by Berkson (4)), gave an estimated slope of 0.4965. The fractal, or power law, expres- 
sion is: 

R D ( n )  _ ( n ~0.4965 

RD(64) \6-4) ' (3) 

where N = 64 was the arbitrarily chosen reference number of  pixels. The estimated 
fractal D was 1.4965 compared to the theoretical value of  1.5. 

FIGURE 1. Array of points generated by a uniform random number generator. What is the variation 
in the density o f  points? 
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FIGURE 2. Overlay of grids wi th differing mesh sizes on the array of uniform random points in 
Fig. 1. The gray shade assigned to each pixel indicates the % difference between the number of 
points in the pixel and the mean number of points per pixel at that pixel size. White indicates 20% 
below the mean and black 20% above the mean, 

RESULTS WITH NONRANDOM ARRAYS 

Performing the same exercise with nonrandom arrays leads to an interesting result. 
Correlat ion between the local densities of  neighbors was obtained by generating a 
function whose densities, while still probabilistic, were distinctly shaped over the field. 
Gaussian, 2-dimensional profiles resulted f rom generating the sum of  two sets of  
points, each f rom a r andom number  generator producing a Gaussian density func- 
tion with standard deviation of 0.15, centered at (X, Y) = (0.3,0.3) and (0.7,0.7). The 
number  of  point totaled 8,192, as in Fig. 1, so that  the mean densities are identical 
in Figs. 1 and 4. The same sequence of  grids was placed over this correlated array, 
and R D  calculated for each mesh size as before. The results, shown in Fig. 5, differ 
in two respects: the line is no longer a simple power law relationship and, at mesh 

-1 
= 

r~ 

- 2  , , , , , 

0 1 2 3 4 5 
log(N) 

FIGURE 3. Relative dispersions obtained from the uniform random points of Fig. 1 as a function of 
the number of pixels (N) in the grid. The slope of the regression line is close to the theoretical value 
of 0,5. 
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FIGURE 4.  Array  of points generated from the sum of t w o  Gaussian distributions (SD = 0 . 1 5 )  cen- 
tered at X,  Y = 0 . 3 , 0 . 3  and 0 . 7 , 0 . 7 .  The  total number  of points is 8 1 9 2 � 9  

sizes b e l o w  64 x 64 pixels ,  t he  s lope  o f  t he  l ine  o f  R D  vs. m e s h  size is less t h a n  f o r  

u n i f o r m l y  d i s t r i bu t ed  da ta .  

A N  E X P L O R A T I O N  O F  C O N T I N U O U S  D I S T R I B U T I O N S  

I n s t e a d  o f  g e n e r a t i n g  the  p o s i t i o n s  o f  p o i n t s  w i t h  a s ta t i s t ica l  d i s t r i b u t i o n  o f  lo-  

c a t i ons  in 2 -space ,  we g e n e r a t e d  the  c o n t i n u o u s  d i s t r i b u t i o n  s h o w n  in Fig .  6. I t  has  
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FIGURE 5. Relative dispersions for dif ferent mesh sizes on the  array of Fig. 4 .  
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FIGURE 6, Continuous representation of the Gaussian distr ibutions shown in Fig. 4, Each of the 
4096  pixels is internally uniform in concentration. 

the same mean probability densities, or concentrations, as for Fig. 4. The mesh was 
64 • 64 (2 6 by 2 6) for a total of  4,096 (212) squares within the original unit square. 
Within each pixel the concentration was considered uniform. The grids were overlaid, 
the average concentration calculated for each grid unit, and the RDs calculated for 
the field as before. The result is trikingly different. The relationship between RD and 
the number of  grid elements, shown in Fig. 7, now has a clearly defined plateau be- 
yond which further refinement of  the grid element size, or resolution of  the obser- 
vation element size, gives no further increase in the observed heterogeneity. The 
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log(N) 

FIGURE 7. Relative dispersions for different mesh sizes on the continuous distr ibution of Fig. 6. 
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plateau begins at the grid resolution that matches the pixel size of  the original con- 
tinuous distribution. The result is inevitable, namely that subdividing internally uni- 
form units produces no increase in the apparent dispersion of  the concentrations. 

CONTINUOUS DISTRIBUTIONS W I T H  SUBUNITS 
CONTAINING NEGATIVELY CORRELATED SUBUNITS 

In dichotomous branching systems where a parent source divides into two daughter 
branches, there is an opportunity for negative correlation between the daughter 
branches. An example is the twinkling of  local flows in the microvasculature where, 
if the flow in the parent source is held constant but that in one daughter branch in- 
creases, then the flow in the other daughter branch must decrease. We examined a 
simple case of  this type. 

Each of  the pixels of Fig. 6 was further subdivided using the pattern of  16 subunits 
on a square grid (Fig. 8) where the concentrations in the dark squares were set to be 
one eighth the mean concentration of  the original, and those in the light squares were 
set to zero. Thus, the mean number of  points in the unit square remained unchanged 
at 8,192. Again the RDs were calculated for the various grids. 

The results, shown in Fig. 9, are identical to those in Fig. 5 up through the divi- 
sion into 4,096 units, log (N) = 3.6. The next division into 16,384 units produces no 
increase in observed dispersion since each of  the four quarters of  Fig. 8 has the same 
mean as the whole square. The next division, however, shows a sudden increase in 
observed dispersion since the heterogeneity of  the units is now revealed. As in Fig. 7, 
further division of  these now uniform units does not increase the observed dispersion 
beyond the second plateau. 

The negative correlation produces a segment of  the slope of  log R D  vs. log (N) 
that has a slope with a fractal dimension greater than 1.5, that is, with a fractal D 
greater than that of random noise. Since such possibilities for negative correlation ex- 
ist in many biological situations, combinations of  positively and negatively correlated 
features in tissue structures or functions should not be thought of  as strange. 

ESTIMATES OF H E T E R O G E N E I T Y  OF REGIONAL 
MYOCARDIAL BLOOD FLOWS 

We reconstructed sheep hearts that had been divided into about 250 identified 
pieces into aggregates composed of  nearest neighbors. Given these data, we could nu- 

g m / / 
FIGURE 8. Checkerboard pattern used for further subdividing each of the 4096  pixels in Fig. 6. 
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FIGURE 9. Relative dispersions for different mesh sizes when there is negative correlation within 
the 4096 units as in Fig. 8. 

merically divide the heart into 4, 8, 16, etc. sections, each composed of pieces that 
were originally neighbors (see Fig. 10). Division of the left ventricle into four regions 
in each of 11 hearts resulted in the highest peak distribution in Fig. 10; division into 
192 pieces of average mass 0.22g gave the broadest, lowest peaked distribution. Figure 
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FIGURE 10. The effect of sample size on the apparent dispersion of regional myocardial blood flow 
in the left ventricle of 11 sheep hearts. Data were obtained using the "molecular microsphere" 
iododesmethylimipramine. The average mass of the pieces, mi, are in the order of the peak heights 
of the distributions and the RDs increase with finer divisions. [Reprinted from Bassingthwaighte 
et aL (3) by permission of the American Heart Association, Inc.] 
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FIGURE 11. Fractal relationship between the relative dispersions of regional flows (measured by the 
deposition of microspheres in the heart of a baboon) and the average mass of the pieces into which 
the heart was divided. The equation of the regression line is RD(m) = 16.9 m -~ (r  = 0.996) ,  The 
rightmost point was not used in the regression, [Reprinted from Bassingthwaighte and van Beek (2). 

Copyright 1988 IEEE.] 

I 1 shows the results when the log of  the R D  is plotted against the log of  the average 
piece size. (This is equivalent to Fig. 3, realizing that  decreasing piece mass is equiv- 
alent to increasing the number of  pixels). The low end of the range of piece size is lim- 
ited by the resolution with which the heart was originally divided, i.e. about  220 mg. 
The data f rom 10 baboon and 11 sheep hearts can be summarized by the equation: 

R D ( m )  = 18.m -~ (D = 1.2) (4) 

S P ATIAL C O R R E L A T I O N  IS C H A R A C T E R I Z E D  
BY T H E  F R A C T A L  D I M E N S I O N  

An intriguing and useful feature of  the fractal relationship is that  it specifies the 
degree of  correlation between neighbors in a spatial domain. In the preceding section, 
we considered the relative dispersion, or coefficient of  variation, of  regional flows as 
a one-dimensional intensity, analogous to a voltage as a function of  time. It is bet- 
ter to consider regional flow as the intensity of  a property of  the myocardium in 
three-dimensional space, just as we would consider the water density in a cloud at dif- 
ferent positions in a three-dimensional domain. In reconstructing the heart f rom the 
smallest pieces cut into larger and larger pieces, we were careful always to group to- 
gether the nearest neighbors to fo rm the aggregates of  a larger size. When pieces of  
a given size are cut in half, then the increase in apparent variation will be greater when 
the two halves of  each piece are uncorrelated than when they are correlated. Van Beek 
worked out a general relationship (11) for the correlation coefficient, r = 23-2D - 1. 

When D = 1.5, then r = 0, and when D = 1.0, r = 1, fulfilling expectations. With 
D = 1.2, the average for our sheep and baboon hearts, then r = 2 0 . 6  - 1 = 1.6 - 1 = 
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0.6, or 60%. This is the correlation between nearest neighbor voxels (volume ele- 
ments) of equal volume. Because the system has statistically fractal self-similar prop- 
erties, there is the same degree of  correlation between adjacent 1-mm cubes as 
between adjacent 1-cm cubes. The correlation between voxels that are not  adjacent 
is less; the correlation between pieces of  any particular size falls off  monotonically 
but not exponentially. 

CAN WE PREDICT THE SIZE OF T H E  MYOCARDIAL 
MICROVASCULAR UNIT? 

The fractal slopes differed from animal to animal, but in each set of observations 
it was consistent that those animals that exhibited large relative dispersion at any cho- 
sen reference size had lower fractal dimensions, slopes, than did those that had small 
relative dispersions at that chosen size. Preliminary evidence for a given species sug- 
gests that the family of  lines might intersect at a common point. This idea was ap- 
plied by Roger et al. (7) as illustrated for the sheep data in Fig. 12. 

The point of intersection is at R D  = 102% at a volume element size of 75 #g. This 
intersection suggests that 75 #g is the size of a microvascular unit. This would sug- 
gest that these are 13 arterioles per m m  3 of tissue, in line with estimates made by 
others (5,6,1). But an R D  of  102~ is large compared to the 50~ R D  seen in ham- 
ster hearts (10) using quantitative autoradiography with element sizes less than 100- 
cubic microns, using the "molecular microsphere" iododesmethylimipramine. For the 
sheep and baboons data, the 102% R D  was an extrapolation from the smallest ob- 
served pieces of about 100 mg down to pieces of less than 100/~g, three orders of mag- 
nitude smaller. 

Was the extrapolation simply over too large a range or is the heterogeneity less in 

2' 1 
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FIGURE 12. Projection of the fractal relationships for the relative dispersions of regional myo- 
cardial f lows in 11 sheep through a common point. The best fit was obtained with m = 75/~g and 
RD = 1 0 2 %  ( r =  0 .975) .  
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small  hear ts?  Van Beek et al. (11) sought  to  resolve  this  a p p a r e n t  d i spa r i ty  by  devel-  
oping  a d i c h o t o m o u s l y  b ranch ing  m o d e l  o f  the  a r te r ia l  sys tem tha t  has the  a p p r o -  
pr ia te  relative dispersions.  The heterogenei ty  was given by  a symmet ry  in f low at each 
b ranch  point ;  3~ to 407o dev ia t ion  f r o m  50070 suff iced.  The  b r anch ing  n e t w o r k  has  
fractal  characterist ics,  the division o f  f low being self-s imilar  on  scaling. This does not  
result  in s t ra ight  l og - log  plots  as in Fig.  10, but  ra ther  in convex-upward  curves tha t  
gave a c o m m o n  intersect ion at  a much  lower RD,  55070, close to  that  o f  the hamsters .  
Ana lys i s  o f  a u t o r a d i o g r a p h i c  r e so lu t ion  d a t a  on the  larger  hear t s  is now requ i r ed  to  
de te rmine  i f  thei r  f low he te rogene i ty  is f u n d a m e n t a l l y  d i f fe ren t  t han  tha t  o f  the  
smal ler  hams te r  hearts .  

It may  be reasonable  that  the heterogenei ty in larger  hearts  is greater  at a given unit  
size than  in smal l  hearts .  Since there  mus t  be a larger  n u m b e r  o f  genera t ions  o f  
b ranch ing  to supp ly  a given unit  size in a large hea r t  t han  in a smal l  one.  

C O N C L U S I O N  

Fractals  are useful tools for  examining flow heterogeneity.  First ,  they describe f low 
heterogenei ty  over  a large range o f  sizes o f  the observed  tissue samples.  Second,  frac-  
tal ly branching arterial  networks can explain such observed heterogeneity.  Third ,  they 
predic t  the  func t iona l  mic rovascu la r  uni t  size. Since a p p r o p r i a t e  d a t a  have no t  been  
ob ta ined ,  the  ex t r apo l a t i on  is t oo  grea t  to inst i l l  conf idence ,  bu t  it is tes table  by  
exper iment .  

F rac ta l  geome t ry  is not  p roven  to  be the  basis  o f  f low he te rogene i ty  in the  m y o -  
ca rd ium,  but  the  use o f  f racta l  a p p r o a c h e s  p r o v o k e s  ques t ions  tha t  push  one  to  in- 
vest igate  more  deeply.  
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